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Abstract

This paper studies the role played by identification in the Bayesian analysis of statisti-

cal and econometric models. First, for unidentified models we demonstrate that there are

situations where the introduction of a non-degenerate prior distribution can make a pa-

rameter that is nonidentified in frequentist theory identified in Bayesian theory. In other

situations, it is preferable to work with the unidentified model and construct a Markov

Chain Monte Carlo (MCMC) algorithms for it instead of introducing identifying assump-

tions. Second, for partially identified models we demonstrate how to construct the prior

and posterior distributions for the identified set parameter and how to conduct Bayesian

analysis. Finally, for models that contain some parameters that are identified and others

that are not we show that marginalizing out the identified parameter from the likelihood

with respect to its conditional prior, given the nonidentified parameter, allows the data

to be informative about the nonidentified and partially identified parameter. The paper

provides examples and simulations that illustrate how to implement our techniques.
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1 Introduction

This paper investigates Bayesian analysis in models that lack identification. We first revisit theoretical

concepts related to identification. We highlight how lack of identification has a different impact for sta-

tistical inference depending on whether one develops Bayesian or frequentist inference. Specifically,

Bayesian analysis can be carried out without imposing any identifying restrictions. Then, we distin-

guish between nonidentified and partially identified models. For partially identified models we propose

to construct the prior and posterior distributions of a set parameter by using the capacity functional and

we introduce the concepts of prior (resp. posterior) capacity functional and prior (resp. posterior)

coverage function.

As Lindley (1971) remarked, the problem of non identification causes no real difficulty in the

Bayesian approach. Indeed, if a proper prior distribution is specified, then the posterior distribution

is well-defined. Kadane (1974) observed that identification is a property of the likelihood function

which is the same irrespective of whether it is considered from Bayesian or frequentist perspectives.

It is however necessary to distinguish between three concepts of identification depending on the level

of specification of the model: sampling (or frequentist) identification, measurable identification and

Bayesian identification, see e.g. Florens et al. (1985, 1990) and Florens and Mouchart (1986). Sam-

pling identification is defined without the introduction of a σ-field associated with the parameter space.

On the other hand, such a σ-field is necessary for the other two concepts of identification. In addition,

the notion of Bayesian identification requires the introduction of a unique joint probability measure

over the sample and the parameters.

When a σ-field associated with the parameter space is introduced, the concept of identification is

related to the minimal sufficient parameter. Namely, the observed sample brings information only on

the minimal sufficient parameter and hence, the parameter of the model is identified if it is equal to the

minimal sufficient parameter. In other words, the minimal sufficient parameter is the smallest σ-field on

the parameter space that makes the sampling probability measurable. So, it is the identified parameter.

Conditionally on this parameter, the Bayesian experiment is completely non informative: the prior dis-

tribution of a nonidentified parameter is not revised through the information brought by the data so that

the conditional posterior and conditional prior distributions (conditioned on the identified parameter)
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are the same.

Equivalently, we say that a model is nonidentified if the parametrization is redundant. It is then

natural to wonder why one should introduce a σ-field larger than the minimal sufficient parameter.

In nonexperimental fields, redundant parametrization is usually introduced either as an early stage of

model building or as a support for relevant prior information or because the parameter of interest (mak-

ing e.g. the loss function measurable) is larger than the minimal sufficient parameter (see Example 1).

In experimental fields, it may be the case that the experimental design will not provide information on

all the parameters of a theoretically relevant model, see Florens et al. (1990).

This paper makes the following contributions. (I) For nonidentified models, we show that there are

situations where the introduction of a non-degenerate prior distribution can make a parameter that is

unidentified in frequentist theory identified in Bayesian theory. Specifically, we demonstrate that this is

true for nonparametric models with heterogeneity modeled either as a Gaussian process or as a Dirich-

let process where the parameter of interest is the (hyper)parameter of the heterogeneity distribution.

We show that in these models it is possible to obtain Bayesian identification since the hyperparameter

can be expressed as a known function of the identified parameter. We stress that this is not a property of

the prior of the nonidentified parameter, but instead it is a property of the conditional prior of the iden-

tified parameter, given the unidentified parameter. Such a result is no longer true in parametric models

where a degenerate prior for the nonidentified parameter is required to get Bayesian identification,

which then is completely artificial. (II) We provide the example of latent variable models to illustrate

that it is preferable to conduct Bayesian inference and develop Markov Chain Monte Carlo (MCMC)

algorithms for the nonidentified model instead of introducing identifying restrictions. Working with

the nonidentified model grants better mixing properties of the MCMC.

(III) We propose a procedure to make Bayesian analysis for partially identified models where the

identified parameter is a set, called the identified set. For these models we build up a new Bayesian

nonparametric approach, based on the Dirichlet process prior, and construct prior and posterior distri-

butions for set parameters. We propose to define these distributions in terms of prior and posterior

capacity functionals. The posterior capacity functional is an appealing tool to build estimators and

credible sets for the identified set and, in addition, it can be easily computed either by simulations or

in closed-form. (IV) We show that, when the model contains an identified parameter and a parameter
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of interest that lacks identification, the latter can be identified in the marginal model where the iden-

tified parameter has been marginalized out from the likelihood function with respect to its conditional

prior given the unidentified parameter. Therefore, the integrated likelihood depends on the unidentified

parameter and the prior of the latter is revised by the information brought by the data in the marginal

model. To complement our theoretical approach we develop many examples and simulations that show

how our method can be implemented.

Our results contribute to show that the Bayesian approach is appealing in models that lack identifi-

cation for several reasons. First, if the prior distribution on all the parameters is proper, Bayesian anal-

ysis of nonidentified and partially identified models is always possible since the posterior distribution

always exists. Second, when the parameter in the model is multidimensional, with some components

that are identified and others that are nonidentified, data can be marginally informative about the non-

identified parameter. That is, if the parameters are a priori dependent, then after we marginalise out

the identified parameter from the likelihood with respect to its conditional prior given the nonidentified

parameter, the integrated likelihood will depend on the nonidentified parameter. Third, the issue of

non- and/or partial-identification can be reduced (or even eliminated) by introducing an informative

prior. Lastly, even when the model is nonidentified or partially identified, Bayesian procedures have

computational advantages over frequentist ones. In particular, MCMC algorithms have better mixing

properties if they are specified for the nonidentified model instead of imposing identifying restrictions.

The paper is organized as follows. In section 2 we discuss the three concepts of identification given

above and the concept of partial identification. Section 3 studies models with heterogeneity and models

with latent variables. Bayesian analysis of partially identified models is developed in section 4. Finally,

in section 5 we discuss identification by marginalisation for both unidentified and partially identified

models. Section 6 concludes. Examples and all the proofs are in Appendix E in the Supplement. In the

paper we abbreviate “almost surely” by “a.s.”, P will denote the data distribution and p the associated

Lebesgue density. For an event A, 1{A} denotes the indicator function which takes the value 1 if the

event A is satisfied and 0 otherwise.

Literature Review. Our paper is related to two strands of the Bayesian literature, the one focusing

on nonidentified models and the Bayesian literature on partially identified models. We provide here a

4



concise review of the previous contributions that are the most relevant for our paper.

Initial discussions of nonidentified models which lay the foundations of nonidentification in a

Bayesian experiment in a measure-theoretic framework can be found in Lindley (1971), Kadane (1974)

and Picci (1977), among others. Florens et al. (1985, 1990) and Florens and Mouchart (1986) resume

these works and provide further developments. In particular, they provide a rigorous discussion on the

difference among sampling, measurable and Bayesian identification. Compared to these contributions,

in section 2 we provide a unified framework that gather together the concepts and results related to

nonidentification that are the most relevant for applied Bayesian analysis in econometrics. We adopt

a measure-theoretic framework and present the results of identification in terms of σ-fields of sets of

the parameter space. An aspect that we do not consider in our paper is the prior elicitation process for

nonidentified parameters which is investigated for instance in San Martín and Gonzáles (2010).

As in Poirier (1998), we emphasise the difference between marginal and conditional uninforma-

tiveness of the data for Bayesian analysis of nonidentified models. The main contribution of Poirier

(1998) consists in analysing the diverse effect of nonidentification for Bayesian analysis in the two

following situations: the case with proper priors, and the case with improper priors. Our paper does not

emphasizes this difference between proper and improper priors. Instead, one of our main contributions

is to demonstrate the different role played by the prior in nonparametric and parametric models that

are nonidentified. The question of nonidentification in nonparametric models has not been explicitly

considered in the past Bayesian literature to the best of our knowledge. For these models we prove that

Bayesian identification, i.e. through the prior, arises in a non-artificial way in some cases.

Gustafson (2005) analyses nonidentifiability by taking a nonconventional approach. Instead of

contracting the model, which consists in reducing the redundant parametrisation to get identification,

he proposes to expand the model to a supermodel that can at best yield identification by the prior. This

is an alternative approach to ours.

The second strand of literature that relates to our paper is the Bayesian literature on partial iden-

tification. It includes relatively few contributions in comparison to the vast frequentist literature on

partially identified models. For excellent overviews of frequentist and Bayesian inference for par-

tially identified econometric models see Bontemps and Magnac (2017), Molinari (2020) and references

therein. Most of the previous Bayesian literature is interested in constructing Bayesian procedures that
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provide asymptotically valid frequentist inferences for partially identified models, see for instance Liao

and Jiang (2010), Gustafson (2010, 2012), Moon and Schorfheide (2012), Norets and Tang (2013),

Kline and Tamer (2016), Chen et al. (2018), Liao and Simoni (2019) and Giacomini and Kitagawa

(2021). They have proposed Bayesian or quasi-Bayesian approaches for constructing (asymptotically)

valid frequentist confidence sets of the identified set. Their methods are mostly based either on the lim-

ited information likelihood of Chernozhukov and Hong (2003) or on the support function. Compared

to this literature, we take a different approach that is based on Dirichlet process prior placed on the

identified reduced-form parameter. We construct the prior and posterior probabilities for the identified

set as prior and posterior capacity functionals, which is new in the literature. In addition, we are not

interested in frequentist asymptotic properties of our procedure and conduct a fully Bayesian analysis.

Marginal analysis in partially identified models, which we consider in section 5, has been consid-

ered in Liao and Jiang (2010) but in a way different from ours. They marginalise out the slackness pa-

rameters in the partially identified models characterized by moment inequalities while we marginalise

out the identified (reduced-form) parameter.

2 Some General Definition

2.1 Sampling Identification

In this section we recall basic definitions in the non-Bayesian framework, called in the paper sampling

theory approach. Let us consider a statistical model defined by a sampling space X provided with a

σ-field X and by a collection of probabilities on this space. The collection of sampling probability

measures defined on (X,X ) is denoted by (P θ)θ∈Θ and is in general indexed by a parameter θ ∈ Θ,

which can be finite dimensional or a functional parameter. Hence, the sampling statistical model Es is

defined as Es := {Θ, (X,X ), (P θ)θ∈Θ}.

In a small sample approach we observe a finite number of realizations of a random variable taking

values in a measurable space – for example an iid sample x := (x1, . . . , xn) ∈ (X,X ) – where the

sample size is not made explicit and is kept fixed. In an asymptotic approach, X is provided with a

filtration (Xn)n≥1, where Xn represents the information contained in a sample of size n. We denote by
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X∞ :=
∨
n≥1Xn the σ-field generated by

⋃
n≥1Xn and write Xn → X∞ as n→∞.

Two parameters θ1 and θ2 are said to be observationally equivalent, in symbol θ1 ∼ θ2, if P θ1 =

P θ2 . This relation defines an equivalence relation and we denote by Θ̃ the quotient space Θ/ ∼, i.e.

the elements θ̃ of Θ̃ are the equivalence classes over Θ by ∼. Notice that θ̃ is a set and the elements of

Θ̃ are sets of parameters. We now define the concept of sampling identification.

Definition 2.1 (Sampling identification) A real valued function a(θ) defined on Θ is identified if θ1 ∼

θ2 implies a(θ1) = a(θ2). The sampling model Es is identified if and only if any real valued function

defined on Θ is identified.

This definition is equivalent to say that θ1 ∼ θ2 implies θ1 = θ2 or to say that any equivalence class is

reduced to a singleton. In turn, this is equivalent to say that the sampling model Es is identified if the

mapping θ → P θ is injective.

For any sampling statistical model Es there exists a canonical identified model Ẽs defined as the

sampling statistical model with parameter space Θ̃ : Ẽs = {Θ̃, (X,X ), (P θ̃ )̃
θ∈Θ̃} where P θ̃ = P θ for

any θ ∼ θ̃. Equivalently, Ẽs is the set identified statistical model associated with Es. Thus, one may

construct an identified sampling model by selecting a single element in each equivalence class. Let us

call section a function σ : Θ̃ → Θ such that σ(θ̃) ∈ θ̃ and σ(θ̃) ∈ Θ. By using such a function one

may define the identified sampling model

Es,σ := {Θσ, (X,X ), (P θ)θ∈Θσ}, Θσ := σ(Θ̃),

where Θσ is the image of Θ̃ by σ and P θ = P σ(̃θ). In this context it is natural to look for continuous

sections σ(·) or to bicontinuous bijections between Θ̃ and Θσ. In general, it is not possible to devise

constructive rules for selecting elements in Θ for each θ̃ ∈ Θ̃. The existence of Θσ cannot be proved

by using axioms from set theory if we do not have some structure on the parameter space but it must

be asserted as an additional axiom called axiom of choice, see e.g. Kolmogorov and Fomin (1975).

In the sampling theory statistics, a topological structure is needed in the parameter space in order

to define statistical decision rules based on convergence, risk or loss function. A canonical topological

structure is defined on Θ and then may be carried on Θ̃. Let ρ : Θ → Θ̃ be the canonical application

θ → ρ(θ) = θ̃. The natural topological structure is the smallest one for which ρ is continuous, i.e.

7



ρ−1(Õ) is open in Θ whenever Õ ⊂ Θ̃ is open. We will not detail the topological aspects of set

identification, which is beyond the scope of this paper, and refer to Husmoller (1994) and appendix to

chapter 3 in Dellacherie and Meyer (1975).

2.2 Measurable Identification

Let us define a measurable statistical model Em as Em := {(Θ,A), (X,X ), (P θ)θ∈Θ}, where we use

the notation previously introduced and in addition we define A to be a σ-field on Θ such that P θ is

a transition probability. Recall that given two measurable spaces (Θ,A) and (X,X ), the mapping

P (·)(·) : Θ × X → [0, 1] is a transition probability if: (i) ∀θ ∈ Θ, P θ(·) is a probability measure

on (X,X ), and (ii) ∀E ∈ X , P (·)(E) is a measurable function on (Θ,A). The introduction of the

σ-field A of subsets of Θ is necessary in order to introduce a joint probability measure on the product

space Θ × X . This probability will be introduced in section 2.3. In this sense, the introduction of a

measurable statistical model is a preliminary step for the construction of a Bayesian model.

A σ-field represents an information structure and the parameter of interest is naturally introduced

as a σ-field A that makes both the transition probability P (·)(E), ∀E ∈ X , and the loss function of the

underlying decision model,A-measurable. We now introduce the concept of sufficient σ-field which is

essential in order to discuss identification.

Definition 2.2 (Sufficiency and minimal sufficiency) A sub-σ-field B of A is said to be sufficient in

the model Em if P (·)(E) is B-measurable for any E ∈ X . A sub-σ-field B of A is said to be minimal

sufficient if: (i) B is sufficient and (ii) C ⊂ A sufficient implies that B ⊂ C.

The structure of model Em allows for the possibility of introducing a given distribution on Θ. Here, we

discuss identification in model Em without the specification of a (prior) distribution on (Θ,A) which

will be discussed in the next section. The following proposition introduces the concept of identification

in model Em, called measurable identification.

Proposition 2.1 (Measurable identification) There exists a minimal sufficient σ-fieldA∗ equal to the

intersection of all the sufficient σ-fields. The measurable model Em is identified if and only if A∗ = A.

Definition 2.3 (Measurable identification of a function) A real valued function a(·) defined on (Θ,A)

is measurably identified if it is A∗-measurable.
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The notion of sampling and measurable identification are identical if Θ is a measurable subset of Rk

provided with the Borelian σ-field and if X is included in Rn and also provided with the Borelian σ-

field. This equivalence is true more generally and requires that Θ “looks like” a Borelian of R and that

the σ-field on X is separable or equivalently generated by a countable family of subsets. Such a link

between sampling and measurable identification is established in the next theorem where we assume

that (Θ,A) is a Souslin space. We recall that a measurable space (Θ,A) is a Souslin space if there

exists an analytic set B ⊂ R and a bimeasurable bijection between (Θ,A) and (B,B ∩ B), where

B ∩ B denotes the restriction to B of the Borel σ-fields B of R. An analytic set on R is the projection

on R of a Borelian set in R2. In particular, all Borelian sets are analytic. The property that (Θ,A)

is a Souslin space is clearly true for finite dimensional parameter spaces or more generally for Polish

spaces, which include the L2 spaces on a real space. The majority of the functional spaces usually

considered in statistical and econometric applications are Polish, so the requirement that (Θ,A) is a

Souslin space is almost always satisfied.

Theorem 2.1 Let us assume that (Θ,A) is a Souslin space. Then,

(1) a real valued function a(·) defined on (Θ,A) is measurable identified if and only if a(·) is

constant on the equivalence class Θ̃;

(2) if X is separable, a model is sampling identified if and only if it is measurable identified.

The first point of the theorem provides an additional caracterisation of measurable identification. The

second part establishes that sampling and measurable identification are equivalent whenX is separable.

2.3 Bayesian Identification

A Bayesian model consists of a measurable statistical model and a measure on (Θ,A) which can be

either proper (if it is a probability measure) or improper, called prior distribution and denoted by µ.

For simplicity we will consider a probability measure. Then, µ and P θ generate a unique measure on

(Θ×X,A⊗X ) denoted by Π:

Π(A× E) =
∫
A
P θ(E)µ(dθ) =

∫
E
µx(A)P (dx), A ∈ A, E ∈ X
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or, equivalently Π = µ ⊗ P θ = P ⊗ µx, where P is the marginal probability measure on (X,X )

called the predictive distribution and µx is the posterior distribution. We assume that there exists a

regular version of the conditional probability on Θ given X , that is, µx(·) is a transition probability

(see definition in section 2.2). The Bayesian model is then defined by the following probability space

Eb := {Θ×X,A⊗X ,Π}.

In the following, we may use the notation µ(·|x) instead of µx(·) when it is more appropriate. Moreover,

by abuse of notation we use µ(θ|x) (resp. µ(θ)) to denote both the posterior (resp. the prior) distribution

and its Lebesgue density function. The sampling (resp. predictive) density function with respect to

the Lebesgue measure is denoted by p(x|θ) (resp. p(x)). Before defining the concept of Bayesian

identification, we recall the definition of sufficiency and minimal sufficiency in the Bayesian model.

Definition 2.4 (Bayesian sufficiency) A sub σ-field B of A is sufficient in the Bayesian model if and

only if A ⊥ X|B.

The conditional independence of the previous definition has two equivalent characterizations: (i) for

every positive function t : X → R+, E(t(x)|A) = E(t(x)|B), Π − a.s. provided that the conditional

expectations exist; (ii) for every positive function a : A → R+, E(a(θ)|X ∨B) = E(a(θ)|B), Π−a.s.

The first characterization (i) weakens the concept of sufficient σ-field because the property is only

required almost surely with respect to the prior probability. If A is generated by a function a(·) and B

by a function b(·) then (i) means that the likelihood functions p(x|a) and p(x|b) are a.s. equal. The

second characterization (ii) says that the conditional prior and posterior distributions are a.s. equal

given a sufficient σ-field. Equivalently, (ii) means that the posterior distribution µ(a|x, b) of a is a.s.

equal to the prior µ(a|b).

It may be proven that there exists a minimal Bayesian sufficient σ-field in A, denoted by Aµ∗ and

defined as follows.

Definition 2.5 (Minimal Bayesian sufficiency) A minimal Bayesian sufficient σ-fieldAµ∗ (also called

µ-a.s. minimal sufficient σ-field) is the σ-field generated by all the versions of E(t(x)|A) for any

positive X -measurable function t : X → R+, provided the expectation exists. This σ-fieldAµ∗ is called
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the projection of X on A and is also denoted by AX .

The minimal Bayesian sufficient σ-field Aµ∗ is a σ-field on the parameter space and depends on the

prior µ. An equivalent definition of Aµ∗ is that Aµ∗ is the smallest σ-field which makes the sampling

probabilities P (·)(E) measurable, ∀E ∈ X , completed by the null sets of A with respect to µ. It may

be easily verified that A∗ ∩ A = AX ≡ Aµ∗ where A∗ is the σ-field generated by A∗ and all the null

sets of A ∨ X , and A∗ ∩ A is the σ-field generated by A∗ and all the null sets of A with respect to µ.

We are now ready to give the definition of Bayesian identification.

Definition 2.6 (Bayesian identification) The Bayesian model Eb is Bayesian identified if and only if

AX = A.

More generally, the concept of identification may be introduced for a sub-σ-field (i.e. a parameter)

B ⊂ A:

Definition 2.7 (Bayesian identified parameter) B is an Eb-identified parameter if BS = B.

We recall that BS denotes the projection of S on B, that is,

BS := σ({E[s|B]; s belongs to the set of positive random variables defined on (X,X )}),

where σ({G}) denotes the σ-field generated by the set G.

Definition 2.6 means that in a Bayesian identified model, Aµ∗ is almost surely equal to A, that is,

A∗ ∩ A = A or: ∀A ∈ A, ∃B ∈ A∗ such that µ(A 4 B) = 0, where 4 denotes the symmetric

difference. This property shows that Bayesian identification is an almost sure measurable identification

with respect to the prior. We also have the following characterization of Bayesian identification, see

Florens et al. (1990, Theorem 4.6.21).

Theorem 2.2 If (Θ,A) is a Souslin space (see definition before Theorem 2.1) and if X is separable,

then the Bayesian model is identified if and only if ∃ Θ0 ⊂ A such that (i) µ(Θ0) = 0 and (ii) the

sampling model restricted to Θ−Θ0 is identified, i.e. θ → P θ is injective on Θ−Θ0.

It is clear from the theorem that sampling identification (and equivalently measurable identification) im-

plies Bayesian identification but the reverse is not true. For instance, a degenerate prior that puts mass
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one on specific values of the parameter space makes Bayesian identified a model that is not sampling

identified as the following trivial example shows. Suppose that we observe a random variable x from

the sampling model x|θ1, θ2 ∼ N (θ1 + θ2, 1), θ = (θ1, θ2)′ ∈ Θ = R2, and that we endow the param-

eter θ with the degenerate prior θ ∼ N ((θ10, θ20)′, ιι′), where ι = (1, 1)′. This prior gives probability

zero to all the value in R2 but the values on the line θ2 = θ1. Therefore, Θ0 = R2 \ {θ ∈ R2; θ2 = θ1}

and the sampling distribution is injective on Θ−Θ0 = {θ ∈ R2; θ2 = θ1}. This model is not sampling

identified nor measurable identified. However, this specification of the prior makes the model Bayesian

identified.

Before concluding this section we point out the following relationships existing between the three

concepts of identification that we have seen. (i) Measurable identification implies Bayesian identi-

fication for any µ. (ii) Measurable identification implies sampling identification if and only if A is

separating, that is, all the atoms of A are singletons.

2.4 Identification and Bayesian consistency

In this section we present the important connection that exists between the concepts of identification

and of exact estimability in the Bayesian models. We start by defining exact estimability.

Definition 2.8 (Exact estimability) In a Bayesian model Eb, let B be a sub-σ-field of A. Then, B is

exactly estimable if and only if B ⊂ X where X is the σ-field generated by X and all the null sets of

the product space Θ×X with respect to Π. Equivalently, B is exactly estimable if B ⊥ A|X .

The σ-field X is a σ-field on the product space Θ × X and not a σ-field on the sampling space X .

So, it is possible that B ⊂ X but that B 6⊂ X . For instance, consider xi|θ ∼iid N (θ, 1) and B =

σ({θ}). Consider a prior for θ that puts all its mass on the sample mean x̄, then we clearly have that

B ⊂ X but B 6⊂ X . This situation is artificial in small sample, but it describes well what it happens

asymptotically if x̄ is a consistent estimator since x̄ → θ, Π-a.s. without requiring a degenerate prior,

see also Definition 2.9 and the discussion below it.

The inclusionB ⊂ X means that for any positive random variable a defined on (Θ,B), the posterior

expectation E(a|X ) = a Π-a.s., provided that the conditional expectation exists. This means that
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a posteriori – that is, after observing the sample – we know a Π-a.s. Thus, any sub-σ-field of A ∩

X is exactly estimable. The next proposition states a link between exact estimability and Bayesian

identification.

Proposition 2.2 Any exactly estimable parameter B ⊂ A ∩ X is Bayesian identified.

The result in the proposition, together with the following result, allows to show that in an i.i.d.

experiment, the minimal sufficient σ-field is Bayesian identified.

Theorem 2.3 In an i.i.d. model, the minimal sufficient σ-field of A, AX , is exactly estimable.

Moreover, if AX is exactly estimable, then the following theorem shows that the reverse implication

of Proposition 2.2 holds.

Theorem 2.4 Let {(Θ,A), (X,X ),Π} be a Bayesian model such that the Bayesian minimal sufficient

σ-field AX is exactly estimable, i.e. AX ⊂ X . Then, B ⊂ A is exactly estimable if and only if B is

a.s. identified, i.e. B ⊂ AX .

The concept of exact estimability has a particular interest in asymptotic models. Let x(n) :=

(x1, . . . , xn) denote a sequence of n observations and x(∞) denote the sample of infinite size. The σ-

field generated by x(n) (resp. x(∞)) is denoted byXn (resp. X∞). For any function a(·) of the parameter

θ, the martingale convergence theorem implies that E(a|Xn)→ E(a|X∞) a.s. This convergence is a.s.

with respect to the joint distribution Π and also with respect to the predictive probability P . This is

one concept of Bayesian consistency for which the convergence must be taken with respect to the joint

probability distribution Π. Another concept of Bayesian consistency is convergence with respect to the

sampling measure P θ, that is, E(a|Xn) → a(θ), P θ- a.s. This convergence does not follow from the

previous argument and there are cases in which it is not be verified, see e.g. Diaconis and Freedman

(1986) and Florens and Simoni (2012).

From the above concept of Bayesian consistency, if B ⊂ X∞, we have E(a|Xn) → a Π-a.s. for

any B-measurable positive function a of θ, that is, the posterior mean of a converges a.s. to the true

model. This is a consequence of the asymptotically exact estimability which we now define.
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Definition 2.9 (Asymptotically exact estimability) Let E∞ be the sequential Bayesian experiment

defined as E∞ = (Θ × X,A ⊗ X ,Π,Xn → X∞) and B be a sub-σ-field of A such that B ⊂ X∞.

Then, B is said to be asymptotically exactly estimable in E∞.

This definition and the martingale convergence theorem imply that if B ⊂ A is asymptotically exactly

estimable then, for every integrable real random variable a defined on B, E(a|Xn)→ a Π-a.s.

In a Souslin space, asymptotic exact estimability means that the posterior distribution is asymp-

totically a Dirac measure on a function of the sample, see Florens et al. (1990, Theorem 4.8.3). The

intuition is that, if E(a|Xn) → a Π-a.s., then also E(a2|Xn) → a2 Π-a.s. which implies that the

posterior variance of a converges to 0. This clearly explains that the posterior distribution concentrates

around the Π-a.s. limit of its mean. More generally, an integrable real random variable a(·) defined

on B is asymptotically exactly estimable if there exists a strongly consistent sequence of estimators of

a(θ), i.e. if there exists a set of random variables (tn)n∈N, each defined on X , such that tn → a(θ), Π-

a.s. In sampling theory, a necessary condition for the existence of such a sequence is the identifiability

of the parameter.

2.5 Nonidentified and partially identified models

Between the two extreme situations of identification and non-identification there are models that are

partially identified. Partial identification arises when the combination of available data and assump-

tions that are plausible for the model only allows to place the population parameter of interest γ within

a proper subset ΓI of the parameter space Γ called identified set. If one has very precise prior informa-

tion, identification can be restored by specifying a prior distribution degenerated at some point in ΓI

as we explain in section 3.1 - Model 5. However, this strategy can be unsuitable if one is concerned

with robustness of the Bayesian procedure. Therefore, a more appealing approach consists in working

directly with the parameter ΓI which is a set and: first, define the prior and posterior distribution of ΓI

(see section 4); second, define a prior for γ inside this set (see section 5.2).

In a partially identified model, usually, there is an identified parameter, say θ, and a partially iden-

tified parameter which is the parameter of interest, denoted by γ. The latter enters the model as a

supplementary parameter and is linked to θ through a relation of the form A(θ, γ) ∈ A0 ⊂ Φ where Φ
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is a suitably defined space and A is a given function of (θ, γ). Such relation characterizes the identified

set as ΓI := {γ; A(θ, γ) ∈ A0 ∈ Φ} which may not be a singleton. The function (θ, γ) 7→ A(θ, γ)

may be a parametric likelihood function, flat over a region of γs, and A0 is its maximum value. Alter-

natively, ΓI may be a set of moment restrictions as in Example 1 below. See Chen et al. (2018) for

more details on Bayesian analysis of these examples.

Example 1 (Moment Restrictions) A natural construction of sampling econometric model which may

lead to identification issues is the following. The econometrician first considers a sampling model

perfectly identified {Θ, (X,X ), (P θ)θ∈Θ} but she completes her specification by considering another

parameter γ ∈ Γ. This parameter γ is the natural parameter arising in economic models and is related

to θ. The relation linking θ and γ may be of the form A(θ, γ) = 0 or A(θ, γ) ≥ 0 or more generally

A(θ, γ) ∈ A0, A0 ∈ Φ where Φ is a suitably defined space and A is a given function of (θ, γ). The

parameter γ may be identified or not depending on the relation A. For example, the relation A may be

a set of moment restrictions specified with respect to the distribution F which generates the data. In

that case θ = F the parameter γ could be characterized through the moment condition

A(θ, γ) := EF (h(x, γ)) = 0, (2.1)

where h is a known moment function and EF (·) denotes the expectation taken with respect to F . The

parameter γ is identified if a unique solution to equation (2.1) exists. Condition (2.1) may be extended

into EF (h(x, γ)) ≥ 0 which in general defines a set of γ solutions to these inequalities for a given F .

To develop Bayesian analysis it is important to understand that the specification of the prior distribution

differs in nonidentified models and in partially identified models. In partially identified models, the

prior distribution is naturally decomposed in the marginal prior on θ and the conditional prior on γ

given θ which incorporates the link between θ and γ: x|θ, γ ∼ P θ, θ ∼ µθ and γ|θ ∼ µγ(·|θ).

On the other hand, models with nonidentified parameters arise when θ is partitioned in θ = (β, γ)

where β is identified and γ is not. For instance, γ can be the parameter of the distribution of the

heterogeneity parameter β. Therefore, the prior is naturally decomposed in the prior on β conditional

on γ, µβ(·|γ), and the prior µγ on γ. This decomposition of the prior distribution is the reverse of the

decomposition made for partially identified models.
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3 Bayesian analysis of nonidentified models

This section is made of two subsections that describe two different options one has to make Bayesian

inference for nonidentified models. We first discuss and construct models that may satisfy Bayesian

identification even if they are not sampling identified nor measurable identified. This happens when

the function θ 7→ P θ is not injective but the prior assigns a mass zero on the nonidentified component

of the model, as it has been shown in Theorem 2.2. A second option, discussed in section 3.2, consists

in working with the nonidentified model without introducing any identifying priors or identifying as-

sumptions. The beauty of the Bayesian approach is that, as long as the prior is proper, one can make

Bayesian inference because the posterior distribution is well defined and then MCMC algorithms can

be designed to simulate from the posterior even in a nonidentified model.

3.1 Models with heterogeneity and hyperparameters

This section considers models where the parameter of interest γ is a parameter of the distribution of

a heterogeneity parameter β. More precisely, the parameter space (Θ,A) contains two subparameter

spaces B and Γ with the associated sub-σ-fields B and G, where B is the µ-a.s. minimal sufficient

σ-field in the parameter space. The σ-field G is not identified in the sense that G * B. The sampling

distribution only depends on B and the Lebesgue data density, if it exists, satisfies p(x|β, γ) = p(x|β)

a.s., where β ∈ (B,B) and γ ∈ (Γ,G). The posterior satisfies µ(γ|x, β) = µ(γ|β) a.s. An interesting

situation, known as local identification, arises when the σ-field G is not identified only for particular

values taken on by the parameter B, that is, p(x|β = β̄, γ) = p(x|β = β̄) for some value β̄, see e.g.

Drèze and Richard (1983), Kleibergen and van Dijk (1998), Hoogerheide et al. (2007) and Kleibergen

and Mavroeidis (2014). We do not analyze this situation in this paper.

The prior is naturally specified as the product of the conditional distribution of B given G and

the marginal on G. In this case, G is interpreted as a parameter of the prior on B, usually called

an hyperparameter, see e.g. Berger (1985), or latent variable. Even if this model is not sampling

(nor measurable) identified, it may satisfy Bayesian identification if the prior is conveniently specified

as it has been shown in Theorem 2.2. This identification by the prior is fully artificial in the finite-

dimensional parameter case where a degenerate prior is required to get identification and we do not
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consider this case. Instead, we consider nonparametric and asymptotic settings where identification can

be obtained without a degenerate prior. The main argument that we use to get Bayesian identification

in this way is the following.

Proposition 3.1 Let us consider the Bayesian model Eb = {Θ × X,A ⊗ X ,Π} and a sub-σ-field

B ⊂ A such that B = AX . Then, any sub-σ-field G ⊂ A is identified if and only if G ⊂ B, µ-a.s. or,

equivalently, if any G-measurable function is µ-a.s. equal to a B-measurable function.

Notice that the a.s. in the proposition are related to the prior and that B is the minimal sufficient σ-

field. The proposition states that any sub-σ-field G ⊂ A is identified if and only if it is almost surely

included in B. Intuitively, the result of the proposition holds if the conditional prior distribution on G

given B is degenerate into a Dirac measure on a B-measurable function. No requirement are made on

the marginal prior on G. We now discuss four models where Bayesian identification can be obtained

without a degenerate marginal prior on γ and a fifth example where the model is partially identified,

and contrarily to the previous cases, Bayesian identification can be only obtained artificially with a

degenerate marginal prior.

Model 1: unobserved heterogeneity (or incidental parameter). The incidental parameter

problem typically arises with panel data models when a regression model includes an agent specific

intercept βi which is a latent variable. The general conditional model can be simplified as

xit|βi, γ ∼ indN (βi, σ2), i = 1, . . . ,∞, t = 1, . . . , T

where σ2 is known and γ is a hyperparameter characterizing the distribution of βi. If βi is i.i.d.

across individuals then γ is the common parameter in the population. Let β := (β1, β2, . . .). The

µ-a.s. minimal sufficient σ-field B is generated by β, that is, β is the identified parameter. Instead of

estimating the distribution of the heterogeneity parameter βi one could be satisfied with the estimation

of the common parameter γ. Unfortunately, γ is not measurably identified even if it may be Bayesian

identified. To illustrate this, let us specify a prior probability for β and γ as follows:

βi|γ ∼ i.i.d.N (γ, σ2
0), i = 1, . . . ,∞
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γ ∼ µγ ,

where σ2
0 is known and µγ is a probability measure. By the strong law of large numbers, γ =

limn→∞
1
n

∑n
i=1 βi a.s. with respect to both the conditional prior distribution of β given γ and the

joint prior distribution of (β, γ). Therefore, the conditional distribution of γ|{βi}∞i=1 puts all its mass

on limn→∞
1
n

∑n
i=1 βi and the model is fully Bayesian identified. We stress that this property does not

depend on the marginal prior on γ, which does not have to be degenerate on some value, but crucially

depends on the prior of β given γ.

Model 2: Gaussian process and hyperparameter in the mean. Let L2[0, 1] denote the space

of square integrable functions defined on [0, 1] with respect to the uniform distribution, endowed with

the L2-inner product 〈·, ·〉 and the induced norm ‖ · ‖. We consider a sample space X = L2[0, 1].

The sample is made of a single observation which is a trajectory x from a Gaussian process in X:

x|β, γ ∼ GP(β,Σ) where β ∈ X and Σ : X → X is a covariance operator which is bounded,

linear, positive definite, self-adjoint and trace-class. It follows that E||x||2 < ∞. The parameter β

is measurably identified but the parameter γ is not and it may be interpreted as a low dimensional

parameter that controls the distribution of β.

Suppose that β and γ are two random variables with values in (B,B) and (R+,R), respectively,

with B = L2[0, 1] and B and R are the associated Borel σ-field. The joint prior distribution on

(B × R+,B ⊗R) is specified as:

β|γ ∼ GP(γβ0, σ
2
0Ω), β0 ∈ B = L2[0, 1], Ω : B → B

γ ∼ N (γ0, σ
2
0), γ0, σ

2
0 ∈ R+,

where β0, γ0, σ2
0 and Ω are known hyperparameters. The covariance operator Ω is bounded, lin-

ear, positive definite, self-adjoint and trace-class and its eigensystem is denoted by (λj , ϕj)j≥1. By

definition of Gaussian processes in Hilbert space, β|γ ∼ GP(γβ0, σ
2
0Ω) if and only if 〈β, ϕj〉|γ ∼
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N (〈β0, ϕj〉γ, σ2
0λj) for all j ≥ 1. Hence, it follows that

〈β, ϕj〉
σ0
√
λj

∣∣∣∣∣ γ ∼ N(〈β0, ϕj〉/(σ0
√
λj)γ, 1

)
.

Let us write β = β0γ + U , where U ∼ GP(0, σ2
0Ω). Let γ∗(β) denote the minimizer of the least

squares criterion: γ∗(β) := arg minγ
∑∞
j=1(〈β, ϕj〉 − 〈β0, ϕj〉γ)2/(σ2

0λj) which takes the form

γ∗(β) =

∑∞
j=1

〈β,ϕj〉〈β0,ϕj〉
σ2

0λj∑∞
j=1

〈β0,ϕj〉2
σ2

0λj

= γ +

∑∞
j=1 ξj

〈β0,ϕj〉√
λj∑∞

j=1
〈β0,ϕj〉2
σ0λj

, (3.1)

where ξj := 〈U,ϕj〉/(σ0
√
λj) ∼ i.i.d. N (0, 1), j ≥ 1. If 〈Ω−1/2U,Ω−1/2β0〉 = 0 then the second

term on the right hand side of (3.1) is zero and so γ∗(β) = γ. It follows that we can write γ as a

function of β and we have exact estimability and Bayesian identification of γ, that is, γ ∈ B. As in

Model 1, this property does not depend on the marginal prior on γ but crucially depends on the prior of

β given γ. The condition 〈Ω−1/2U,Ω−1/2β0〉 = 0 means that the scaled error term and the prior mean

functions have to be orthogonal in L2[0, 1].

Model 3: Gaussian process and hyperparameter in the variance. Let us consider the same

setting as in Model 2 but suppose that now we are interested in the common variance parameter σ2.

That is, the prior distribution for (β, σ2) ∈ (B × R+,B ⊗R) is specified as:

β|σ2 ∼ GP(0, σ2Ω), and σ2 ∼ IΓ(ν0, σ
2
0),

where IΓ denotes an inverse-gamma distribution and Ω : X → X is a known covariance operator

which is bounded, linear, positive definite, self-adjoint and trace-class. The hyperparameters ν0 and σ2
0

are known. Knowledge of Ω implies knowledge of its eigensystem (λj , ϕj)j≥1.

By definition, β|σ2 ∼ GP(0, σ2Ω) if and only if
{
〈β, ϕj〉/

√
λj
}
j≥1
|σ2 ∼i.i.d. N (0, σ2). By the

strong law of large numbers we have

lim
J→∞

1
J

J∑
j=1

〈β, ϕj〉2

λj
= σ2, µ− a.s.
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This convergence is valid with respect to both the conditional prior µ(β|σ2) of β given σ2 and the joint

prior µ(β, σ2) of (β, σ2) and shows that σ2 is a µ − a.s. function of β. Therefore, σ2 is Bayesian

identified.

Model 4: Bayesian nonparametric and Dirichlet process. We observe an n-sample from the

following sampling model xi|F,G ∼ i.i.d. F , i = 1, . . . , n, where F and G are two probability

distributions – for instance on R. We can interpret F as a nuisance parameter and G is the only

parameter of interest which characterizes the distribution of F . The parameter F generates a σ-field

B that is measurable identified while G generates a σ-field G that is not measurable identified. We

specify a nonparametric Dirichlet process prior for F with parameters n0 and G: F |G ∼ Dir(n0, G)

and G ∼ µ, where µ denotes a probability measure on the space of distributions that generate almost

surely a diffuse distribution, i.e. G(x) = 0, ∀x. The F generated from the above Dirichlet process

can be equivalently generated by using the stick-breaking representation as F =
∑
j αjδξj , where

{ξj}j≥1 are independent draws from G, αj = vj
∏j
k=1(1− vk) with {vj}j≥1 independent draws from

a Beta distribution Be(1, n0) and {vj}j≥1 ⊥ {ξj}j≥1, see Appendix D in the Supplement. Then,

limJ→∞
1
J

∑J
j=1 δξj = G, µ − a.s. which proves that G is a µ-a.s. function of F and so, it is

Bayesian identified.

Model 5: Moment conditions and partially identified models. Consider the setting of Ex-

ample 1 where the parameter of interest γ ∈ (Γ,G) is characterized through a moment condition of

the type EF (h(x, γ)) ≥ 0 for a known function h and a data generating process F . We observe n

realisations (x1, . . . , xn) of n i.i.d. random variables from F and specify for F a Dirichlet process

prior with parameters n0 and F0:

xi|F ∼ i.i.d. F, i = 1, . . . , n,

F ∼ Dir(n0, F0).

The parameter F generates the σ-field B and is measurable identified. Suppose that γ is partially

identified. Despite of this, γ can be Bayesian identified by specifying a conditional prior µ(γ|F ) for

γ, given F , degenerate on a given functional of F . For example, if the restriction EF (h(x, γ)) ≥ 0
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writes γ ∈ [φ1(F ), φ2(F )] for two functionals φ1, φ2 of F , then µ(γ|F ) could be specified as a Dirac

on (φ1(F ) + φ2(F ))/2. We stress that Bayesian identification in this model is obtained artificially and

in a different way than in Models 1-4 above because of the construction of a conditional degenerate

prior for the partially identified parameter γ, given the identified one. Instead, in Models 1-4 we

have specified a marginal prior for the unidentified parameter that was not degenerate and Bayesian

identification arose because of the specification of the conditional prior for the identified parameter.

This artificial way to obtain Bayesian identification through a degenerate prior can be reprehensible

as it can be seen against the logic of partial identification. In section 4 we will proceed without imposing

Bayesian identification.

3.2 Latent variable models

In this section we take the example of latent variable models to illustrate that it is possible to make

Bayesian inference directly for the nonidentified model without introducing an identifying prior or

identifying assumptions. Because these models are well known in the literature we discuss them briefly.

Consider discrete observable outcomes yi arising from the model yi = g(zi), where g(·) is a given

function and zi is a latent variable satisfying: zi = x′iδ+ ui, where xi is an observable real-valued ran-

dom vector, δ is the parameter vector of interest, and ui is an unobservable component with unrestricted

variance. Identification problems appear if the g(·) function is invariant to location or scale transfor-

mations of z. Differently from frequentist analysis, imposing identifying restrictions is not necessary if

one wants to conduct Bayesian analysis. With proper priors, one obtains the posterior for the noniden-

tified model, constructs an MCMC algorithm to simulate from this posterior and then marginalises to

obtain the posterior of the identified parameters. It is often the case that it is easier to construct MCMC

algorithms for unrestricted parameters and they have better mixing properties than MCMC algorithms

for the corresponding identified model, see e.g. van Dyk and Meng (2001).

The simpler example of a latent variable model is the binary logit / probit, where the observable

outcome yi is binary and modeled as: yi = 1{zi > 0} with zi a real-valued random variable. If ui fol-

lows a Gaussian (resp. Logistic) distribution we have the probit (resp. logit) model. The identification

problem arises because the indicator function is invariant to scale transformation of zi: multiplication
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of zi by a positive constant does not change the likelihood. Identification can be restored by imposing

for instance the restriction V ar(ui) = 1. However, Bayesian analysis does not require any identifying

restrictions. Other example of latent variable models are provided in Appendix A.

4 Bayesian analysis of partially identified models

This section considers partially identified models as described in section 2.5. Let us consider a model

with an identified parameter θ and another parameter γ characterized by the condition

A(θ, γ) ∈ A0, (4.1)

where γ ∈ Γ ⊂ Rdγ , A : (Θ,A, µ) × Γ → Φ, for some finite or infinite dimensional space Φ and

A0 is a subset of Φ. The function A(θ, γ) is usually either a likelihood function or a moment function

and condition (4.1) can contain both inequalities and equalities, see Chen et al. (2018) for interesting

examples. The parameter γ is the parameter of interest and, depending on the relation (4.1), it may be

only partially identified which means that for a given θ there may exist more than one value of γ in Γ

satisfying (4.1) but not all the values in Γ satisfy the condition.

Let ΓI := ΓI(θ) = {γ ∈ Γ;A(θ, γ) ∈ A0} be the identified set which is a proper subset of Γ and

depends on θ. The model is point identified if ΓI is a singleton and is partially identified otherwise.

Inference of partially identified models can focus either on γ, or on the set ΓI or on both. In this section,

we focus on ΓI and so do not endow γ with a prior. A prior on γ will be introduced in section 5.

In the Bayesian analysis, the quantity A(θ, γ) in (4.1) is a random element, where the randomness

comes from θ: for each γ ∈ Γ, A(·, γ) is a function on (Θ,A) which takes values in the state space

(Φ,B(Φ)), where B(Φ) denotes the Borel σ-field associated with Φ. Therefore, condition (4.1) has to

hold a.s. with respect to the prior distribution of θ. For a realisation of θ in Θ, the set ΓI is constructed

on the basis of the trajectory γ 7→ A(θ, γ), γ ∈ Γ. Therefore, ΓI(θ) has to be interpreted as a random

set where the randomness comes from θ. This differs from the frequentist analysis of partially identified

models where ΓI is non random.

The next definition describes a random closed set. For this, let C (resp. O) denote a family of
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closed (resp. open) subsets of Γ.

Definition 4.1 (Random closed set) Let (Θ,A, µ) be a complete probability space and Γ be a locally

compact space. The multivalued function ΓI(·) : Θ → C is called a random closed set if, for every

compact set K in Γ, {θ; ΓI(θ) ∩K 6= ∅} ∈ A.

The multivalued function ΓI(·) : Θ → O is called a random open set if its complement is a random

closed set. The following proposition gives a condition that guarantees that ΓI is a random closed set.

A regular closed set C is such that C coincides with the closure of its interior, see Molchanov (2005).

Proposition 4.1 Assume that the multivalued function ΓI(·) : Θ → C has realizations a.s. equal to

regular closed subsets of Γ. If the set A0 in (4.1) is such that A0 ∈ B(Φ) then ΓI(·) is a closed random

set.

We assume in the following that ΓI(θ) is a closed random set. Our analysis can be extended to the

case where ΓI(θ) is an open random set. It is convenient to introduce the stochastic process {gθ(γ)}γ∈Γ

associated with condition (4.1), where for every γ ∈ Γ

gθ(γ) := 1{A(θ, γ) ∈ A0 ⊂ Φ}. (4.2)

So, gθ(γ) is the indicator of the random set ΓI(θ) ⊂ Γ and γ is the index of the stochastic process

g(·)(·) : (Θ,A, µ) × Γ → {0, 1}. When ΓI(θ) is a separable random set, see Molchanov (2005,

Definition 4.8), then it can be completely described through its indicator function.

4.1 Construction of the prior and posterior capacity functionals

A Bayesian analysis requires the specification of a prior distribution for the random set ΓI . Since ΓI

depends on θ, we propose to construct such a prior by first specifying a prior distribution for θ and then

recovering from it the prior for ΓI . Suppose X ⊆ R and let F denote the data distribution. We suppose

that θ may be written as a measurable functional of the distribution F , that is, there exists a measurable

functional φ(·) such that θ = φ(F ). For instance, θ = EF (x) =
∫
xdF (x).

In our analysis F is not restricted to belong to some parametric class. Thus, we specify a Dirichlet
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process prior for F and write F ∼ Dir(n0, F0) where n0 ∈ R+ and F0 is a diffuse probability measure

on R, i.e. F0(y) = 0, ∀y ∈ R, see e.g. Ferguson (1973) and Florens (2002). The prior distribution for

ΓI(θ) is obtained from this prior for F through the prior capacity functional. Define K as the family

of compact subsets of Γ. The prior capacity functional TΓI : K 7→ [0, 1] is given by

TΓI (K) := P{K ∩ ΓI(θ) 6= ∅}, K ∈ K,

where the probability P is determined by the prior distribution of θ which in turns is determined by the

Dirichlet process prior on F : F ∼ Dir(n0, F0) since θ = φ(F ).

When the prior capacity functional is defined on singletons instead of onK, i.e. K = {γ} for some

γ ∈ Γ, then it is called prior coverage function of ΓI and denoted by pΓI (γ). In particular, ∀γ ∈ Γ

pΓI (γ) := E(gθ(γ)) = Prob(gθ(γ) = 1) = P ({γ}∩ΓI(θ) 6= ∅) = P (A(θ, γ) ∈ A0) ∈ [0, 1], (4.3)

where gθ(·) is the stochastic process defined in (4.2) and P and E are the probability and expectation,

respectively, taken with respect to the prior of θ. The appealing fact of the prior coverage function

with respect to the prior capacity functional is that pΓI (γ) can be represented graphically in an easier

way than TΓI (K) (at least if Γ ⊂ R), see for instance Figures 1, 3 and 9 where we represent pΓI (·)

and the posterior coverage function pΓI (·|x). We remark that the prior coverage function pΓI (γ) does

not characterize the distribution of the stochastic process gθ(γ) which is instead characterized by its

finite-dimensional distributions.

We detail now the construction of the prior and posterior capacity functionals with the help of a

generic example. Suppose θ := (θ1, θ2)′ ∈ R2, A(θ, γ) = (θ1 − γ, γ − θ2)′ for some γ ∈ R and

A0 = (−∞, 0]× (−∞, 0]. Hence, the condition A(θ, γ) ∈ A0 writes as γ ∈ [θ1, θ2] and ΓI = [θ1, θ2].

We recall that the aim is to make inference on the identified set ΓI and not on the partially identified

parameter. To start with, suppose that we specify a parametric prior for θ. For instance, θ1 ∼ U [0, 1]

and θ2 ∼ U [1, 2]. For any K ∈ K, write K = [K1,K2], K̄ = [K̄1, K̄2] := K ∩ [0, 1] and ¯̄K =
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[ ¯̄K1,
¯̄K2] := K ∩ [1, 2]. The prior capacity functional then is:

TΓI (K) =



0 if K ∩ [0, 2] = ∅

K̄2 − K̄1 if K ∩ [0, 1] 6= ∅ and K ∩ [1, 2] = ∅

K̄2 − K̄1 + ¯̄K2 − ¯̄K1 if K ∩ [0, 1] 6= ∅ and K ∩ [1, 2] 6= ∅
¯̄K2 − ¯̄K1 if K ∩ [0, 1] = ∅ and K ∩ [1, 2] 6= ∅

,

while the prior coverage function is given by pΓI (γ) = P (γ ∈ [θ1, θ2]) = γ1{γ ∈ [0, 1]} + (2 −

γ)1{γ ∈ [1, 2]}, where P is the distribution with respect to the prior of θ.

With this intuition in mind, let us move to the nonparametric Bayesian approach. This approach is

based on a Dirichlet process prior and requires to write θ = (θ1, θ2)′ as θi = φi(F ), for a measurable

functional φi, i = 1, 2. If we observe realizations of a random vector Y from a distribution F then the

Bayesian model writes Y |F ∼ F , F ∼ Dir(n0, F0). The probability measure F0 should be chosen

such that φ2(F ) > φ1(F ), µ-a.s. By using the stick-breaking representation of the Dirichlet process,

see Appendix D in the Supplement, the prior capacity functional of ΓI = [φ1(F ), φ2(F )] is given by

TΓI (K) = P

K ∩
φ1

 ∞∑
j=1

αjδξj

 , φ2

 ∞∑
j=1

αjδξj

 6= ∅

 , K ∈ K, (4.4)

where {ξj}j≥1 are independent draws from F0, δξj denotes the Dirac mass in ξj , αj = vj
∏j−1
l=1 (1−vl)

with {vl}l≥1 independent draws from a Beta distribution Be(1, n0) and {vj}j≥1 are independent of

{ξj}j≥1. In Appendix D we recall how to simulate φi(F ), i = 1, 2, from the prior and posterior

distribution by using this representation. The prior coverage function of ΓI is: for every γ ∈ Γ,

pΓI (γ) = P
(
γ ∈ [φ1(F ), φ2(F )]

)
= P

(
φ1

( ∞∑
j=1

αjδξj

)
≤ γ ≤ φ2

( ∞∑
j=1

αjδξj

))
(4.5)

where we have taken K = {γ} and P is the prior distribution of θ, {αj} and {ξj}. In general we do

not have an analytic form for TΓI and pΓI but we have a perfect knowledge of them since we can easily

simulate from TΓI and pΓI by using the stick-breaking representation of the Dirichlet process.
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After observing an n-sample of Y , (y1, . . . , yn), one computes the posterior distribution of F as

F |y1, . . . , yn ∼ D
(
n0 + n,

n0
n0 + n

F0 + n

n0 + n
Fn
)
,

where Fn(·) := 1
n

∑
j δyj (·) denotes the empirical cumulative distribution. If the true data distribution

F is such that φ2(F ) > φ1(F ) then the same is true for the distribution F generated by the posterior.

The posterior capacity functional is denoted by TΓI (K|{yi}ni=1) and given by: ∀K ∈ K,

TΓI (K|{yi}
n
i=1) =

P

K ∩
φ1

(
ρ

n∑
j=1

βjδyj + (1− ρ)
∞∑
j=1

αjδξj

)
, φ2

(
ρ

n∑
j=1

βjδyj + (1− ρ)
∞∑
j=1

αjδξj

) 6= ∅

 ,
where {αj}, {δξj}, {δyj} and {ξj}, are as above, ρ is drawn form a Beta distribution Be(n, n0) inde-

pendently of the other quantities and (β1, . . . , βn) are drawn from a Dirichlet distribution with param-

eters (1, . . . , 1) on the simplex Sn−1 of dimension (n − 1). For every γ ∈ Γ, the posterior coverage

function pΓI (γ|{yi}
n
i=1) = P

(
γ ∈ [φ1(F ), φ2(F )]

∣∣∣{yi}ni=1

)
is: ∀γ ∈ Γ,

P

φ1

(
ρ

n∑
j=1

βjδyj + (1− ρ)
∞∑
j=1

αjδξj

)
≤ γ ≤ φ2

(
ρ

n∑
j=1

βjδyj + (1− ρ)
∞∑
j=1

αjδξj

) . (4.6)

For simplicity we have presented only the case where the condition A(θ, γ) ∈ A0 writes as

γ ∈ [φ1(F ), φ2(F )] but our nonparametric method can be generalized to the case where ΓI is not

an interval. In that case, if a Dirichlet process prior is specified for F , the prior capacity functional of

ΓI is given by: ∀K ∈ K,

TΓI (K) = P (K ∩ ΓI 6= ∅) = P

K ∩
γ ∈ Γ;A(φ

( ∞∑
j=1

αjδξj

)
, γ) ∈ A0

 6= ∅

 (4.7)

and the posterior capacity functional is: ∀K ∈ K,

TΓI (K|{yi}
n
i=1) = P (K ∩ ΓI 6= ∅|{yi}ni=1) =
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P

K ∩
γ ∈ Γ;A(φ

(
ρ

n∑
j=1

βjδyj + (1− ρ)
∞∑
j=1

αjδξj

)
, γ) ∈ A0

 6= ∅

∣∣∣∣∣∣ {yi}ni=1

 , (4.8)

where {αj}, {δξj}, {δyj}, {ξj}, ρ and (β1, . . . , βn) are as above.

Once the posterior capacity functional is available, an estimator for ΓI(θ) can be easily constructed.

One possibility is to fix θ equal to its posterior mean or median, denote it by θ̂, and take the correspond-

ing ΓI(θ̂) as an estimator for ΓI . In alternative, one could construct a closed set Cα that satisfies the

following condition

P (ΓI(θ) ⊂ Cα|{yi}ni=1) ≥ α (4.9)

for some α ∈ [0, 1]. This is the usual posterior credible region. A similar estimator is proposed e.g. by

Liao and Simoni (2019) and Chen et al. (2018). We remark that the probability in (4.9) is determined

by the posterior Dirichlet process and is the posterior containment functional evaluated at Cα.

4.2 Examples

In this section we provide two examples where we use our proposed Bayesian nonparametric method

described in section 4.1. Other two examples are developed in Appendix B in the Supplement. For

simplicity, we only focus on the prior and posterior coverage functions, which are easy to represent

graphically.

Example 2 (Interval Censored Data.) This example is motivated by interval responses in survey data.

Let Y be the real random variable of interest that is unobserved but is known to lie in the interval

[Y1, Y2] a.s. with respect to the sampling distribution, where Y1 and Y2 are two observable real ran-

dom variables. The probability distributions of Y1 and Y2 are unknown and denoted by F1 and F2,

respectively. We denote with EF1(Y1) and EF2(Y2) the expectation taken with respect to F1 and F2,

respectively. Let γ := E(Y ) ∈ Γ = R be the parameter of interest. Since Y ∈ [Y1, Y2] a.s., the

condition A(θ, γ) ∈ A0 takes the form

EF1(Y1) ≤ γ ≤ EF2(Y2) (4.10)
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a.s. with respect to the prior distribution µ of θ, where θ := φ(F ) = (EF1(Y1),EF2(Y2))′ and

F := (F1, F2)′ is the joint distribution of (Y1, Y2). More precisely, for every γ ∈ Γ, A(θ, γ) =

[EF1(Y1) − γ, γ − EF2(Y2)] and A0 = (−∞, 0] × (−∞, 0] which is an element of the Borel σ-field

of subsets of Φ = R2. Hence, ΓI = [EF1(Y1),EF2(Y2)] is a random closed set, the parameter γ is

partially identified and our object of interest becomes the identified set ΓI .

We compute the prior and posterior coverage function of the identified set ΓI by specifying a

Dirichlet process prior for θ. Let us assume that Y1 ⊥ Y2|F . For F 1
0 and F 2

0 two probability measures,

the Bayesian hierarchical model is

(y11, . . . , y1n)|F ∼ iid F1

(y21, . . . , y2n)|F ∼ iid F2

F1 ∼ Dir(n1
0, F

1
0 ), n1

0 ∈ R+

F2 ∼ Dir(n2
0, F

2
0 ), n2

0 ∈ R+, (4.11)

where (y11, . . . , y1n) and (y21, . . . , y2n) denote two n-samples of realisations of Y1 and Y2, respec-

tively. If the probability measures F 1
0 and F 2

0 have disjoint supports, that is, maxSupp(F 1
0 ) <

minSupp(F 2
0 ) then, EF2(Y2) > EF1(Y1) µ-a.s. For every γ ∈ Γ, let gθ(γ) := 1{γ ∈ [EF1(Y1),EF2(Y2)]}.

For every γ ∈ Γ the prior coverage function is E(gθ(γ)), where the expectation is taken with respect

to the prior µ of F , and can be represented as, ∀γ ∈ Γ,

pΓI (γ) = P
(
γ ∈ [EF1(Y1),EF2(Y2)]

)
= P

(∑
j

α1
jξ

1
j ≤ γ ≤

∑
j

α2
jξ

2
j

)

where, for i = 1, 2, {ξij}j≥1 are independent draws from F i0, αij = vij
∏j−1
l=1 (1 − vil) with {vil}l≥1 in-

dependent draws from a Beta distribution Be(1, ni0) and {vij}j≥1 are independent of {ξij}j≥1. For i =

1, 2, let Fi(·) denote the cumulative distribution function of EFi(Yi). Hence, pΓI (γ) takes the following

values: (i) ∀γ /∈ [minSupp(F 1
0 ),maxSupp(F 2

0 )], pΓI (γ) = 0; (ii) ∀γ ∈ [maxSupp(F 1
0 ),minSupp(F 2

0 )],

pΓI (γ) = 1; (iii) ∀γ ∈ Supp(F 1
0 ), pΓI (γ) = P

(∑
j α

1
jξ

1
j ≤ γ

)
≡ F1(γ); (iv) ∀γ ∈ Supp(F 2

0 ),

pΓI (γ) = P
(
γ ≤

∑
j α

2
jξ

2
j

)
≡ 1−F2(γ).

The posterior distributions of F1 and F2 are Fi|(yi1, . . . , yin) ∼ Dir(ni∗, F i∗), i = 1, 2, where for

28



i = 1, 2, ni∗ = ni0 +n, F i∗ = ni0
ni0+nF

i
0 + n

ni0+nF
i
n and F in(·) := 1

n

∑
j δyij (·) is the empirical distribution

of the sample (yi1, . . . , yin). The posterior coverage function of ΓI is, ∀γ ∈ Γ

pΓI (γ|{y1i}, {y2i}) = P
(
γ ∈ [EF1(Y1),EF2(Y2)]

∣∣∣{y1i}, {y2i}
)

and can be represented as:

P
(
ρ1

n∑
j=1

β1jyj1 + (1− ρ1)
∞∑
j=1

α1
jξ

1
j ≤ γ ≤ ρ2

n∑
j=1

β2jy2j + (1− ρ2)
∞∑
j=1

α2
jξ

2
j

)
,

where, for i = 1, 2, αij and ξij are as above, ρi is drawn from a Beta distribution Be(n, ni0) indepen-

dently of the other quantities and (βi1, . . . , βin) are drawn from a Dirichlet distribution with parame-

ters (1, . . . , 1) on the simplex Sn−1 of dimension (n− 1).

A simulation exercise allows to visualize the prior and posterior coverage functions of ΓI . We

generate an n-sample of realizations of Y1 and Y2 from the following distributions1:

Y1 ∼ N (0, 0.1), Y2 ∼ N (5, 0.1).

The parameters are fixed as follows: n = 1000, n1
0 = 10, n2

0 = 20, F 1
0 = N (0, 1) and F 2

0 = N (10, 1).

The supports of F 1
0 and F 2

0 are not disjoint. However, since the tails of a normal density function are

very thin, the prior probability that EF2(Y2) < EF1(Y1) is very small. The true identified set in our

simulation is [EF1(Y1),EF2(Y2)] = [0, 5].

In Figure 1 we represent the subset [−3, 12] of Γ on the horizontal axis and we evaluate pΓI (·) and

pΓI (·|{y1i}, {y2i}) over a grid of values on this intervals. Then, we draw 1000 times from the prior

and posterior distribution of (F1, F2) and for every value γ in the grid of [−3, 12] we count the number

of simulated ΓIs that contain this value γ. Figure 1 shows the prior and posterior coverage functions

for each value of γ ∈ [−3, 12]. Figure 2 displays the intervals ΓI drawn from the prior and posterior

distributions (on the vertical axis) against the true interval [0, 5] (on the horizontal axis). It also plots

the true interval [0, 5] against itself in red. Both figures show that the posterior concentrates on the

true ΓI = [0, 5].
1This data generating process is the same used in Liao and Jiang (2010) in their Example 5.1.
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Figure 1: Interval Censored Data. Prior and posterior coverage functions pΓI (·) and pΓI (·|{y1i}, {y2i})
of ΓI . The true ΓI is [0, 5].
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Figure 2: Interval Censored Data. Representation of the intervals ΓI(θ) = [EF1(Y1),EF2(Y2)] drawn
from the prior (panel 2a) and posterior (panel 2b) against the true interval ΓI = [0, 5] (in red).

Example 3 (Linear Regression with errors in Regressors.) This is the well-known linear errors-in-

variables structural model considered in Frisch (1934) and Klepper and Leamer (1984). For simplicity,

we focus here on the univariate linear regression model. Let Y be an observable random variable

satisfying the model Y = γξ + u where ξ is an unobservable random variable such that E(ξ) = 0,

V ar(ξ) = τ2 and for which only realizations affected by an error are available: Z = ξ + v. The

error terms (u, v) are zero-mean jointly distributed random variables, independent of ξ, and with a

variance-covariance matrix Σ which may be diagonal.

Suppose Σ = diag(σ2
u, σ

2
v) for simplicity and that E(ξ) is known, so that the structural parameters

are γ, σ2
u, σ2

v and τ2 while ξ is the incidental parameter. Denote σyz := Cov(Y, Z), σzz := V ar(Z)

and σyy := V ar(Y ). Due to endogeneity of Z, the parameter γ lies in the identified set ΓI = [θ1, θ2]
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given by

[θ1, θ2] =
[

min
(σyz
σzz

,
σyy
σyz

)
,max

(σyz
σzz

,
σyy
σyz

)]
=
[

min
( γτ2

τ2 + σ2
v

, γ + σ2
u

γτ2

)
,max

( γτ2

τ2 + σ2
v

, γ + σ2
u

γτ2

)]
, (4.12)

where σyz
σzz

is the coefficient of the regression line of Y on Z and σyz
σyy

is the coefficient of the reverse

regression line of Z on Y , both without intercept. This can be seen by running the two regressions

y = γ(Z − v) +u and Z = 1
γ (Y −u) + v. The first regression gives: γ = σyz/(σzz −σ2

v) ≥ σyz/σzz

while the second regression gives: γ = (σyy − σ2
u)/σyz ≤ σyy/σyz .

We specify a Dirichlet process prior on the joint probability distribution Fyz of (Y,Z). In the

simulation exercise we generate the data as: for i = 1, . . . , n,

ξi ∼ i.i.d. N (0, 1), (ui, vi)′ ∼ i.i.d. N2(0, I2), (4.13)

Zi = ξi + vi,

Yi = γξi + ui, γ = 1,

where I2 is the 2-dimensional identity matrix. Since γ > 0 the identified set is [σyzσzz
,
σyy
σyz

] = [1/2, 2].

We specify the prior on Fyz as Fyz ∼ Dir(n0, F0) with n0 = 20 and

F0 = N2
( 0

0

 ,
 2 0.9

0.9 2

). (4.14)

The sample size is n = 1000 and we draw 1000 intervals ΓI from the prior and posterior distribu-

tion of F . The results are shown in Figures 3 and 4.

5 Marginal Identification

In sections 3 and 4 we have considered statistical models where no parameter is marginalized out. We

refer to these models as full models. When the parameter of interest is a sub-parameter γ of the whole
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Figure 3: Linear Regression with errors in Regressors. Prior and posterior coverage functions pΓI (·)
and pΓI (·|{yi}, {zi}) of ΓI . The true ΓI is [1/2, 2].
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Figure 4: Linear Regression with errors in Regressors. Representation of the intervals ΓI(θ) =[
σyz
σzz

,
σyy
σyz

]
drawn from the prior (panel 4a) and posterior (panel 4b) against the true interval [1/2, 2] (in

red).

model parameter one might want to perform the analysis by getting rid of the parameters of the model

that are not of interest. Therefore, it is natural to examine the marginal model in this sub-parameter.

5.1 Marginal Identification of nonidentified sub-parameters

Let θ := (β, γ) denote the whole parameter of the model where β is identified and γ is the parameter

of interest that is nonidentified. For instance, γ is the parameter related to a latent variable as in section

3.1. One can specify the prior for θ as µ(θ) = µ(β|γ)µ(γ). Hence, the marginal model is obtained by
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integrating out the parameter β in the original model with respect to the prior µ(β|γ):

P γ(E) =
∫
P β(E)µ(dβ|γ), ∀E ∈ X ,

where P γ(·) denotes the integrated sampling distribution which depends on γ. The corresponding

Lebesgue density function (or marginal likelihood) writes p(x|γ) =
∫
p(x|β, γ)µ(β|γ)dβ. The predic-

tive density p(x), obtained by integrating out γ from p(x|γ) with respect to the prior, is the same as in

the full model and the marginal posterior µ(γ|x) of γ is obtained by marginalizing the joint posterior

µ(β, γ|x) with respect to β.

Example 4 (Classical model of hyperparameter) Let us consider the following Bayesian model xi|β, γ ∼

iid N (β, σ2), i = 1, . . . , n, β|γ ∼ N (γ, σ2
0), γ ∼ N (γ0, τ

2
0), where γ is the hyperparameter of the

prior distribution and σ2, σ2
0, γ0, and τ2

0 are known parameters. The parameter γ is unidentified in the

sampling model. The minimal sufficient σ-field AX is almost surely equal to the σ-field generated by

β. The marginal model is (x1, . . . , xn)′|γ ∼ N
(
γι, σ2In + σ2

0ιι
′
)

, where ι = (1, . . . , 1)′ is n× 1 and

In is the n-dimensional identity matrix. Therefore, γ is identified in the marginal model.

Note that, in the previous example, even if γ is identified in the marginal model it is not exactly

estimable. In fact, Theorem 2.3 does not apply because the marginal model is not i.i.d. Exact estima-

bility would hold only if the conditional distribution of γ given β was a degenerated Dirac measure on

a deterministic function of β.

In the setting of Example 4, β can be interpreted as an heterogeneity parameter whose distribution

depends on an unidentified parameter γ, see e.g. Heckman and Singer (1984). In the frequentist setting,

the conditional distribution of β|γ is part of the data generating process while in the Bayesian setting

the conditional distribution of β|γ is the prior.

The next theorem considers the asymptotic behavior of a sub-parameter which might be noniden-

tified in the full model. It states that the posterior mean of a sub-parameter c converges Π-a.s. to the

conditional prior mean given the identified parameter. Remark that the a.s. in the theorem is with

respect to the joint distribution.

Theorem 5.1 Let us consider a Bayesian model {Θ×X,A⊗ X ,Π} with a filtration Xn → X∞ and
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where the identified parameter AX∞ is asymptotically exactly estimable, that is, AX∞ ⊂ X∞. Let c

be an integrable function defined on A, then: E(c|Xn)→ E(c|AX∞), Π− a.s.

5.2 Marginal identification in partially identified models

Consider now the partially identified model of section 4. Let Y be an observable random variable with

distribution F . The parameter F is identified and suppose that there is another parameter θ of the model

that is identified and that can be written as θ = φ(F ) for some functional φ. The parameter of interest

is denoted by γ and is related to θ by relation (4.1): A(θ, γ) ∈ A0 ⊂ Φ. Let Γ be provided with a

σ-field G. Hence, the parameter space is (Θ × Γ,A ⊗ G). By using the structural relation (4.1) we

now specify a restricted prior µ(γ|θ) for γ conditional on θ. In particular, µ(γ|θ) has support equal to

the set of the γs that satisfy the constraint A(θ, γ) ∈ A0 in (4.1) for a given θ ∈ Θ.2 The marginal

posterior of γ is: ∀Γ1 ∈ G,

µ(Γ1|y) =
∫

Γ1

∫
Θ
µ(θ|y)µ(γ|θ)dθdγ =

∫
Γ1
dγ

∫
{F ;φ(F )∈Θ}

µ(γ|φ(F ))µ(dF |y),

where µ(θ|y) denotes the posterior distribution of θ and µ(dF |y) denotes the posterior distribution of

F . In the second equality we have written the integral in terms of µ(dF |y) to stress the fact that the

prior distribution of θ is recovered from the Dirichlet process prior for F as described in section 4. It

is clear that γ is identified in the marginal model since its marginal prior distribution is updated by the

data. In addition, Theorem 5.1 above applies also to the case of partially identified models.

While the marginal posterior density µ(γ|y) of γ is not usually known in closed-form – in particular

if θ is infinite dimensional – one can easily simulate from it. For this, one first simulates θ given

y from µ(θ|y) and then, for each draw of θ, one simulates γ given θ from µ(γ|θ). This simulation

scheme produces draws from µ(γ|y) and this is due to the lack of identification of γ which implies that

γ ⊥ y|θ, see section 2.3. Having a marginal posterior distribution µ(γ|y) of the parameter of interest γ

is important for instance in a decision problem setting. In fact, knowledge of µ(γ|y) allows to select the

most likely value of γ or the region inside ΓI with the highest posterior probability. Such a selection is

2In alternative, we may relax this constraint on the support of µ(γ|θ) into a constraint on the hyperparameter
of the distribution of γ, as illustrated by the examples below.
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clearly affected by the choice of the prior on γ.

5.3 Examples

In this section we develop further Example 3 of section 4.2 by endowing the parameter γ with a condi-

tional prior distribution given θ = φ(F ) that we denote by µFγ : γ|θ ∼ µFγ := µ(γ|φ(F )). Additional

examples are developed in Appendix C in the Supplement. In our simulations we consider four different

specifications for µFγ , where the hyperparameters a0 and b0 are specified in each specific example:

(I). γ|F ∼ N (γ0, τ
2
0), γ0 = γ̃

1
0+γ̃2

0
2c0 , τ0 ∈ R and we discard the draws of γ that do not belong to the

interval [a0, b0];

(II). γ|F ∼ N (0, σ2
0) truncated to the interval [a0, b0];

(III). γ|F ∼ U [a0, b0] (flat prior);

(IV). γ|F ∼ Be
(
a0, b0, p, q

)
, that is, a Beta prior distribution with support [a0, b0] and shape param-

eters p and q. The corresponding probability density function is:

µ(γ|F ) =

(
γ − a0

)p−1(
b0 − γ

)q−1

B(p, q)
(
b0 − a0

)p+q−1

where B(p, q) is the beta function.

Example 3 (Linear Regression with errors in Regressors (continued).) Suppose that we are not only

interested in the identified region ΓI := [θ1, θ2], where θ1, θ2 are defined in 4.12, but also in the pa-

rameter γ itself. The marginal posterior distribution of γ is informative about the areas of the identified

region ΓI where the parameter is more likely. The prior distribution of θ := (θ1, θ2) is obtained from

a Dirichlet process prior for the joint probability distribution Fyz of (Y, Z) denoted by µF , see section

4. The Bayesian hierarchical model is as in (4.13)-(4.14) completed with the specification of a prior

for γ conditional on Fyz: γ|Fyz ∼ µ
Fyz
γ . In our simulation exercise we consider the four specifications

(I)-(IV) for µFyzγ given above with: a0 = min
(
σyz
σzz

,
σyy
σyz

)
, b0 = max

(
σyz
σzz

,
σyy
σyz

)
, c0 = 1, and γ̃1

0 = a0,

γ̃2
0 = b0. Since γ is nonidentified in the full model, but identified in the marginal model, its posterior
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distribution depends on the data only through F . This means that the moments σyz , σzz and σyy in the

prior for γ, computed from the Dirichlet process prior for Fyz are replaced with the posterior means

of σyz , σzz and σyy in the posterior distribution, computed from the posterior of the Dirichlet process

for Fyz .

We generate an n-sample of observations of (Y1, Y2) as in (4.13). The parameters are fixed as

follows: n = 1000, F0 is specified as in (4.14), τ2
0 = 1, σ2

0 = 2, p = 1 and q = 0.5. The true identified

set is ΓI = [1/2, 2].

We draw 1000 times from the marginal prior and posterior distributions of γ. The simulation

scheme is the following: for each 1 ≤ j ≤ 1000, draw F
(j)
yz from the prior µ(Fyz) (resp. the posterior

µ(Fyz|{yi, zi}ni=1)), compute θ(j)
i , i = 1, 2 and draw γ(j) from µ

F
(j)
yz
γ (resp. µF

(j)
yz
γ (γ|F (j)

yz , {yi, zi}ni=1)).

Figure 5 shows the histograms of the marginal prior (in blue) and posterior (in red) distribution of γ.

Each panel corresponds to one of the four specifications for µFyzγ . We see that the marginal posterior

distribution is much more concentrated on the true identified set than the corresponding prior.

6 Conclusions

This paper studies theoretical properties and implementation of the Bayesian approach in various mod-

els that lack identification. As examples of unidentified models, we analyse nonparametric models with

heterogeneity modeled either as a Gaussian process or as a Dirichlet process where the parameter of

interest is the (hyper)parameter of the heterogeneity distribution which is unidentified. We also analyse

unidentified latent variable and partially identified models.

In partially identified models we propose to construct the prior and posterior of the identified set

through the prior and posterior capacity functionals. The prior capacity functional is obtained as the

transformation of a Dirichlet process, so that our approach is completely nonparametric. The proposed

procedure is appealing since, even if the posterior capacity functional has a complicated expression,

simulating from it is simple.

Finally, we discuss models that have some parameters that are identified and others that are not.

For these models, we show that the parameter that is unidentified or partially identified in the full model

is identified in the marginal model.
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(a) γ|Fyz ∼ N (γ0, 1) by discarding the
draws that are not in [θ1, θ2].

(b) γ|Fyz ∼ N (0, 2) truncated to [θ1, θ2]. (c) γ|Fyz ∼ U [EF1(Y1),EF2(Y2)].

(d) γ|Fyz ∼
Beta(EF1(Y1),EF2(Y2), 2, 2).

Figure 5: Linear Regression with errors in Regressors. Histograms of the prior (in blue) and posterior
(in red) probability distributions. The true identified set is ΓI = [1/2, 2].
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