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I. INTRODUCTION

Increasingly used by companies in all industries, cloud computing is considered as a revolutionary technology for the 21st century. Cloud computing is a general term used to describe the on-demand delivery of different resources and services over the Internet. It refers to the data storage and computation through the Internet on remote powerful servers rather than using local computers. Thanks to this type of services, companies do not need to invest in their own equipment. Basically, cloud computing refers to three service categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

Cloud providers, such as Amazon Web Services (AWS), offer virtual server storage, but also Application Programming Interface (APIs) that allow the users to transfer their workloads to remote virtual machines. An IaaS can provide servers, networks, storage space within data centers. Once users have allocated storage capacity, they can start, stop or configure the VMs and storage as they wish. The infrastructure provided as virtual machines can be small, medium, large or very large to suit different needs. Therefore, the IaaS is scalable and flexible, and can be adapted to the workload. As a consequence, the IaaS becomes as one of the most dominant services offered by cloud providers nowadays.

Although cloud computing promises a revolution in the Information and Technology (IT) world, companies still face economic challenges that require an optimal resource management, due to the growing demand for resources and the dynamic nature of the cloud usage.

The cloud resource management is a complex process. To be effective, it must allocate an appropriate amount of resources based on the current demand for applications to meet the service level agreement (SLA) and minimize the waste of resources. Indeed, under-provisioning results in a violation of the SLAs and a poor quality of service (QoS). On the other hand, over-provising wastes energy and resources and even increases costs in terms of cooling and maintenance.

Various techniques such as load balancing and consolidation have been implemented to address the resource management problem. However, the use of these techniques without taking into account the ever-changing resource requirements of hosts can lead to disastrous problems. Therefore, forecasting the future behavior of the application based on specific aspects is the only practical and effective solution for good resource provisioning [START_REF] Amiri | Sur-vey on prediction models of applications for resources provisioning in cloud[END_REF] [2] [3] [START_REF] Liu | Workload forecasting based elastic resource management in edge cloud[END_REF]. Indeed, accurately predicting the future use of host resources allows to make intelligent management decisions.

CPU is one of the main causes of resource scarcity on the cloud hosts, since it is the most dynamic, reactive and ever fluctuating resource. It is intuitive that the CPU management is inefficient, which can be disastrous for applications if they are based on reactive methods like optimisation methods.

Hence, to optimize the use of CPU resource, monitoring its condition and behaviour and correcting the causes of failure with proactive methods are necessary. It is therefore essential to apply forecasting models to manage cloud resources. However, it is very difficult to accurately predict host utilization in a timely manner because of the very fast variation of the host utilization and the strong instability with many bursts.

The contribution of this paper attempts to meet this challenge by proposing a solution that addresses the abovementioned issues. Indeed, our proposed methodology aims at predicting the CPU resource of the next time slot based on historical data issued from previous slots. We resort to Self Organizing Map (SOM) algorithm known for its high capacity in clustering, which we use to its full potential. The time period for which forecasting provides critical information about future load is very important. Therefore, we introduce the sliding window technique which has proven its success in predicting long time series. Thus, to predict CPU load of the next time slot we variate the observation windows. For prediction, we also use SOM through a simple but efficient method. We illustrate the feasibility of our approach by using the PlanetLab dataset generated by the COmon project [5].

The remainder of this paper is structured as follows. In section II, we discuss the literature review. In section III, we motivate our choice and present the used algorithm. Section IV describes our proposed methodology by detailing each step. Section V highlights the conducted experiments and the performed results before concluding in Section VI.

II. RELATED WORK

To ensure a good QoS and to avoid resources wasting, we need to manage resources. However, the big issue is how to predict the future use of the host in real time as the workload varies with time. Predicting future use of hosts is essential for placing virtual machines on appropriate hosts or migrating virtual machines in advance from overloaded or underloaded hosts.

Numerous studies have been carried out on the prediction in cloud computing according to various objectives of the research: Prediction of the servers' load [START_REF] Toumi | Server load prediction using stream mining[END_REF], [START_REF] Di | Host load prediction in a Google compute cloud with a Bayesian model[END_REF], [START_REF] Gondhi | Prediction based energy efficient virtual machine consolidation in cloud computing[END_REF], [START_REF] Verma | Server workload analysis for power minimization using consolidation[END_REF], [START_REF] Song | Host load prediction with long short-term memory in cloud computing[END_REF], prediction of the VMs' load [START_REF] Jheng | A novel VM workload prediction using grey forecasting model in cloud data center[END_REF], [START_REF] Beloglazov | Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data cen-ters under quality of service constraints[END_REF], prediction of the VM use [START_REF] Dabbagh | An energyefficient VM prediction and migration framework for overcommitted clouds[END_REF], [START_REF] Minarolli | Tackling uncertainty in long-term predictions for host overload and underload detection in cloud computing[END_REF], prediction of the host use [START_REF] Mason | Predicting host CPU utilization in the cloud using evolu-tionary neural networks[END_REF].

In the context of virtual machine migrations, various workload prediction techniques are used [START_REF] Gmach | Workload analysis and demand prediction of enterprise data center applications[END_REF], [START_REF] Roy | Efficient autoscal-ing in the cloud using predictive models for workload fore-casting[END_REF], [START_REF] Khan | Workload characterization and prediction in the cloud: a multiple time series approach[END_REF], [START_REF] Wu | Adaptive workload prediction of grid performance in confidence win-dows[END_REF], [START_REF] Chen | Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model[END_REF].

The CPU load is one of the most studied indicator to forecast the data-center activity, as it is one of the leading causes of resource shortages on cloud hosts. Artificial Intelligence (AI) and Machine learning (ML) algorithms such as neural networks and linear regression have been widely applied in recent years to predict the CPU load.

Authors, in [START_REF] Dinda | Host load prediction using linear models[END_REF], used several prediction models to predict the execution times of tasks, based on the CPU load forecast. [START_REF] Duggan | Predicting host cpu utilization in cloud computing using recurrent neural networks[END_REF] used a recurrent neural network formed with the so-called back propagation algorithm to predict the CPU utilisation of a host on the Google Cluster trace data set.

Authors, in [START_REF] Beloglazov | Optimal online deter-ministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual ma-chines in cloud data centers[END_REF], proposed the implementation of local regression, median absolute deviation, inter-quartile range and robust local regression methods to determine when servers may be over-utilized based on CPU usage.

To improve the performance of the VM placement algorithm proposed in [START_REF] Beloglazov | Optimal online deter-ministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual ma-chines in cloud data centers[END_REF], Mason et al. [START_REF] Mason | Predicting host CPU utilization in the cloud using evolu-tionary neural networks[END_REF] proposed the evolutionary neural network approach to predict the host CPU utilization based on both one-step and multi-steps ahead.

Unlike the approach described by Song et al. [START_REF] Song | Host load prediction with long short-term memory in cloud computing[END_REF] who used the short term memory (LSTM) model in a recurrent neural network (RNN), Qazi and Aizenberg in [START_REF] Qazi | Cloud Datacenter Workload Prediction Using Complex-Valued Neural Networks[END_REF] proposed a prediction mechanism using MLMVN, which is a feed forward neural network using complex-valued neurons. The CPU usage of individual host machines for the 29 days was utilized for evaluation.

In order to propose a virtual machine consolidation approach, the Kernel Density Estimation technique is used in [START_REF] Mahdhi | A Prediction-based VM Consolidation Approach in IaaS Cloud Data Centers[END_REF] to estimate resource usage and predict future host's states. Using real web server request traces, Calheiros et al. [START_REF] Calheiros | Workload prediction using ARIMA model and its impact on cloud applications QOS[END_REF] proposed an auto-regressive integrated moving average (ARIMA) model that assesses the accuracy of future workload forecasting.

In [START_REF] Rahmanian | A learning automatabased ensemble resource usage prediction algo-rithm for cloud computing environment[END_REF], an LA-based ensemble prediction algorithm based on Learning Automata (LA) theory is proposed for CPU load prediction based on several VMs gathered from the dataset of the CoMon project. The proposed approach combines the prediction values of multiple prediction models. Each model is given a weight according to its performance. Then, an autonomic approach is used to determine how much accurate each prediction model is according to their predictions.

In [START_REF] Kumar | Workload prediction in cloud using artificial neural network and adaptive differential evolution[END_REF], the authors presented a workload prediction model using neural network and self adaptive differential evolution algorithm to learn the best suitable mutation strategy along with optimal crossover rate.

Sadeka et al., in [START_REF] Islam | Empirical prediction models for adaptive resource provisioning in the cloud[END_REF], proposed empirical prediction models for adaptive resource provisioning in cloud computing using neuronal network and linear regression. Their prediction method applied some strategies including sliding window. They also provided evaluation metrics for validating the technique such as MAPE and RMSE.

Salam Ismaeel et al.,[START_REF] Ismaeel | Using ELM Techniques to Predict Data Centre VM Requests[END_REF], proposed an ELM technique to predict data center VM requests based on historical data, that they combine with the clustering K-Means method. The authors presented these techniques in a small framework. They used data from real google traces.

In order to minimize energy cost and consumption in cloud data centers and to reduce the number of active physical servers on data centers, Fahimeh Farahnakian et al. in [START_REF] Farahnakian | Energy-Efficient Virtual Machines Consolidation in Cloud Data Centers Using Reinforcement Learning[END_REF], proposed a dynamic virtual machine consolidation based on k-nearest neighbor regression algorithm that predicts in each host the CPU usage. To achieve SLA violation and energy cost, they adopted four algorithms of [START_REF] Beloglazov | Optimal online deter-ministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual ma-chines in cloud data centers[END_REF] that they combined with their proposed method k-nearest neighbor algorithm.

In [START_REF] Chen | An Adaptive Short-Term Prediction Algorithm for Resource Demands in Cloud Computing[END_REF], an adaptive short-term prediction strategy is proposed to adaptively select a precise short-term prediction method. The proposed approach works in three stages: preprocessing of abnormal data and replacement of outliers, adaptive selection to select a better prediction algorithm based on a dynamic threshold and finally an error adjustment by proposing an error adjustment factor for improve accuracy. The conducted experiments demonstrate the effectiveness of the proposed approach in terms of the prediction accuracy, however it suffers from a high time cost.

To address the challenge of allocating several requests to a VM, authors in [START_REF] Kaur | An intelligent regressive ensemble approach for predicting resource usage in cloud computing[END_REF] proposed A Regressive Ensemble Approach for Predicting (REAP) CPU usage of a scientific application. REAP predicts intelligently the CPU utilization by integrating Genetic Algorithm-based feature selection and CPU usage prediction techniques. The experimental results show that the proposed approach enhances the accuracy by 2% and reduces the execution time by 16.2% comparatively to the existing machine learning regression models.

The authors, in [START_REF] Qui | A deep leanrning Approach for VM Workload Prediction in the Cloud[END_REF], proposed a deep learning approach that they designed with a deep belief network (DBN) composed of multiple layered restricted boltzmann machines and a regression layer. They used the DBN to extract the high level features from data and regression layer for prediction. A MAPE error is calculated to evaluate the proposed method.

Salam Ismaeel et al, in [START_REF] Islam | Empirical prediction models for adaptive resource provisioning in the cloud[END_REF], proposed a survey of the most techniques and algorithms used in proactive dynamic VM consolidation. This study focuses on energy consumption.

The authors of [START_REF] Hishamf | An intelligent swarm based prediction approach for predicting cloud computing user resource need[END_REF] combined linear and non linear prediction models using ARIMA and SVR. ARIMA model is used to predict time series of linear attributes while SVR model is used to extract non linear attributes from the dataset they used. Both models used MAPE and RMSE to validate their methods.

The authors of [START_REF] Kumar | Scaled Conjugate Gradient Backpropagation based SLA Violation Prediction in Cloud Computing[END_REF] consider another important parameter for prediction that is the SLA. Since this parameter is critical for both the customer and the cloud provider, they use scaled conjugate gradient neural network to make predictions possible on SLA violations.

Cloud data centers contain hundreds of thousands of servers, which host millions of VMs of different sizes, types and applications. Hence, since server resources are strongly influenced by the VMs they host, it makes more sense to focus on VMs resource management rather than server management as in [START_REF] Toumi | Server load prediction using stream mining[END_REF] [7] [START_REF] Gondhi | Prediction based energy efficient virtual machine consolidation in cloud computing[END_REF].

The choice of a good data set that is representative of a real cloud computing environment is important. Authors of [START_REF] Mahdhi | A Prediction-based VM Consolidation Approach in IaaS Cloud Data Centers[END_REF] Our research work focuses on the data set of [5] like in [START_REF] Beloglazov | Optimal online deter-ministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual ma-chines in cloud data centers[END_REF] [START_REF] Mason | Predicting host CPU utilization in the cloud using evolu-tionary neural networks[END_REF] [33] [START_REF] Islam | Empirical prediction models for adaptive resource provisioning in the cloud[END_REF]. The drawback of these works is that they did not exploit all the data. Some of them selected randomly some VMs while others selected randomly time intervals. This distorts the results in case of generalization.

In addition this data set is of time series type, which is an important point to take into account. The produced time series present a particular difficulty in predicting their future values. It is well known that the usual prediction methods already used in prediction problems have poor performance when used without first clustering the time series [START_REF] Barnston | Correspondence among the Correlation [root mean square error] and Heidke Verification Measures; Refinement of the Heidke Score[END_REF].

The fact that, the works cited above didn't resolve well the problem, motivates us to propose and focus in this paper on three important issues: data clustering, time series analysis and predicting the future CPU load.

III. THE SELF ORGANIZING MAP

Developed by Teuvo Kohonen, self-organized map (SOM) is a new method to represent neural networks and to perform automatic classification tasks. Unlike artificial neural networks, SOM is an unsupervised method. It is composed of simple elements (neurons) assembled into neural networks, whose the functioning is strongly influenced by the connection of the elements to each other. SOM is often used to analyze observed data whose the structure requires investigation.

A. PRINCIPLE OF SOM

SOM is a method that projects the space of observed data (of large dimensions) into a space of small dimensions such as 1, 2 or 3D, called MAP. The map is made up of a set of neurons connected to each other according to the notion of neighbourhood. Each neuron has fixed coordinates in the map space and coordinates adaptable on the space of the data called referential vectors, responsible for an area of this space.

This projection must respect the topology of the data. It is based on vector quantification methods that partition all available observations into similar groups using learning algorithms. These groups are characterized by their neighbourhood structures, which can be materialized using a discrete space called a "topological map". This space forms a small lattice on which neighbourhood structures are taken into consideration by the model. The choice of a topology depends on the nature of the problem.

The implementation of a topological map requires a distance δ on the topological space to define the notion of neighbourhood on the map. It is a discrete distance defined by the length of the shortest path connecting two neurons on the map. Thus, the order neighbourhood of a neuron can be defined as the set of neurons located at a distance d from the neuron.

The distances that link the neurons to each other allow to vary the relative influence of the different neurons which can be quantified by a K function. We often use a family of K T functions set to T , sometimes called activation functions to better control the size of the neighbourhood as in the following:

K T = K( δ T ) (1) 
T is a parameter used to control the influence between neurons.

B. ALGORITHM OF SOM

Once the map topology and activation functions have been chosen, the reference vectors are obtained by learning from the data. The algorithm used to learn the map is described as in the following.

Step 0 : Initialization of the reference vectors W .

Step 1: At each iteration: As input of the map, an example of a selected learning X(n) is presented. The algorithm compares the example to all the reference vectors so that the winning neuron i is the one whose reference vector W i (n) is the closest to the input X(n) :

i * = argmin(d(W i (n), X(n))) (2) 
Where i denotes in turn each neuron in the network and W i its referent vector.

We evaluate the neighbourhood of the winning neuron by the equation below:

K T i * (i) = K T (δ(i, i * )) (3) 
Then, all neurons of the Map are updated for any i belonging to the neighbourhood of i * . The Map is more adapted by the fact that the neurons are neighbours of i * :

W i (n + 1) = W i (n) + α(t)K T i * (i)[X(n) -W i (n)] ( 4 
)
where α is a learning parameter called learning step which decreases as a function of n, and is less than 1. It's also an important element because it allows to find a compromise between the convergence speed and the quality of the map unfolding.

Finally the stopping criterion of the algorithm is defined in several ways: number of iterations, difference between weight vectors, quantification error and so on.

Phases 1, 2 and 3 are called respectively as in the following: Competition: After selecting an example from the database, we look for the neuron that most closely resembles it. This neuron called "winning neuron" is often rated BMU (Best Matching Unit).

Cooperation: In this step, the neighbourhood of the winning neuron is determined. It refers to the region of the map that is the most active and closest, in terms of the distance used, to the observation. The size of the neighbourhood of the winning neuron is controlled by the learning radius.

Adaptation: The winning neuron is modified to look more like the example and then information about its neighbourhood is disseminated. This modification is done using the activation function which controls the influence of the winning neuron on its neighbourhood.

C. AUTOMATIC CLASSIFICATION WITH KOHONEN MAPS

Once a map is learned, we have the typical profiles of each neuron called codebooks. Two close neurons in the map are close standard profiles and a set of contiguous codebooks represent a particular profile in the data.

Codebooks are a data set on which a hierarchical classification can be applied to group similar neurons. The classification of a new element can be done as follows:

• Present the new element at the card entry.

• Identify the winning neuron, the one whose codebook is close to the new element. • Identify the cluster of the winning neuron.

IV. OUR PROPOSED APPROACH

In this section, we will highlight our methodology and describe our proposed model while depicting each component (see Fig. 1).

A. Methodology description

In the cloud computing, a data center is mainly made up of a set of virtualized servers. Services are offered to customers by allocating several heterogeneous virtual machines. The real loads of these virtual machines are often dynamic. Thus, the static allocation of resources is doomed either to waste, if it is based on a worst-case scenario estimate, or to performance degradation, if it is based on the average load. Thanks to the cloud computing model, resources can be allocated on demand and the sizing is adapted to load variation. However, resource variations, especially the CPU load of VMs are frequent and unpredictable, resulting in server overload, under-load or even inactivity. This results in degraded performance, wasted resources or violations of service level agreements (SLAs).

It appeared necessary to develop proactive methods for the management of virtual machines before it leads to under-consumption of resources on physical servers or overconsumption.

In order to make an acceptable solution that is able to predict future resources requirement in the cloud, we explored a number of existing prediction methods as proposed in the literature.

The first step of our proposed solution is to choose a representative data set from a real environment. Since the CPU resource is the most dynamic one on the servers, we choose the Planetlab data of CoMon project [5]. These data are gathered from a real workload of monitoring infrastructure. The CPU utilization data is obtained from more than one thousand VMs from servers located within more than 500 locations around the world. Data is collected every 5 minutes. So, our research problem relates to time-series analysis such as each VM is a time series data that consists of a sequence of N pairs (CP U i , t i ), where CP U i is the percentage of CP U utilisation at time t i .

The Self Organizing Map mainly adopted in our proposed system is one of the most common techniques used in clustering problem. However, in our work, we propose to use it not only for this purpose but also for prediction.

Moreover, to determine the best prediction on window, we incorporate the concept of sliding window, which forecasts future CPU resources using previous data in different observation windows sizes. Our proposed models are carried out using statistical metrics as discussed in the following sections. 2) Selection Once all the data are projected on Map and each neuron summarizes the VMs belonging to it with the same behavior, and in order to continue the next steps, we have chosen to select a subset of VMs from each neuron in order to obtain a sample of data of reduced size while keeping the heterogeneity of the whole set. In this way, our simulations for the prediction that is the purpose of our work will not be saturated. The data selection was made according to Algorithm 2. Each time we are interested in prediction problems using time series, the sliding window is requested, especially in the case of long series. Indeed, the prediction can only be made on a finite number of points. In our case, we have CPU loads as used by the VMs gathered every five minutes during 24 hours. Our data are therefore as follows : Because there is no rule to determine the appropriate size of the observation window for better prediction, we have decided to vary the window size in order to decide which one will be the right one as follows:

B. Our Proposed System Components

CP U t0 V M1 , CP U t1 V M1 , ..., CP U t k V M1 CP U t0 V M2 , CP U t1 V M2 , ..., CP U t k V M2 CP U t0 V M N , CP U t1 V M N , ..., CP U t k V M N N :
In Fig. 2, the size of the observation window is only used as an illustrative example. In our work, we considered two scenarios.

In the first one, we tried to predict the 7th value by using the previous 6 values, and in the second scenario, our aim was to predict the 13th using the previous 12 values. For each time series, i. e. for each VM, the values were predicted from 7 to 288 in the first scenario and from 13 to 288 in the second scenario, knowing that we cannot predict the values from 0 to 6 and from 0 to 12 because of scarce values. Therefore, we use the following:

• First Case:

The 6 values of each VM: From 0 to 6 to predict the 7th value From 1 to 7 to predict the 8th value From 2 to 8 to predict the 9th value . . . From 282 to 287 to predict the 288th value • Second Case:

The 12 values of each VM: From 0 to 12 to predict the 13th value From 1 to 13 to predict the 14th value From 2 to 14 to predict the 15th value . . . From 276 to 287 to predict the 288th value We note: XV M i,j the CPU measurement of V M i at time j (i=1,n) (j = 1, 288) Therefore, we create in each case two matrices : input matrix M Input and output matrix M Output written as follows:

• Case 01 : Observation Window = 6

M Input =     X V M1,1 X V M1,2 ... X V M1,6 X V M1,2 X V M1,3 ... X V M1,7 ... X V Mn,282 X V Mn,283 ... X V Mn,287     (1) M Output = X V M1,7 X V M1,8 ...X V Mn,288 (2) 
• Case 02 : Observation Window = 12

M Input =     X V M1,1 X V M1,2 ... X V M1,12 X V M1,2 X V M1,3 ... X V M1,13 ... X V Mn,276 X V Mn,277 ... X V Mn,287     (3) M Output = X V M1,13 X V M1,14 ...X V Mn,288 (4) 
The data of the input matrix in each case will be again learned using SOM to gather similar observations within the same neurons according to algorithm 3. Steps 6 to 10 of SOM-1 7 until Convergence; At the end of this step, we obtain two Maps from each case.

4) Splitting

To evaluate the quality of the obtained Maps, a strong similarity within the same neuron must be respected. Therefore, we compute the standard deviation of each neuron of Maps.

Then, we define a threshold that we have set at a fix value.

The two obtained Maps in the previous step will be splited into two Sub-Maps according to the defined threshold as in Algorithm 3. Algorithm 4: Spliting The MisClassified Data will be once again presented to SOM, in order to reclassify and better distribute them on the neurons and by the way reduce the standard deviation (See algorithm 5).

Algorithm 5: SOM-3 Steps 6 to 10 of SOM-1 7 until Convergence;

5) SOM-Prediction

As we introduced earlier, we applied our SOM-based algorithm for both clustering and prediction. We will explain here how to make the prediction possible using SOM.

We consider the final obtained SOM Map by the previous step.

Each map consists of a set of neurons and each neuron gathers a set of similar input observation windows. The goal of SOM-Predictor is to make prediction in each one of the neurons. Let Y i denote the set of M neurons corresponding to each Map Y i = {(y 1 , y 2 , ..., y M )}, and (where k=number of time slot) the subset of M input data mapped to neuron i. For each element of X n corresponds an observed output from M output . We note the set of outputs by

X n = {(x t0 1 , x
O n = {o 1 , o 2 , .., o n }.
The CPU load at time t k+1 for all observation window data belonging to the same neuron is then computed as follows: In this section, the efficiency of the proposed prediction system will be evaluated using a real world CPU load trace [5] described in Table 1. Our experiments are conducted under Matlab environment using SOM toolbox [START_REF] Vesanto | SOM toolbox for Matlab[END_REF].

P red(y i ) = n j=1 o j n (5) 
First, we plot some VMs of the data set (Fig. 3) to show the diversity of types and variability during 24 hours (one measurement every five minutes). 4 shows the SOM Map obtained after projection with the data by PCA tool, while Fig. 5 is the SOM Map obtained after selecting some VMs to be used in the remaining steps. The two Maps obtained (Fig. 4 and Fig. 5) are not very different. This shows that the selected VMs summarize well the global data and therefore our selection method is efficient and the new obtained data set is homogeneous. The selection step is very important during the simulations. Indeed we have 11737*288 data. This number will increase considerably during sliding windows step that not only blocks our simulations but also creates redundancies of observation windows.

Fig. 6 and Fig. 7 correspond to the SOM Maps obtained after classification of the observations windows for the two different cases 6 and 12 respectively. These figures clearly show that the SOM Map is spread out over the data set, which proves that the Maps are well learned in such a way that they reach all points, even the remote ones.

In statistics, the standard deviation can be used to calculate the homogeneity of several populations on the same variable. It measures the dispersion of the values of a data set around the mean. If the data values are all similar and homogeneous, then the standard deviation will be small and close to zero. If the data values are highly variable, then the standard deviation will be large and greater than zero.

The standard deviation is computed for each neuron and displayed in Fig. 8 and Fig. 9 by the U-Matrix. As shown by these figures, the standard deviation varies between 0 and 13.5 when the slide window is equal to 6, and between 0 and 14.6 when the slide window is equal to 12. After several simulations, we define a threshold=2 which will be used to split the obtained SOM Maps into two parts: the well classified data and mis-classified data. We keep the neurons whose the standard deviation is less than the threshold while the dataset belonging to those whose the standard deviation is higher than the threshold will be learned again by the SOM algorithm in order to better reclassify them and to obtain two other maps in each case, that are better learned.

In order to illustrate the effectiveness of this work, the proposed SOM-predictor is compared with: Support Vector Machine (SVM) and MultiLayer Perceptron (MLP) [START_REF] Collobert | Links between Perceptrons, MLPs and SVMs[END_REF] models. To make this possible, we use the same selected data set and the same size for observation windows and prediction windows.

To conduct our evaluation and comparison, we have selected two methods as described below. Our choice was based on similar works of the literature:

• Root-Mean-Square Error (RMSE): is a frequently used measure of the difference between the values predicted by a model or an estimator and the values observed defined as follows:

RM SE = N i=1 ( Ŷi -Y i ) 2 N (6) 
• Mean absolute percentage Error (MAPE): is a measure that indicates about the mean of the dispersion between predicted and observed values, with the linear model (absolute difference). Therefore, it's a convenient indicator for comparison. The formula is:

M AP E = 1 N N i=1 Ŷi -Y i Y i (7) 
Table 2 and Table 3 show significant values and clearly highlight the chosen prediction method compared to SVM and MLP. RMSE and MAPE errors obtained with SOM are the smallest in the two cases where observation windows are equal to 6 and 12. However, for SOM, the size of observation window is clearly important such that the results of the errors show that the choice of a smaller observation window allows us to better predict.

In addition to the numerical values, we plot in figures Fig. 10 Fig. 11 some VMs such that the graphs of each figure show the observed values and the predicted ones by the three methods SOM, MLP and SVM for each VM. The figures show clearly that the lines of SOM follow the same variations of the observed ones. In the data center environment, the goal is not to predict the exact future CPU values but to predict the variation that can each VM take in time. The peaks of load that may occur are critical and have an important role in the consolidation of VMs, especially in their migration. Hence, through our experimentation, we have shown that SOM combined with the proposed methodology is quite robust to predict better, especially in critical cases unlike MLP and SVM which predict quite well but are weak in such cases.

In addition to our experiments, we present some VMs of the non-selected dataset to the SOM Map as shown in figure Fig. 12 (with observation window=6) to predict the future CPU load with the three predictor methods. The results are shown in graphs of Fig. 13 and Fig. 14 and prove that SOM predicts better than MLP and SOM. Our prediction method is quite simple but very efficient as shown by the obtained results and graphs compared to the two prediction methods SVM and MLP which are known for their robustness in regression prediction.

As a perspective, we plan to further test the proposed method by considering not only the CPU workload, but also different types of workloads (memory, storage, etc.) and investigate the correlation between them. We intend also to implement our method on a real platform for real-time decision making. 

  [START_REF] Qazi | Cloud Datacenter Workload Prediction Using Complex-Valued Neural Networks[END_REF] [START_REF] Ismaeel | Using ELM Techniques to Predict Data Centre VM Requests[END_REF] [25][START_REF] Dinda | Host load prediction using linear models[END_REF] have worked on the data set of Google [40] that gathers the collected CPU and memory traces of web servers, while in [5] collected the percentage of CPU usage by several VMs hosted in different servers located in different regions of the world.
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 2567 Selection 1 Input: a set of neurons Y = {y 1 , y 2 , .., y M } 2 begin; 3 Initialize i = 1 4 repeat SOrd[] ← Ord(S, desc) ; // Order S in Descending Order according to their radius error 8 SSelected[] ← take one out of 3 from SOrd[]
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 2 Figure 2: Scheme of slide windows
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 3 Figure 3: CPU Load of different VMs during 24 hours with 5minutes interval showing the diversity of VMs types and their variations
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 4 Figure 4: PCA projection of data and neurons after Classification of all VMs
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 6 Figure 6: PCA projection of data and neurons after sliding window, Case: slide window=6
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 7 Figure 7: PCA projection of data and neurons after sliding window, Case: slide window=12
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 8 Figure 8: UMatrix showing Standard deviation of each cluster, a: Case Slide Window=6, b: Case Slide Window=12
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 910 Figure 9: Observed and Predicted data for some VMs with the SOM, MLP and SVM methods, Case Slide Window=6

Figure 11 :Figure 12 :

 1112 Figure 11: Prediction protocol for coming data
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 13 Figure 13: Observed and Predicted data for some VMs of not selected dataset using Slide Window=12

Table I :

 I Data DetailAs shown in Table1, we have 11737 VMs and each VM contains 288 CPU traces. An Input matrix of 11737*288 is presented to SOM to be classified. Fig.

	Day	Number of VMs
	2011/03/03	1052
	2011/03/06	889
	2011/03/09	1061
	2011/03/22	1516
	2011/03/25	1078
	2011/04/03	1463
	2011/04/09	1358
	2011/04/11	1233
	2011/04/12	1054
	2011/04/20	1033
	Total	11737

Table II :

 II RMSE ERRORs

		Slide Window=6 Slide Window=12
	SOM	0,2063	0,41985
	SVM	0,7329	1,17
	MLP	0,7577	1,19

Table III :

 III MAPE ERRORs

The problem consists then in using:• Case 01 : Observation Window = 6X V M1,1 X V M1,2 X V M1,3 X V M1,4 X V M1,5 X V M1,6 to predict X V M1,7 X V M1,2 X V M1,3 X V M1,4 X V M1,5 X V M1,6 X V M1,7 to predict X V M1,8 ... X V M1,282 X V M1,283 X V M1,284 X V M1,285 X V M1,286 X V M1,287 to predict X V M1,288 ... X V Mn,282 X V Mn,283 X V Mn,284X V Mn,285 X V Mn,286 X V Mn,287 to predict X V Mn,288• Case 02 : Observation Window = 12 X V M1,1 X V M1,2 X V M1,3 X V M1,4 X V M1,5 X V M1,6 X V M1,7 X V M1,8 X V M1,9 X V M1,10 X V M1,11 X V M1,12 to predict X V M1,13 X V M1,2 X V M1,3 X V M1,4 X V M1,5 X V M1,6 X V M1,7 X V M1,8 X V M1,9 X V M1,10 X V M1,11 X V M1,12 X V M1,13 to predict X V M1,14 ... X V M1,276 X V M1,277 X V M1,278 X V M1,279 X V M1,280 X V M1,281 X V M1,282 X V M1,283 X V M1,284 X V M1,285 X V M1,286X V M1,287 to predict X V M1,288 ... X V Mn,276 X V Mn,277 X V Mn,278 X V Mn,279 X V Mn,280 X V Mn,281 X V Mn,282 X V Mn,283 X V Mn,284 X V Mn,285 X V Mn,286 X V Mn,287 to predict X V Mn,288