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1. Introduction
Biases allow deep learning models to reach impressive

performances on regular datasets but can be harmful if ex-
ploited in the real-world [10, 17]. It is critical to create
benchmarks that reflect these failures [2, 8]. We tackle this
issue for the visual counting task [1, 7, 18], a subset of
VQA [4, 11] which also requires high level reasoning abil-
ities and displays similar biases. The appearance of certain
words in the question or objects in the image is predictive
of the count label. An example of bias from the TallyQA
counting dataset [1] is displayed in Figure 1.

First, we introduce two counting datasets meant to eval-
uate a model’s ability to avoid biases. Both datasets are
built on with the idea of changing distributions, meaning the
training and testing distributions are different, similarly to
VQA-CP. Second, we introduce the Spatial Counting Net-
work (SCN), a model that better avoids learning the biases
and instead relies on more suited mechanisms for count-
ing, and we show its superior performance on our evaluation
procedure.

2. Novel out-of-distribution datasets
TallyQA-CP Inspired by VQA-CP [2], we build
TallyQA-CP to penalize models that over-rely

on the
question-
related
biases. We
construct a
new train-

ing set and testing set by extracting the main concept to
be counted from each question (e.g. in ”how many tables
are green”, the concept will be ”tables”), and use it to
conditions the answer distribution differently between the
training and the testing set. We display on the left the shift
in distributions for the five most common concepts.

TallyQA-Odd-Even A characteristic of our proposed
TallyQA-CP is that it mostly penalizes the use of question-

∗Equal contribution

Figure 1. Matching simple patterns from the training set can be
enough to answer a large number of counting questions and obtain
higher accuracy on the OOD testing set. In the real-world, biased
models that rely on such a pattern would fail to provide the correct
answer.

related biases. Instead, we introduce the Odd-Even version
that penalizes, by construction, the use of biases from both
question and image. We generate the TallyQA-Odd-Even
dataset by removing 90% of the samples associated to an
even count label from the TallyQA training set and 90% of
the samples associated to an odd label from the testing set.
Models that are trained on odd numbers should generalize
to even numbers if they do not rely on biases.

To avoid adaptive over-fitting [9, 16], we hold out 10%
of the training set as a validation set for early-stopping on
both our datasets.

3. Spatial Counting Network

Figure 2. Spatial Counting Network.
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Our SCN model contains inductive biases to encourage
the learning of the counting mechanism, and avoid learning
biases. As shown in Figure 2, for the image v, a we use a
pre-trained object detector [3] to transforms the raw pixels
to region features. For the question, we use a pretrained
skip-thought encoder [13]. We then merge question and
image vectors using a bilinear multi-modal fusion mod-
ule [12]. To allow box deduplication and spatial reasoning,
we add a self-attention [19] layer. The resulting vectors
are then again fused with the question representation and
produce a counting score si for each region via sigmoid ac-
tivation. Finally, the global count output ĉ =

∑
i si is a

simple summation of all the individual counting scores.
Loss: Unlike many state-of-the-art counting or VQA

models [20, 1, 14, 15] that treat count numbers as classi-
fication labels, we interpret them as numbers and we train
the model with a MSE regression loss, LMSE. Additionally,
to encourages each sigmoid output si to be close to 0 or 1,
we add a binary entropy regularization term per-region:
LH = − 1

n

∑
D

1
nv

∑nv

i=1 H(si). We show its effect in Fig-
ure 3. Our final training loss is L = LMSE + LH .

Figure 3. Comparison of our model with and without entropy loss.
Boxes are in bold when their count value ci ≈ 1. The model
trained with entropy selects the correct two regions, while the
model without it associates fractional values to multiple regions
and fails to distinguish duplicates.

4. Results

4.1. State-of-the-art models are biased

As shown in Table 1, all models suffer from a large drop
in accuracy, compared to their scores on the original version
of TallyQA [1]. For example, RCN had an overall accuracy
of 65.49% on TallyQA. However, it only gets 2% accuracy
on TallyQA-CP testing set, and 28.4% on TallyQA-Odd-
Even. The bias-reduction methods (uniform sampling and
RUBi [6]) have a positive impact on TallyQA-CP, which is
expected, especially for RUBi, since it targets specifically
question-related biases. Finally, we can notice that most of
the models, in both benchmarks, reach lower performance
than RandomDtest that follows the testing set distribution.

TallyQA-CP Odd-Even TallyQA [1]

Acc. ↑ RMSE ↓ Acc. RMSE Acc. RMSE

Random Dtrain 19.53 2.84 10.26 2.81 20.18 2.92
Random Dtest 20.40 2.89 30.68 2.61 31.80 2.20

Q-Only [1] 0.63 2.23 16.92 1.91 42.38 1.74
I-Only [1] 21.55 2.24 9.80 2.06 38.14 1.70
Q+I [1] 1.68 1.97 20.86 1.80 52.32 1.49
MUTAN [5] 1.91 1.96 24.99 1.67 53.51 1.54
Counter [20] 0.64 2.08 19.89 1.83 62.58 1.34
RCN [1] 2.00 1.76 28.40 1.61 65.49 1.26

RCN + Sampling 5.58 1.82 27.10 1.63 53.78 1.58
RCN + RUBi [6] 31.04 1.56 25.35 1.71 59.83 1.35
RCN + LMSE 14.99 1.60 31.44 1.51 60.35 1.2

SCN (ours) 34.79 1.46 40.87 1.50 57.39 1.24
SCN without LH 26.88 1.47 39.54 1.48 57.07 1.24

Table 1. Benchmark of question-based visual counting models on
our TallyQA-CP and TallyQA-Odd-Even datasets. We report the
accuracy and the RMSE scores on the testing and validation sets.
”Sampling” stands for uniform sampling strategy.

Impact of regression loss: We report a gain of +12.99
on TallyQA-CP and +3.04 on TallyQA-Odd-Even points
for RCN with LMSE over RCN. These good performances
suggest that regression is a better design choice to avoid
learning biases.

4.2. Spatial Counting Network

On TallyQA-CP, we report the best accuracy of 34.79%
for our SCN on TallyQA-CP (+32.79 over RCN). On
TallyQA-Odd-Even, SCN reaches the best accuracy of
40.87% (+12.47 over RCN) We also perform an ablation of
SCN, without the entropy loss (SCN without LH). We re-
port an important effect on TallyQA-CP, with -7.91 points,
which confirms the effect seen in Figure 3.

Accuracy per count label: In Figure 4, we display a
comparison between our model and RCN on the count la-
bels. Interestingly, we report a higher accuracy on even
count labels, less represented in the training set and a lower
accuracy on odd count labels, more represented. We also
report a smaller differences between adjacent count labels,
compared with RCN. These results suggest that our design
choices help to generalize to a different distribution of count
labels, by learning mechanisms more suited for counting.

Figure 4. Accuracy per count labels of our model and RCN [1] on
TallyQA-Odd-Even.
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