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    Thresholds and more bands of A.C. spectrum for the Molchanov-Vainberg Schrödinger operator with a more general long range condition

Introduction

This article is concerned with the study of spectral properties of the Molchanov-Vainberg Laplacian operator when perturbed by a class of long range perturbations. The Molchanov-Vainberg Laplacian, introduced in [MV], is a type of discrete Schrödinger operator on the lattice Z d and can be used to model quantum phenomena in media with discrete postions such as crystals, or more general media by means of discretisation. This article is a sequel to [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF], and parallels [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] which covers the same topic but for the standard Laplacian, which we will denote by ∆. The Molchanov-Vainberg Laplacian acts in the Hilbert space H :" 2 pZ d q as follows:

(1.1)

Drds " D :"

d ź i"1 ∆ i , where ∆ i :" 2 ´1pS i `Si q " 2 ´d ÿ νPΓ S ν 1 1 S ν 2 2 ¨¨¨S ν d d ,
where Γ :" t´1, 1u d , ν " pν 1 , . . . , ν d q.

Here S i " S 1 i and S i " S ´1 i are the shifts to the right and left respectively on the i th coordinate. So pS ˘1 i uqpnq " upn 1 , . . . , n i ¯1, . . . , n d q for u P H, n " pn 1 , . . . , n d q P Z d . Set |n| 2 " n 2 1 `...`n 2 d . Let σp¨q denote the spectrum of an operator. A Fourier transformation shows that the spectra of ∆ i and D are purely absolutely continuous (a.c.), σp∆ i q " r´1, 1s and σpDq " r´1, 1s.

Let V model a discrete electric potential and act pointwise, i.e. pV uqpnq " V pnqupnq, for u P H. We always assume V is real-valued and goes to zero at infinity. Thus the essential spectrum of D `V equals σpDq. Let N and N ˚be the positive integers, including and excluding zero respectively. Let N o and N e be the odd and even positive integers respectively. Fix κ P N ˚.

The potential shifted by ˘κ units is defined by pτ ˘κ i V qupnq :" V pn 1 , . . . , n i ¯κ, . . . n d qupnq, @1 ĺ i ĺ d. As in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] and [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF], we study potentials V satisfying a non-radial condition of the form (1.2) n i pV ´τ κ i V qpnq " Opgpnqq, as |n| Ñ 8, @1 ĺ i ĺ d, where gpnq is a radial function which goes to zero at infinity at an appropriate rate, e.g. gpnq " ln ´qp|n| `1q, q ą 2. We refer to [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] for some examples of Schrödinger operators that satisfy (1.2).

The two discrete Laplacians, ∆ and D, are identical in dimension 1, and so we will only consider D for d ľ 2. Also, ∆ and D are isomorphic in dimension 2, and so an interesting aspect is to compare the dimension 2 results for D `V with V satisfying (1.2) with 2κ with those for ∆ `V in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] with V satisfying (1.2) with κ. The reason the comparison should not be done κ to κ, but rather 2κ to κ, is detailed in the isomorphism in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]section V]. In dimensions ľ 3 the two Laplacians are not isomorphic and so this article also presents results specific to D. It apppears that many, if not all, of the interesting observations or results for ∆ `V mentioned in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] have corresponding ones for D `V . There is a lot of truth in saying that to write this article it is a simple matter of mindlessly replacing a `b by a ˆb, a ´b by a ˜b, a ˆb by a b , and a ˜b by a 1{b in the key formulas in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]...but then it's not completely true! There are some notable and non-trivial differences that make the study of D `V worthwhile and interesting. Because this article parallels [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] which covers the exact same topic but for ∆ we may be more brief in the conceptual exposition at times.

Let I Ă R be a closed interval, let I ˘:" tz P C ˘: Repzq P Iu, C ˘:" tz P C, ˘Impzq ą 0u. The limiting absorption principle (LAP) is a statement about the boundary values of the maps (1.3)

I ˘Q z Þ Ñ pD `V ´zq ´1.
One important implication of the LAP on an interval I is the absence of s.c. spectrum for D `V on that set. This article produces such type of results. In Mourre theory, which was extensively studied in [START_REF] Mourre | Absence of singular continuous spectrum for certain self-adjoint operators[END_REF], [START_REF] Mourre | Opérateurs conjugués et propriétés de propagation[END_REF] and [ABG], one of the strategies to obtain a LAP (1.3) on an interval I Ă σpD `V q depends roughly on the ability to prove two key estimates. The first estimate is a strict Mourre estimate for D with respect to some self-adjoint conjugate operator A on this interval, that is to say, Dγ ą 0 such that (1.4) 1 I pDqrD, iAs ˝1I pDq ľ γ1 I pDq,

where 1 I pDq is the spectral projection of D on I, and r¨, iAs ˝initially defined on the compactly supported sequences is the extension of the commutator between an operator and A to a bounded operator on H (this definition suffices for this article). The second estimate is one involving V , and according to a more recent perspective on the theory (see [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF]) is such as

(1.5) ln p p1 `|n|q ¨rV, iAs ˝¨ln p p1 `|n|q is a compact operator on H f or some p ą 1.

Denote the position operators pN i uqpnq :" n i upnq. These are required to specify our choice of A. As in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] we consider a (finite) linear combination of conjugate operators of the form (1.6) A " ÿ jľ1 ρ jκ ¨Ajκ , ρ jκ P R, A jκ :"

ÿ 1ĺiĺd A i pj, κq,
where each A i pj, κq, initially defined on compactly supported sequences, is the closure in H of :

(1.7) A i pj, κq :" 1 2i

" jκ 2 pS jκ i `S´jκ i q `pS jκ i ´S´jκ i qN i  " 1 4i " pS jκ i ´S´jκ i qN i `Ni pS jκ i ´S´jκ i q  .
Each A jκ is self-adjoint in H by an adaptation of the case pj, κq " p1, 1q, and so A is self-adjoint, at least whenever it is a finite sum. The reason choice (1.6) is relevant is that rV, iA jκ s ˝" ÿ 1ĺiĺd p4iq

´1 ´pV ´τ jκ i V qS jκ i ´pV ´τ ´jκ i V qS ´jκ i ¯Ni `hermitian conjugate, and so (1.2) implies (1.5), again, at least when A is a finite sum and gpnq " ln ´qp1 `|n|q, q ą 2.

While the frequencies of the A i pj, κq are in sync with the long range frequency decay of V , the coefficients ρ jκ need to be chosen so that (1.4) holds and this is a challenge. We partition the spectrum of D into two sets : µ κ pDq and Θ κ pDq. µ κ pDq are energies E P σpDq for which there is a self-adjoint linear combination (finite or infinite) of the form (1.6), an interval I Q E and γ ą 0 such that the Mourre estimate (1.4) holds. Θ κ pDq are energies E P σpDq for which there is no self-adoint linear combination (finite or infinite) of the form (1.6), no interval I Q E and no γ ą 0 such that (1.4) holds. By definition σpDq is a disjoint union of µ κ pDq and Θ κ pDq.

From Mourre theory µ κ pDq is an open set and so Θ κ pDq is closed. In this article, including title and abstract, energies in Θ κ pDq are referred to as thresholds. This definition depends on the modeling assumption of A. Theorem 1.1 below highlights the usefulness of the sets µ κ pDq. Let σ p pD `V q be the point spectrum of D `V . Let xAy :" ? 1 `A˚A .

Theorem 1.1. Let q ą 2, κ P N ˚be such that lim sup p|V pnq|, |n i pV ´τ κ i V qpnq|q " O `ln ´qp|n|q ˘, as |n| Ñ 8 and @1 ĺ i ĺ d.

Let E P µ κ pDqzσ p pD `V q. Let A " ř j ρ jκ A jκ be a finite sum such that (1.4) holds in a neighorhood of E. Then there is an open interval I, I Q E, such that (1) σ p pD `V q X I is at most finite (including multiplicity),

(2) @p ą 1{2 the map I ˘Q z Þ Ñ pD `V ´zq ´1 P B pK, K ˚q extends to a uniformly bounded map on I, with K " L 2 1{2,p pAq " ψ P H : }xAy 1{2 ln p pxAyqψ} ă 8

( , ( 
3) The singular continuous spectrum of D `V is void in I.

This theorem can be refined, see [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] and references therein. Operator regularity is a necessary and important topic underlying our methodology. According to the standard literature, the regularity D, V P C 1,1 pAq, or adequate variations thereof, are required. It is clear that D, V belong to C 1 pA jκ q for 1 ĺ j ĺ N ă 8, and this implies D, V P C 1 p ř 1ĺjĺN ρ jκ A jκ q. Although the C 1 pAq compliance falls short of the required regularity, since C 1 pAq Ă C 1,1 pAq, we do not expect regularity to be a problem in this article.

Problem of article : determine for as many energies E P σpDq if E P µ κ pDq or E P Θ κ pDq.

In this article we will only consider even values of κ P N ˚. For κ odd it is an open problem to decide if µ κ pDq is empty or not -note that this is harder to prove than [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]Lemma IV.3], because there the linear combination A " (1.6) consisted of just the first term.

As a result of [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF], µ κ"2 pDq Ą r´1, 1szt´1, 0, 1u in any dimension d and this was proved choosing A " A 1 " ř d i"1 A i p1, 2q. Actually, equality holds and this is easy to prove (see Lemma 1.5 below). So onwards we only consider κ ľ 4, κ P N e . For these values of κ incomplete results for µ κ pDq and Θ κ pDq were obtained in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] by using A " A κ " ř d i"1 A i p1, κq. Note that this corresponds to (1.6) with ρ jκ " 1 if j " 1 and ρ jκ " 0 if j ľ 2. Table 5 displays the intervals already determined (numerically) to belong to µ κ pDq for 2 ĺ κ ĺ 8 (cf. [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]Tables XV and XVII]). In this article we continue to determine µ κ pDq and Θ κ pDq for d ľ 2, and κ ľ 4, even.

The overall high level strategy is the same as in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]. It is :

(1) Fix a dimension d and a κ ľ 4, κ P N e . (we really only treat d " 2 ; d " 3 very briefly).

(2) Determine as many threshold energies in Θ κ pDq as possible. To do this we use the same idea as in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]. This involves solving systems of equations, which yield threshold energies E " ś 1ĺlĺd x l and their decomposition into coordinate-wise energies x " px 1 , ..., x d q. These are key in the next step.

(3) Pick 2 consecutive threshold energies E i 1 and E i 2 determined in the previous step (consecutive means that there aren't any other thresholds between E i 1 and E i 2 ), and try to construct a conjugate operator A of the form (1.6) such that for every E P pE i 1 , E i 2 q, there is an interval I Q E and γ ą 0 such that (1.4) holds. The A is the same for every

E P pE i 1 , E i 2 q.
To determine the coefficients ρ jκ , we perform polynomial interpolation. Rigorous proofs for the existence of the thresholds in step (2) are produced. As for step (3), the polynomial interpolation is implemented numerically. Thus the coefficients ρ jκ are found numerically, and these are then used to plot a functional representation of (1.4). This is the evidence we share to see that strict positivity is in fact obtained.

We now describe the idea to get thresholds. Let U κ be the Chebyshev polynomials of the second kind of order κ. As rD, iA jκ s ˝" ř d i"1 D∆ ´1 i p1 ´∆2 i qU jκ´1 p∆ i q and the ∆ i are selfadjoint commuting operators we may apply functional calculus. To this commutator associate the polynomial

(1.8) r´1, 1s d Q x Þ Ñ g jκ p xq :" d ÿ i"1 ˜ź 1ĺlĺd x l ¸x´1 i p1 ´x2 i qU jκ´1 px i q P R, x " px 1 , ..., x d q.
If the linear combination of conjugate operators is A "

ř jľ1 ρ jκ ¨Ajκ , set (1.9) r´1, 1s d Q x Þ Ñ G κ p xq :" ÿ jľ1 ρ jκ ¨gjκ p xq P R.
G κ is a functional representation of rD, iAs ˝. Consider the constant energy E P σp∆q surface (1.10) S E :"

# x P r´1, 1s d : E " ź 1ĺlĺd x l + .
By functional calculus and continuity of the function G κ we have

E P µ κ pDq iff G κ | S E ą 0.
Definition of Θ 0,κ pDq. E P Θ 0,κ pDq iff D x :" px 1 , ..., x d q P S E such that g jκ p xq " 0, @j P N ˚.

If x is such a solution, then for any choice of coefficients ρ jκ P R, (1.9) " G κ p xq " 0. Definition of Θ m,κ pDq, m P N ˚. E P Θ m,κ pDq iff there are p x q q m q"0 :" px q,1 , ..., x q,d q m q"0 Ă S E , and pω q q m´1 q"0 Ă R, ω q ĺ 0 (crucial), @ 0 ĺ q ĺ m ´1, such that (1.11) g jκ p x m q " m´1 ÿ q"0 ω q ¨gjκ p x q q, @j P N ˚.

If the x q are such a solution, then for any choice of coefficients ρ jκ P R,

(1.12) G κ p x m q " ÿ jľ1 ρ jκ ¨gjκ p x m q " m´1 ÿ q"0 ω q ÿ jľ1 ρ jκ ¨gjκ p x q q " m´1 ÿ q"0 ω q ¨Gκ p x q q.
If Θ m,κ pDq X µ κ pDq was non-empty the lhs of (1.12) would be strictly positive whereas the rhs of (1.12) would be non-positive. An absurdity. Thus :

Lemma 1.2. Fix d ľ 1, κ ľ 1.
Then Θ m,κ pDq Ă Θ m,ακ pDq Ă Θ ακ pDq, @m P N, and @α P N ˚.

Simply because no counterexamples were found, we actually conjecture :

Conjecture 1.3. Fix d " 2, κ ľ 4, κ P N e . Y mľ0 Θ m,κ pDq " Θ κ pDq.
I don't understand d " 3 nearly as well to submit a Conjecture like 1.3 for it. It turns out it is very easy to find threshold energies in Θ 0,κ pDq. We prove : Lemma 1.4. @ d, κ P N e , θ 0,κ pDq :" ! ś 1ĺqĺd cospj q π{κq : pj 1 , ..., j d q P t0, ..., κu d ) Ă Θ 0,κ pDq.

Remark 1.1. This lemma supports the conjectures in relation to the band endpoints in Table 5.

Perhaps equality in Lemma 1.4 holds; this is an open question. Thresholds θ 0,κ pDq in Lemma 1.4 were already found in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]. Here we prove Θ m,κ pDq ‰ H, @m ľ 0, @d ľ 2, κ ľ 4 even. Thus, there are infinitely many thresholds for d ľ 2, κ ľ 4 even. This is a remarkable difference with the case of the dimension 1, or the case of κ " 2 in any dimension (see [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]) :

Lemma 1.5. Let pd, κq P t1u ˆNe Y N ˚ˆt2u. Then θ 0,κ pDq " Θ 0,κ pDq " Θ κ pDq.

The interpolation setup of step (3) above is analogous to that in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]. We review it for clarity. Suppose E i 1 and E i 2 are consecutive thresholds, with E i 1 P Θ m 1 ,κ pDq and E i 2 P Θ m 2 ,κ pDq for some m 1 , m 2 P N. Suppose the coordinate-wise energies are p x q q m 1 q"0 Ă S E i 1 and p y r q m 2 r"0 Ă S E i 2 . Recall we have the assumption that the conjugate operator A is the same @E P pE i 1 , E i 2 q. Thus, while we want G κ ą 0 on pE i 1 , E i 2 q, a continuity argument implies that G κ is at best non-negative at the endpoints E i 1 and E i 2 , due to (1.12). Also by continuity, G κ p xq must be a local minimum whenever G κ p xq " 0 and x is an interior point of S E i 1 or S E i 2 . Let intp¨q be the interior of a set. Thus we require :

(1.13)

#

G κ p x q q " 0, @0 ĺ q ĺ m 1 , and ∇G κ p x q q " 0, f or x q P intpS E i 1 q rlefts, G κ p y r q " 0, @0 ĺ r ĺ m 2 , and ∇G κ p y r q " 0, f or y r P intpS E i 2 q rrights.

By (1.12) conditions G κ p x m 1 q " 0 and G κ p y m 2 q " 0 are redundant. Constraints (1.13) set up a system of linear equations to be solved for the coefficients ρ jκ , i.e. we have polynomial interpolation. In order for the computer to numerically solve the system, multiples of κ, Σ :" tj 1 κ, j 2 κ, j 3 κ, ..., j κu, need to be assumed. We choose Σ essentially by trial and error but prioritize lower order polynomials to keep things as simple as possible. In other words, we loop over sets Σ until we find an appropriate A. Section 14 provides an illustration of G E κ when the index set Σ is inappropriately selected. Of course, if our assumption that the A is the same for all E P pE i 1 , E i 2 q is valid, then constraints (1.13) are necessary but not necessarily sufficient in order to find an appropriate A. As a rule of thumb, it makes sense to look for a conjugate operator A for which the number of coefficients ρ jκ corresponds to the number of constraints in (1.13). But unlike in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF], here we have not investigated if there is an appropriate conjugate operator A for which the number of non-zero coefficients ρ jκ must be greater than the number of constraints in (1.13).

Our problem is harder as d, κ increase. So we focus mostly on the dimension 2. Some of those results will carry over to d ľ 3. As for κ we mostly limit the numerical illustrations and evidence to a handful of values. We always restrict our analysis to positive energies, because µ κ pDq " ´µκ pDq, by Lemma 4.1.

Until otherwise specified, we now focus exclusively on the dimension 2. For κ ľ 4, let

(1.14) J 2 " J 2 pκq :" `cos 2 pπ{κq, cospπ{κq ˘, J 1 " J 1 pκq :" pcospπ{κq, 1q .

By Lemma 1.4, inf J 2 , sup J 2 " inf J 1 , sup J 1 P θ 0,κ pDq. In [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] we proved J 1 Ă µ κ pDq, @κ even. As for J 2 it was identified (numerically for the most part) as a gap between 2 bands of a.c. spectrum, but this was based on (1.6) with j " 1 only, see Table 5. Let E 0 " E 0 pκq :" sup J 2 .

Theorem 1.6. Fix κ ľ 4, κ P N e . There is a strictly decreasing sequence of energies tE n u 8 n"0 " tE n pκqu 8 n"0 , which depends on κ, such that tE n u Ă J 2 X Θ κ pDq and E n OE inf J 2 " cos 2 pπ{κq. Also, E 2n´1 and E 2n P Θ n,κ pDq, @n ľ 1.

The E n are complicated numbers but exact solutions are sometimes attainable, see e.g. ( 6.3) for exact solutions for κ " 4. After graphing some numerical solutions for E 2n , 1 ĺ n ĺ 100, for κ P t4, 6u, we propose the same conjecture as in the case of ∆ on the rate of convergence: Conjecture 1.7. Let tE n u be the sequence in Theorem 1.6. E n ´inf J 2 " cpκq{n 2 `op1{n 2 q, @κ ľ 4, κ P N e , where cpκq means a constant depending on κ.

In section 7 we state two Theorems and a Conjecture generalizing Theorem 1.6. Unfortunately I was not successful in rigorously proving a Mourre estimate on any new interval. Nonetheless, based on numerical evidence given in sections 12 and 13 it looks like J 2 is the simplest of the gaps identified in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] to understand. Therefore we conjecture:

Conjecture 1.8. Fix κ ľ 4, κ P N e . Let tE n u be the sequence in Theorem 1.6. For each interval pE n , E n´1 q, n ľ 1, D a conjugate operator Apnq " ř N pnq q"1 ρ jqκ pnqA jqκ , A jqκ " ř 1ĺiĺ2 A i pj q , κq, such that the Mourre estimate (1.4) holds with Apnq, @E P pE n , E n´1 q. Apnq is typically not unique. It can be chosen so that N pnq " 2n. In particular, tE n u " J 2 X Θ κ pDq.

κ " 4 is the only value of κ for which the closure of J 2 Y J 1 equals σpDq X r0, 1s. Thus, if Conjecture 1.8 is true, our problem is fully solved in the case of κ " 4 (in dimension 2). But for κ ľ 6, Theorem 1.6 and Conjecture 1.8, together with the already existing results recorded in Table 5, do not paint a complete picture. For example, the above discussion does not address the situation on the interval » p0.25, 0.5064q, for κ " 6. We make some progress in that direction, but things get even more complicated. In addition to (1.14), for κ ľ 6 set J 3 " J 3 pκq :" `cosp2π{κq, cos 2 pπ{κq ˘.

J 3 , J 2 , J 1 are adjacent intervals. We looked only very briefly into the strange phenomenon regarding J 3 , see section 15. If the case of D mirrors that of ∆ it is plausible to conjecture:

Conjecture 1.9. For any κ ľ 6, κ P N e , J 3 pκq Ă µ κ pDq.

In section 8 we recycle the proof of Theorem 1.6 to prove the existence of thresholds below J 3 :

Theorem 1.10. Fix κ ľ 6, κ P N e . There is a strictly increasing sequence of energies tF n u 8

n"1 which depends on κ, such that tF n u Ă pcospπ{κq ˆcosp2π{κq, cosp2π{κqq X Θ κ pDq and F n Õ inf J 3 " cosp2π{κq. F 2n´1 , F 2n P Θ n,κ pDq, @n ľ 1.

Figure 10 depicts the solutions F 1 , F 2 and F 3 for κ " 6. Unfortunately I was only able to accurately numerically compute a couple of solutions F n and so no conjecture on the rate of convergence of F n will be formulated. In section 9 two Theorems and a Conjecture generalizing Theorem 1.10 for tF n u are mentioned.

If we work on the spectrum of D starting from the middle (energy 0), and then move outwards, note that we expect J last " J last pκq :" `0, cos 2 ppκ{2 ´1qπ{κq to belong to µ κ pDq (see Table 5 and especially [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]Table XV]). It therefore remains to better understand the nature of the spectrum on rsup J last pκq, inf J 3 pκqs, minus the bands of a.c. spectrum that were already identified there.

Hopefully it will become clear from our examples and constructions that there are many more thresholds P rsup J last pκq, inf J 3 pκqs for κ ľ 6 in addition to the sequence tF n u. For example, more such thresholds are given in Figures 2, 11 and 12 for κ " 6, and we expect a bunch more to lie there. Here are open questions we find interesting :

' Of the thresholds P θ 0,κ pDq, which ones are accumulation points, as a subset of Θ κ pDq ? ' Are there accumulation points P Θ κ pDqzθ 0,κ pDq ? ' What are the rates of convergence to the accumulation points P Θ κ pDq ? ' Are there infinitely many accumulation points within Θ κ pDq ? ' Is there an interval I Ă σpDq for which Θ κ pDq is dense in I ? We do conjecture however (as in the case of ∆):

Conjecture 1.11. Fix κ ľ 2, κ P N e . Y mľ0 Θ m,κ pDq and Θ κ pDq are countable sets.

As far as the a.c. spectrum is concerned, we did not investigate the existence of µ κ pDq in rsup J last pκq, inf J 3 pκqs, apart from what was already known. If the case of D `V resembles that of ∆ `V , one might suspect this is the part of the spectrum that is much harder to crack. Challenges in trying to decode µ κ pDq were given in the introduction of [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] and they apply here too. In spite of the challenges we do have an overall conjecture for the dimension 2: Conjecture 1.12. Fix d " 2, κ P N e . Let E i 1 , E i 2 P Θ κ pDq be two consecutive thresholdsmeaning that there aren't any other thresholds in between E i 1 and E i 2 . Then there is a (finite?) linear combination A " ř N j"1 ρ jκ A jκ such that the Mourre estimate (1.4) holds with A for every energy E P pE i 1 , E i 2 q. In particular, in light of Theorem 1.1, σ p pD `V q is locally finite on pE i 1 , E i 2 q, whereas the singular continuous spectrum of D `V is void.

We are done discussing d " 2. In higher dimensions we have only 1 general result: thresholds in dimension d generate thresholds in dimension d `1, via scaling. Recall notation (1.1).

Lemma 1.13. t˘cosp jπ κ q : 0 ĺ j ĺ κ 2 ´1u ˆΘm,κ pDrdsq Ă Θ m,κ pDrd `1sq, @d ľ 1, κ P N e , m P N.

For pd, κq P N ˚ˆt2u, the inclusion in Lemma 1.13 is in fact equality, but perhaps there are values of κ ľ 4, κ P N e , for which the inclusion in Lemma 1.13 is strict. Lemma 1.13 generalizes [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]Lemma IV.2].

We briefly treat the problem in dimension 3. There is still considerable work to be done just to understand the case κ " 4, especially on the interval pcos 3 pπ{4q, cos 2 pπ{4qq. Theorem 1.14 and Conjecture 1.15 below are for D in dimension 3.

Theorem 1.14. Fix κ " 4. We have : ' pcospπ{4q, 1q Ă µ κ pDq (proved in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]). ' 0, cos 3 pπ{4q, cos 2 pπ{4q, cospπ{4q, 1 P θ 0,κ pDq (Lemma 1.4). ' Let tE n " E n pκ " 4qu be the sequence in Theorem 1.6. Applying Lemma 1.13 gives :

' tE n u Ă `cos 2 pπ{4q, cospπ{4q ˘X Θ κ pDq, with E n OE cos 2 pπ{4q, ' tE n ˆcospπ{4qu Ă `cos 3 pπ{4q, cos 2 pπ{4q ˘X Θ κ pDq, with E n ˆcospπ{4q OE cos 3 pπ{4q.
Similarly to the case of ∆ and κ " 2, graphical evidence also suggests the following conjecture, although it is quite mysterious and surprising to me how and why it happens :

Conjecture 1.15. Fix κ " 4. Let tE n " E n pκ " 4qu be the sequence in Theorem 1.6. For each interval pE n , E n´1 q, n ľ 1, the Mourre estimate (1.4) holds with Apnq " ř 1ĺqĺN pnq ρ jqκ pnqA jqκ , A jqκ " ř 1ĺiĺ3 A i pj q , κq, @E P pE n , E n´1 q, where the coefficients ρ jqκ pnq are exactly those used in the 2-dimensional case, see Conjecture 1.8. In particular tE n u 8

n"1 " J 2 X Θ κ pDq. Conjecture 1.15 may extend to κ ľ 6, but we have not looked into it. The sequence in pcos 3 pπ{4q, cos 2 pπ{4qq in Theorem 1.14 is the only knowledge we have about this interval.

We conclude the introduction with a few comments. The formula for the ω q 's in this article are more involved than the one for the standard Laplacian in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]. This leads to a richer set of assumptions or ways these can be negative, see sections 5 and 10.

In this article we discuss another type of threshold P Θ m,κ p∆q which can happen in dimension 2 when a so-called alignment condition is fulfilled, see section 10. This is an improvement over [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] because, although they do appear in some graphs in [START_REF] Golénia | Additional numerical and graphical evidence to support some conjectures on discrete Schrödinger operators with a more general long range condition[END_REF], they were swept under the rug (especially the math behind them). In concordance with Conjecture 1.8, we believe these types of thresholds occur somewhere in rsup J last pκq, inf J 3 pκqs. Unfortunately I was not successful in deriving a general formula for the ω q 's for these thresholds, see section 10. Furthermore, it is very likely that these types of thresholds occur only for κ ľ 6, but I don't have a proof for it.

Another improvement over [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] is that in this article we better articulate the assumptions around systems (5.1) and (5.9) which are used to find thresholds in dimension 2. We believe this gives more clarity to the exposition. As a result however, the definition of the set T n,κ given here doesn't quite match the one given in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF], see section 5.

The thresholds found in this article raise the question about possible eigenvalues embedded in the continuous spectrum. I am not aware of an analysis of properties of such eigenfunctions for D `V , even for a long-range V satisfying (1.2) with κ " 1. It appears to be an open question if this can be done using the Mourre estimate as in [FH] (see also [Ma]), or another technique.

We would also like to remind the reader that both D and ∆ converge to the continuous Laplacian in R d in the norm resolvent sense, see [GM2, Appendix A] and [NT]. This is another point that makes the study of D worthwhile.

Finally, the reader is invited to consult the introduction of [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] where additional relevant comments can be found and totally apply to this article too. Acknowledgements : It is a pleasure to thank my former thesis advisor Sylvain Golénia for conversations and Vojkan Jakšić for encouraging me to study the Molchanov-Vainberg Laplacian. I also want to thank my great friend Laurent Beauregard for generously sharing programming ideas and always being there ready to pitch in.

Basic properties and lemmas for the Chebyshev polynomials

Let T n and U n be the Chebyshev polynomials of the first and second kind respectively of order n P N. They are defined by the formulas (2.1)

T n pcospθqq " cospnθq, U n´1 pcospθqq " sinpnθq{ sinpθq, θ P r´π, πs, n P N.

The parity of the polynomials T n and U n is the same as the parity of n. As we'll mainly use the Chebyshev polynomials T 4 and T 6 to illustrate our article we give their expressions :

(2.2) T 4 pxq " 8x 4 ´8x 2 `1 and T 6 pxq " 32x 6 ´48x 4 `18x 2 ´1.

It may be useful to be aware that T n pxq " T n pyq can be factored into a product of straight lines or ellipses. For instance :

(2.3) T 4 pxq " T 4 pyq ô px ´yqpx `yqpx 2 `y2 ´1q " 0, and T 6 pxq " T 6 pyq ô px ´yqpx `yqp´3 `4x 2 ´4xy `4y 2 qp´3 `4x 2 `4xy `4y 2 q " 0.

The roots of U n´1 are cosplπ{nq, 1 ĺ l ĺ n ´1. We'll absolutely need a commutator r¨, ¨s for functions. For functions f, g of real variables x, y, let (2.4) rf pxq, gpyqs :" f pxqgpyq ´f pyqgpxq.

Remark 2.1. The quantity rf pxq, gpyqs{px´yq is called Bezoutian in the literature. Alternatively, (2.4) ressembles a Wronskian. Note this commutator satisfies rf pxq, gpyqs " rgpyq, f pxqs.

Lemmas 2.1, 2.2, 2.5 and Corollaries 2.3 and 2.4 given below were already cited and proved in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]. They will play the same important role in this article ; in particular the corollaries are at the heart of our search for thresholds.

Lemma 2.1. For x, y P r´1, 1s, T κ pxq " T κ pyq if and only if T ακ pxq " T ακ pyq for all α P N ˚.

Lemma 2.2. Fix κ P N ˚. If cospκθq " cospκφq then sinpκφq sinp2κθq " sinpκθq sinp2κφq ñ sinpακφq sinpβκθq " sinpακθq sinpβκφq, @α, β P N ˚.

Corollary 2.3. Let κ P N ˚, κ ľ 2 be given. If x, y P R are such that U κ´1 pxq, U κ´1 pyq ‰ 0, then T κ pxq " T κ pyq ô rU ακ´1 pxq, U βκ´1 pyqs " 0, @α, β P N ˚.

Corollary 2.4. Let κ P N ˚, κ ľ 2 be given. Let x, y P r´1, 1s. Then rU ακ´1 pxq, U βκ´1 pyqs " 0 for all α, β P N ˚if and only if U κ´1 pxq " 0, or U κ´1 pyq " 0, or T κ pxq " T κ pyq.

We also exploit the variations of T κ : Lemma 2.5. Fix κ ľ 1. T κ pr´1, 1sq " r´1, 1s. T κ p1q " 1, T κ p´1q " p´1q κ . The local extrema of T κ in r´1, 1s are located at cospjπ{κq, 0 ĺ j ĺ κ. On pcospjπ{κq, cosppj ´1qπ{κqq, j P t0, ..., κu, T κ is strictly increasing if j is odd and strictly decreasing if j is even.

Finally, two other identities we'll exploit are :

(2.5) d dx T κ pxq " κU κ´1 pxq, and d dx U κ´1 pxq " κT κ pxq ´x ¨Uκ´1 pxq x 2 ´1 .

A difference between this article and [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] is that there the proofs didn't require the use the second identity in (2.5).

3. Functional representation of the strict Mourre estimate for D wrt. A

Let F : H Ñ L 2 pr´π, πs d , dξq be the Fourier transform

(3.1) pFuqpξq :" p2πq ´d{2 ÿ nPZ d upnqe in¨ξ , ξ " pξ 1 , . . . , ξ d q.
The commutator between D and A jκ , computed against compactly supported sequences, is

rD, iA jκ s " F ´1 " ř d i"1 sinpξ i q sinpjκξ i q ś l‰i cospξ l q ı F " ř d i"1 D∆ ´1 i p1 ´∆2
i qU jκ´1 p∆ i q, @j P N ˚. So rD, iA jκ s extends to a bounded operator rD, iA jκ s ˝. Let (3.2) mpxq :" 1 ´x2 .

Fixing E P σpDq allows us to remove the x d variable in (1.8). We will often opt for that convention. Thus, consider the polynomial g E jκ : r´1, 1s d´1 Þ Ñ R,

(3.3) g E jκ px 1 , ..., x d´1 q :" d´1 ÿ i"1 E x i mpx i qU jκ´1 px i q `d´1 ź i"1 x i ¨m ˜E{ d´1 ź i"1 x i ¸Ujκ´1 ˜E{ d´1 ź i"1 x i ¸.
Lemma 3.1. The roots of mpxqU jκ´1 pxq are tcosplπ{pjκqq : 0 ĺ l ĺ jκu. The intersection over j P N ˚of the latter set is tcosplπ{κq : 0 ĺ l ĺ κu and these are roots of mpxqU jκ´1 pxq, @j P N ˚.

If the linear combination of conjugate operators is

A " ř jľ1 ρ jκ ¨Ajκ set G E κ : r´1, 1s d´1 Þ Ñ R, (3.4) G E κ px 1 , ..., x d´1 q :" ÿ jľ1 ρ jκ ¨gE jκ px 1 , ..., x d´1 q.
(3.3) and (3.4) are basically the same thing as (1.8) and (1.9) but localized in energy E. Of course, G E κ depends on the choice of the coefficients ρ jκ , but it is not indicated explicitly in the notation. Recall S E defined by (1.10) (constant energy surface). Note that S E is symmetric in all variables. So S 1 E :"

S E | R d´1 is unambiguously defined. The point is that G E κ ˇˇS 1 E
is a functional representation of 1 tEu pDqrD, iAs ˝1tEu pDq. By functional calculus and continuity of the function

G E κ , E P µ κ pDq if and only if G E κ ˇˇS 1 E ą 0.
We highlight specially the 2 and 3-dimensional cases as this is our main focus. In dimension 2, we adopt the simpler notation :

(3.5) g E jκ pxq " pE{xq ¨mpxqU jκ´1 pxq `x ¨mpE{xqU jκ´1 pE{xq, x P r´1, ´|E|s Y r|E|, 1s. In dimension 3, we adopt the simpler notation :

(3.6) g E jκ px, yq " pE{xq ¨mpxqU jκ´1 pxq `pE{yq ¨mpyqU jκ´1 pyq `xy ¨mpE{pxyqqU jκ´1 pE{pxyqq, y P r´1, ´|E|s Y r|E|, 1s and x P r´1, ´|E{y|s Y r|E{y|, 1s.

The proof of the following Lemma follows directly from the definition of g E jκ pxq. Lemma 3.2. Fix d " 2. If κ P N e , then G E κ pxq is an even polynomial for any coefficients ρ jκ .

Lemma 3.3. Let d " 2, E ą 0, κ P N ˚. Then d dx g E jκ p ?
Eq " 0 for all j P N ˚. In particular

d dx G E κ p ?
Eq " 0 for any choice of coefficients ρ jκ .

Proof. Straightforwardly from (3.5).

In [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF], the function g E jκ pxq, and hence G E κ pxq, had a nice visual symmetry property, namely, it was symmetric wrt. the axis x " E{2, see [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]Lemma 3.4]. In this article, we still have a pseudo-symmetry property, which is that

(3.7) g E jκ p ? E ¨tq " g E jκ p ? E{tq, @j P N ˚, which entails G E κ p ? E ¨tq " G E κ p ?
E{tq, @t P R.

We will refer to this symmetry property as a multiplicative symmetry wrt. the axis x " ? E. Needless to say that this is a highly questionable wording.

4. Generalities about the sets µ κ pDq, Θ κ pDq and Θ m,κ pDq For the proofs of the Lemmas 4.1, 1.4 and 1.13 given just below, we revert back to the notation (1.8) instead of (3.3). Thanks to Lemmas 4.1 and 4.2 we may focus only on positive energies in this article.

Lemma 4.1. @d ľ 1, @κ P N e , µ κ pDq " ´µκ pDq. Taking complements, Θ κ pDq " ´Θκ pDq.

Proof. First note that S ´E " Ť d j"1 tλ j px 1 , ..., x d q : px 1 , ..., x d q P S E u, where λ j px 1 , ..., x d q " pf 1 , ..., f d q, with f i " x i if i ‰ j and f j " ´xj . Thus, from (1.8), and the fact that the U jκ´1 p¨q are odd functions, we have that g jκ px 1 , ..., x d q " ´gjκ pλ j px 1 , ..., x d qq whenever px 1 , ..., x d q P S E .

Lemma 4.2. For any d P N ˚, for any κ P N e , any m P N, Θ m,κ pDq " ´Θm,κ pDq.

The proof of Lemma 4.2 is like that of Lemma 4.1 and follows from the definition of Θ m,κ pDq. Proof of Lemma 1.4. Let E " ś d q"1 x q , x q " cospj q π{κq. Then g jκ px 1 , ..., x d q " 0, @j P N ˚. Proof of Lemma 1.13. Let E P Θ m,κ pDrdsq, with E " ś d l"1 x q,l for 0 ĺ q ĺ m. Set E " E ˆcosplπ{κq, 0 ĺ l ĺ κ, but l ‰ κ{2. Then @j P N ˚:

g jκ p x m , cosplπ{κqq " g jκ p x m q " m´1 ÿ q"0 ω q ¨gjκ p x q q " m´1 ÿ q"0 ω q ¨gjκ p x q , cosplπ{κqq.

This implies E P Θ m,κ pDrd `1sq.

A geometric construction to find thresholds in dimension 2

The idea below -systems (5.1) and (5.9) -is our bread and butter to find thresholds P Θ m,κ p∆q in dimension 2. In this section we discuss properties of solutions to these systems and explain how to construct them graphically. In sections 6 and 8 we apply the idea and prove the existence and uniqueness of solutions under certain additional conditions.

For subsections 5.1 and 5.2, fix κ P N e , κ ľ 4, and n P N ˚. Consider real variables E n , X 0,n , X 1,n , ..., X n,n , X n`1,n . 5.1. The case of n odd. For n P N ˚odd define T n,κ to be the set of strictly positive E n " E n pκq such that the system of n `3 equations in n `3 unknowns (5.1)

#

T κ pX q,n q " T κ pX n´q,n q, @ q " 0, 1, ..., pn ´1q{2 X n´q,n " E n {X 1`q,n , @ q " ´1, 0, ..., pn ´1q{2 has a solution satisfying X q,n P p´1, 1qzt0u, @ 0 ĺ q ĺ pn ´1q{2, (5.2) T 1 κ pX q,n q ‰ 0, @ 0 ĺ q ĺ pn ´1q{2, (5.3) X n`1,n P tcospjπ{κq : 0 ĺ j ĺ κuzt0u.

(5.4) To be clear the E n and X i,n 's depend on both κ and n. When n is fixed and no confusion can arise we will simply write X i instead of X i,n . We start with a useful observation, which follows immediately from the variations of T κ , cf. Lemma 2.5 : Lemma 5.1. Suppose system (5.1) and (5.2)-(5.4) hold. Then X n´q,n P p´1, 1qzt0u, @ 0 ĺ q ĺ pn ´1q{2, (5.5) T 1 κ pX n´q,n q ‰ 0, @ 0 ĺ q ĺ pn ´1q{2. (5.6) It is possible however (and will be the case sometimes) that X n`1,n P t˘1u or T 1 κ pX n`1,n q " 0.

Remark 5.1. System (5.1) cannot admit a solution if E n ă 0, because the second line of (5.1) implies X 2 pn`1q{2 " E n . Thus, for E n ă 0, we define T n,κ to be the set of strictly negative E n " E n pκq such that the system (5.7)

$ ' & ' %
T κ pX q,n q " T κ pX n´q,n q, @ q " 0, 1, ..., pn ´1q{2 X n´q,n " E n {X 1`q,n , @ q " ´1, 0, ..., pn ´3q{2 X 2 pn`1q{2 " ´En has a solution satisfying (5.2)-(5.4). Of course, Lemma 5.1 holds for solutions with E n ă 0.

Given Lemma 5.2 below we allow ourselves to focus only on positive energies from here on.

Lemma 5.2. T n,κ " ´Tn,κ , for all n P N o , κ ľ 4, κ P N e .

Proof. We are in dimension 2. Note that X q P S En ô ´Xq P S ´En . Fix E n ą 0. E n and X q , 0 ĺ q ĺ n `1 solve (5.1) and satisfy (5.2)-(5.4) if and only if ´En , ´Xq , 0 ĺ q ĺ pn ´1q{2 and X q , pn `1q{2 ĺ q ĺ n `1 solve (5.7) and satisfy (5.2)-(5.4). Note we used the parity of T κ . We discuss the a priori non-uniqueness of the solutions to the system. There may be several solutions to system (5.1) satisfying (5.2)-(5.4) for fixed n and κ. This is because T κ is not an injective function on r´1, 1s. So for given x, T κ pxq " T κ pyq has several solutions and this in turn means there is generally an abundance of solutions. Another reason why there may be several solutions is because there are several options for X n`1 . So for example, the 1st and 2nd graphs in Figure 2 are solutions to the system for pκ, nq " p6, 1q whereas the 3rd and 4th graphs in that Figure illustrate solutions to the system for pκ, nq " p6, 3q. These are examples where the energy solutions E n pκq are different. In Figure 5 we display examples of solutions to the system for given pκ, nq for which the energy E n pκq is the same but the configuration of the X q 's is different. System (5.1) together with (5.2)-(5.4) is therefore not enough to guarantee a unique solution.

The following Proposition establishes a link between system (5.1) and the definition of Θ m,κ pDq: Let pX q q n`1 q"0 , E n pκq be a solution such that E n pκq P T n,κ , with E n ą 0. Then for all j P N ˚,

(5.8)

g En jκ pX n`1 2 q " n´1 2 ÿ q"0 ω q ¨gEn jκ pX q q, ω q " 2 ¨p´1q n´1 2 ´q ¨ś n´1 2 p"q X p ś n´q p 1 " n`1 2 X p 1 ¨śn´q p" n`1 2 mpX p qU κ´1 pX p q ś n´1 2 p 1 "q mpX p 1 qU κ´1 pX p 1 q .
Remark 5.2. The formula for ω q in (5.8) is slightly more complicated than the one for the standard Laplacian, see [GM3, Proposition 5.1].

Note that the ω q are independent of j and well-defined thanks to (5.2), (5.3) and Lemma 5.1 (note the use of the first identity in (2.5)). Recall that for our energies to belong to Θ m,κ pDq we want ω q ĺ 0. To this end we introduce 3 additional assumptions to be considered separately.

Additional Assumption for n odd :

AO.1 X q ¨Xn´q ą 0 and T 1 κ pX q q ¨T 1 κ pX n´q q ă 0 for 0 ĺ q ĺ pn ´1q{2. AO.2 T 1 κ pX q q ¨T 1 κ pX n´q q ą 0 and X q ¨Xn´q ă 0 for 0 ĺ q ĺ pn ´1q{2. AO.3 ("mix and match") there are disjoint I 1 , I 2 Ă tq : 0 ĺ q ĺ pn ´1q{2u such that I 1 \ I 2 " tq : 0 ĺ q ĺ pn ´1q{2u, and X q ¨Xn´q ą 0, T 1 κ pX q q ¨T 1 κ pX n´q q ă 0 for q P I 1 , and T 1 κ pX q q ¨T 1 κ pX n´q q ą 0, X q ¨Xn´q ă 0 for q P I 2 . Note that assumption AO.1 (resp. AO.2) is a special case of AO.3 where I 2 " H (resp. I 1 " H). The following Corollary completes the link between system (5.1) and Θ m,κ pDq.

Corollary 5.4. Let pX q q n`1 q"0 , E n pκq be exactly as in Proposition 5.3 so that (5.8) holds. If AO.3 further holds, then the ω q are all strictly negative and so E n pκq P Θ pn`1q{2,κ pDrd " 2sq.

Remark 5.3. Assumptions AO.1 and AO.3 are likely not suitable if E n ă 0, because then X 1`q and X n´q need to have opposite signs as per the second line of (5.1). If E n ą 0 however, then we have examples to illustrate AO.1, AO.2 and AO.3, see for instance Figures 4 and5.

Certain graphs in Figures 4 and 5 illustrate solutions to system (5.1) for κ " 4, and satisfying (5.2)-(5.4). The 1st, 3rd and 5th graphs in Figure 4 satisfy assumption AO.1 with X n , X n´q ą 0. The 3rd graph in Figure 5 satisfies assumption AO.1 with X n , X n´q ă 0. The 1st and 6th graphs in Figure 5 satisfy assumption AO.2, whereas the 5th graph in Figure 5 satisfies assumption AO.3. Remark 5.4. It is unclear to me if there are other assumptions that can ensure ω q ĺ 0 (but see the formulas and discussion in section 10) Remark 5.5. It is easy to graphically build solutions to (5.1) that satisfy (5.2)-(5.4), but don't satisfy AO.3. Such examples are given in Figure 3. Note that in these examples (5.8) holds perfectly well, although ω 0 " 2 X 0 X 1 ¨mpX 1 q mpX 0 q ¨Uκ´1 pX 1 q U κ´1 pX 0 q ą 0 and so by definition those solutions E 1 do not belong to Θ 1,κ pDrd " 2sq. After crossing this information with bands identified in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]Table XV] it remains unclear to me if these energies belong to Θ κ pDrd " 2sq or µ κ pDrd " 2sq. I am not quite happy with these examples because I was hoping to find an example of a solution to (5.1) that satisfies (5.2)-(5.4), but not AO.3, and then further be able to confidently confirm that the solution belongs to µ κ pDrd " 2sq. In other words, I haven't been able to disprove the possibility of a threshold energy for which a linear combination of the form (5.8) holds with an ω q ą 0. Maybe there is something more to understand here. 5.2. The case of n even. We move on with the case of n even. For n P N ˚even define T n,κ to be the set of non-zero E n such that the system of n `3 equations in n `3 unknowns (5.9) # T κ pX q,n q " T κ pX n´q,n q, @ q " 0, 1, ..., n{2 ´1 X n´q,n " E n {X 1`q,n , @ q " ´1, 0, ..., n{2 ´1 has a solution satisfying X q,n P p´1, 1qzt0u, @ 0 ĺ q ĺ n{2 ´1, (5.10) T 1 κ pX q,n q ‰ 0, @ 0 ĺ q ĺ n{2 ´1, (5.11)

X n`1,n P tcospjπ{κq : 0 ĺ j ĺ κuzt0u, (5.12) X n{2,n P tcospjπ{κq : 0 ĺ j ĺ κuzt0u.

(5.13) Again, the E n and X i,n 's depend on both κ and n. When n is fixed and no confusion can arise we will simply write X i instead of X i,n . The following observation follows immediately from the variations of T κ , cf. Lemma 2.5 : Lemma 5.5. Suppose system (5.9) and (5.10)-(5.13) hold. Then X n´q,n P p´1, 1qzt0u, @ 0 ĺ q ĺ n{2 ´1, (5.14)

T 1 κ pX n´q,n q ‰ 0, @ 0 ĺ q ĺ n{2 ´1. (5.15) It is possible however (and will be the case sometimes) that X n{2,n P t˘1u, or X n`1,n P t˘1u, or T 1 κ pX n{2,n q " 0, or T 1 κ pX n`1,n q " 0. Unlike in the n odd case, here we don't have to make a distinction between positive or negative energy solutions. Furthermore, we also have : Lemma 5.6. T n,κ " ´Tn,κ , for all n P N e , κ ľ 4, κ P N e .

The following Proposition establishes a link between system (5.9) and Θ m,κ pDq: Proposition 5.7. (even terms) Fix κ P N e , κ ľ 4, and let n P N e be given. Let pX q q n`1 q"0 , E n pκq be a solution such that E n pκq P T n,κ . Then for all j P N ˚,

(5.16) g En jκ pX n 2 q " n 2 ´1 ÿ q"0 ω q ¨gEn jκ pX q q, ω q " p´1q n

2 ´1´q ¨ś n 2 ´1 p"q X p ś n´q p 1 " n 2 `1 X p 1 ¨śn´q p" n 2 `1 mpX p qU κ´1 pX p q ś n 2 ´1 p 1 "q mpX p 1 qU κ´1 pX p 1 q .
Note that the ω q are independent of j and well-defined thanks to (5.10), (5.11), and Lemma 5.5. As in the case of n odd we consider 3 additional assumptions to be considered separately.

Additional Assumption for n even :

AE.1 X q ¨Xn´q ą 0 and T 1 κ pX q q ¨T 1 κ pX n´q q ă 0 for 0 ĺ q ĺ n{2 ´1. AE.2 T 1 κ pX q q ¨T 1 κ pX n´q q ą 0 and X q ¨Xn´q ă 0 for 0 ĺ q ĺ n{2 ´1. AE.3 ("mix and match") there are disjoint I 1 , I 2 Ă tq : 0 ĺ q ĺ n{2 ´1u such that I 1 \ I 2 " tq : 0 ĺ q ĺ n{2 ´1u, and X q ¨Xn´q ą 0, T 1 κ pX q q ¨T 1 κ pX n´q q ă 0 for q P I 1 , and T 1 κ pX q q ¨T 1 κ pX n´q q ą 0, X q ¨Xn´q ă 0 for q P I 2 . Note that assumption AE.1 (resp. AE.2) is a special case of AE.3 where I 2 " H (resp. I 1 " H). The following Corollary completes the link between system (5.1) and the definition of Θ m,κ pDq.

Corollary 5.8. Let pX q q n`1 q"0 , E n pκq be exactly as in Proposition 5.7 so that (5.16) holds. If AE.3 further holds, then the ω q are all strictly negative in which case E n pκq P Θ n{2,κ pDrd " 2sq.

Remarks 5.3-5.5 apply to the n even case as well.

5.3.

Expressing the energy E n as the solution to a single equation with one unknown. It is possible to express the thresholds E n in systems (5.1) and (5.9) as solutions to a single equation with a finite number of continued fractions. It's a matter of knowing which branch of T ´1 κ pxq to choose from. It is easier to explain with an example : Example 5.9. Fix n " 3 and let X n`1 " X 4 be given as per (5.3). Then according to system (5.1), E 3 pκq is the solution to the following equation :

E 3 " X 4 ¨X0 " X 4 ¨T ´1 κ T κ pX 3 q " X 4 ¨T ´1 κ T κ pE 3 {X 1 q " X 4 ¨T ´1 κ T κ `E3 {T ´1 κ T κ pX 2 q ˘" X 4 ¨T ´1 κ T κ ´E3 {T ´1 κ T κ ´aE 3 ¯¯.
The advantage of having 1 equation with 1 unknown over a system of equations with several unknowns is that it is easier (in our opinion) to solve numerically. Proposition 6.5 is one (of many) applications of this idea. 5.4. The systems as dynamical graphical constructions. Behind systems (5.1) and (5.9) is a simple graphical construction and interpretation which is the topic of this subsection. We always assume E n ą 0. We start with 2 key remarks/observations. Remark 5.6. As per system (5.1) (the n odd case), if E n ą 0 then X pn`1q{2 " ? E n always holds and this helps for a graphical construction.

Remark 5.7. Consider equation X n´q " E n {X 1`q in (5.1) or (5.9). For simplicity assume E n , X 1`q , X n´q ą 0. Then minpX n´q , X 1`q q ĺ ? E n ĺ maxpX n´q , X 1`q q. This is very helpful to bear in mind to construct and interpret solutions.

Figures 2, 4 and 5, for example, illustrate threshold solutions P Θ m,κ pDq. The vertical dotted line is the axis of multiplicative symmetry x " ? E n . The key observation when looking at these graphs is that every point pX q , T κ pX q qq always satisfies 2 crucial conditions :

1. a multiplicative symmetry condition : each X q is the multiplicative symmetric of another point X r wrt. the axis x " ? E n , namely X r " X n´q`1 . This is Remark 5.7. 2. a level condition : each X q satisfies at least one of the following 3 conditions : 2.1. mpX q q " 0, or 2.2. U κ´1 pX q q " 0 (equivalently T 1 κ pX q q " 0), or 2.3. DX r such that T κ pX q q " T κ pX r q, namely X r " X n´q , and furthermore the X q and X r satisfy either AO.1 or AO.2 (respectively AE.1 or AE.2). The symmetry and level conditions set the rules of the game to construct valid threshold solutions. Possible constructions are as follows : Algorithm for n odd -system (5.1) along with conditions (5.2)-(5.4) :

Lemma 5.11. Let E n , X 0 , ..., X n`1 be any solution to system (5.1), respectively system (5.9). Then for q " ´1, 0, ..., pn ´1q{2, respectively q " ´1, 0, ..., n{2 ´1, (5.18) X 1`q ¨d dx g En jκ pX 1`q q " ´Xn´q ¨d dx g En jκ pX n´q q, for all j P N ˚.

In particular this implies X 1`q ¨d dx G En κ pX 1`q q " ´Xn´q ¨d dx G En κ pX n´q q for any choice of coefficients ρ jκ , and this for all q's in the aforementioned range.

Remark 5.8. In [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] calculations were simpler and instead of (5.18) we had more simply d dx g En jκ pX 1`q q " ´d dx g En jκ pX n´q q for all j P N ˚.

Remark 5.9. Assumptions (5.2)-(5.4), respectively (5.10)-(5.13), are not needed to prove Lemmas 5.10 and 5.11.

Proof. First things first,

(5.19)

d dx g E jκ pxq " ´E x 2 ¨mpxqU jκ´1 pxq ´2E ¨Ujκ´1 pxq `E x ¨mpxqU 1 jκ´1 pxq `mpE{xqU jκ´1 pE{xq `2 E 2 x 2 ¨Ujκ´1 pE{xq ´E x ¨mpE{xqU 1 jκ´1 pE{xq.
We focus on what comes after the " sign. Group the first two terms on the first row of (5.19) together after having expanded mpxq into 1 ´x2 , and similarly for the first two terms on the second row of (5.19) ; for the terms with U 1 apply the second identity in (2.5). Thus :

(5.20) Evaluate d dx g E jκ pxq at x " X 1`q , X n´q using the third row of (5.20). Recalling E n " X 1`q ¨Xn´q : X 1`q ¨d dx g En jκ pX 1`q q " ´Xn´q ¨Ujκ´1 pX 1`q q`X 1`q ¨Ujκ´1 pX n´q q`jκE n pT jκ pX n´q q ´Tjκ pX 1`q qq , X n´q ¨d dx g En jκ pX n´q q " ´X1`q ¨Ujκ´1 pX n´q q`X n´q ¨Ujκ´1 pX 1`q q`jκE n pT jκ pX 1`q q ´Tjκ pX n´q qq . The last two lines are the negative of each other. 5.6. Proofs of Propositions 5.3, 5.7 and Corollaries 5.4 and 5.8.

d
Proof of Proposition 5.3. Recall E n ą 0 is assumed. From (5.1), X pn`1q{2 " ? E n ñ g En jκ pX pn`1q{2 q " 2X pn`1q{2 ¨mpX pn`1q{2 qU jκ´1 pX pn`1q{2 q. For q ľ 1, let ωq :"

ω q 2 ¨n ź r"pn`1q{2 X r ¨pn´1q{2 ź r"0 mpX r qU κ´1 pX r q " p´1q n´1 2 ´q ¨n ź r"n´q`1 X r ¨q´1 ź r"0 mpX r qU κ´1 pX r q ¨pn´1q{2 ź p"q X p ¨n´q ź p"pn`1q{2
mpX p qU κ´1 pX p q.

In order for what follows to apply to the cases n " 1, 3 as well, interpret ś β α " 0 and ř β α " 0 whenever β ă α. Multiplying (5.8) throughout by 2 ´1 ś n r"pn`1q{2 X r ¨śpn´1q{2

r"0 mpX r qU κ´1 pX r q shows that (5.8) is equivalent to (5.21) X pn`1q{2 ¨mpX pn`1q{2 qU jκ´1 pX pn`1q{2 q ¨n ź r"pn`1q{2 X r ¨pn´1q{2 ź r"0 mpX r qU κ´1 pX r q " p´1q pn´1q{2 ¨Xn`1 ¨mpX 0 qU jκ´1 pX 0 q ¨pn´1q{2 ź p"0 X p ¨n ź

p"pn`1q{2 mpX p qU κ´1 pX p q `pn´1q{2 ÿ

q"1 ωq ¨Xn´q`1 ¨mpX q qU jκ´1 pX q q `pn´1q{2 ÿ

q"1 ωq ¨Xq ¨mpX n´q`1 qU jκ´1 pX n´q`1 q " p´1q pn´1q{2 ¨Xn`1 ¨mpX 0 qU jκ´1 pX 0 q ¨pn´1q{2 ź p"0 X p ¨n ź

p"pn`1q{2 mpX p qU κ´1 pX p q `Xpn`3q{2 ¨Xpn´1q{2 ¨mpX pn´1q{2 qU jκ´1 pX pn´1q{2 q ¨mpX pn`1q{2 qU κ´1 pX pn`1q{2 qn ź r"pn`3q{2

X r ¨pn´3q{2 ź p 1 "0 mpX p 1 qU κ´1 pX p 1 q ´p´1q pn´1q{2 ¨X1 ¨Xn ¨mpX 0 qU κ´1 pX 0 q ¨mpX n qU jκ´1 pX n q ¨n´1 ź p"pn`1q{2

mpX p qU κ´1 pX p qp n´1q{2 ź p"1 X p ¨n´1 ź p"pn`1q{2
mpX p qU κ´1 pX p q `pn´3q{2 ÿ q"1 ωq ¨Xn´q`1 ¨mpX q qU jκ´1 pX q q `pn´1q{2 ÿ q"2 ωq ¨Xq ¨mpX n´q`1 qU jκ´1 pX n´q`1 q.

We focus on what comes after the last = sign. We apply Corollary 2.3. The 2nd term on the rhs of (5.21) equals the lone term on the lhs of (5.21). The 3rd term on the rhs of (5.21) cancels the 1st term on the rhs of (5.21). Finally the 2 sums at the very end of the rhs of (5.21) cancel each other ; specifically, the q th term in the first sum equals

p´1q pn´1q{2´q ¨Xn´q`1 ¨mpXqqUjκ´1pXqq¨n ´q ź p"pn`1q{2 mpXpqUκ´1pXpq¨q ´1 ź p 1 "0 mpX p 1 qUκ´1pX p 1 q¨n ź r"n´q`1 Xr ¨pn´1q{2 ź p"q

Xp

and it cancels the q `1th term in the second sum which equals

´p´1q pn´1q{2´q ¨Xq`1¨mpXn´qqUjκ´1pXn´qq¨n ´q´1 ź p"pn`1q{2 mpXpqUκ´1pXpq¨q ź p 1 "0 mpX p 1 qUκ´1pX p 1 q¨n ź r"n´q Xr¨p n´1q{2 ź p"q`1
Xp, and this for q " 1, 2, ..., pn ´3q{2. Proof of Corollary 5.4. We want to prove that ω q ă 0 under assumption AO.3. Assume I 1 , I 2 are a partition of t0, 1, ..., pn ´1q{2u as in assumption AO.3. Fix q, 0 ĺ q ĺ pn ´1q{2. If λpqq :" |tq 1 P I 1 : q 1 ľ qu| (the cardinality of the set), then |tq 1 P I 2 : q 1 ľ qu| " pn ´1q{2 ´q `1 ´λpqq. Because X q , X n´q P p´1, 1q, @q " 0, ..., pn ´1q{2, mpX q q, mpX n´q q P p0, 1q, and so the sign of ω q is that of p´1q pn´1q{2´q ˆp´1q pn´1q{2´q`1´λpqq ˆp´1q λpqq " p´1q n " ´1 since n is odd.

Proofs of Proposition 5.7 and Corollary 5.8. Very similar to that of Proposition 5.3 and Corollary 5.4 so we leave it to the reader.

6.

A decreasing sequence of thresholds in J 2 pκq :" pcos 2 pπ{κq, cospπ{κqq

This entire section is in dimension 2. Using ideas of section 5 we prove the existence of a sequence of threshold energies P J 2 :" pcos 2 pπ{κq, cospπ{κqq. Theorem 1.6 is a consequence of Propositions 6.1, 6.2, 6.3, 6.4. We state these Propositions now, and prove them at the end of the section. A justification for Conjecture 1.7 is also given. Proposition 6.1. (odd terms) Fix κ ľ 4, κ P N e , and let n P N o be given. System (5.1) admits a unique solution satisfying E n P J 2 pκq and

(6.1) E n " X 0 ă X 1 ă X 2 ă ... ă X pn´1q{2 ă cospπ{κq ă X pn`1q{2 ă ... ă X n ă X n`1 :" 1.
This solution satisfies (5.2), (5.3) and (5.4), and so E n P T n,κ . Furthermore it satisfies (AO.1) and so E n P Θ pn`1q{2,κ pDrd " 2sq. Proposition 6.2. (even terms) Fix κ ľ 4, κ P N e , and let n P N e be given. System (5.9) admits a unique solution satisfying E n P J 2 pκq and

(6.2) E n " X 0 ă X 1 ă X 2 ă ... ă X n{2 " cospπ{κq ă X n{2`1 ă ... ă X n ă X n`1 :" 1.
This solution satisfies (5.10), (5.11), (5.12) and (5.13), and so E n P T n,κ . Furthermore it satisfies (AE.1) and so E n P Θ n{2,κ pDrd " 2sq.

Figure 4 illustrates the solutions in Propositions 6.1 and 6.2 for 1 ĺ n ĺ 6 and κ " 4. This is a rare ocurrence where we have a few exact solutions. They are : (6.3) E 1 " p5 1{2 ´1q{2 » 0.61803, (so-called golden ratio conjugate), Figure 5 depicts other configurations of the X q 's that give the same threshold energy solutions as in the first graphs of Figure 4. Figure 6 illustrates the solutions in Propositions 6.1 and 6.2 for 1 ĺ n ĺ 6 and κ " 6. Proposition 6.3. Fix κ ľ 4, κ P N e . The odd and even energy solutions E n of Propositions 6.1 and 6.2 interlace and are a strictly decreasing sequence :

E 2 " 3 ´1{2 » 0.57735, E 3 " 2{3 ´3´1 7 1{2 cos ´3´1 arctanp3 ? 3q ¯`p7{3q 1{2 sin ´3´1 arctanp3 ? 3q ¯» 0.55496, E 4 " p1 ´2´1{2 q 1{2 » 0.54120, E 5 " 2 cos p2π{9q ´1 » 0.53208, E 6 " pp5 ´51{2 q{10q 1{2 » 052573, E 7 » 0.52111, E 8 " p2 ´31{2 q 1{2 » 0.51764.
E n`2 ă E n`1 ă E n , @n P N ˚.
Proposition 6.4. Let E n be the solutions in Propositions 6.1 and 6.2. Then E n OE cos 2 pπ{κq.

Let us express the solutions E n as solutions to a single equation for κ " 4, 6. To do this we need to select the appropriate branches of T ´1 For example, the case of κ " 4 illustrates well how the continued fractions show up. For pκ, nq " p4, 6q we have:

4 and T ´1 6 . Let # f E : x Þ Ñ a 1 ´pE{xq 2 if κ " 4, f E : x Þ Ñ pE{xq`?3 ? 1´pE{xq 2 2 if κ " 6.
E 2 6 " 1 ´E2 6 1 ´E2 6 1´E 2 6 cos 2 pπ{4q
.

Figure 7 illustrates solutions E 2n pκq of Proposition 6.5 for κ " 4, 6. In these graphs the equation of the trend line is y " ´1.872x ´1.081 and y " ´1.853x ´1.457 respectively. In particular the slope is close to ´2, and this is our rationale behind Conjecture 1.7. Unfortunately I was not able to get Python to efficiently compute many more terms as in the case of the standard Laplacian in order to better approximate the trend line, but if the case of D were to mirror that of ∆ we should expect the trend line to steepen (closer to ´2) as more points are plotted.

We now sequentially give the missing proofs of the aforementioned results in this section. We begin with a remark : Remark 6.1. Thanks to Lemma 2.5,

(1) Given cosp2π{κq ă a ă b ă cospπ{κq, there exist unique cospπ{κq ă b 1 ă a 1 ă 1 such that T κ paq " T κ pa 1 q ą T κ pb 1 q " T κ pbq.

(2) Given cospπ{κq ă b 1 ă a 1 ă 1, there exist unique cosp2π{κq ă a ă b ă cospπ{κq, such that T κ pa 1 q " T κ paq ą T κ pbq " T κ pb 1 q. Moreover, pa, bq depends bi-continuously on pa 1 , b 1 q.

Proof of Proposition 6.1.

We implement the dynamical algorithm for n odd of section 5. Initialize energy E to E " Epαq " cos 2 pπ{κq `α with α P A max :" p0, cospπ{κq ´cos 2 pπ{κqq. First, by Remark 5.7 we know X pn`1q{2 " ? E " a cos 2 pπ{κq `α P pcospπ{κq, 1q. In particular when α OE 0 `, note that X pn`1q{2 OE cospπ{κq `. Now, up to a smaller α still within A max , we construct inductively and continuously in α all of the remaining X q " X q pαq, by checking all the constraints of (5.1), (5.2) -(5.4), but with the exception of (5.3), i.e. X n`1 " 1 ô X 0 " E.

' X pn´1q{2 is determined in pcosp2π{κq, cospπ{κqq so that T κ pX pn´1q{2 q " T κ pX pn`1q{2 q. In particular, X pn´1q{2 ă cospπ{κq ă X pn`1q{2 . Note that X pn´1q{2 Õ cospπ{κq ´, as α OE 0 `.

' X pn`3q{2 is the multiplicative symmetric of X pn´1q{2 wrt. X pn`1q{2 " ? E. So X pn`1q{2 ă X pn`3q{2 . Up to a smaller α possibly, X pn`3q{2 P pcospπ{κq, 1q. As α OE 0 `, X pn`3q{2 OE cospπ{κq `.

' As per Remark 6.1, D!X pn´3q{2 P pcosp2π{κq, cospπ{κqq such that X pn´3q{2 ă X pn´1q{2 and T κ pX pn´1q{2 q " T κ pX pn`1q{2 q ă T κ pX pn`3q{2 q. Again, X pn´3q{2 Õ cospπ{κq ´, as α OE 0 `.

' X pn`5q{2 is the multiplicative symmetric of X pn´3q{2 wrt. X pn`1q{2 " ? E. Up to a smaller α possibly, X pn`5q{2 P pcospπ{κq, 1q. Since X pn´3q{2 ă X pn´1q{2 , we infer X pn`3q{2 ă X pn`5q{2 . In particular, T κ pX pn´3q{2 q " T κ pX pn`3q{2 q ă T κ pX pn`5q{2 q. Once more, X pn`5q{2 OE cospπ{κq `, as α OE 0 `.

' We continue this ping pong game inductively till all of the X q " X q pαq, q " 0, ..., n `1, have been defined. Note that the last step of the ping pong game was to place X n`1 in such a way that it is the multiplicative symmetric of X 0 wrt. X pn`1q{2 " ? E (2nd line of (5.1)). Now we consider the set A n (A depends on n) of all the positive α's that allow a construction verifying :

(6.4) E ĺ X 0 ă X 1 ă X 2 ă ... ă X pn´1q{2 ă cospπ{κq ă X pn`1q{2 ă ... ă X n ă X n`1 ĺ 1.
A n Ă A max since if α ľ cospπ{κq ´cos 2 pπ{κq, X n`1 " E{X 0 ľ cospπ{κq{X 0 ľ 1. This observation will imply that E n P J 2 pκq when the proof is over. As a side note, it is not hard to see that A n`2 Ă A n ; later in this section we prove X nPN, n odd A n " H. It remains to argue that there is a unique α ˚P A n such that X n`1 pα ˚q " 1 ô X 0 pα ˚q " Epα ˚q. First, note that by construction, the chain of strict inequalities in (6.4) remains valid as α increases in A n . Second, note that X pn`1q{2 " ? E " a cos 2 pπ{κq `α ă X n`1 and so X n`1 Õ `8 as α Õ `8. Moreover, X n`1 is strictly increasing for α P A n . Thirdly, and finally, note that by construction, as α increases in A n , X n`1 must reach 1 before X 0 reaches cosp2π{κq. This is because T κ pX 0 q " T κ pX n q ă T κ pX n`1 q. Another way to see this is to argue by contradiction. If X 0 were to reach cosp2π{κq before X n`1 reaches 1, then cos 2 pπ{κq{ cosp2π{κq ĺ E{ cosp2π{κq " E{X 0 " X n`1 ă 1 ñ cos 2 pπ{κq ă cosp2π{κq, which is a false statement. Thus, D!α ˚s.t. X n`1 pα ˚q " 1. The energy solution E n is Epα ˚q.

Proof of Proposition 6.2.

We implement the dynamical algorithm for n even of section 5. The main difference is that this time X n{2 :" cospπ{κq. It implies that the values X 0 , X 1 , ..., X n{2´1 will belong to pcosp2π{κq, cospπ{κqq, whereas the values X n{2`1 , X n{2`2 , ..., X n will belong to pcospπ{κq, 1q. X n`1 will be placed ultimately so that it equals 1.

Initialize energy E to E " Epαq " cos 2 pπ{κq `α with α P A max :" p0, cospπ{κq ´cos 2 pπ{κqq. First, ? E " a cos 2 pπ{κq `α P pcospπ{κq, 1q. Now, up to a smaller α still within A max , we construct inductively and continuously in α all of the remaining X q " X q pαq, by checking all the constraints of (5.9), (5.10) -(5.12), but with the exception of the X n`1 condition in (5.11

), i.e. X n`1 " 1 ô X 0 " E. ' X n{2`1 is the multiplicative symmetric of X n{2 wrt. ? E. So X n{2 ă ? E ă X n{2`1 " cospπ{κq `α{ cospπ{κq.
As per Remark 6.1, X n{2´1 is constructed in pcosp2π{κq, cospπ{κqq so that T κ pX n{2´1 q " T κ pX n{2`1 q. We turn to X n{2`2 which is is the multiplicative symmetric of X n{2´1 wrt. ? E. Up to a smaller α possibly, X n{2`2 P pcospπ{κq, 1q. As per Remark 6.1, there is a unique X n{2´2 P pcosp2π{κq, cospπ{κqq such that X n{2´2 ă X n{2´1 and T κ pX n{2´2 q " T κ pX n{2`2 q ą T κ pX n{2`1 q.

' We continue this ping pong game inductively till all of the X q " X q pαq, q " 0, ..., n `1, have been defined. Note that the last step of the ping pong game was to place X n`1 in such a way that it is the multiplicative symmetric of X 0 wrt. ? E (2nd line of (5.9)). Now we consider the set A n (A depends on n) of all the positive α's that allow a construction verifying :

(6.5) E ĺ X 0 ă X 1 ă X 2 ă ... ă X n{2 " cospπ{κq ă X n{2`1 ă ... ă X n ă X n`1 ĺ 1. A n Ă A max since if α ľ cospπ{κq ´cos 2 pπ{κq, X n`1 " E{X 0 ľ cospπ{κq{X 0 ľ 1.
As a side note, it is not hard to see that A n`2 Ă A n ; later in this section we prove X nPN, n even A n " H. It remains to argue that there is a unique α ˚P A n such that X n`1 pα ˚q " 1 ô X 0 pα ˚q " Epα ˚q. First, note that by construction, the chain of strict inequalities in (6.5) remains valid as α increases in A n . Second, note that ? E " a cos 2 pπ{κq `α ă X n{2`1 ă X n`1 and so X n`1 Õ `8 as α Õ `8. Moreover, X n`1 is strictly increasing for α P A n . Thirdly, and finally, note that by construction, as α increases in A n , X n`1 must reach 1 before X 0 reaches cosp2π{κq (see the previous proof for the argument). Thus, D!α ˚s.t. X n`1 pα ˚q " 1. The energy solution E n is Epα ˚q.

Proof of Proposition 6.3.

Fix n odd. So n `1 is even. Fix E :" minpE n , E n`1 q (we suppose at this point that we don't know which of the 2 energies is smaller) with E n and E n`1 determined as in the proofs of Propositions 6.1 and 6.2 respectively. The construction gives pX i,n pEqq n`1 i"0 satisfying (6.4) and pX i,n`1 pEqq n`2 i"0 satisfying (6.5). By the choice of E we either have X n`1,n pEq " 1 or X n`2,n`1 pEq " 1. This is to be determined. Starting from the bottom of the well we see that :

X pn´1q{2,n pEq ă X pn`1q{2,n`1 pEq " cospπ{κq ă ? E " X pn`1q{2,n pEq ă X pn`1q{2`1,n`1 pEq.
By the ping pong game that ensues, and using Remark 6.1, we inductively infer X pn`1q{2`q,n pEq ă X pn`1q{2`q`1,n`1 pEq, for q " 0, 1, ..., pn `1q{2.

So X n`1,n pEq ă X n`2,n`1 pEq. It must be therefore that X n`2,n`1 pEq " 1 and so

E " E n`1 ĺ E n . Furthermore, X n`1,n pEq ă X n`2,n`1 pEq implies E n`1 ă E n .
Fix n even. So n`1 is odd. We proceed with the same setup as before. Fix E :" minpE n , E n`1 q with E n and E n`1 determined as in the proofs of Propositions 6.2 and 6.1 respectively. The construction gives pX i,n pEqq n`1 i"0 satisfying (6.5) and pX i,n`1 pEqq n`2 i"0 satisfying (6.4). By the choice of E we either have X n`1,n pEq " 1 or X n`2,n`1 pEq " 1. This is to be determined. Starting from the bottom of the well we see that :

X n{2,n`1 pEq ă X n{2,n pEq " cospπ{κq ă ? E " X n{2`1,n`1 pEq ă X n{2`1,n pEq
By the ping pong game that ensues, and using Remark 6.1, we inductively infer X n{2`q,n pEq ă X n{2`q`1,n`1 pEq, for q " 0, 1, ..., n{2 `1.

So X n`1,n pEq ă X n`2,n`1 pEq. It must be therefore that X n`2,n`1 pEq " 1 and so E " E n`1 ĺ E n . Furthermore, X n`1,n pEq ă X n`2,n`1 pEq implies E n`1 ă E n .
Finally, to prove Proposition 6.4, we'll start with a Lemma which characterizes a geometric property of the graph of T κ : Lemma 6.6. Let κ ľ 2. If cosp2π{κq ă a ă cospπ{κq ă b ă 1 are such that T κ paq " T κ pbq, then (6.6) cospπ{κq ´a ą b ´cospπ{κq.

We refer to [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] for the proof of Lemma (6.6).

Lemma 6.7. Fix κ P N ˚. For all E P pcos 2 pπ{κq, 1s, 2p ? E ´cospπ{κqq ą E ´cos 2 pπ{κq Proof. Let f pEq " 2p ? E ´cospπ{κqq ´pE ´cos 2 pπ{κqq. Then f pcos 2 pπ{κqq " 0 and f 1 pEq ą 0 for E P rcos 2 pπ{κq, 1q This implies f pEq ą 0 for E P pcos 2 pπ{κq, 1s. Lemma 6.8. Let E ą 0 be given. Then for every t P p0, ? Eq there is a unique t 1 ą 0 such that E " p ? E ´tqp ? E `t1 q. Moreover t 1 ą t always holds.

Proof. E " p ? E ´tqp ? E `t1 q ô ? Ept 1 ´tq " t ¨t1 ñ t 1 ą t. Existence and uniqueness of t 1 is straightforward. Proof of Proposition 6.4.

By Proposition 6.3, and since E n ą cos 2 pπ{κq, D such that E n OE ľ cos 2 pπ{κq. It is enough to show that E 2n`1 Ñ cos 2 pπ{κq, n P N ˚. Therefore, we suppose that n is odd. We proceed by contradiction. Suppose 2ε :" ´cos 2 pπ{κq ą 0. Recall X pn`1q{2 pE n q " ? E n . Then Lemma 6.7 implies that for all n ľ 1 and odd, X pn`1q{2 pE n q ´cospπ{κq ą ε. Choose n odd large enough so that nε ą 1.

By Lemma 6.6, cospπ{κq´X pn´1q{2 pE n q ą X pn`1q{2 pE n q´cospπ{κq ą ε. Next, since X pn´1q{2 pE n q and X pn`3q{2 pE n q are multiplicative symmetrics wrt.

?

E n , we have by Lemma 6.8 that E n " X pn´1q{2 pE n q ¨Xpn`3q{2 pE n q, X pn´1q{2 pE n q " p a E n ´tq, X pn`3q{2 pE n q " p a E n `t1 q with t 1 ą t and so X pn`3q{2 pE n q ´cospπ{κq " X pn`3q{2 pE n q ´aE n `aE n ´cospπ{κq

ą t 1 `ε ą t `ε " a E n ´Xpn´1q{2 pE n q `ε ą 3ε.
Again, apply Lemma 6.6 to get cospπ{κq ´Xpn´3q{2 pE n q ą 3ε. Continuing in this way, we end up with X pn`qq{2 pE n q ´cospπ{κq ą qε for q " 1, 3, 5, ..., n. But X n,n pE n q ą nε ą 1 is absurd. We conclude that " cos 2 pπ{κq. The construction used to get a sequence in the right-most well of T κ pxq in section 6 is not specific to the right-most well. One can build a similar sequence in other wells of T κ pxq.

7.1. Decreasing sequence in upright well, j odd. Figure 8 illustrates a decreasing sequence E n OE cos 2 pjπ{κq, for κ " 8, j " 3. Note that the dotted line x " ? E n is to the right of the minimum x " cospjπ{κq but converges to it. Thus, we propose a generalization of Theorem 1.6 : Theorem 7.1. Fix κ ľ 4, κ P N e . Fix 1 ĺ j ĺ tκ{2u, j odd. There is a sequence tE n u 8

n"1 , which depends on κ, s.t. tE n u Ă `cos 2 pjπ{κq, cosppj ´1qπ{κq ˆcospjπ{κq ˘X Θ κ pDq, and E n`2 ă E n`1 ă E n , @n P N ˚. Also, E 2n´1 , E 2n P Θ n,κ pDq, @n ľ 1, and

(7.1) E n { cosppj ´1qπ{κq " X 0 ă X 1 ă ... ă X n ă X n`1 :" cosppj ´1qπ{κq.
7.2. Decreasing sequence in upside down well, j even. For j even, the well is upside down. Figure 9 illustrates a decreasing sequence E n OE cos 2 pjπ{κq, for κ " 8, j " 2. Note that the dotted line x " ? E n is to the right of the maximum x " cospjπ{κq but converges to it. Thus, we propose a generalization of Theorem 1.6 :

Theorem 7.2. Fix κ ľ 4, κ P N e . Fix 2 ĺ j ĺ tκ{2u, j even. There is a sequence tE n u 8 n"1 , which depends on κ, s.t. tE n u Ă `cos 2 pjπ{κq, cosppj ´1qπ{κq ˆcospjπ{κq ˘X Θ κ pDq, and E n`2 ă E n`1 ă E n , @n P N ˚. Also, E 2n´1 , E 2n P Θ n,κ pDq, @n ľ 1, and (7.2) E n { cosppj ´1qπ{κq " X 0 ă X 1 ă ... ă X n ă X n`1 :" cosppj ´1qπ{κq.

7.3.

A comment on the proofs of these Theorems and a Conjecture on the limit.

To prove Theorems 7.1 and 7.2 one needs to adapt the proofs of Propositions 6.1, 6.2 and 6.3. The adaptation of these Propositions is straightforward. Moreover, to see why tE n u Ă pcos 2 pjπ{κq, cosppj ´1qπ{κq ˆcospjπ{κqq, note that by the construction cos 2 pjπ{κq ă X 2 pn`1q{2 " E n , X 0 ˆXn`1 " E n ă cospjπ{κq ˆcosppj ´1qπ{κq.

As for the limit we conjecture :

Conjecture 7.3. Let tE n u be the sequence in Theorems 7.1 and 7.2. Then E n OE cos 2 pjπ{κq.

As explained in [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF] we don't know how to adapt the proof of Lemma 6.6 in order to prove Conjecture 7.3. We do conjecture : 8. An increasing sequence of thresholds below J 3 pκq :" `cosp2π{κq, cos 2 pπ{κq This entire section is in dimension 2. We prove the existence of a sequence of threshold energies F n " F n pκq Õ inf J 3 pκq. This section proves Theorem 1.10 for tF n u.

Proposition 8.1. (odd terms) Fix κ ľ 6, κ P N e , and n P N o . System (5.1) has a unique solution (denoted F n instead of E n ) such that F n P pcospπ{κq ˆcosp2π{κq, cosp2π{κqq and

(8.1) cosp2π{κq ": X n`1 ă X n ă ... ă X pn`1q{2 " a F n ă X pn´1q{2 ă ... ă X 0 ă 1,
This solution satisfies (5.2), (5.3) and (5.4), and so F n P T n,κ . Furthermore it satisfies (AO.1) and so F n P Θ pn`1q{2,κ pDrd " 2sq.

Proposition 8.2. (even terms) Fix κ ľ 6, κ P N e , and n P N e . System (5.9) has a unique solution (denoted F n instead of E n ) such that F n P pcospπ{κq ˆcosp2π{κq, cosp2π{κqq and

(8.2) cosp2π{κq ": X n`1 ă X n ă ... ă X n{2 " cospπ{κq ă X n{2´1 ă ... ă X 0 ă 1.
This solution satisfies (5.10)-(5.13) and so F n P T n,κ . Furthermore it satisfies (AE.1) and so F n P Θ n{2,κ pDrd " 2sq.

Figure 10 illustrates the solutions in Propositions 8.1 and 8.2 for 1 ĺ n ĺ 3 and κ " 6. Unfortunately the X q 's were accumulating so quickly to cosp2π{6q and 1 that I didn't find a legible way of graphing the cases n ľ 4. and8.2 interlace and are a strictly increasing sequence : F n ă F n`1 ă F n`2 , @n P N ˚. Also, F n Õ inf J 3 :" cosp2π{κq. 9. A generalization of section 8 : a sequence F n Õ cosppj ´1qπ{κq ˆcosppj `1qπ{κq

Again, the construction used to get a sequence in the right-most well of T κ pxq in section 8 is not specific to the right-most well. One can build a similar sequence in other wells. In this section we get an increasing sequence F n Õ cosppj ´1qπ{κq ˆcosppj `1qπ{κq. 9.1. Increasing sequence in upright well, j odd. Theorem 9.1. Fix κ ľ 4, κ P N e . Fix 1 ĺ j ĺ tκ{2u, j odd. There is a sequence tF n u 8

n"1 , which depends on κ, s.t. tF n u Ă pcospjπ{κqˆcosppj `1qπ{κq, cosppj ´1qπ{κqˆcosppj `1qπ{κqqXΘ κ pDq, and F n ă F n`1 ă F n`2 , @n P N ˚. Also, F 2n´1 , F 2n P Θ n,κ pDq, @n ľ 1, and (9.1) cosppj `1qπ{κq ": X n`1 ă X n ă ... ă X 1 ă X 0 ă cosppj ´1qπ{κq. 9.2. Increasing sequence in upside down well, j even.

Theorem 9.2. Fix κ ľ 4, κ P N e . Fix 1 ĺ j ĺ tκ{2u, j even. There is a sequence tF n u 8 n"1 , which depends on κ, s.t. tF n u Ă pcospjπ{κqˆcosppj `1qπ{κq, cosppj ´1qπ{κqˆcosppj `1qπ{κqqXΘ κ pDq, and F n ă F n`1 ă F n`2 , @n P N ˚. Also, F 2n´1 , F 2n P Θ n,κ pDq, @n ľ 1, and

(9.2) cosppj `1qπ{κq ": X n`1 ă X n ă ... ă X 1 ă X 0 ă cosppj ´1qπ{κq.
Remark 9.1. The proofs of Theorems 9.1 and 9.2 are analogous to those of Propositions 6.1, 6.2 and 6.3. Moreover, to see why tF n u Ă pcospjπ{κqˆcosppj `1qπ{κq, cosppj ´1qπ{κqˆcosppj 1qπ{κqq, note that by the construction cospjπ{κq ˆcosppj `1qπ{κq ă X 0 ˆXn`1 " E n ă cosppj ´1qπ{κq ˆcosppj `1qπ{κq. 9.3. Conjecture on the limit. We don't have a proof for the following Conjecture : Conjecture 9.3. Let tF n u be the sequence in Theorems 9.1 and 9.2. Then F n Õ cosppj ´1qπ{κq ˆcosppj `1qπ{κq.

10. The geometric construction of section 5 revisited : the alignment condition

We briefly revisit section 5. It is possible to construct even more thresholds if we tweak the assumption on X n`1 . This is the topic of this section. Instead of assumption (5.4) (respectively (5.12)), we require (10.1)

T κ pX n`1 q " T κ pX p q for some p P t0 ĺ p ĺ pn ´1q{2u, respectively (10.2) T κ pX n`1 q " T κ pX p q for some p P t0 ĺ p ĺ n{2 ´1u.

For n P N o define T ǹ,κ to be the set of non-zero E n pκq such that the system (5.1) has a solution satisfying (5.2), (5.3) and (10.1) (definition for E n ą 0). For n P N e define T ǹ,κ to be the set of non-zero E n pκq such that the system (5.9) has a solution satisfying (5.10), (5.11), (5.13) and (10.2).

Figures 11 and12 depict geometric constructions of such thresholds for n " 1, 3, 5 and n " 2, 4 respectively. Note that we have chosen κ " 6 for the illustrations and that in this case all these additional threshold energies lie in the second gap, namely pcos 2 p2π{6q, cosp2π{6qq " p1{4, 1{2q.

Figure 11. T κ"6 pxq. Threshold solutions for which X n`1 satisfies the alignment condition (10.1). Left to right : E 1 " 0.375, p " 0 ; E 3 » 0.30227, p " 1 ; E 3 » 0.30118, p " 0 ; E 5 » 0.27878, p " 2 ; E 5 » 0.27867, p " 1 ; E 5 » 0.27819, p " 0 Figure 12. T κ"6 pxq. Threshold solutions for which X n`1 satisfies the alignment condition (10.2). Left to right : E 2 » 0.46353, p " 0 ; E 2 » 0.32569, p " 0 ; E 4 » 0.49898, p " 0 ; E 4 » 0.28709, p " 0 ; E 4 » 0.28780, p " 1 Proposition 10.1. (n " 1, 2, 3, 4) Fix κ P N e , κ ľ 4, and let n P t1, 2, 3, 4u. Let pX q q n`1 q"0 , E n pκq be a solution such that E n pκq P T ǹ,κ . Then for all j P N ˚, (10.3)

g En jκ pX n`1 2 q "
n´1 2 ÿ q"0 ω q ¨gEn jκ pX q q, for n " 1, 3 and g En jκ pX n 2 q " n 2 ´1 ÿ q"0 ω q ¨gEn jκ pX q q, for n " 2, 4.

where the ω q are given below, see (10.4)-(10.13).

Remark 10.1. I suspect the validity of Proposition 10.1 extends to n P N ˚but I wasn't able to guess a general formula for the ω q .

The formulas for the ω q under the alignment conditions (10.1) and (10.2) are: ' For pn, pq " p1, 0q, T κ pX n`1 q " T κ pX p q:

(10.4) ω 0 " 2 ¨mpX 1 qU κ´1 pX 1 q X 1 mpX 0 qU κ´1 pX 0 q X 0 `mpX 2 qU κ´1 pX 2 q X 2 . ' For pn, pq " p3, 1q, T κ pX n`1 q " T κ pX p q:

(10.5) ω 0 " ´2 ¨mpX 2 qmpX 3 qU κ´1 pX 2 qU κ´1 pX 3 q

X 2 X 3 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 ´mpX 3 qmpX 4 qU κ´1 pX 3 qU κ´1 pX 4 q X 3 X 4 (10.6) ω 1 " 2 ¨mpX 0 qmpX 2 qU κ´1 pX 0 qU κ´1 pX 2 q X 0 X 2 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 ´mpX 3 qmpX 4 qU κ´1 pX 3 qU κ´1 pX 4 q X 3 X 4 .
' For pn, pq " p3, 0q, T κ pX n`1 q " T κ pX p q:

(10.7) ω 0 " ´2 ¨mpX 2 qmpX 3 qU κ´1 pX 2 qU κ´1 pX 3 q

X 2 X 3 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 `mpX 1 qmpX 4 qU κ´1 pX 1 qU κ´1 pX 4 q X 1 X 4 (10.8) ω 1 " 2 ¨mpX 0 qmpX 2 qU κ´1 pX 0 qU κ´1 pX 2 q X 0 X 2 `mpX 2 qmpX 4 qU κ´1 pX 2 qU κ´1 pX 4 q X 2 X 4 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 `mpX 1 qmpX 4 qU κ´1 pX 1 qU κ´1 pX 4 q X 1 X 4 .
' For pn, pq " p2, 0q, T κ pX n`1 q " T κ pX p q:

(10.9) ω 0 " mpX 2 qU κ´1 pX 2 q X 2 mpX 0 qU κ´1 pX 0 q X 0 `mpX 3 qU κ´1 pX 3 q X 3 ' For pn, pq " p4, 0q, T κ pX n`1 q " T κ pX p q:

(10.10) ω 0 " ´mpX 3 qmpX 4 qU κ´1 pX 3 qU κ´1 pX 4 q

X 3 X 4 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 `mpX 1 qmpX 5 qU κ´1 pX 1 qU κ´1 pX 5 q X 1 X 5 (10.11) ω 1 " mpX 0 qmpX 3 qU κ´1 pX 0 qU κ´1 pX 3 q X 0 X 3 `mpX 3 qmpX 5 qU κ´1 pX 3 qU κ´1 pX 5 q X 3 X 5 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 `mpX 1 qmpX 5 qU κ´1 pX 1 qU κ´1 pX 5 q X 1 X 5 .
' For pn, pq " p4, 1q, T κ pX n`1 q " T κ pX p q:

(10.12) ω 0 " ´mpX 3 qmpX 4 qU κ´1 pX 3 qU κ´1 pX 4 q X 3 X 4 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 ´mpX 4 qmpX 5 qU κ´1 pX 4 qU κ´1 pX 5 q X 4 X 5 (10.13) ω 1 " mpX 0 qmpX 3 qU κ´1 pX 0 qU κ´1 pX 3 q X 0 X 3 mpX 0 qmpX 1 qU κ´1 pX 0 qU κ´1 pX 1 q X 0 X 1 ´mpX 4 qmpX 5 qU κ´1 pX 4 qU κ´1 pX 5 q X 4 X 5 .

Let us explain how the formulas for the ω q 's were determined. For general m ľ 1, E P Θ m,κ pDq in dimension 2 iff DpX q q m q"0 Ă r´1, ´|E|s Y r|E|, 1s, and pω q q m´1 q"0 Ă R, ω q ĺ 0, such that g E jκ pX m q " m´1 ÿ q"0 ω q ¨gE jκ pX q q, @j P N ˚pω q independent of jq.

If this linear relationship holds, it must be that for any choice of disctinct j 1 , j 2 , ..., j m P N ˚,

(10.14)

¨ωm´1 ω m´2 ... ω 0 ‹ ‹ ' " ¨gE κ pX m´1 q g E κ pX m´2 q ... g E κ pX 0 q g E 2κ pX m´1 q g E 2κ pX m´2 q ... g E 2κ pX 0 q ... ... ... ... g E mκ pX m´1 q g E mκ pX m´2 q ... g E mκ pX 0 q ‹ ‹ ' ´1 ¨gE κ pX m q g E 2κ pX m q ... g E mκ pX m q ‹ ‹ ' " ¨gE j 1 κ pX m´1q g E j 1 κ pX m´2 q ... g E j 1 κ pX 0 q g E j 2 κ pX m´1 q g E j 2 κ pX m´2 q ... g E j 2 κ pX 0 q ... ... ... ... g E jmκ pX m´1 q g E jmκ pX m´2 q ... g E jmκ pX 0 q ‹ ‹ ' ´1 ¨gE j 1 κ pX m q g E j 2 κ pX m q ... g E jmκ pX m q ‹ ‹ ' .
We therefore performed the above matrix multiplication (after computing the inverse matrix) for m " 0, 1 used j 1 , j 2 " 1, 2, the definition of g E jκ pxq given in (3.5) and applied the assumptions (5.1), (5.2), (5.3) and (10.1) (respectively, (5.9), (5.10), (5.11), (10.2) and (5.13)). A key identity that was used in those calculations and that is worth highlighting is:

(10.15) rU 2κ´1 pX q q, U κ´1 pX q 1 qs " U κ´1 pX q q ¨Uκ´1 pX q 1 q ¨pT κ pX q q ´Tκ pX q 1 qq.

For m ľ 2 it may be necessary to find a formula for rU j 1 κ´1 pX q q, U j 2 κ´1 pX q 1 qs.

Unfortunately I was not able to formulate general assumptions like (AO.3) or (AE.3) adapted to this section. Looking at the formulas for ω 0 and ω 1 one can come up with various assumptions that could ensure that the ω q 's are negative. Since mpX q q ľ 0, it is likely that the most convenient assumption is a statement about the signs of the ratios U κ´1 pX q q{X q , or equivalently T 1 κ pX q q{X q . The following example illustrates the idea.

Example 10.2. Let n " 1, κ ľ 4, κ P N e . Suppose that E n P T ǹ,κ . Then T κ pX 0 q " T κ pX 1 q " T κ pX 2 q. If T 1 κ pX 0 q{X 0 , T 1 κ pX 2 q{X 2 ľ 0 and T 1 κ pX 1 q{X 1 ĺ 0, then ω 0 " (10.4) is negative and so E n P Θ 1,κ pDrd " 2sq.

An inspection of the ratios T 1 κ´1 pX q q{X q in the first 3 graphs in Figure 11 and all the graphs in Figure 12 reveal that the ω q 's given by (10.4)-(10.13) are strictly negative. Therefore the corresponding energies E n pκq are thresholds. In the last 3 graphs in Figure 11 we computed the ω q 's numerically using (10.14) for a handful of indices j 1 , j 2 , j 3 . These appeared to be independent of j 1 , j 2 , j 3 and : pω 0 , ω 1 , ω 2 q » p´0.31, ´1.02, ´1.71q, 4 th graph in Figure 11, pω 0 , ω 1 , ω 2 q » p´0.31, ´1.02, ´1.72q, 5 th graph in Figure 11, pω 0 , ω 1 , ω 2 q » p´0.30, ´1.04, ´1.72q, 6 th graph in Figure 11.

This indicates that the corresponding energies E n are also thresholds. Finally, to construct these threshold energy solutions graphically, we note that the dynamical algorithms described in subsection 5.4 hold provided that the last step be changed to : the energy E must be calibrated in such a way that the last point constructed, X q n`1 , satisfies the alignment condition T pX q n`1 q " T pX r q where X r is one of the previously constructed points.

Description of the polynomial interpolation in dimension 2

This entire section is in dimension 2. In this section we adapt the linear system (1.13) to the interval J 2 pκq :" pcos 2 pπ{κq, cospπ{κqq. This will setup our framework behind Conjecture 1.8. In sections 12 and 13 we numerically implement the equations of this section.

Fix κ ľ 4, κ P N e . First, let E n , X 0,n , ..., X n`1,n be the solutions of Propositions 6.1 and 6.2 (or equivalently Theorem 1.6). Our aim is to find the coefficients ρ jqκ of Apnq " ř N pnq q"1 ρ jqκ pnqA jqκ so that a strict Mourre estimate holds on the interval pE n , E n´1 q -which we refer to as the n th band.

For n odd, the linear system (1.13) becomes (using notation (3.3) and (3.4) instead) :

(11.1)

$ ' ' ' & ' ' ' %
G En κ pX q,n q " 0 q " 0, ..., pn ´1q{2 d dx G En κ pX q,n q " 0 q " 1, ..., pn ´1q{2 G E n´1 κ pX q,n´1 q " 0 q " 0, ..., pn ´3q{2

d dx G E n´1 κ
pX q,n´1 q " 0 q " 1, ..., pn ´3q{2 `1.

This system of 2n ´1 equations has at most rank 2n ´1, but part of our conjecture is that it always has rank 2n ´1.

For n even, the linear system (1.13) becomes (using notation (3.3) and (3.4) instead) :

(11.2) $ ' ' ' & ' ' ' % G En κ pX q,n q " 0 q " 0, ..., n{2 ´1 d dx G En κ pX q,n q " 0 q " 1, ..., n{2 G E n´1 κ pX q,n´1 q " 0 q " 0, ..., n{2 ´1 d dx G E n´1 κ
pX q,n´1 q " 0 q " 1, ..., n{2 ´1.

Again, this system of 2n ´1 equations has at most rank 2n ´1, but part of our conjecture is that it always has rank 2n ´1.

For the coefficients ρ jqκ we will assume Σ " tρ j 1 κ , ρ j 2 κ , ..., ρ j 2n κ u and further always take the convention that j 1 " 1 and ρ j 1 κ " ρ κ " 1. Thus we have a system of 2n ´1 unknowns and 2n ´1 equations.

Remark 11.1. Note that by writing out systems (11.1) and (11.2) in this way with the X q,n 's coming from Propositions 6.1 and 6.2, we are implicitly conjecturing that the sequence tE n u of Propositions 6.1 and 6.2 are the only thresholds in J 2 pκq, i.e. tE n u " J 2 pκq X Θ n,κ pDq.

Let us justify the range of the index q in the first two lines of (11.1). Fix n odd. By Lemma 5.10, G En κ pX 1`q,n q " G En κ pX n´q,n q for any choice of coefficients ρ jκ and q " ´1, 0, ..., pn ´1q{2. Additionally, thanks to (5.8), G En κ pX pn`1q{2,n q " ř pn´1q{2

q"0 ω q ¨GEn κ pX q , nq. So to avoid obvious linear dependencies, we require the first line of system (11.1) only for q " 0, ..., pn ´1q{2. As for the second line of system (11.1), Lemma 5.11 entails (since the X i,n 's are non-zero) that d dx G En κ pX 1`q,n q " 0 ô d dx G En κ pX n´q,n q " 0 for q " ´1, 0, ..., pn ´1q{2 and any choice of coefficients ρ jκ . Additionally, thanks to Lemma 3.3, d dx G En κ pX pn`1q{2,n q " 0 always holds. So to avoid obvious linear dependencies, we only require the second line of system (11.1) only for q " 0, 1, ..., pn´1q{2. Furthermore, we don't include q " 0 but that is for a separate reason based only on numerical and graphical evidence -and probably related to the fact that X 0,n " E n does not belong to the interior of S En .

Remark 11.2. The justification for the range of the index q in the third and fourth lines of (11.1) follows from the above discussion, by replacing n with n ´1. A similar reasoning as above establishes the range of the index q for the case of n even, i.e. system (11.2). that G E κ pxq is ľ 0 when E is a threshold energy, i.e. E P tE n u, but strictly positive for x P rE, 1s and E P pE n , E n´1 q. We choose only one value E P pE n , E n´1 q for illustrative purposes. Furthermore, thanks to Lemma 3.2 it is enough to observe G E κ pxq for x positive. In this section the results of the polynomial interpolation (described in section 11) are displayed for κ " 6, and 1 ĺ n ĺ 5, in dimension 2.

Table 3 gives inputs we need to feed linear systems (11.1) and (11.2) into the computer (we used numbers with much higher precision to draw the graphs). This section is in dimension 2. We discuss the possibility of using other index sets Σ when performing the linear interpolation.

For pκ, nq " p4, 2q, we checked that the indices Σ " r4, 8, 12, 4ls are equally valid for l " 7, 8, 9 but not valid for l " 4, 5, 6. Σ " r4, 8, 16, 4ls are valid for l " 7, 8, 9 but not valid for l " 5, 6. The point is that there is generally not only one valid index set Σ. 15. Conjecture for the interval J 3 pκq :" pcosp2π{κq, cos 2 pπ{κqq

In this section we give some evidence for Conjecture 1.9. We only do κ " 6, 8 in dimension 2. Note that this cumbersome phenomenon also happened for the standard Laplacian, see [START_REF] Golénia | Thresholds and more bands of A.C. spectrum for the discrete Schrödinger operator with a more general long range condition[END_REF]section 16].

For κ " 6, the index set Σ " t6, 12u, for which the coefficients ρ 6 and ρ 12 are given in section 13, also gives strict positivity on p0.5024, 0.672q. This is an improvement compared to what was known previously (see Table 5).

For κ " 8, the index set Σ " t8, 16u gives strict positivity (using the coefficients of the linear interpolation) on p0.70897, 0.804q. This is an improvement compared to what was known previously (see Table 5).

The case of κ " 4 in dimension 3

This section is in dimension 3. We illustrate the situation for κ " 4, and the 2 nd band, namely pE 2 , E 1 q. In other words, n " 2. We use the linear combination ř j ρ jκ A jκ where the coefficients ρ jκ are the same as in dimension 2, i.e. the ones found in section 12. Figure 24 shows the function G E κ"4 px, yq at E P tE 2 , 0.59, E 1 u and certain values of y. Note that G E κ is ľ 0 at the band endpoints, but strictly positive at E " 0.59. Of course, we have to check all the values of y in the range r´1, ´|E|s Y r|E|, 1s to test the strict positivity of G E κ .

Figure 24. G E κ"4 pxq, x P rE{y, 1s. Graphs at: E " E 2 , E " 0.59, E " E 1 . 2 nd band 17. Prior results for the Molchanov-Vainberg Laplacians

Table 5 recalls the bands identified (numerically for the most part) in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] for the Molchanov-Vainberg Laplacian. These were obtained using the linear combination (1.6) with ρ jκ " 1 if j " 1 and 0 if j ą 1. Results for more values of κ are listed in [GM2, Tables XV andXVII]. Table 5. Sets Ă µ κ pDq X r0, 1s found in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] using the trivial linear combination.

We had conjectured exact expressions for the band endpoints in [START_REF] Golénia | Bands of absolutely continuous spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]. Namely in dimension 2, we had conjectured the intervals in Table 5 are in fact : `0, sin 2 pπ{4q ˘Y psinpπ{4q, 1q

κ " 4, `0, sin 2 pπ{6q ˘Y `__ , sin 2 p2π{6q ˘Y psinp2π{6q, 1q κ " 6, `0, sin 2 pπ{8q ˘Y `sinpπ{8q, sin 2 p2π{8q ˘Y `__ , sin 2 p3π{8q ˘Y psinp3π{8q, 1q κ " 8.

Thanks to the identity sin pκ{2 ´jqπ{κq " cospjπ{κq, these conjectures can be reformulated in terms of cosines, which are more adapted to this paper: `0, cos 2 pπ{4q ˘Y pcospπ{4q, 1q κ " 4, `0, cos 2 p2π{6q ˘Y `__ , cos 2 pπ{6q ˘Y pcospπ{6q, 1q κ " 6, `0, cos 2 p3π{8q ˘Y `cosp3π{8q, cos 2 p2π{8q ˘Y `__ , cos 2 pπ{8q ˘Y pcospπ{8q, 1q κ " 8.

In dimension 3, we had conjectured : `0, sin 3 pπ{4q ˘Y psin pπ{4q , 1q κ " 4, `0, sin 3 pπ{κq ˘Y `__ , sin 3 ppκ{2 ´1qπ{κq ˘Y psin ppκ{2 ´1qπ{κq , 1q κ " 6, 8. In dimension 2, we used the simple algorithm :

' For all E P r´1, 1s :

let y " E{x check if the function x Þ Ñ G E κ pxq has same sign on the interval x P r´1, ´|E|s Y r|E|, 1s. In dimension 3, we used the simple algorithm :

' For all E P r´1, 1s : ' For all y P r´1, ´|E|s Y r|E|, 1s :

let z " E{pxyq check if the function x Þ Ñ G E κ px, yq has same sign on the interval x P r´1, ´|E{y|s Y r|E{y|, 1s.

Figure 2 .

 2 Figure 2. T κ"6 pxq. Thresholds P Θ m,κ pDq in 2nd gap = pcos 2 p2π{6q, cosp2π{6qq. Left to right : E 1 » 0.37677, E 1 » 0.34918, E 3 » 0.30236, E 3 » 0.29420

Figure 3 .

 3 Figure3. Graph of T κ pxq. Solutions to system (5.1) satisfying (5.2)-(5.4). Left : pκ, nq " p8, 1q, E 1 » 0.37987. Right : pκ, nq " p12, 1q, E 1 » 0.70625. However unclear if these energies E 1 belong to Θ κ pDrd " 2sq or µ κ pDrd " 2sq

Figure 4 .

 4 Figure 4. T κ"4 pxq. Solutions E n in Propositions 6.1 and 6.2. Left to right : E 1 » 0.61803, E 2 » 0.57735, E 3 » 0.55496, E 4 » 0.54120, E 5 » 0.53208, E 6 » 0.52573.

Figure 5 .

 5 Figure 5. T κ"4 pxq. Same solutions E n as in Figure 4 but using different configurations for the X q 's. Left to right : E 1 » 0.61803, E 2 » 0.57735, E 2 » 0.57735, E 2 » 0.57735, E 3 » 0.55496, E 3 » 0.55496

Figure 7 .

 7 Figure 7. Graphs with logpnq on x-axis and logpE 2n pκq ´cos 2 pπ{κqq on y-axis. Left : κ " 4 ; Right : κ " 6. Green dots are 1 ĺ n ĺ 9 ; black dots are n " 10, 20, 30, ..., 100. Orange line is trend line based on linear regression of black dots.

  7. A generalization of section 6 : a sequence E n OE cos 2 pjπ{κq

Figure 8 .

 8 Figure 8. T κ"8 pxq. Solutions E n . Left to right : E 1 » 0.21289, E 2 » 0.18861, E 3 » 0.17584, E 4 » 0.16820, E 5 » 0.16325, E 6 » 0.15983.

Figure 9 .

 9 Figure 9. T κ"8 pxq. Solutions E n . Left to right : E 1 » 0.59091, E 2 » 0.56152, E 3 » 0.54484, E 4 » 0.53432, E 5 » 0.52720, E 6 » 0.52212.

  Conjecture 7.4. Let κ ľ 2, κ P N e . Fix 1 ĺ j ĺ tκ{2u. If cosppj `1qπ{κq ă a ă cospjπ{κq ă b ă cosppj ´1qπ{κq are such that T κ paq " T κ pbq, then (7.3) cospjπ{κq ´a ą b ´cospjπ{κq. If Conjecture 7.4 holds, Conjecture 7.3 should follow directly.

Figure 10 .

 10 Figure 10. T κ"6 pxq. Solution F n of Propositions 8.1 and 8.2. Left to right : F 1 » 0.48487 ; F 2 » 0.49802 ; F 3 » 0.49990

Figures 13 -

 13 Figures 13 -17 below depict G E κ pxq, the functional representation of the commutator rD, iAs localized at energy E. When looking at the Figures we want to see that G E κ pxq is ľ 0 when E is a threshold energy, i.e. E P tE n u, but strictly positive for x P rE, 1s and E P pE n , E n´1 q. We choose only one value E P pE n , E n´1 q for illustrative purposes. Furthermore, thanks to Lemma 3.2 it is enough to observe G E κ pxq for x positive.

  see

Figure 13

 13 Figure 13. G E κ"4 pxq, x P rE, 1s. Graphs at: E " E 1 , E " 0.66, E " E 0 . 1 st band

Figure 19

 19 Figure 19. G E κ"6 pxq, x P rE, 1s. Graphs at: E " E 2 , E " 0.809, E " E 1 . nd band

  Figure 23 gives an idea of what G E κ looks like for a non-valid index set Σ. While G E κ satisfies the interpolation constraints, it is not strictly positive.

Figure 23

 23 Figure 23. G E κ"4 pxq, x P rE, 1s. Graphs at: E P tE 2 , 0.59, E 1 u, Σ " t4, 8, 12, 24u

18.

  Appendix : Numerical / graphical algorithm to analyze the positivity of G E κ

  

  p0, 0.1464q Y p0.3826, 0.5q Y p0.7121, 0.8535q Y p0.9238, 1q p0, 0.0560q Y p0.7187, 0.7885q Y p0.9238, 1q

	2	p0, 1q	p0, 1q
	4	p0, 0.5q Y p0.7071, 1q	p0, 0.3535q Y p0.7071, 1q
	6	p0, 0.25q Y p0.5064, 0.75q Y p0.8660, 1q	p0, 0.125q Y p0.5148, 0.6495q Y p0.8660, 1q
	8		

κ Intervals Ă µκpDq. d " 2. Intervals Ă µκpDq. d " 3.

(1) Fix κ ľ 4, κ P N e , and plot the Chebyshev polynomial T κ pxq.

(2) Initialize energy E to a certain value such that ? E P r´1, 1sztcospjπ{κq : 0 ĺ j ĺ κu, and draw the vertical axis of multiplicative symmetry x " ? E.

(3) Place the first point pX q 0 , T κ pX q 0 qq such that X q 0 " ? E. (4) Place pX q 1 , T κ pX q 1 qq, pX q 2 , T κ pX q 2 qq, ..., pX q n`1 , T κ pX q n`1 qq by alternating between applying the level condition 2.3 wrt. the last point constructed, and then the multiplicative symmetry condition wrt. to the last point constructed.

(5) Finally calibrate E in such a way that the x-coordinate of the last point constructed, X q n`1 , also satisfies a level condition 2.1 or 2.2. Upon calibration, E " E n . Algorithm for n even -system (5.9) along with conditions (5.10)-(5.13) :

(1) Fix κ ľ 4, κ P N e , and plot the Chebyshev polynomial T κ pxq.

(2) Initialize energy E to a certain value and draw the vertical axis of multiplicative symmetry

x " ? E.

(3) Place a first point pX q 0 , T κ pX q 0 qq such that X q 0 satisfies a level condition 2.1 or 2.2. (4) Place X q 1 as the multiplicative symmetric of X q 0 . (5) Place pX q 2 , T κ pX q 2 qq, pX q 3 , T κ pX q 3 qq, ..., pX q n`1 , T κ pX q n`1 qq by alternating between applying the level condition 2.3 wrt. the last point constructed, and then the multiplicative symmetry condition wrt. to the last point constructed. (6) Finally calibrate E in such a way that the x-coordinate of the last point constructed, X q n`1 , also satisfies a level condition 2.1 or 2.2. Upon calibration, E " E n . Note that the proposed Algorithms are dynamical constructions : the positioning of all the X q i 's depends on the value of E (with the exception of X q 0 in the n even case). In the final step when E is adjusted, all the X q i 's migrate (with the exception of X q 0 that stays put in the n even case). Adjusting E preserves the symmetry and level conditions. 5.5. Other key formulas -to be used to setup the linear interpolation. The following Lemma, whose proof immediately follows from the definitions, will be impactful when we do polynomial interpolation.

Lemma 5.10. Fix d " 2. Let E n , X 0 , ..., X n`1 be any solution to system (5.1), respectively system (5.9). Then for q " ´1, 0, ..., pn ´1q{2, respectively q " ´1, 0, ..., n{2 ´1, (5.17)

g En jκ pX 1`q q " g En jκ pX n´q q, for all j P N ˚.

In particular, G En κ pX 1`q q " G En κ pX n´q q for any choice of coefficients ρ jκ . The following Lemma is less obvious but equally impactful for the polynomial interpolation.

12. Application of polynomial interpolation to the case κ " 4 in dimension 2

In this section the results of the polynomial interpolation (described in section 11) are displayed for κ " 4, and 1 ĺ n ĺ 5, in dimension 2.

Table 1 below gives inputs we need to feed linear systems (11.1) and (11.2) into the computer (we used numbers with much higher precision in the solver and to draw the graphs). s T » r1, 0.56271s T 2 rρ4, ρ8, ρ12, ρ28s T » r1, 0.79123, 0.19359, 0.02771s T 3 rρ4, ρ8, ρ12, ρ16, ρ20, ρ24s T » r1, 1.328058, 0.98129, 0.45526, 0.12626, 0.01635s T 4 rρ4, ρ8, ρ12, ρ16, ρ20, ρ24, ρ28, ρ64s T » r1, 1.44284, 1.23820, 0.72957, 0.29600, 0.07629, 0.00959, ´0.0000079s T 5 rρ4, ρ8, ρ12, ρ16, ρ20, ρ24, ρ28, ρ32, ρ36, ρ40s T » r1, 1.55110, 1.51418, 1.09196, 0.60426, 0.25666, 0.08171, 0.01849, 0.00266, 0.00018s T Table 2. Results of the linear interpolation for κ " 4

We noticed that only for very small values of κ and n is Python able to produce exact solutions. For example, for κ " 4, n " 2 we have a rare ocurrence of an exact solution (exact values of X 0 , X 1 , X 2 and X 3 were used) : t6, 12, 18, 24, 30, 36, 42, 90u X3 » 0.8968, X4 » 0.9339 5 E5 » 0.7711, X1 » 0.8229, X2 » 0.8534, " left endpoint for n " 4 t6, 12, 18, 24, 30, 36, 42, 48, 54, 60u X3 » 0.8781, X4 » 0.9035, X5 » 0.9370

Table 3. Data to setup polynomial interpolation on pE n , E n´1 q. κ " 6. d " 2. κ pxq is ľ 0 when E is a threshold energy, i.e. E P tE n u, but strictly positive for x P rE, 1s and E P pE n , E n´1 q. We choose only one value E P pE n , E n´1 q for illustrative purposes. Furthermore, thanks to Lemma 3.2 it is enough to observe G E κ pxq for x positive.