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About the influence of materials parameters on 
the ultimate and fatigue properties of elastomers 

L. Chazeau1, J.-M. Chenal1, C. Gauthier2, J.Kallungal1 and J. Caillard2 

Abstract. The aim of this chapter is to revisit the historical works, mechanisms and 
modeling approaches available in the field of fatigue crack growth resistance and 
rupture properties.  After  introducing the methodology developed to evaluate these 
properties, the impact of testing parameters such as temperature, loading speed and 
pre-deformation will be highlighted. We will then review the influence of some 
material characteristics on rupture and crack propagation and the local mechanisms 
involved. Finally, a theoretical framework primarily dedicated to the description of 
crack propagation under static load will be discussed, that aims to underline the 
connection between resistance to crack growth and the ability of a material to dis-
sipate energy. 

Keywords. Cyclic/static crack growth • Filled polymers • Viscoelasticity • Mullins 
effect • Rupture properties • Dissipation. 
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1 Introduction 

Optimizing life duration of pneumatics, seismic isolators, mechanical mem-
branes, seals etc. requires a good understanding of the capability of elastomers they 
are made of,  to withstand mechanical loading and resist to crack initiation/propa-
gation. The mechanisms of crack initiation and propagation in elastomers have been 
of continuous interest to the scientific community, as shown by the numerous re-
views on this topic [1–6]. In addition, many recent works have been dedicated to a 
fine characterization of the material in the close vicinity of cracks. More recently, 
new fields of applications have emerged in connection with soft robotics, stretcha-
ble electronics and bio-medical applications [7]. New ideas for the architecture of 
biomimetic materials with improved performance ermerged [8, 9]. Recent years 
have thus seen the synthesis of novel elastomeric networks, such as 'double net-
works', which appear to provide remarkable fracture properties [10]. This contrib-
uted to a renewed interest in understanding and modelling the damage and rupture 
of elastomeric and filled elastomeric networks [11, 12]. 

2 Experimental methods and key features related to viscoelasticity 

From a very general point of view, rupture appears as the consequence of the 
initiation and eventual propagation of one or more cracks over the entire section of 
the material. It can occur under a constant, monotonic, or cyclic loading or a com-
bination of these three. Understanding crack mechanisms requires the use of micro-
structural characterization tools that allow to observe the process of crack appear-
ance from the very beginning. Several studies focused on the links between the 
processing conditions and the presence of defects, such as cavities, aggregates or 
agglomerates, from which cracks can nucleate. They are generally extended to the 
study of the number of cracks created under a given load scenario (monotonic or 
cyclic). The geometries that allow stress localization and consequently the control 
of the zone where cracks will appear are generally preferred (e.g diabolo or hour-
glass type) [13, 14], in order to limit the observation region. Many studies use opti-
cal or electron microscopy (SEM) to observe the surface of the specimen. The fast 
development of tomography now allows to access a 3-dimensional information in-
side the object. This one can be correlated with the strain energy necessary for the 
crack´s nucleation and subsequent propagation that can be calculated at a macro-
scopic scale or locally through the characterization of strain fields inside the mate-
rial (using necessarily a modeling step). It is thus possible to better understand the 
initiation mechanism and its link with local stress or existing flaws in the material 
(their morphology or their spatial distribution) [15–17]. Nevertheless, note that the 
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estimated strain energy, or the local or macroscopic critical stresses / strains to 
which crack initiation is related, depend very much on observation tools and their 
resolution. 

In many cases, cracks initiation is not considered as the mechanism which dic-
tates the lifetime. Thus, many works have been rather devoted to crack propagation. 
Different experimental protocols and specimen geometries can be used (the most 
commonly used geometries are pure shear, trouser, and tensile test-pieces). This can 
make difficult comparison and generalisation of the results. The test-piece can be 
strained, at a constant load force and one then measures the crack propagation ve-
locity Vp(t). The trouser test-piece is the most suitable for this so-called crack 
growth tests since the stretch of the two legs can be directly related to the crack 
propagation velocity. Things are less straightforward on notched pure shear (PS) 
geometry or tensile specimens. In this case, the estimate of the propagation velocity 
requires a direct measurement of the crack length as a function of time. “Static cut 
growth test” corresponds to the measurement of the crack propagation velocity after 
a cut is made in a statically strained PS specimen. In so called “fatigue crack growth 
tests”, the notched test-piece is subjected to a cyclic loading, controlled by defor-
mation or stress, with or without polarization. (i.e. with or without complete unload-
ing).The stabilised propagation rate is then measured per cycle [18] for different 
loading levels. Such protocols are built to mimic the conditions encountered in nu-
merous applications, where loading levels are relatively low. In these applications, 
the load frequencies are often signicantly higher than 1 Hz. This can lead to a sig-
nificant rise in temperature of the material. To avoid it, or at least to limit it, haver-
sine type loading conditions are often used. The term "stabilized" is important: in-
deed, faster propagation is generally observed during the first cycles, and the crack 
growth rate decreases more or less rapidly towards a “stabilized” value. This is as-
cribed to a modification of the crack geometry (initially created from a razor cut), 
and of the mechanical properties of the material in its vicinity. 

Whether static, monotonic or cyclic solicitation are applied, these experiments 
therefore enable to relate Vp, expressed per time unit (for instance in static crack 
growth experiment) or per number of cycles (in fatigue crack growth tests) to a 
strain energy release rate G, defined as the variation of potential energy in the spec-
imen per advanced crack area. Note that G is noted T (for tearing energy) in many 
articles. The resulting Vp(G) curve is indeed considered to be independent on the 
geometry [18, 19], at least for those commonly used [20], if certain conditions on 
the geometries are fulfilled [21]. Using a Pure Shear (PS) geometry, [20, 22, 23] of 
initial height h0 submitted to a stretching λ, G associated with the propagation of a 
crack of length c, is the product of W�λ� by h0, where W�λ� is the strain energy 
density of the unnotched PS test piece submitted to the same stretching. For a tensile 
strip geometry, the expression becomes 2kW�λ�c, k being a parameter depending 
smoothly on λ [24, 25]. In the case of an elastic material, W�λ� simply is the area 
under the loading curve of the unnotched test piece, and G is then the stored elastic 
energy. The estimate is less trivial for viscoelastic material, or when the mechanical 
behavior irreversibly depends - over the time scale of the cycles and/or of the crack 
propagation - on the maximum loading (as it is the case in filled elastomers due to 
the Mullins effect). In fatigue crack growth test, depending on the authors, 
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W(lambda) will then be estimated from the area under the loading curve, or under 
the unloading one, of a stabilized cycle. Thus, depending on the chosen option, it 
will include or not the energy dissipated during the cycle (this having important 
consequences on the interpretation of the Vp(G) curves) [26]. 

 
There is not a complete consensus in the literature on experimental protocols, 

whether they are used to assess the properties at break, the tearing resistance or the 
crack propagation characteristics. However, a generic behavior can be outlined, here 
introduced in the case of unfilled amorphous elastomers. Their stress and strain at 

break (εb, σb), often measured in tensile test, depend on the strain rate (��	  and the 
temperature. A master curves for σb (corrected from entropic effects) and for εb, can 
be built, as a function of 1/�	 [27], using temperature-dependent shift factors from 
the William-Landels-Ferry law for the � relaxation times. Furthermore, an envelop 
curve for the couple (σb, εb) with tests carried out at different speeds and tempera-
tures can be drawn [28]. It highlights the weak rupture properties at high tempera-
ture and low velocity, and the existence of optimal temperature and strain rate con-
ditions for the strain energy at break. The latter being related to G via the 
Greensmith's formula [29], this shows the dependence of the critical strain energy 
release rate Gc (G value for a catastrophic crack propagation) on temperature and 
strain rate, or in other words, on the role of the viscoelasticity in the involved pro-
cesses. 

Vp(G) curves (or the reverse, G(Vp) curves) from non-cyclic crack growth tests 
are found in literature with crack propagation rates which can extend over ten dec-
ades (figure 1)[30]. The authors estimate a tearing energy G� (with a significant error 
bar), akin to Gc, when Vp reaches several m/s. In the lower or higher velocity do-
mains, the breaking surfaces are respectively rough and smooth, and the velocity is 
approximatively or completely stable, while stick-slip occur  in the transition do-
main [31, 32]. These different behaviors are related to the material ability to blunt 

Figure 1 : Crack growth velocity 
(dc/dt) as a function of the strain energy 
release rate G for Styrene Butadiene 
Rubber. G0 is the threshold energy for 
mechanical crack growth and Gt indi-
cates the transition region. Figure from 
reference 30. 
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the crack tip by cavitation [33]. This mechanism involving the viscoelastic response 
of the material, may or may not have the time to occur, depending on  the propaga-
tion velocity [34]. The width of the transition domain decreases with the increase in 
the material crosslinking density. Note that the unstable stick-slip process may also 
result from a non-uniform temperature in the crack vicinity, that interacts with the 
local viscoelasticity of the material [26]. Below G�, two different domains can be 
distinguished : for G above a value named G0, Vp roughly varies with a power law 
of G. Below G0, one observes an extremely low crack propagation rate, independent 
on G, solely originating from a chemical degradation of the material at the crack tip 
[35]. G(Vp,T) data obeys the same time-temperature equivalence as dynamic moduli 
and makes possible the construction of a master curve over a very large domain. 
Incidentally, T and Vp being given, G grows with the loss modulus. G0 has therefore 
to be estimated when the viscoelastic effects are minimized. The reduction of the 
dissipation zone can be obtained by pushing an ultra-sharp blade into the open 
crack. This inspired a new efficient protocol to rapidly evaluate G0 [36, 37].Values 
are found between 20 and 100 J / m2 [38–42]. According to Lake and Thomas [43], 
they corresponds to the breaking energy of the chains that cross the fracture plane. 
When a bond breaks, the entire chain between crosslinks relaxes to zero load, mak-
ing the energy dissipation proportional to the number of Kuhn segments (N) be-
tween crosslinks. Recent studies however suggest that chains rupture out of the frac-
ture plane are also involved in the fracture energy [44] (cf. § 3).  Despite its 
simplifying assumption (perfect network without entanglement), the Lake-Thomas 
model predicts the right order of magnitude for G0 in unfilled amorphous polymers 
and the observed dependence of G0 on N-1/2. Our study on γ-irradiated elastomer at 
different doses suggests that the model also seems to qualitatively work for materi-
als containing a large number of dangling and soluble chains, when these are taken 
into account in the calculation of N [45]. 

Regarding fatigue crack growth tests, the curves are generally given as dc/dn (i.e. 
the crack growth per cycle) versus G [46]. They have a typical shape, similar to 
those observed for other classes of materials [47] (figure 2). Like for non cycling 
loading, three domains are identified. At G values lower than G0 (same meaning as 
previously), crack propagation is again ascribed to chemical degradation processes. 
Then one observes a transition on a restricted domain of G, where the Vp(G) curve 
increases, usually according to a linear law. For higher G, dc/dn follows a Paris type 
law [48], i.e. is equal to  A ∙ G� where A and β are material parameters. Finally, 
beyond a certain critical value Gc, the crack propagates in a catastrophic way, caus-
ing the sample rupture within few cycles.  

As shown by Lake and Lindley [49], in the Paris domain (dc/dn= A. ��), A de-
creases rapidly with the frequency increase and then stabilizes for frequencies 
greater than 10 cycles per minute. At low frequency, crack growth rate evolution 
can be deduced from the G(Vp) curves obtained in static crack growth tests. For 
higher ones (above 1 Hz), the evolution of A suggests that this term contains a spe-
cific contribution due to the cyclic loading. Thus, the link between static and fatigue 
crack growth becomes more sophisticated, since the frequency both impacts the 
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time spent at a given G and influences the bulk material viscoelastic response. In 
addition, the use of a positive non-relaxing loading can lead to a slowdown of the 
crack propagation (by a factor of up to 18 in experiments carried out at 2 Hz with 
Styrene Butadiene Rubber). To explain it, Lindley [19] assumed that the dynamic 
component of dc/dn depends on �G��� � G�����, with β the exponent of the Paris 
law obtained in non-relaxing conditions. Note that at low frequency, as the static 
contribution of dc/dn is then preponderant, the increase in Gmin should lead to a 
larger dc/dn. The influence of the temperature is more intuitive and similar to that 
observed in static (A increases with the temperature). Thus, as also deduced from 
tensile strength measurement, Gc decreases with increasing temperature. Note that 
the quantification of the temperature influence must be carried out so as to ensure 
that material ageing is avoided (precaution not always described in publications). 

  
  

3 Material parameters  

3.1 The polymer and its crosslinking 

The strong influence of viscoelasticity in crack propagation can be retrieved in 
the often used expression of G as the product of G0 and a function f (Vp, T) (cf. §4). 
At a macroscopic scale, the viscoelasticity impacts the evolution of the crack tip 
geometry during the crack advance and therefore the maximum stresses distribution 
in its vicinity, which causes its further propagation [36]. At the crack tip locus, for 
the crack to grow, the subchains immediately ahead have to be stretched enough to 
reach the breaking strain. Since there is internal viscosity, a force higher than that 
corresponding to the threshold tearing energy must be supplied. The difference be-
tween the strain energy density in the bulk and small energy density used for growth 

Figure 2: Crack propaga-
tion rate as a function of 
the maximum energy re-
lease rate G in fatigue 
crack growth test for un-
filled Styrene Butadiene 
Rubber (x) and Natural 
Rubber (o). From refer-
ence 6. 
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of the crack is actually used to overcome the viscosity of the rubber. Viscoelasticity 
also controls the appearance of other dissipative mechanisms, such as cavitation, 
fibrillation which may or may not appear in the crack tip and perturb its propagation. 
Moreover, the chain network density controls G0 [43] and the deformation level at 
which strain hardening appears, which seems to decrease the radius of the crack tip 
and increase a stress triaxiality that promotes cavitation [50].  

Thus, from a material design point of view, the key parameters for crack propa-
gation resistance are: crosslinking density, entanglement density, the fraction of 
dangling  and free chains, and the glass transition temperature of the polymer. The 
latter depends on the chemical nature of the polymer chains which also controls the 
entanglement density (via the chain persistence length), and the energy at break of 
their bonds. The initial length distribution of the polymer chains controls the pres-
ence of chain ends or soluble fraction at a given crosslinking level. The ingredients, 
the different crosslinking recipes (sulfur, peroxide, disulphide tetramethyl-
thiuram…) and protocols (thermal curing, radiation…) can also be important. Thus, 
for a same crosslinking density, some authors claim that “conventional” vulcaniza-
tion system (sulfur / accelerator ratio > 1) leads to better breaking properties and 
tearing energy (with the Rivlin protocol) than efficient vulcanization system [40]. 
Interpretations differ on the reasons: more or less spatially homogeneous networks 
[51],  crosslinks formed in a more or less irreversible manner, which may result in 
more or less built-in/ stresses or strains [52]. Playing with the chemistry of the pol-
ymer chains, one can also create physical crosslinks. Their association/dissociation 
dynamics should enable a redistribution of the stresses in the elastomer network and 
therefore slow down the crack propagation. Studies are nevertheless necessary to 
confirm this. Chemical aging has also large consequences on crack resistance, since 
it induces, through complex chemical processes, additional crosslinks and/or chain 
scissions [53–56] . The characterization of molar masses between crosslinks re-
mains however a challenge, even if it has recently benefited from advances in  Nu-
clear Magnetic Resonance [57]. Aging can also be spatially heterogeneous, espe-
cially in sulfur vulcanized systems. Characterizing these heterogeneities is also 
difficult. To sum up, aging and curing conditions can lead to network structures 
very far from the perfect networks described in most models. This explains appar-
ently contradictory results in the literature [45, 58]. 

In many cases, the network topology in elastomers results from more or less ran-
dom crosslinking and/or chain scissions. Nervetheless, better control of this topol-
ogy is possible.[59]  Thus, toughness have been improved with elastomers made of 
telechelic chains with bimodal length distribution. This improvement comes from a 
stress redistribution due to the lower extensibility of short chains. The requirements 
to achieve exceptional toughness seem to be that the components have very different 
cross-link densities and the morphology is uniform down to the segmental level. 
With this idea, Buckley et al [60] produced ethylene-propylene double networks 
with improved rupture properties (at constant modulus). The beneficial effect of 
multiple networks has also been evidenced in hydrogels [10] and in acrylate elasto-
mers [61] (cf. § 3.4). 
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3.2 Specificity of polymers which can crystallize with strain 

 
The ability of the polymer for strain induced crystallization (SIC) appears to be 

another important parameter for crack growth resistance. All elastomers that crys-
tallize with temperature can - under certain strain rate and temperature conditions 
(near their melting temperature) - crystallize under deformation [62]. Among them, 
poly-cis isoprene 1,4 (NR) has two advantages: a melting temperature (35°C) very 
close to ambient, and a reversible crystallinity which can reach several tens of %. 
NR crystallization kinetics [63] is slow, especially at ambient temperature. This ex-
plains, with the presence of crosslinking nodes that restrict chain diffusion, that in 
most cases, NR remains amorphous despite a melting temperature higher than the 
ambient. When the material is deformed, the chains stretching reduces the system 
entropy and makes crystallization thermodynamically more favorable. Crystallites 
can therefore nucleate and grow, for stretch ratio usually above 4, until they reach 
a size limited by the presence of the crosslinking nodes. This size is small enough 
for the crystallites to be unstable and melt during unloading, even at room temper-
ature. The NR SIC (and its various parameters) has been the subject of special at-
tention in recent years [64–74] both from an experimental and theoretical point of 
view. SIC leads to a significant strain hardening, explained by the creation of a net-
work of percolating crystallites within the material (even if questions remain on this 
topic). It is preceded, at the very beginning of the crystallization phase, by a slight 
decrease in stress due to the alignment of the crystallized chains portions in the 
stretching direction (as this decreases the ‘effective’ stretching of amorphous 
chains) [75], mostly visible at slow stretching rate. 
As shown by the comparison of NR and Styrene Butadiene Rubber (SBR) data [32, 
76–78], SIC is the reason for a very strong increase in strain and stress at break and 
a slower crack propagation velocity, in cyclic and non cycling test[79]. Unlike an 
amorphous polymer, in a NR Pure Shear specimen submitted to a static loading, 
after a short growth, the crack stops. In cyclic loading, in the Paris domain, the 
literature studies suggest an exponent close to 4, for an amorphous elastomer like 
SBR while it may be around 2 for NR. Note that these exponents can significantly 
vary, depending on the experimental conditions. In addition, the application of a 
non-relaxing loading (Gmin > 0) leads to a more important slowing down of the crack 
propagation than with an amorphous elastomer [25]. Non-relaxing conditions also 
leads to crack deviations [80] (absent with unfilled amorphous elastomer). That 
makes less trivial the monitoring of the crack length, which may or may not include 
secondary cracks. All these behaviors are related to SIC which occurs at the crack 
tip, even at low macroscopic strain, due to the important stress concentration created 
by the tip geometry. Several studies investigated cristallinity at the crack tip in NR 
[81, 82]. In particular, Rublon et al. [14, 78] have implemented a clever method in 
order to map it during a dynamic test at 0.1 Hz. Directly compared to crack propa-
gation tests performed at 2 Hz for different energy release rates G, they showed a 
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good correlation between G, the crystallized volume, and the thickness decrease at 
the crack tip, which also suggests that cavitation occurs. 

  
We have studied a conventionally vulcanized NR (noted NR1.5 on figure 3, with 

the recipe: 100 phr NR + 3Phr Sulfur + 6phrPPD + 2phr stearic acid + 3 phr CBS + 
5phr ZnO). This material has a lower ability to crystallize than an efficiently vul-
canized rubber (CBS/Sulfur concentration ratio<1), both during cold crystallization 
(at -25°C) and during a tensile test experiment, the crystallinity being lowered by a 
factor of ca. 3. This may be due to a different distribution of the active chain length, 
and/or the presence of more grafted species on the chains which hinder their crys-
tallization. The fatigue crack growth resistance of the material has been tested in 
pure shear geometry[83]. As shown in figure 3, in the Paris domain, at low G, the 
slope of the log(G)-log(Vp) curve at 0,01 Hz and at few Hz (not shown), is surpris-
ingly large, around 3.5, i.e. close to the slope reported for amorphous materials. A 
new slope can however be deduced for G values above 3500 J/m2, which tends to 
be closer to the value expected for NR (around 2). The crystallization at the crack 
tip, measured through in-situ experiments (ZnS has been used as a probe to correctly 
estimate the material thickness at the crack tip) is reported on figure 4 as a function 
of G. The slope change in the log(G)-log(Vp) curve corresponds to the detection of 
the crystallinity. Interestingly, the maximal measured crystallinity is twice larger 
than the maximal one measured during tensile test at rupture. As reported in litera-
ture [84, 85] and as shown by the SAXS images collected during the WAXS meas-
urements [85], cavities develop in the crack tip vicinity. Thus, some amorphous 
chains are broken and highly stretched fibrils with large crystallinity remain. A care-
ful examination of the crack tip morphology and of the fracture surface may be of 
interest to confirm this. For unknown reasons, to the best of our knowledge, such 
studies only exist for fatigued filled NR or for unfilled one in non relaxing condi-
tion[80, 86].  Even though fillers likely introduce some differences in crack propa-
gation mechanisms, Xiang et al. conclusion can still be considered. In particular, 
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they resume an interesting parallel, initially proposed by Zhou et al. [87], between 
the mechanisms induced by SIC and those occurring with double networks. At the 
front of the crack tip, soft domains which might contain cavities, micro-cracks and 
amorphous or less crystallized rubber parts alternate with hard domains of highly 
orientated and more crystallized ligaments. The soft domains may act like a damper 
to absorb energy and thus slow down the crack propagation. 

  
The close relationship between SIC and crack propagation resistance has also 

been confirmed with aged NR1.5 samples whose characteristics have been deeply 
studied by Grasland [88]: ageing in air at 350K enhances the heterogeneity of the 
spatial distribution of the crosslinks already existing in the initial material,  and  
creates highly crosslinked domains which limits the ability for strain induce crys-
tallization. The consequence is an increase in the crack propagation rate (figure 3) 
which is consistent with a decrease in the crystallinity measured at the crack tip 
(figure 4). Moreover, the results suggest that a minimum crystallised volume is 
needed to observe an inflexion on the log(G)-log(Vp) curve. This is confirmed by 
the study of another conventionally vulcanized elastomer, so called NR2.5 (same 
recipe as NR1.5 except a doubled sulfur content). This material is more crosslinked, 
and therefore less crystallized than NR1.5 (figure 4). Its crystallization at the crack 
tip is too low, in the G domain explored, to lead to any slope change in the log(G)-
log(Vp) curve. Moreover, for all these tested materials, the crack propagation re-
sistance at 0,01Hz is correlated to the energy and stretch at break, obtained from 
tensile test at strain rate corresponding to the maximum strain rate in the fatigue test 
(values reported on figure 3). This is quite expected if one considers that ageing did 
not change the intrinsic flaw at the origin of the material rupture in tensile test, and 
therefore that its evolution is mostly related to a change in its crack growth re-
sistance [89]. 

SIC being a kinetic process [90], in non cyclic experiments, the crack growth 
velocity in the domain where it is very large (above 0.1 m/s) does not depend on it 
[30], as SIC does not have the time to proceed. Moreover, concerning fatigue crack 
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growth, we have found with the previous NR1.5 material that an increase in fre-
quency by around 3 decades leads to a decrease in dc/dn by a factor 10 (figure 5). 
However, expressed in dc/dt instead of dc/dn, these data indicates a much faster 
crack growth which can be ascribed to a less important SIC. This is also suggested 
by the increase in the G value at which a change in the slope of the log(G)-log(Vp) 
curve  is observed (this one being ascribed to a strong increase in crystallinity at the 
crack tip). In addition, with the NR2.5 material, one observes the decrease in the G 
value above which there is a fast acceleration of the crack growth rate. In other 
words, a higher frequency leads to a decrease in the tearing energy of this material, 
for which strain induced crystallization is so weak that it actually behaves like an 
amorphous material.  

 
Going back to literature, an increase in temperature has the same consequences 

on SIC than an increase in frequency. Thus, both can lead to an even greater increase 
in the crack growth rate than in the case of amorphous elastomers, as they do more 
than reducing the material viscosity. However, this is dependent on the level of local 
deformation in the crack vicinity (i.e. on G) and, in fatigue, on the local strain rate 
that will result from the frequency/shape of the macroscopic cycle.  

3.3 Fillers influence 

 
In most applications, elastomers contain reinforcing fillers. They can be of very 

diverse natures, the most commonly used in the rubber industry being carbon black 
or silica nanoparticles. Thus, elastomers are most often nano-composites, with spe-
cific viscoelastic properties [91, 92]. An abundant literature has been devoted to 
their nonlinear viscoelastic properties, so called Payne effect [93]. In addition, they 
exhibit the so-called Mullins effect, i.e. a progressive modification of the strain-
stress curve and an hysteresis during the first loading cycle which increases with 
the increase in the maximum strain [94]. Both Payne and Mullins effects are very 
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dependent on the filler content and characteristics (size, aspect ratio, physico-chem-
ical interactions with the polymer). They considerably influence the rupture and 
crack resistance properties of these materials since they induce additional energy 
dissipation mechanisms. 

Thus, the introduction of rigid nanoparticles is particularly efficient for increas-
ing the tensile strength. Less intuitively, even though they lead to a significant am-
plification of local deformation in the matrix, nanofillers can also improve the elon-
gation at break (when their content is not too large, i.e. usually below 50 phr). This 
is all the more remarkable given that nanofillers can form agglomerates of large 
sizes acting as crack initiators. Their beneficial effect for crack growth resistance is 
also observed on various elastomers whether these ones can or cannot crystallize 
under deformation [3]. The fillers, by amplifying the local strain, enables SIC and 
therefore a larger crystallized volume at lower macroscopic strain [95]. Nanofillers 
may also induce larger crystallized volume at a given G, beneficial to fatigue prop-
erties [81] (although G indirectly takes into account strain amplification). A combi-
nation of SIC and of reinforcement by nanometric fillers can also lead to tear rota-
tion in tearing test on notched tensile specimen or trouser test-piece [96], not 
observed without fillers. This enables the relaxation of the local strain (or stress) 
which is otherwise larger at the crack tip,  as shown by a sharper crack tip geometry. 
Thus, for Medalia [97], tear strength improvement in reinforced elastomer is even 
mostly associated to tear deviation rather than to energy dissipation (i.e. viscous 
strengthening or high strain hysteresis). In fatigue tests, more complex crack paths 
are also observed with fillers, which can lead, in non-relaxing conditions and with 
crystallizing rubber, to a complete stop of the crack propagation in the direction of 
the initial cut. Fillers form in the matrix a percolating network (whose connections 
are potentially ensured by a polymer matrix with modified mobility) which can play 
the role of a second network. Through decohesion mechanisms and voids formation 
[95, 98, 99] in the confined material in between the fillers, this network is gradually 
destroyed. This leads to the creation of a complex fibrillated structure [100] in 
which the crosslinked network of the polymer matrix is the last defense against the 
crack advance [101]. 

Several filler characteristics (shape, dispersion, polymer/filler interactions) in-
fluence the crack growth resistance in a way which depends a lot on the material 
processing. Bad dispersion may induce stress concentrations and microcracks [102], 
harmful to rupture properties and crack resistance. The literature indicates a positive 
influence of larger filler specific surface (i.e. smaller filler size) [79, 103–105] and 
of higher form factors (like in carbon nanotubes, graphene, graphene oxide or 
nanoclays) on the resistance to crack initiation and propagation [106, 107]. Combi-
nation of nanofillers can also be used to obtain synergistic effect [108],  like in the 
work of Xu et al. [102], who designed a compact hybrid filler network of graphene 
and MultiWall NanoTubes to toughen NR. 

To conclude this paragraph, different mechanisms govern the fracture properties 
and the propagation of cracks in filled elastomers, and modeling approaches will 
therefore be essential to allow the evaluation of their respective contributions [5]. 
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The next paragraph aims at devising a theoretical framework explaining crack 
growth and underlining the connection between resistance to crack growth and the 
ability of a material to dissipate energy. Such theoretical approach can then suggest 
which bulk material properties should be correlated to crack growth resistance. 

4 Theories connecting resistance to crack growth with hysteresis 

The models that we are reviewed in this paragraph are all built (sometimes im-
plicitly) on the energy budget associated with a propagating crack, and were all 
devised for static crack growth. To our knowledge, their generalization to cyclic 
crack growth, which seems possible due to the universality of the energy conserva-
tion principle, has not been attempted yet. The theories dedicated to isotropic linear 
viscoelastic materials are associated with the names of Knauss [38, 109, 110], Chris-
tensen [111, 112], De Gennes [113, 114], Hui [115], Persson [116, 117] and their 
coworkers. More recently, they have been extended outside this range of materials 
by Long [118], Qi [119] and Zhang [120]. All these theories start from the decom-
position G = Γintrinsic + Γdissipation with Γintrinsic the intrinsic energy required to break 
molecules at the crack tip (noted G0 in most of the experimental works, Γintrinsic being 
tacitly assumed constant) and Γdissipation the portion of G being consumed by the 
motion of the material surrounding the crack tip as the latter moves ahead (Γdissipation 
is a peculiarity of dissipative materials). These theories aim (sometimes implicitly, 
as in Knauss and Hui theories) at explaining quantitatively how Γdissipation can be 
deduced from the material hysteresis and the loading applied to the specimens. 

4.1 Power budget approach 

The key idea is the recognition that as a crack propagates, the stress singularity 
accompanying the crack tip [121] translates accordingly, so that any material point 
in the specimen is successively loaded and unloaded, and the hysteresis associated 
to this cycle participates to Γdissipation. The figure 6, taken from Qi [119] (see also 
Long [118]) draws explicitly the hysteresis associated with each horizontal “flow 
line”: the closer this line gets to the crack plane, the greater the maximal loading, 
and therefore the greater the hysteresis.Indeed, by writing in details the energy and 
entropy budgets of the notched specimen[119], one gets explicitly (Einstein con-
vention of implicit summation over repeated indices being employed) G = Γ�������� + 2 " " φ$ dX'(

)( dY+,
-  

where    φ$ ≡ σ�4 ∂ε�4∂X$ � ∂W∂X$ = ∂W∂X � σ�4 ∂ε�4∂X    �1�. 
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Here 2H0 is the specimen height (typically a PS specimen), Xp is the crack tip ab-
scissa (so that Vp = dXp/dt), ϕp is the dissipation associated to the crack tip motion 
divided by Vp, and finally ∂/∂Xp = – ∂/∂X since we focus on the stationary regime. 
 

Equation (1) can be further simplified by noting that the integral of ϕp over X is the 
total amount of energy by unit volume dissipated into heat during the matter motion 
from right to left, that is the mechanical hysteresis associated with this loading-
unloading cycle, simply noted “hysteresis”. Thus 

G = Γ�������� + 2 " hysteresis�Y�dY+,
-    �2�. 

It is worth underlining the connection between this approach and the so-called 
configurational mechanics[122]. Introducing the Eshelby stress tensor Σij = W δij 
− σkj ∂uk/∂Xi, then making use of the mechanical equilibrium ∂σkj/∂Xj = 0 and of 
the stress tensor symmetry, one gets ∂Σ<4∂X4 = ∂W∂X< � ∂σ=4∂X4>?-

∂u=∂X< � σ=4 ∂Au=∂X4 ∂X< = ∂W∂X< � σ=4 ∂∂X<
12 B∂u=∂X4 + ∂u4∂X=C 

that is   ∂Σ<4∂X4 = ∂W∂X � σ=4 ∂ε=4∂X = φ$   �3�. 
In the literature, the contributions to ∂Σ1j/∂Xj of the various internal variables ap-
pearing in W are called “local material volume forces”, up to a sign. Hence, it is 
demonstrated that Γdissipation equals the integral on the whole specimen of these ma-
terial forces (see also in [5] Horst et al. contribution [123] ). That is, the material 
forces approach is equivalent to the energy and entropy budgets employed here. 

4.2 Application to isotropic linear viscoelastic materials 

Christensen, De Gennes, Persson and their collaborators applied these budgets 
to isotropic linear viscoelastic materials. In the sequel we will follow mostly De 
Gennes intuitive approach.  

The material isotropy and linearity imply that the stress field satisfies the same 

Figure 6 : (a) Two points A and B moving horizontally during steady state crack propagation, 
shown in the undeformed configuration and in a translating coordinate system centered on the 
crack tip. (b) Loading histories experienced by points A and B, illustrated by S22 versus λ2 curves. 
The maximum stress experienced by A is larger due to stress concentration at the crack tip. 
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equations as in the elastic case. Especially, the dominant term in the stress next to 
the crack tip is given by the well-known formula plotted above. Hence, if K is the 
stress-intensity factor, the amplitude of loading-unloading cycle at vertical coordi-
nate Y (perpendicularly to crack axis) goes like K / √|Y| and its wave length goes 
like |Y|, so its pulsation ω goes like Vp / |Y|. 
Far from the crack tip, the material remains at equilibrium, i.e. it behaves like an 
elastic material of Young modulus E0. So LEFM theorems apply there. Especially, 
computing the Rice- or J-integral [121] away from the crack tip gives G = J ∝ K2 / 

E0 (this integral must not be confused with compliance J introduced below). 
Next, assume the cycle to be harmonic. If E*(ω) = E’(ω) + i E’’(ω) is the complex 
Young modulus and J*(ω) = 1 / E*(ω) is the complex compliance, the hysteresis at 
vertical coordinate Y reads hysteresis�Y� ∝ KA|Y| |JJJ�ω�| = GE-|Y| |JJJ�ω�| = GE-|Y| EJJ�ω�|E∗�ω�|A   with  ω ∝ V$|Y|   �4�. 
Inserting this relation into equation (2), and noticing that dY/Y = dω/ω, one finally 
gets G = Γ�������� + A ∙ GE- " EJJ�ω�|E∗�ω�|A dωωPQ

-    with   ω = B ∙ σ�S$�S�TA V$GE-    �5�, 
A and B being some undetermined numerical constants. The boundaries of the ω-
integral require some explanations. Far from the crack tip, we assumed the material 
to remain at equilibrium, prompting us to take ωmin = 0. Close to the integral, the 
LEFM fields cannot hold when reaching the zone ahead of the crack tip where the 
material effectively breaks, the so-called cohesive zone, that is when |Y| = Yrupture 
such that σrupture

2 ∝ K2 / Yrupture, and we must therefore take ωmax ∝ Vp / Yrupture. 
Persson set the A coefficient by combining the expected value of the catastrophic 
tearing energy Γc (G limit for infinite Vp, neglecting inertial effects, also noted Gc 
in experimental work) guessed by De Gennes with a “viscoelastic sum rule” : some 
examples of such rules are provided by equations (8) and (10) below. 
On the one hand, when Vp grows without limit, the material close to the crack tip 
should reach its high frequency limit, which is the glassy plateau for the polymers. 
Thus, it should behave there as an elastic (brittle) material of Young modulus E∞. 
Hence computing the J-integral close to the crack tip gives now Γintrinsic = J ∝ K2 / 

E∞, with the same K since the dominant term in the stress field has a unique expres-
sion. Combining this relation for K with the preceding one, applicable in full gen-
erality, one gets G → Γ = Γ�������� E(E-    when   V$ → +∞   �6�. 
The constant A appearing in (5) must be chosen so that (5) reduces to (6) for “infi-
nite” crack growth rate. 
On the other hand, if the material can be represented by a set of Kelvin solids (a  
spring in parallel to a damper) in series, the complex compliance reads 
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J∗�ω� = 1E( + " k�τ�1 + iωτ dτ'(
- = 1E( + " �1 � iωτ�1 + �ωτ�A k�τ�dτ'(

-    �7�. 
k(τ) dτ is the equilibrium stiffness of the Kelvin solid of time constant τ. 
Some elementary manipulations of this decomposition provide 1E- = J∗�ω = 0� = 1E( + " k�τ�dτ'(

-  

and thus   " |JJJ�ω�| dωω'(
- = π2 " k�τ�dτ'(

- = π2 _ 1E- � 1E(`   �8�. 
This latter equation is the sum rule we needed. Indeed, making ωc = + ∞ in (5) and 
reporting the sum rule into it, (6) will be recovered provided we choose A = 2/π. 
Hence the final formula 

G = Γ�������� + 2π GE- " EJJ�ω�|E∗�ω�|A dωωPQ
-    with   ω = B σ�S$�S�TA V$GE-    �9�. 

ωc can be rewritten ωc = 2B Wrupture Vp / G where by introducing an “equilibrium” 

energy of rupture Wrupture ≡ ½ σrupture
2 / E0 (the “equilibrium” adjective underlines 

the presence of E0 in this expression). However, keep in mind that this Wrupture can, 

like σrupture, vary with the local temperature and strain rates at the crack tip. 

The more sophisticated computations in Persson[116, 117] produced an extra c1 � PdPQd factor inside the integral, with little impact on the final theoretical predic-

tions. 

4.3 Paris Law 

As noted by De Gennes for a specific rheological model (a so-called Zener solid) 
[113, 114], and later by Persson in greater generality [116, 117], this theory pre-
dicts the occurrence of a Paris law, in agreement with experiments. (Strictly 
speaking, the Paris law originates from cyclic crack growth experiments; here, we 
use this terminology as a shorthand for “Vp proportional to some power of G”; as 
seen in the preceding chapters, such law can also be encountered experimentally in 
static crack growth.) This is best seen by making use of an approximate sum rule : JJ�ωA� � JJ�ω<� = " _ 11 + �ωAτ�A � 11 + �ω<τ�A` k�τ�dτ'(

- ≈ " k�τ�dτ< Pd⁄
< Pg⁄  2π " |JJJ�ω�| dωωPd

Pg = 2π " htan)<�ωAτ� � tan)<�ω<τ�ik�τ�dτ'(
- ≈ " k�τ�dτ< Pg⁄

< Pd⁄  

⟹    2π " |JJJ�ω�| dωωPd
Pg ≈ JJ�ω<� � JJ�ωA� ≈ 1EJ�ω<� � 1EJ�ωA�   �10�. 

The first line was obtained by assuming 1 / (1 + x2) ≈ H(1 – x) for x ≥ 0 where H is 

the Heaviside step function. The second line used a similar trick, namely (2/π) tan–
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1(x) ≈ H(x – 1) for x ≥ 0. The last approximation on the third line is more question-

able. Reporting (10) into (9), one finally gets GΓ�������� ≈ EJ�ω �E-  

and thus   EJ�ω� ≈ E< _ ωω<`k ⟹ V$ ≈ ω<G2BW�S$�S�T _E-E<
GΓ�������� `< k⁄    �11�. 

Hence the Paris exponent β equals β = 1 + 1/α. For α = 0.5 (typical of Rouse 
dynamics), β = 3 ; and for α = 0.4, β = 3.5 : as noted by Persson, these values are 
typical of SBR in both static and cyclic crack growth. Note also that the approxi-
mation on the first line of equation (11) yields the same Γc expression as the equa-
tion from which it is derived. Gent[124, 125] proposed on purely phenomenolog-
ical grounds an equation similar to (11) to fit the results of his peeling 
experiments : we thus provide here a justification of his intuition. However, Gent 
used ωc = Vp / d with d some material constant, which should be contrasted with 
our d proportional to G. Actually, (11) brings theory closer to experiments as will 
be shown below ! 

4.4 Dissipation confinement and finite size effects 

The theories developed by Knauss [38, 109, 110] and Hui [115] do not use ex-
plicitly the energy and entropy budgets. Rather, they carefully write the mechanical 
equilibrium of the cohesive zone, using exact results in LEFM (Kolosov-Mush-
kelishvili formulae and Westergaard functions applied to localized forces along 
crack lips). In this respect, they provide a more rigorous treatment of the problem. 
Yet, they yield essentially the same results: same shape for Vp(G) curves, same ex-
pression for Γc (apart for one of the four theories studied in Knauss [109, 110]), etc. 
This is presumably so because energy and entropy conservation remains necessarily 
in the background. 

For instance, Hui and his coworkers demonstrate graphically [115] that the dis-
sipation is confined to the corona 0.05 Vp τr < radius < 3.5 Vp τr where τr is the 
retardation time occurring in the creep compliance (the authors employ a Zener 
model) and the radius is counted from the crack tip : this region has a negligible 
area at low Vp and grows in size with Vp, until becoming eventually macroscopic. 
This explains qualitatively the trend of our Γdissipation (recall that the r dr dθ surface 
element compensates the decrease of energy like 1/r). This discussion makes also 
clear that the size of the specimen will impact the crack growth curves when Vp 
τr becomes comparable to it. Indeed, so far we have ignored finite size effects, the 
discussion focusing on “infinite specimens”. But finite size effects can be encoun-
tered experimentally, in which case the experimental results are not characteristics 
of the material alone. They are treated in De Gennes [113, 114], who was chiefly 
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interested in peeling tests [126]. We will review quickly this treatment, using how-
ever a slightly more general constitutive law (see e.g. [127]§ 5.5 pp. 188-226) : E∗�ω� = E- + �E( � E-� �iωτ�k1 + �iωτ�k    �12�. 
In the original articles, α = 1, but we expect α < 1 for a glass transition. This model 
has three remarkable limits : soft solid at low frequencies, hard solid at high fre-
quencies, liquid-like behavior in between. From now on, m ≡ E∞ / E0 >> 1 and we 
reason exclusively in scaling terms, so that “=” will often stand for “∝”. The com-
putation of the G(Vp) relation is based on the following principles. 
 

 

Step 1. We have ω = lm� , σ = n√�  and ε = S� everywhere in the specimen. Thus, for 

each asymptotic constitutive law, we can compute its spatial domain of existence, 
as well as the expressions of ε, u and Glocal ≡ σ u (the “local energy release rate”) in 
the domain. Proceeding this way, we fill the first six lines of the table 1. 
Step 2. Let L be the length of the cohesive zone. It is set by the condition σp / δ = 
σ(r = L) / u(r = L) where σp and δ are material constants such that Γintrinsic = σp δ. Its 
detailed expression will therefore depend on the domain (defined as in step 1) sur-
rounding the cohesive zone. Doing so, we obtain the next two lines of the table. 
Step 3. The three expressions of L obtained in step 2 are a priori different, implying 
that L varies with the load applied to the specimen. One deduces from these expres-
sions the range of crack growth rate for which each domain is immediately sur-
rounding the cohesive zone. This leads to the last line of the table. 
Step 4. Let W be the specimen size, typically a PS specimen height. The G(Vp) 
relation is found by taking Γintrinsic = Glocal(r = L) and G = Glocal(r = W). Various 
situations can be encountered depending on how W compares with the spatial limits 
L, rh (hard solid outer radius) and rs (soft solid inner radius). 

For an infinite specimen, G = ndp, and thus 
qrstuvstwsQ = ndp,qxyQzx��?{� in any case, 

Approximation Soft solid Liquid Hard solid 

Constitutive law σ = E0 ε σ = (E∞ – E0) (ωτ)α ε σ = E∞ ε 

Pulsation interval ωτ < m–1/α m–1/α < ωτ < 1 1 < ωτ 

Spatial domain rs ≡ m1/α Vp τ < r Vp τ < r < m1/α Vp τ r < Vp τ ≡ rh 

Stress σ = n√�  σ = n√�  σ = n√�  
Displacement u = n√�p,   u = n√�p| _ �lm}`k

  u = n√�p|   

Glocal  G~� �~ = ndp,  G~� �~ = ndp| _ �lm}`k
  G~� �~ = ndp|  

L defining condition 
�m� = p,{   �m� = p|{ �lm}{ �k

  
�m� = p|{   

Cohesive length L = p,��m ≡ L-  L = L( g��g�V$τ� ���g  L = p|��m =mL- ≡ L(  

Vp range Vp τ < m–1/α L0 m–1/α L0 < Vp τ < m L0 m L0 < Vp τ 
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since the zone near the clamps will always remain in the soft solid domain. One 
readily finds 

GΓ�������� = ⎩⎨
⎧ 1

m _V$τL( ` kk'< = m _V$τL( `<�
m ⎭⎬

⎫    if   � V$τ < m)< k⁄ L-m)< k⁄ L- < V$τ < mL-mL- < V$τ �    �13�. 
Remarkably, we end up with the same result as with our former treatment, in-
cluding the occurrence of a Paris regime characterized by the same exponent β and 
the same expression for Γc. 

For a finite specimen however, the preceding results will stop holding once rs 
reaches W. The exact consequences depend on the W value. 
Assuming first mβ L0 < W, rs = W happens only after the cohesive zone is sur-
rounded by hard solid, so that the G = Γc plateau is still observable experimentally. 

Once the liquid domain has reached the clamps, Γ�������� = ndp| and 
qrstuvstwsQ =p|qxyQzx��?��nd , and (13) must be supplemented by GΓ�������� = �B WV$τCk

1 �    if   �m)< k⁄ W < V$τ < WW < V$τ �   �14�. 
The corresponding G(Vp) curve therefore exhibits a decreasing portion after having 
reached the plateau of height m Γintrinsic. It is qualitatively consistent with results of 
peeling tests carried on poorly crosslinked polymers, to which this study aimed at. 
This was the only situation envisaged in the original papers. Yet, it can be unrealistic 
in practice, since for L0 = 10 nm it requires W > 10 mm to 10 meters (!) with the 
above-mentioned m and β values. 
Assuming next L0 < W < mβ L0, rs = W now happens before the cohesive zone is 
surrounded by hard solid, so the previous plateau is not observable anymore, 
and the material exhibits a different “effective” Γc depending on the specimen 
dimensions. More precisely, the second line in (13) holds only until Vp τ = m–1/α W 
(< m L0), where the “effective” Γc is attained : Γ Γ�������� = _WL-` kk'< = _WL-`<�    �15�. 
For example, with L0 = 10 nm, W = 10 mm and β = 3 for instance, Γc / Γintrinsic would 
be limited to 100. Besides, the third line in (13) must be modified. 
If m L0 < W < mβ L0, it is replaced by 
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GΓ�������� 

=
⎩⎪⎪
⎨⎪
⎪⎧_WL `k = _ WL(`k B L(V$τC kdk'<

B WV$τCk
1 ⎭⎪⎪

⎬⎪
⎪⎫    if   �m)< k⁄ W < V$τ < mL-mL- < V$τ < WW < V$τ �   �16�. 

Whereas if L0 < W < m L0, it is replaced by GΓ�������� 
= �_WL `k = _ WL(`k B L(V$τC kdk'<

1 �    if   
⎩⎪⎨
⎪⎧m)< k⁄ W < V$τ < _ WL(`< k⁄ W

_ WL(`< k⁄ W < V$τ ⎭⎪⎬
⎪⎫   �17�. 

4.5 Introducing non-linearity in the constitutive equation 

Focusing exclusively on linear viscoelasticity is far too restrictive for filled pol-
ymers, which exhibit various nonlinearities at high strains as well as a supplemen-
tary source of hysteresis : Mullins effect. In the framework presented here, the bet-
ter resistance to static crack growth of a filled polymer in comparison to its 
unfilled homolog is attributed – at least partially – to an increase of Γdissipation 
brought by Mullins effect. Interestingly, as previously mentioned, the so-called 
multi-networks (various standard polymer networks interpenetrated into each other) 
also enjoy a high toughness and a mechanical behavior reminiscent of Mullins effect 
[61]. The microscopic origin of Mullins effect may be different in these two classes 
of materials (cavitation/decohesion in filled polymers vs. localized chains ruptures 
in multi-networks), but a beneficial impact of Mullins hysteresis onto Γdissipation is 
expected in both cases. 

Once again, this line of reasoning prompted different works [119, 120, 128]. 
Zhang [120] starts with the decomposition G = Γintrinsic + Γdissipation. Γdissipation is as-
sumed proportional to the “ultimate” hysteresis H(Yrupture), where like in equation 
(5), Yrupture denotes the minimum height at which the material reaches there its stress 
at break,  with a front factor homogeneous to a length. A length scale manifestly 
relevant to this problem is G / Wrupture. Therefore the authors were led to guess Γdis-

sipation = α G h�S$�S�T where h�S$�S�T ≡ +��v�mu�v���v�mu�v�  (< 1). α was found by fitting the 

results of a campaign of Finite Element Analyses during which the material param-
eters describing the Mullins effect (modeled with an Ogden-Roxburgh law) and the 
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cohesive zone were systematically varied. They obtained eventually G = Γ�������� 1 � α h�S$�S�T    with   α ≈ 0.33 + 0.034m W�S$�S�T⁄ + 0.045   �18�. 
r, m and β (set to 0.1 in the article) are material parameters quantifying the Mullins 
hysteresis : if the energy density provided during the first loading equals W, the 
Mullins hysteresis reads “h(W) W” where h�W� = 1r f ��β + mW�)<     with   f�x� ≡ 1x " erf�y� dy�

-    �19�. 
Especially, the smaller m, the greater the hysteresis of small amplitude cycles, and 
thus the greater the hysteresis far from the crack tip. This remark will soon be useful. 
Qi [119] gave an analytic derivation of this result based on equation (2). The 
maximum energy density along a line parallel to a mode I crack in a Neo-Hookean 

material reads W�Y� = qA¢� according to asymptotic developments. Using a slightly 

modified version of this expression to take far fields and Mullins softening into 
account, the authors reported it into (19), and (19) into (2). Proceeding this way, 
they obtained an α expression comparing well with (18). 
Besides, if m → 0, we noted above that the dissipation zone can extend to the 
clamps, so the measured G can depend on the specimen geometry, ceasing to be 
an intrinsic material property. Some FEA confirmed this intuition, FEA that were 

themselves well reproduced by the analytic theory. 
qrstuvstwsQ appears to depend on a 

dimensionless parameter χ = A+,rstuvstwsQ �v�mu�v�⁄  which is the ratio of the PS specimen 

height to the cohesive zone length. 

4.6 Experimental tests of the preceding theories 

Viscoelastic behavior: Knauss and his co-workers applied successfully various 
theories to a polyurethane. The model developed in Mueller and Knauss [38] 
matched well the experimental points. It relied on an analysis of the viscoelastic 
relaxation in the cohesive zone and its prediction read (∆a being a material constant, 
set to 13.4 nm by the fitting procedure): G�V$� = Γ�������� 2E-D�∆a V$⁄ �    where   D�t� ≡ 1t " �1 � ut� J�u�du�

-    �20�. 
Contrary to the appearances, this result is actually quite similar to (9). Indeed, using 
a Kramers-Kronig relation, one can recast the denominator of (20) : J�t� = 1E- + 2π " JJJ�ω� cos�ωt� dωω'(

- ⟹ D�t� ≈ 12E- � 1π " |JJJ�ω�| dωω< �⁄
-  �21�. 

(We used the approximation (1 – cos(x))/x2 ≈ ½ H(1 – x).) The only distinct feature 

is the constancy of ∆a. So this success suggests also a success of (9). 
Later[109, 110], they developed a refined version of this early model, which proved 
to be equally successful. In both cases, the model predicts a correct Paris exponent 
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β. In fact, these data are consistent with the rule β = 1 + 1/α : experiments suggest 
α ≈ 0.8 (read on master curves of dynamic moduli) and β ≈ 2.4 (read on curves of 
Vp vs. ε∞, ε∞ being the macroscopic strain applied to the PS specimen, so that G ∝ 
ε∞2), in reasonable agreement with the theoretical prediction β ≈ 2.25. With this 
material, m ≈ 1725 MPa / 2.75 MPa ≈ 627, and the predicted Γc (= m Γ0) seems in 
agreement with experiment, though the final plateau is not sufficiently well ob-
served to be categorical. Assuming L0 = 10 nm for the cohesive length at low Vp, 
the De Gennes criterion to avoid finite size effects reads W > 6272.25x10 nm = 2 cm 
: it was indeed satisfied in Knauss experiments, where W = 3.5 cm. Incidentally, 
Christensen [112] also managed to fit this set of experimental results using a theory 
of his own, explicitly relying on an energy budget. 

Saulnier [129] carried adhesion experiments on an un-crosslinked polydime-
thylsiloxane (PDMS) of large molecular weight. They confirmed De Gennes pre-
dictions (with α = 1) regarding the decrease of fracture energy at high crack growth 
rates – equation (14) – as well as the opening displacement of the crack lips : u ∝ 
x1/2 near the crack tip where the material behaves as a hard solid, u ∝ x3/2 farther 
from the crack tip where the material becomes liquid-like. 

Gent[124, 125] carried peeling tests on various crosslinked polymers of variable 
Tg. He found that the G / Γintrinsic vs. Vp master-curves were relatively independent 
of the polymer, like the E’(ω) / E0 vs. ω master-curves (though to a smaller extent), 

and speculated, from the resemblance between these, that 
qrstuvstwsQ = p§�lm ¨⁄ �p,  with 

d some material constant. Unfortunately the exponents of the power laws fitting the 
glass transition regime did not match : β–1 = 0.3 for the peeling energy, α = 0.6 for 
the storage modulus. Trying anyway to fit the model onto experiment, he found d ≈ 
0.1 nm, or more largely 0.01 nm < d < 1 nm, some unrealistically low values. Be-
sides, Γc / Γintrinsic appears slightly greater than E∞ / E0. But the theories explored in 

the preceding paragraphs point rather to d ∝ G, implying 
<� = kk'<, i.e. β–1 = 0.375 

in the present case, which is closer to experiment. One can hope that this improve-
ment will also bring the d range towards more sensible values. In fact, this improve-
ment could be combined with other features not addressed by the models we re-
viewed but envisaged by Gent : nonlinear effects near the crack tip, intermittent 
propagation “in a stick-slip fashion”. This last feature implies that the instantaneous 
Vp can be much higher than the average Vp, which is the one measured : one should 
keep this idea in mind when considering cyclic crack growth. 

 
Extension to cyclic crack growth and to Mullins effect dissipation: Klüppel 

surveyed the ability of the models we reviewed to reproduce the cyclic crack growth 
curves measured on filled and unfilled polymer[130]. The author used crosslinked 
S-SBR and Ethylene Propylene Diene Monomer (1.7 phr S + 2.5 phr CBS) filled or 
not with 60 phr of N550 carbon black. He focused his attention on Paris law slopes, 
and found that the theory matched reasonably with experiment. This is particularly 
striking because the theory in question has been devised exclusively for static crack 
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growth, and besides it ignores the nonlinearities and the Mullins effect typical of 
filled polymers. This remark suggests to check if the Paris law intercepts with the 
Y-axis are equally well reproduced by the theory, namely equation (11) with B = 1. 
It is an uncertain task since some key quantities (Γintrinsic and Wrupture) are missing in 
the article : we must guess them and see what we get. Using notably Γintrinsic ≈ 50 
(resp. 100) J.m–2 in the unfilled (resp. filled) case, we find at G ≈ 3 kJ.m–2, 4 Hz and 
ambient temperature : in unfilled S-SBR, Vp ≈ 40 m.s–1 theoretically vs. Vp ≈ 10 
nm.cycle–1 = 40 nm.s–1 experimentally ; in filled S-SBR, Vp ≈ 4 m.s–1 theoretically 
vs. Vp ≈ 4 nm.cycle–1 = 40 nm.s–1 experimentally. These estimates must be taken 
with caution owing to the mentioned uncertainties. Nevertheless, the discrepancy 
between our estimates and the measurements is such that we can consider that the 
theory fails to reproduce the intercept with the Y-axis of the Paris law. 

Zhang [120] checked that it could reproduce by FEA the onset of crack propa-
gation in a multi-network hydrogel considered to exhibit Mullins effect only. Con-
stitutive law parameters were identified on cycles of increasing maximum strain 
applied in pure shear. The propagation threshold G was measured after various pre-
strains – applied to the uncracked specimen – between 0 and the strain at break (as 
high as 8 here). It appears to decrease with pre-strain, reaching a plateau (400 J.m–

2) for the highest pre-strains, to be identified with the virgin Γintrinsic (though one 
could argue that high pre-strains could damage enough the material to diminish its 
Γintrinsic). FEA results appeared to be consistent with the G = 1 063 J.m–2 value meas-
ured with the virgin material. Incidentally, this experiment proves that the intrinsic 
resistance to crack growth represents here only 38 % of G in the virgin state, the 
remaining 62 % being brought by macroscopic dissipation. 

Qi [119] put the pre-strain effect in equations. The line of reasoning is as follows: 
the horizontal strips whose strain remains below the pre-strain cannot dissipate by 
Mullins effect (strips close to the clamps), the dissipation being thus confined to a 
central strip, where it is moreover smaller than in the virgin state. These statements 
explain qualitatively why Γdissipation must decrease with pre-strain : the pre-strain di-
minishes the capacity of the material to dissipate when a crack propagates. The 
agreement with experiment is even quantitative, as shown in the article. 

Wunde et al. [131, 132] carried experiments on cured CB-filled NR-based poly-
mer blends allowing an estimation of Γdissipation / G. For the 4 mixes of the study and 
various macroscopic strain, they measured by Digital Image Correlation the dis-
placement and strain fields in notched and loaded PS specimens, that they combined 
with the constitutive laws – modelling Mullins effect and viscoelasticity – identified 
independently to compute the Rice- or J-integral on various circles C centered on 

the crack tip. (They considered both components of C Σij dsj, but we focus here on 
the sole forward component). J appears to increase with the circle radius R, consist-

ently with J(R = 0) = Γintrinsic and G = J(R = +∞) by construction of J and with the 

inequality Γintrinsic < G for a dissipative material. Actually, the difference between 
these limits is Γdissipation. The analysis is complicated by a lack of resolution for R < 
0.5 mm and by the fact that J(R = +∞) becomes greater than G (computed by the 
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Rivlin-Thomas formula) above 40 % macroscopic strain. Despites these difficulties, 
the authors estimate that all in all, Γdissipation represents 90 % of G. These experiments 
also demonstrate that J reaches G for R > 1 to 5 mm (for macroscopic strains be-

tween 10 and 60 %) : these are macroscopic dimensions, which legitimate the qual-
ification of Γdissipation as a macroscopic dissipation. Especially, these dimensions 
demonstrate clearly that crack growth can be accompanied by energy dissipation 
quite far from the crack tip, where no macroscopic breakage occurs. 

Slootman [44] introduced in mono- and multi-networks of polymers a known 
amount of a mechanophore having the property of becoming fluorescent upon 
breakage. The materials being transparent, they could be measured by optical con-
focal microscopy the spatial distribution of this fluorescence, and therefore (via an 
appropriate calibration) the spatial distribution of the number of broken mechano-
phores, and finally of overall broken bonds. These distributions were measured 
along the lips of a crack propagated for various loadings and temperatures. Γintrinsic 
is deduced by integrating the distribution (for a unit propagated surface) and multi-
plying the integral by 64 kJ.mol–1, the energetic cost of a single breakage according 

to Wang137. Most remarkably, the author demonstrated that : Γintrinsic increases with 

the loading, that is with G or Vp, going from the Lake and Thomas estimate for Vp 
→ 0 up to 100 times this value at high Vp ; and that the number of covalent bond 
scissions varies in the same proportion, with rupture occurring up to a few 100 µm 
far from the crack plane for the highest Vp. Especially, Γintrinsic cannot be treated 
as a material constant, as was done in the works reviewed so far, but as a func-
tion of Vp. Notice however that equation (2) and the ones stemming from it can 
easily accommodate a Vp dependent Γintrinsic. It seems very likely that this phenom-
enology also applies to filled polymers, whose filler network is analogous to the 
first network here and whose polymer matrix is analogous to the second and third 
networks here. Depending on the tested Single-, Double- or Triple- Network, she 
found that Γintrinsic / G varies between a few % and a few 10 %, and therefore 
Γdissipation / G varies between 50 and more than 90 %. 

5 Conclusion 

A synthesis of the phenomenology of ultimate and crack growth properties of 
elastomers is not straightforward given the diversity of elastomers and used proto-
cols. Nevertheless, despite this difficulty, the huge literature on the topic, completed 
by some our own experimental works, allows to well identify the different interre-
lated and complex mechanisms involved in crack growth. In connection with these 
observations, the theories reviewed in the last part link quantitatively the resistance 
to crack growth to: 
• the ability of the material to dissipate energy, either by viscoelasticity or by 

Mullins effect ; 
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• the distribution of strain and stress around the crack tip (dictated by the consti-
tutive law), which weights the contribution of each horizontal line to the total 
dissipation accompanying the crack growth ; 

• the break properties (limit strain / stress / energy), which define an upper bound 
for the dissipation integrals. 

These theories have been validated experimentally in various situations. They can 
be useful to material designers because they allow the replacement of lengthy or 
sophisticated crack growth experiments by faster and simpler mechanical charac-
terization of unnotched specimen until break, and because they offer a mean to infer 
what “customary” material property (moduli, break properties) to tune and in which 
direction to achieve an enhanced resistance to crack growth. Especially, the theories 
involving dynamic moduli can suggest compromises between Rolling Resistance 
(RR) and endurance in tires via the difference of frequency ranges relevant to each 
performance. This situation is reminiscent of the known compromise between RR 
and grip. And in fact, the analogy goes deeper : the well-known viscoelastic contri-
bution to the friction coefficient µ is equivalent to the viscoelastic contribution in 
Γdissipation (see e.g. our equation (9)), the role of crack tip singularity in endurance is 
played by road asperities in grip, and the integral over all distances Y from the crack 
plan is replaced in the grip case by the integral over asperity sizes and tread band 
depth. 

Though these theories are encouraging, they still suffer of various shortcomings. 
The most obvious from a practical standpoint is their inability so far to handle cyclic 
crack growth : they have been thought for static crack growth, and their generaliza-
tions to the cyclic case is not straightforward. They also often treat Γintrinsic and Wrup-

ture as material constants, although they are susceptible to vary with strain rate and 
thus Vp. Finally, it is highly desirable to now quantitatively relate them to the dif-
ferents fields measurable at the crack tip and reviewed in chapters 2 and 3 (including 
cavitation and degree of Strain Induced Crystallization). These missing features are 
as many subjects for future researches. 
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