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Abstract

The Poisson distribution assumption often arises in several industrial applica-

tions for modeling defects or non-conformities. In this work, we investigate

the one- and two-sided performance of a new adaptive EWMA (Exponentially

Weighted Moving Average)-type chart for monitoring Poisson count data. An

appropriate discrete-state Markov chain technique is provided to compute the

exact ARL (Average Run Length) properties. Moreover, comparative studies

are conducted to demonstrate the higher sensitivity of the proposed chart in the

detection of shifts with various magnitudes. Advices on how to select the ap-

propriate chart parameters are provided and an illustrative numerical example

is proposed.

Keywords: Adaptive EWMA chart, Poisson Count Data, Markov Chain

1. INTRODUCTION

Control charts have become a key means of ensuring the quality of processes

in the field of SPM (Statistical Process Monitoring). When we deal with dif-

ferent kinds of processes, data can usually be classified as either continuous or

discrete. The corresponding control charts are called as variable or attribute

charts, respectively.
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A variable control chart is commonly used for the monitoring of quality

characteristics which are measured on a continuous scale. For example, the

Shewhart X̄ and the R/S charts are widely employed to detect shifts in the

process mean and variance, respectively. More advanced control charts, like

the EWMA and the CUSUM (Cumulative Sum) charts, that combine the infor-

mation from the beginning up to the current state of the process are expected

to be more sensitive to small shifts than Shewhart-type charts. Specifically,

Capizzi and Masarotto [5] have proposed an adaptive EWMA (AEWMA) chart

in which the smoothing parameter is adjusted based on the difference between

the last AEWMA statistic and the new observation. This adaptive strategy

has proven to be effective in providing additional protection for small and large

shifts simultaneously as well as in compensating the negative effect of inertia,

see Woodall and Mahmoud [28], Reynolds Jr and Stoumbos [12]. Due to the

remarkable adaptability of this AEWMA scheme, it has been investigated by

several researchers, see, for instance, Shu [17], Su et al. [19], Aly et al. [2], Za-

man et al. [31], Haq [9], Mitra et al. [10], Tang et al. [20, 21, 22].

On the other hand, in several applications, the quality characteristics is not a

continuous variable. Such data are widely prevalent in the manufacturing indus-

try, the public health surveillance and the network trafficking, see, for example,

Woodall [29], Weiß [25], Yu et al. [30]. In that case, inspection by attribute is

used due to its simple implementation and low testing cost. Considering the

EWMA-type scheme for monitoring Poisson processes, Gan [7] presented a mod-

ified EWMA scheme, which rounds the EWMA statistic to a whole integer-value

at each step. Furthermore, Borror et al. [3] proposed a new Poisson EWMA

(PEWMA) chart having a superior ARL performance than the Shewhart c and

the Gan’s EWMA charts. For the detection of shifts on a specific direction, Shu

et al. [18] investigated a one-sided Poisson EWMA chart which focuses on the

detection of an increasing rate. An extensive amount of researches has also been

performed on Poisson processes with time varying sampling rate, see Ryan and

Woodall [13], Zhou et al. [32], Shen et al. [16]. A detailed state-of-the-art con-
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cerning control charts for attribute data is included in Woodall [27], Topalidou

and Psarakis [24], Saghir and Lin [15].

It has to be noted that, the use of the classical EWMA scheme (with a

real-valued smoothing parameter λ) or the classical AEWMA scheme (with a

real-valued score function ϕ) for Poisson count data (defined in an integer-valued

domain) will lead to statistics that are no longer integer-valued. In this case,

the calculation of the ARL properties is not reliable since it is not converging

to a stable value based neither on pure simulation techniques nor on a Markov

chain method. If the former approach is clearly dependent on the number of

simulation cycles generated, the second one, unfortunately, is also heavily af-

fected by the level of discretization of the control limit interval. Weiß [26],

Rakitzis et al. [11] and Castagliola et al. [6] have shown that, the ARL results

of the Markov chain method strongly fluctuate because the discrete nature of

this statistic depends on the number of states selected. For this reason, Rak-

itzis et al. [11] proposed a discrete EWMA-type chart with exact run length

properties, denoted as the CEWMA chart, for monitoring Poisson count data.

This CEWMA chart uses two integer-valued parameters (γX , γZ), instead of the

classical real smoothing parameter λ, to allocate the weight of past observations.

The main motivation of this work is that, there are few adaptive EWMA-type

attribute charts for monitoring discrete data (compared to adaptive EWMA-

type variable charts). In this paper, we study the one- and two-sided statistical

performance of a discrete AEWMA chart for monitoring Poisson count data. An

appropriate Markov chain technique is also developed to guarantee exact run

length properties for this scheme. The rest of the paper is organized as follows.

In Section 2, the CEWMA chart is reviewed and our proposed CAEWMA chart

is introduced. Section 3 introduces an appropriate discrete-state Markov chain

methodology and Section 4 presents a detailed procedure for the optimal design

of the CAEWMA scheme. Section 5 evaluates the performance of the CEWMA

and the CAEWMA charts for detecting a wide range of shifts in the process
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mean. A numerical example is presented in Section 6 to illustrate the application

of this new chart. Concluding remarks are drawn in Section 7.

2. THE CAEWMA CONTROL CHART

Suppose that {Xt, t = 1, 2, . . .} are the number of non-conformities in a unit

which are assumed to follow a Poisson distribution with mean θ. By definition,

the p.m.f. (probability mass function) of Xt is equal to

fp(x|θ) =
e−θθx

x!
, x = 0, 1, 2, . . . . (1)

The process is said to be in-control if θ = θ0 and it is out-of-control if θ = θ1 6=

θ0. When θ1 > θ0, it corresponds to an upward shift in the process mean. Of

course, we need to detect this kind of shift as soon as possible and make adjust-

ments to return the system to its normal state. On the other hand, a downward

shift (0 < θ1 < θ0) reflects the decrease in the number of non-conformities.

Modern SPM methods also emphasize the monitoring of this kind of shift as

soon as possible since any beneficial preventive interventions and strategies to

the process may be worth of interest.

The classical continuous EWMA chart is defined as Zt = (1−λ)Zt−1 +λXt,

where λ ∈ (0, 1] is a real-valued smoothing parameter. However, note that, when

applying this EWMA chart to monitor discrete count data, the ARL properties,

obtained based on the Markov Chain approach presented in Brook and Evans [4],

are known to not strictly monotonically converge with the increase in the number

of Markov chain states. The same fact has also been emphasized in Weiß [26].

At this point, Rakitzis et al. [11] proposed a CEWMA monitoring technique for

count data, in which not only the observations but also the smoothing constants

(γX , γZ) and the EWMA statistic Zt are all integers. The CEWMA statistics

are defined as follows:

Zt =

⌊
γXXt + γZZt−1 +Rt−1

γX + γZ

⌋
, (2)

Rt = γXXt + γZZt−1 +Rt−1 − (γX + γZ)Zt, (3)
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where γX and γZ are two positive integer-valued parameters, b. . .c denotes a

rounded down integer (e.g. b1.5c = 1). By definition, Zt corresponds to the

quotient of the Euclidean division and Rt ∈ {0, 1, . . . , γX + γZ − 1} is the

remainder of this division. Please note that these R1, R2, . . . values are only

recorded but will not be used for monitoring. The monitored statistics are only

the values Z1, Z2, . . ., and (2) and (3) can be rewritten as

(γX + γZ)Zt +Rt = γXXt + γZZt−1 +Rt−1. (4)

This CEWMA chart is optimally designed to detect a specific shift magnitude

by adjusting the relative value of γX and γZ . More weight can be given to

past observations when the ratio γX/(γX + γZ) gets smaller, thus allowing a

better sensitivity to the detection of small shifts. Otherwise, large values of

γX/(γX + γZ) must be used to quickly detect large shifts. However, it is quite

difficult to pre-determine the exact magnitude of shifts occurring in practice. A

natural option is to find a potential tendency presented in the data and then to

dynamically adjust the weight coefficient according to the predicted difference.

Therefore, we suggest the following adaptive EWMA (denoted as CAEWMA)

scheme proposed in Tang et al. [23] for count data:

Zt =

⌊
ϕ(Xt − Zt−1) + (γX + γZ)Zt−1 +Rt−1

γX + γZ

⌋
, (5)

Rt = ϕ(Xt − Zt−1) + (γX + γZ)Zt−1 +Rt−1 − (γX + γZ)Zt, (6)

where ϕ(et) = ϕ(Xt−Zt−1) is a score function. If we define Ct
def
= (γX+γZ)Zt+

Rt then (5) and (6) can be rewritten as

(γX + γZ)Zt +Rt︸ ︷︷ ︸ = ϕ(et) + (γX + γZ)Zt−1 +Rt−1︸ ︷︷ ︸,
Ct Ct−1

(7)

where the initial values for Zt and Rt are fixed as Z0 = z0 and R0 = r0. So, at

time t, when the Xt, Zt−1, Rt−1 values as well as the score function ϕ(et) are

fixed, we can uniquely get the values of Zt and Rt. It goes without saying that

the error terms et between Xt and Zt−1 have to be also integers, so a new score
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function is defined as

ϕ(e) =


e(γX + γZ) + γZk if e < −k

eγX if |e| ≤ k

e(γX + γZ)− γZk if e > k

, (8)

where k is also a positive integer-valued parameter. As mentioned in Capizzi and

Masarotto [5], when we construct the score function, the following conditions

need to be met:

i) ϕ(e) must be monotone increasing;

ii) if k → ∞ and we have ϕ(e) = eγX and (7) becomes (γX + γZ)Zt + Rt =

γXXt+γZZt−1 +Rt−1, which agrees with the CEWMA scheme in Rakitzis

et al. [11];

iii) if k = 0, we have ϕ(e) = e(γX + γZ) and (7) reduces to a Shewhart-type

scheme.

The process is said to be out-of-control whenever Zt < hL or Zt > hU , where

hL ∈ {1, 2, . . . } and hU ∈ {hL, hL + 1, . . . } are the integer-valued lower and

upper control limits, respectively.

3. RUN LENGTH PROPERTIES

The RL (Run length) properties are the most widely used indicator for eval-

uating control charts. It represents the number of sample points drawn before

the control chart signals, i.e. RL = inf{t ≥ 1|Zt < hL or Zt > hU}. In this pa-

per, we proposed a discrete-state Markov chain method to exactly calculate the

RL properties of the CAEWMA chart. At time t− 1, the set of Markov states

are defined as ct−1 = (γX + γZ)zt−1 + rt−1. As zt−1 ∈ {hL, hL + 1, . . . , hU} and

rt−1 ∈ {0, 1, . . . , γX + γZ − 1}, the minimum and the maximum values of ct−1

are

cmin = (γX + γZ)hL, (9)

cmax = (γX + γZ)(hU + 1)− 1, (10)
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respectively. So, at time t − 1, all the discrete states are ct−1 ∈ {cmin, cmin +

1, . . . , cmax}, and the total number of states is m+ 1 = cmax − cmin + 1. When

the state ct−1 moves to the state ct = (γX + γZ)zt + rt, the score ϕ(et) needs to

satisfy ct = ϕ(et) + ct−1 ∈ {cmin, cmin + 1, . . . , cmax}. Since ϕ(et) is monotone

increasing in et, the allowable values of xt ≥ 0 must simultaneously satisfy(γX + γZ)(xt −
⌊

ct−1

γX+γZ

⌋
) + kγZ + ct−1 ≥ cmin if et < −k,

γX(xt −
⌊

ct−1

γX+γZ

⌋
) + ct−1 ≥ cmin if |e| ≤ k,

(11)

and (γX + γZ)(xt −
⌊

ct−1

γX+γZ

⌋
)− kγZ + ct−1 ≤ cmax if et > k,

γX(xt −
⌊

ct−1

γX+γZ

⌋
) + ct−1 ≤ cmax if |e| ≤ k,

(12)

from which we obtain the minimum xmin and the maximum xmax values as

xmin = max

(
0,

⌈
cmin − ct−1 − kγZ

γX + γZ

⌉
+

⌊
ct−1

γX + γZ

⌋
,

⌈
cmin − ct−1

γX

⌉
+

⌊
ct−1

γX + γZ

⌋)
,

(13)

xmax = min

(⌊
cmax − ct−1 + kγZ

γX + γZ

⌋
+

⌊
ct−1

γX + γZ

⌋
,

⌊
cmax − ct−1

γX

⌋
+

⌊
ct−1

γX + γZ

⌋)
,

(14)

where d. . .e denotes a rounded up integer.

Now, the transition probabilities qi,j of going from one state to another can

be calculated using the following steps:
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Given n, hL, hU , γX , γZ , k

cmin ← (γX + γZ)hL

cmax ← (γX + γZ)(hU + 1)− 1

m← cmax − cmin

For i = 0, 1, . . . ,m

ct−1 ← i+ cmin

zt−1 ←
⌊

ct−1

γX+γZ

⌋
xmin ← max

(
0,
⌈
cmin−ct−1−kγZ

γX+γZ

⌉
+
⌊

ct−1

γX+γZ

⌋
,
⌈
cmin−ct−1

γX

⌉
+
⌊

ct−1

γX+γZ

⌋)
xmax ← min

(⌊
cmax−ct−1+kγZ

γX+γZ

⌋
+
⌊

ct−1

γX+γZ

⌋
,
⌊
cmax−ct−1

γX

⌋
+
⌊

ct−1

γX+γZ

⌋)
For xt = xmin, xmin + 1, . . . , xmax

et ← xt − zt−1

If et < −k

ϕ(et)← (γX + γZ)et + kγZ

Else if et > k

ϕ(et)← (γX + γZ)et − kγZ
Else −k ≤ et ≤ k

ϕ(et)← γXet

End If

zt ←
⌊
ϕ(et)+ct−1

γX+γZ

⌋
rt ← ϕ(et) + ct−1 − (γX + γZ)zt

j ← (γX + γZ)zt + rt − cmin

qi,j ← fp(xt|θ)

End For

End For

Let Q be the (m+ 1,m+ 1) transition matrix containing all of the probabil-

ities qi,j , and let s be the initial probability vector represented by a (m + 1, 1)

vector s = (s0, s1, . . . , sm), where s contains the probabilities that the Markov

chain starts in a given state. We will set 1 in the entry corresponding to

(γX + γZ)Z0 + r0 and zeros in the remaining ones. For example, If z0 = bθ0c

and r0 = 0, the entry s(γX+γZ)bθ0c+r0 = 1 and si = 0 for i 6= (γX +γZ)bθ0c+r0.
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The mean value ARL = E(RL), as well as the standard deviation SDRL =

σ(RL) can be easily obtained as

ARL = sᵀ(I−Q)−11, (15)

SDRL =

√
2sᵀ(I−Q)−2Q1−ARL2 + ARL. (16)

where I is the (m+ 1,m+ 1) identity matrix and 1 is a (m+ 1, 1) vector of 1’s.

4. DESIGN OF THE CAEWMA SCHEME

When there is an objective of detecting a shift in a particular direction (ei-

ther upward or downward), one-sided schemes could be straightforwardly adapt-

ed from the two-sided situation. For the upper-sided chart, hL = 0 is set, and

it results in cmin = 0 and cmax = m. Analogously, for the lower-sided case, an

upper restriction hU = A will be picked to prevent the statistic Zt from shifting

to infinity.

Next, we provide a procedure for the design of the proposed CAEWMA

scheme, in which the statistical performances are evaluated in terms of the

ARL. Usually, the same ARL0 value is taken when the process is in-control,

and when the process is out-of-control, the smaller the out-of-control ARL1

value, the better the performance of control charts. Due to the discreteness

of the monitoring statistic Zt, ARL(hL, hU , γX , γZ , k, θ0) = ARL0 cannot be

exactly attained. Therefore, to satisfy ARL(hL, hU , γX , γZ , k, θ0) ≈ ARL0, only

the combinations of (hL, hU , γX , γZ , k, θ0) with a ARL value close to the design

one, i.e.
∣∣∣ARL(hL,hU ,γX ,γZ ,k,θ0)−ARL0

ARL0

∣∣∣ ≤ ζ, will be considered, where ζ is a

pre-determined threshold.

• For the upper-sided CAEWMA chart, we suggest to find parameters (hU , γX , γZ , k)
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giving an optimal performance for detecting a range of shifts:

Min EARL(hU , γX , γZ , k,Ω), (17)

s.t. ARL(hU , γX , γZ , k, θ0) ≈ ARL0, (18)

where

EARL =

∫
Ω

f(θ1)ARL(hU , γX , γZ , k, θ1)dθ1, (19)

and Ω is assumed to be a uniform distribution for the mean shift U [θ1min, θ1max]

with f(θ1) = 1
θ1max−θ1min

.

• For the two-sided CAEWMA chart, one important problem that must

be taken into account is that the ARL0 value is not always larger than

the corresponding ARL1 values. Inspired by Su et al. [19], a two-steps

searching procedure is recommended:

1. For a desired ARL0 value, find the optimal combination of (γX , γZ)

for the CEWMA chart, which gives a minimum ARL1 value at θ1min.

Some of these combinations could be found in Rakitzis et al. [11].

2. Based on the same (γX , γZ) value obtained in Step 2, for the CAEW-

MA chart, find an optimal k value having the minimum ARL1 value

at θ1max subject to ARL(hL, hU , γX , γZ , k, θ0) ≈ ARL0.

5. PERFORMANCE COMPARISONS

Since it is quite difficult to predict the magnitude and direction of shifts

occurring in practice, Han and Tsung [8] recommended using the RMI (Relative

Mean Index) to evaluate the global performance of control charts, which is

defined as follows:

RMI(I) =
1

N

N∑
i=1

(
ARL(I, θ

(i)
1 )−ARL∗(θ

(i)
1 )

ARL∗(θ
(i)
1 )

)
, (20)

where ARL(I, δ(i)) is the ARL value for a particular chart I for the shift θ1(i),

and among these comparative charts I = 1, 2, . . . , ARL∗(θ
(i)
1 ) denotes the the
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minimum ARL value when detecting θ
(i)
1 . Here, a discrete uniform distribution

for the shift θ1 is assumed, for example, when θ0 = 8, consider upward shifts

θ1 ∈ {9, 10, . . . , 20}, θ(i)
1 denotes the ith shift, i.e. θ

(1)
1 = 9, θ

(2)
1 = 10, . . . , θ

(12)
1 =

20), and the total number of shifts in this example is N = 12. Obviously, the

smaller the value of RMI(I), the better the performance of the proposed chart.

We have compared the CAEWMA chart with the CEWMA chart proposed

in Rakitzis et al. [11]. From Tables 1 to 6, we can draw the following conclusions:

• It can be seen that, when designing the CEWMA charts, a small ’smooth-

ing ratio’ γX/(γX + γZ) value is effective for detecting small shifts, and

a large one is effective for larger shifts. Therefore, for a single CEWMA

control chart, it is difficult to balance the overall performance for different

shift sizes, at the same time. Taking the upper-sided case as an example,

in Table 1, if the CEWMA chart, with (γX , γZ) = (1, 83), can be efficient

in the detection of small shifts (e.g. θ1 = 9), it is unfortunately insensitive

to moderate or large ones (e.g. θ1 > 12).

• For a specified in-control ARL0 = 1000, Table 1 and 2 compare the

performance for upper-sided shifts in the Poisson mean θ0 ∈ {8, 12}.

Note that, according to Rakitzis et al. [11], the optimal combination

(γX , γZ) = (1, 83) of the CEWMA chart could help in detecting small

shifts θ1 ∈ {9, 10} (when θ0 = 8) faster. However, based on the results

shown in Table 1, the CAEWMA chart always has the minimum ARL1

for θ1 ∈ {9, 10, 11, 12}. The same case can also be observed in Table 2,

when θ0 = 12, the CAEWMA chart has the minimum ARL1 = 2.1 value

for θ1 = 24 compared with the optimal ARL1 = 2.2 obtained with the

CEWMA chart.

• For the lower-sided case in Table 3, when θ0 = 16, note that the CEWMA

chart with (γX , γZ) = (3, 28) is the only optimally recommended combi-

nation in Rakitzis et al. [11] for all shift sizes. However, the comparison

reveals that the CAEWMA chart has a higher detection probability for
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decreasing shifts θ1 ∈ {15, 14, 13, 12} and θ1 ∈ {5, 4, 3} while, for shifts

θ1 ∈ {10, 9, 8, 7}, the differences between these two schemes are negligible.

The advantage of the CAEWMA chart in detecting different shift sizes is

also fully verified in terms of the RMI performance. For example, when

θ0 = 20 in Table 4, the CAEWMA chart gives the minimum RMI = 0.206

value compared with all CEWMA charts.

• For the two-sided case in Tables 5 and 6, it is interesting to note when

similar values of γX and γZ are selected, the CAEWMA chart guards

against small and large shifts more effectively than the CEWMA chart.

For example, in Table 5, when compared with the CEWMA chart with

γX = 5 and γZ = 37, the CAEWMA chart with γX = 5 and γZ =

38 provides a slightly worse performance for detecting increasing shifts

θ1 ∈ {22, 24, 26}, but better performance for detecting decreasing shifts

θ1 ∈ {18, 16, 14, 12} and increasing shifts θ1 ∈ {30, 35, 40}. In Table 6,

when γX = 1 and γZ = 15, there is no loss in the efficiency for the

ARL1 in detecting decreasing shifts θ1 ∈ {18, 16, . . . , 6}, however, the

CAEWMA chart performs better in the detection of increasing shifts θ1 ∈

{22, 24, . . . , 40} compared to the CEWMA chart.

To sum up, it is shown that the CAEWMA chart outperforms the CEWMA

chart in terms of the out-of-control ARL1 and RMI to efficiently detect both

small and large shifts. As the practitioner has usually no clear idea about the

actual magnitude of potential shifts, we recommend the use of the CAEWMA

chart for practical purposes.

(Please Insert Tables 1 to 6 Here)

6. AN ILLUSTRATIVE EXAMPLE

The implementation of the proposed CAEWMA chart is illustrated with an

example from the traffic flow monitoring. Based on historical data, the number

Xt of vehicles passing every minute in a particular section of the road follows a
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Poisson distribution with in-control mean θ0 = 12. We actually have two data

sets recording the number of vehicles passing in a certain section of the road

• in the morning period 8 : 00− 9 : 00 (Table 7),

• in the afternoon period 17 : 00− 18 : 00 (Table 8).

For comparison, two upper-sided CEWMA charts are also implemented for

the same date sets. The desired ARL0 = 1000 value is fixed, and based on Rak-

itzis et al. [11], the optimal combinations (hU , γX , γZ) = (13, 1, 19) and (16, 2, 5)

of the CEWMA charts (denoted as CEWMA-1 and CEWMA-2, respectively)

are considered here. Concerning the CAEWMA chart, the unique optimal com-

bination is obtained to be (hU , γX , γZ , k) = (15, 3, 14, 12).

All results are presented in Figures 1 and 2. For the morning case (Table

7), the CAEWMA and CEWMA-1 charts give an out-of-control signal at the

38th observation. It indicates that the traffic congestion caused by the morning

peak occurred around 8 : 38. While, no point exceeds the control limit in the

CEWMA-2 chart, so no alarm is issued. For the afternoon case (Table 8), both

the CAEWMA and CEWMA-2 charts find anomalies at the 23th observation

and the CEWMA-1 chart signals at the 26th observation. It indicates that the

traffic congestion caused by the afternoon peak occurred around 17 : 23. In

short, the CAEWMA chart is not only as effective as the CEWMA-1 chart

when the shift size is small, but it is also as effective as the CEWMA-2 chart

for large shifts.

(Please Insert Figures 1 and 2 Here)

7. CONCLUSIONS

In this work, we have extended the AEWMA scheme to the monitoring of

Poisson count data. An appropriate Markov chain technique has been developed

to guarantee exact ARL results for discrete statistics, without approximation.

Particularly, to enhance its detection capability for asymmetric distribution,
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an in-depth study for the one- and two-sided cases have been performed. The

one-sided CAEWMA scheme is recommended when shifts toward a particular

side are definitely more significant than toward the opposite one. The two-sided

CAEWMA scheme should be used when shifts toward either side are equally

important. The comparative results support the fact that the CAEWMA chart

is able to provide a more balanced detection property against shifts of different

magnitudes than the CEWMA chart in both one- and two-sided conditions.

Therefore, this scheme is worth to be considered when the exact size of the shift

cannot be pre-determined.
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Table 1: Comparisons of the CEWMA and CAEWMA charts, upper-sided case, ARL0 = 1000

and θ0 = 8

θ CEWMA CAEWMA

8 995.1 987.8 1011.6 1008.8

9 83.7 125.7 154.5 75.8

10 42.7 32.0 40.8 21.4

11 28.7 13.4 16.3 11.1

12 21.7 7.7 8.7 7.4

13 17.4 5.2 5.6 5.6

14 14.6 4.0 4.1 4.5

15 12.6 3.2 3.2 3.7

16 11.1 2.7 2.7 3.2

17 9.9 2.4 2.3 2.8

18 8.9 2.1 2.0 2.5

19 8.2 1.9 1.8 2.2

20 7.5 1.8 1.7 1.9

21 7.0 1.6 1.5 1.8

RMI 2.542 0.129 0.207 0.119

hL 0 0 0 0

hU 8 12 13 10

γX 1 4 6 8

γY 83 7 7 43

k 13
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Table 2: Comparisons of the CEWMA and CAEWMA charts, upper-sided case, ARL0 = 1000

and θ0 = 12

θ CEWMA CAEWMA

12 1016.0 1032.0 1008.3 1009.3

13 74.5 92.0 151.5 135.0

14 28.1 27.7 41.2 35.8

15 17.0 14.7 17.6 16.3

16 12.2 9.9 10.0 9.9

17 9.6 7.4 6.8 7.0

18 7.9 6.0 5.1 5.4

19 6.7 5.1 4.1 4.4

20 5.9 4.4 3.5 3.7

21 5.2 3.9 3.0 3.1

22 4.7 3.5 2.7 2.7

23 4.3 3.2 2.4 2.4

24 4.0 2.9 2.2 2.1

25 3.7 2.7 2.0 1.9

RMI 0.523 0.210 0.141 0.113

hL 0 0 0 0

hU 13 14 16 15

γX 1 1 2 3

γY 19 8 5 14

k 12

19



Table 3: Comparisons of the CEWMA and CAEWMA charts, lower-sided case, ARL0 = 1000

and θ0 = 16

θ CEWMA CAEWMA

16 879.0 1015.0 934.8 1010.2

15 131.4 100.2 66.6 68.6

14 35.3 27.6 21.6 21.8

13 15.1 13.4 12.1 12.1

12 8.7 8.6 8.3 8.3

11 6.0 6.3 6.4 6.3

10 4.5 5.0 5.2 5.1

9 3.7 4.1 4.4 4.3

8 3.1 3.5 3.8 3.7

7 2.7 3.1 3.4 3.2

6 2.4 2.8 3.1 2.8

5 2.2 2.5 2.8 2.4

4 2.0 2.2 2.6 2.0

3 2.0 2.1 2.3 1.5

RMI 0.172 0.175 0.177 0.079

hL 13 14 15 15

hU 30 30 30 30

γX 3 3 3 5

γY 13 28 68 114

k 12
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Table 4: Comparisons of the CEWMA and CAEWMA charts, lower-sided case, ARL0 = 1000

and θ0 = 20

θ CEWMA CAEWMA

20 993.9 1207.2 1005.1 1002.8

19 285.4 123.1 78.2 79.1

18 95.1 34.3 26.0 26.1

17 38.0 16.7 14.6 14.6

16 18.1 10.7 10.0 10.0

15 10.2 7.8 7.7 7.7

14 6.6 6.1 6.2 6.2

13 4.7 5.1 5.2 5.2

12 3.6 4.4 4.5 4.5

11 2.9 3.8 4.0 4.0

10 2.5 3.4 3.6 3.5

9 2.2 3.1 3.3 3.2

8 1.9 2.9 3.1 2.9

7 1.7 2.6 2.9 2.6

RMI 0.625 0.274 0.233 0.206

hL 14 18 19 19

hU 30 30 30 30

γX 3 3 2 1

γY 4 35 55 27

k 15
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Table 5: Comparisons of the CEWMA and CAEWMA charts, two-sided case, ARL0 = 1000

and θ0 = 20

θ CEWMA CAEWMA

6 2.4 2.0 1.9 2.4

8 2.9 2.2 2.1 2.9

10 3.6 2.8 2.6 3.6

12 4.7 3.9 3.6 4.6

14 6.9 6.6 5.9 6.8

16 13.5 16.9 14.0 13.2

18 62.4 100.8 70.9 58.2

20 1017.2 1000.3 982.8 1000.0

22 50.2 110.4 335.9 53.2

24 14.7 21.1 42.2 15.2

26 8.3 8.8 13.3 8.4

28 5.8 5.4 7.0 5.8

30 4.5 3.9 4.7 4.3

35 3.0 2.4 2.7 2.5

40 2.3 1.8 2.0 1.9

RMI 0.168 0.220 0.656 0.131

hL 17 15 15 17

hU 23 26 27 23

γX 5 7 3 5

γY 37 17 7 38

k 17
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Table 6: Comparisons of the CEWMA and CAEWMA charts, two-sided case, ARL0 = 1500

and θ0 = 20

θ CEWMA CAEWMA

6 3.0 2.1 2.2 3.0

8 3.5 2.4 2.7 3.5

10 4.2 3.0 3.4 4.2

12 5.4 4.1 4.7 5.4

14 7.7 6.3 8.1 7.7

16 13.5 13.7 22.4 13.5

18 47.0 70.7 191.8 47.0

20 1520.4 1495.6 1517.1 1504.0

22 50.1 142.9 85.0 50.0

24 17.2 23.2 17.9 17.2

26 10.4 10.0 8.3 10.3

28 7.5 6.3 5.3 7.4

30 5.9 4.6 3.9 5.7

35 3.9 2.9 2.5 3.5

40 3.6 2.2 1.9 2.2

RMI 0.319 0.258 0.373 0.249

hL 18 16 15 18

hU 22 25 25 22

γX 1 6 7 1

γY 15 25 23 15

k 21
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Table 7: Data sets for the morning period 8 : 00− 9 : 00

t Xt t Xt t Xt

1 13 21 2 41 10

2 15 22 11 42 19

3 15 23 10 43 16

4 12 24 10 44 14

5 12 25 20 45 14

6 9 26 22 46 8

7 16 27 10 47 19

8 15 28 12 48 14

9 11 29 19 49 13

10 8 30 15 50 15

11 10 31 9 51 13

12 17 32 14 52 11

13 6 33 15 53 15

14 12 34 10 54 15

15 20 35 22 55 16

16 17 36 17 56 15

17 14 37 16 57 15

18 11 38 17 58 12

19 8 39 15 59 12

20 14 40 10 60 11
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Table 8: Data sets for the afternoon period 17 : 00− 18 : 00

t Xt t Xt t Xt

1 17 21 14 41 19

2 7 22 19 42 20

3 10 23 26 43 20

4 10 24 18 44 26

5 10 25 21 45 20

6 12 26 28 46 22

7 16 27 31 47 23

8 10 28 20 48 21

9 16 29 16 49 24

10 6 30 18 50 25

11 15 31 12 51 16

12 5 32 20 52 25

13 14 33 21 53 21

14 13 34 11 54 16

15 13 35 24 55 20

16 16 36 16 56 23

17 8 37 25 57 22

18 14 38 17 58 18

19 13 39 19 59 23

20 7 40 23 60 24
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Figure 1: Control charts applied to the morning period 8 : 00− 9 : 00
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Figure 2: Control charts applied to the afternoon period 17 : 00− 18 : 00
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