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The Poisson distribution assumption often arises in several industrial applications for modeling defects or non-conformities. In this work, we investigate the one-and two-sided performance of a new adaptive EWMA (Exponentially Weighted Moving Average)-type chart for monitoring Poisson count data. An appropriate discrete-state Markov chain technique is provided to compute the exact ARL (Average Run Length) properties. Moreover, comparative studies are conducted to demonstrate the higher sensitivity of the proposed chart in the detection of shifts with various magnitudes. Advices on how to select the appropriate chart parameters are provided and an illustrative numerical example is proposed.

INTRODUCTION

Control charts have become a key means of ensuring the quality of processes in the field of SPM (Statistical Process Monitoring). When we deal with different kinds of processes, data can usually be classified as either continuous or discrete. The corresponding control charts are called as variable or attribute charts, respectively.

A variable control chart is commonly used for the monitoring of quality characteristics which are measured on a continuous scale. For example, the Shewhart X and the R/S charts are widely employed to detect shifts in the process mean and variance, respectively. More advanced control charts, like the EWMA and the CUSUM (Cumulative Sum) charts, that combine the information from the beginning up to the current state of the process are expected to be more sensitive to small shifts than Shewhart-type charts. Specifically, Capizzi and Masarotto [START_REF] Capizzi | An adaptive exponentially weighted moving average control chart[END_REF] have proposed an adaptive EWMA (AEWMA) chart in which the smoothing parameter is adjusted based on the difference between the last AEWMA statistic and the new observation. This adaptive strategy has proven to be effective in providing additional protection for small and large shifts simultaneously as well as in compensating the negative effect of inertia, see Woodall and Mahmoud [START_REF] Woodall | The inertial properties of quality control charts[END_REF], Reynolds Jr and Stoumbos [START_REF] Jr | Comparisons of some exponentially weighted moving average control charts for monitoring the process mean and variance[END_REF]. Due to the remarkable adaptability of this AEWMA scheme, it has been investigated by several researchers, see, for instance, Shu [START_REF] Shu | An adaptive exponentially weighted moving average control chart for monitoring process variances[END_REF], Su et al. [START_REF] Su | Adaptive EWMA procedures for monitoring processes subject to linear drifts[END_REF], Aly et al. [START_REF] Aly | A reevaluation of the adaptive exponentially weighted moving average control chart when parameters are estimated[END_REF], Zaman et al. [START_REF] Zaman | An Adaptive EWMA Scheme-Based CUSUM Accumulation Error for Efficient Monitoring of Process Location[END_REF], Haq [START_REF] Haq | A New Adaptive EWMA Control Chart for Monitoring the Process Dispersion[END_REF], Mitra et al. [START_REF] Mitra | An Adaptive Exponentially Weighted Moving Average-Type Control Chart to Monitor the Process Mean[END_REF], Tang et al. [START_REF] Tang | An adaptive exponentially weighted moving average chart for the mean with variable sampling intervals[END_REF][START_REF] Tang | The effect of measurement errors on the adaptive EWMA X chart[END_REF][START_REF] Tang | Optimal design of the adaptive EWMA chart for the mean based on median run length and expected median run length[END_REF].

On the other hand, in several applications, the quality characteristics is not a continuous variable. Such data are widely prevalent in the manufacturing industry, the public health surveillance and the network trafficking, see, for example, Woodall [START_REF] Woodall | The use of control charts in health-care and publichealth surveillance[END_REF], Weiß [START_REF] Weiß | Controlling correlated processes of Poisson counts[END_REF], Yu et al. [START_REF] Yu | Using EWMA control schemes for monitoring wafer quality in negative binomial process[END_REF]. In that case, inspection by attribute is used due to its simple implementation and low testing cost. Considering the EWMA-type scheme for monitoring Poisson processes, Gan [START_REF] Gan | Monitoring Poisson observations using modified exponentially weighted moving average control charts[END_REF] presented a modified EWMA scheme, which rounds the EWMA statistic to a whole integer-value at each step. Furthermore, Borror et al. [START_REF] Borror | Poisson EWMA control charts[END_REF] proposed a new Poisson EWMA (PEWMA) chart having a superior ARL performance than the Shewhart c and the Gan's EWMA charts. For the detection of shifts on a specific direction, Shu et al. [START_REF] Shu | Exponentially weighted moving average control charts for monitoring increases in Poisson rate[END_REF] investigated a one-sided Poisson EWMA chart which focuses on the detection of an increasing rate. An extensive amount of researches has also been performed on Poisson processes with time varying sampling rate, see Ryan and Woodall [START_REF] Ryan | Control charts for Poisson count data with varying sample sizes[END_REF], Zhou et al. [START_REF] Zhou | Likelihood-based EWMA charts for monitoring Poisson count data with time-varying sample sizes[END_REF], Shen et al. [START_REF] Shen | Monitoring Poisson count data with probability control limits when sample sizes are time varying[END_REF]. A detailed state-of-the-art con-cerning control charts for attribute data is included in Woodall [START_REF] Woodall | Control charts based on attribute data: bibliography and review[END_REF], Topalidou and Psarakis [START_REF] Topalidou | Review of multinomial and multiattribute quality control charts[END_REF], Saghir and Lin [START_REF] Saghir | Control charts for dispersed count data: an overview[END_REF]. It has to be noted that, the use of the classical EWMA scheme (with a real-valued smoothing parameter λ) or the classical AEWMA scheme (with a real-valued score function ϕ) for Poisson count data (defined in an integer-valued domain) will lead to statistics that are no longer integer-valued. In this case, the calculation of the ARL properties is not reliable since it is not converging to a stable value based neither on pure simulation techniques nor on a Markov chain method. If the former approach is clearly dependent on the number of simulation cycles generated, the second one, unfortunately, is also heavily affected by the level of discretization of the control limit interval. Weiß [START_REF] Weiß | EWMA monitoring of correlated processes of Poisson counts[END_REF],

Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF] and Castagliola et al. [START_REF] Castagliola | An EWMA-Type Sign Chart with Exact Run Length Properties[END_REF] have shown that, the ARL results of the Markov chain method strongly fluctuate because the discrete nature of this statistic depends on the number of states selected. For this reason, Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF] proposed a discrete EWMA-type chart with exact run length properties, denoted as the CEWMA chart, for monitoring Poisson count data. This CEWMA chart uses two integer-valued parameters (γ X , γ Z ), instead of the classical real smoothing parameter λ, to allocate the weight of past observations. The main motivation of this work is that, there are few adaptive EWMA-type attribute charts for monitoring discrete data (compared to adaptive EWMAtype variable charts). In this paper, we study the one-and two-sided statistical performance of a discrete AEWMA chart for monitoring Poisson count data. An appropriate Markov chain technique is also developed to guarantee exact run length properties for this scheme. The rest of the paper is organized as follows.

In Section 2, the CEWMA chart is reviewed and our proposed CAEWMA chart is introduced. Section 3 introduces an appropriate discrete-state Markov chain methodology and Section 4 presents a detailed procedure for the optimal design of the CAEWMA scheme. Section 5 evaluates the performance of the CEWMA and the CAEWMA charts for detecting a wide range of shifts in the process mean. A numerical example is presented in Section 6 to illustrate the application of this new chart. Concluding remarks are drawn in Section 7.

THE CAEWMA CONTROL CHART

Suppose that {X t , t = 1, 2, . . .} are the number of non-conformities in a unit which are assumed to follow a Poisson distribution with mean θ. By definition, the p.m.f. (probability mass function) of X t is equal to

f p (x|θ) = e -θ θ x x! , x = 0, 1, 2, . . . . (1) 
The process is said to be in-control if θ = θ 0 and it is out-of-control if θ = θ 1 = θ 0 . When θ 1 > θ 0 , it corresponds to an upward shift in the process mean. Of course, we need to detect this kind of shift as soon as possible and make adjustments to return the system to its normal state. On the other hand, a downward shift (0 < θ 1 < θ 0 ) reflects the decrease in the number of non-conformities.

Modern SPM methods also emphasize the monitoring of this kind of shift as soon as possible since any beneficial preventive interventions and strategies to the process may be worth of interest.

The classical continuous EWMA chart is defined as

Z t = (1 -λ)Z t-1 + λX t ,
where λ ∈ (0, 1] is a real-valued smoothing parameter. However, note that, when applying this EWMA chart to monitor discrete count data, the ARL properties, obtained based on the Markov Chain approach presented in Brook and Evans [START_REF] Brook | An approach to the probability distribution of CUSUM run length[END_REF], are known to not strictly monotonically converge with the increase in the number of Markov chain states. The same fact has also been emphasized in Weiß [START_REF] Weiß | EWMA monitoring of correlated processes of Poisson counts[END_REF].

At this point, Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF] proposed a CEWMA monitoring technique for count data, in which not only the observations but also the smoothing constants (γ X , γ Z ) and the EWMA statistic Z t are all integers. The CEWMA statistics are defined as follows:

Z t = γ X X t + γ Z Z t-1 + R t-1 γ X + γ Z , (2) 
R t = γ X X t + γ Z Z t-1 + R t-1 -(γ X + γ Z )Z t , (3) 
where γ X and γ Z are two positive integer-valued parameters, . . . denotes a rounded down integer (e.g. 1.5 = 1). By definition, Z t corresponds to the quotient of the Euclidean division and R t ∈ {0, 1, . . . , γ X + γ Z -1} is the remainder of this division. Please note that these R 1 , R 2 , . . . values are only recorded but will not be used for monitoring. The monitored statistics are only the values Z 1 , Z 2 , . . ., and ( 2) and ( 3) can be rewritten as

(γ X + γ Z )Z t + R t = γ X X t + γ Z Z t-1 + R t-1 . (4) 
This CEWMA chart is optimally designed to detect a specific shift magnitude by adjusting the relative value of γ X and γ Z . More weight can be given to past observations when the ratio γ X /(γ X + γ Z ) gets smaller, thus allowing a better sensitivity to the detection of small shifts. Otherwise, large values of γ X /(γ X + γ Z ) must be used to quickly detect large shifts. However, it is quite difficult to pre-determine the exact magnitude of shifts occurring in practice. A natural option is to find a potential tendency presented in the data and then to dynamically adjust the weight coefficient according to the predicted difference.

Therefore, we suggest the following adaptive EWMA (denoted as CAEWMA) scheme proposed in Tang et al. [START_REF] Tang | A new nonparametric adaptive EWMA control chart with exact run length properties[END_REF] for count data:

Z t = ϕ(X t -Z t-1 ) + (γ X + γ Z )Z t-1 + R t-1 γ X + γ Z , (5) 
R t = ϕ(X t -Z t-1 ) + (γ X + γ Z )Z t-1 + R t-1 -(γ X + γ Z )Z t , (6) 
where 5) and ( 6) can be rewritten as

ϕ(e t ) = ϕ(X t -Z t-1 ) is a score function. If we define C t def = (γ X +γ Z )Z t + R t then (
(γ X + γ Z )Z t + R t = ϕ(e t ) + (γ X + γ Z )Z t-1 + R t-1 , C t C t-1 (7) 
where the initial values for Z t and R t are fixed as Z 0 = z 0 and R 0 = r 0 . So, at time t, when the X t , Z t-1 , R t-1 values as well as the score function ϕ(e t ) are fixed, we can uniquely get the values of Z t and R t . It goes without saying that the error terms e t between X t and Z t-1 have to be also integers, so a new score function is defined as

ϕ(e) =          e(γ X + γ Z ) + γ Z k if e < -k eγ X if |e| ≤ k e(γ X + γ Z ) -γ Z k if e > k , (8) 
where k is also a positive integer-valued parameter. As mentioned in Capizzi and

Masarotto [START_REF] Capizzi | An adaptive exponentially weighted moving average control chart[END_REF], when we construct the score function, the following conditions need to be met: i) ϕ(e) must be monotone increasing;

ii) if k → ∞ and we have ϕ(e) = eγ X and ( 7) becomes (γ

X + γ Z )Z t + R t = γ X X t + γ Z Z t-1 + R t-1
, which agrees with the CEWMA scheme in Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF];

iii) if k = 0, we have ϕ(e) = e(γ X + γ Z ) and ( 7) reduces to a Shewhart-type scheme.

The process is said to be out-of-control whenever 

Z t < h L or Z t > h U ,
= (γ X + γ Z )z t-1 + r t-1 . As z t-1 ∈ {h L , h L + 1, . . . , h U } and r t-1 ∈ {0, 1, . . . , γ X + γ Z -1}, the minimum and the maximum values of c t-1 are c min = (γ X + γ Z )h L , (9) 
c max = (γ X + γ Z )(h U + 1) -1, (10) 
     (γ X + γ Z )(x t -ct-1 γ X +γ Z ) + kγ Z + c t-1 ≥ c min if e t < -k, γ X (x t -ct-1 γ X +γ Z ) + c t-1 ≥ c min if |e| ≤ k, (11) 
and

     (γ X + γ Z )(x t -ct-1 γ X +γ Z ) -kγ Z + c t-1 ≤ c max if e t > k, γ X (x t -ct-1 γ X +γ Z ) + c t-1 ≤ c max if |e| ≤ k, (12) 
from which we obtain the minimum x min and the maximum x max values as

x min = max 0, c min -c t-1 -kγ Z γ X + γ Z + c t-1 γ X + γ Z , c min -c t-1 γ X + c t-1 γ X + γ Z , (13) 
x max = min c max -c t-1 + kγ Z γ X + γ Z + c t-1 γ X + γ Z , c max -c t-1 γ X + c t-1 γ X + γ Z , (14) 
where . . . denotes a rounded up integer. Now, the transition probabilities q i,j of going from one state to another can be calculated using the following steps:

Given n, h L , h U , γ X , γ Z , k c min ← (γ X + γ Z )h L c max ← (γ X + γ Z )(h U + 1) -1 m ← c max -c min For i = 0, 1, . . . , m c t-1 ← i + c min z t-1 ← ct-1 γ X +γ Z x min ← max 0, cmin-ct-1-kγ Z γ X +γ Z + ct-1 γ X +γ Z , cmin-ct-1 γ X + ct-1 γ X +γ Z x max ← min cmax-ct-1+kγ Z γ X +γ Z + ct-1 γ X +γ Z , cmax-ct-1 γ X + ct-1 γ X +γ Z For x t = x min , x min + 1, . . . , x max e t ← x t -z t-1 If e t < -k ϕ(e t ) ← (γ X + γ Z )e t + kγ Z Else if e t > k ϕ(e t ) ← (γ X + γ Z )e t -kγ Z Else -k ≤ e t ≤ k ϕ(e t ) ← γ X e t
End If

z t ← ϕ(et)+ct-1 γ X +γ Z r t ← ϕ(e t ) + c t-1 -(γ X + γ Z )z t j ← (γ X + γ Z )z t + r t -c min q i,j ← f p (x t |θ)
End For

End For

Let Q be the (m + 1, m + 1) transition matrix containing all of the probabilities q i,j , and let s be the initial probability vector represented by a (m + 1, 1)

vector s = (s 0 , s 1 , . . . , s m ), where s contains the probabilities that the Markov chain starts in a given state. We will set 1 in the entry corresponding to (γ X + γ Z )Z 0 + r 0 and zeros in the remaining ones. For example, If z 0 = θ 0 and r 0 = 0, the entry s (γ X +γ Z ) θ0 +r0 = 1 and s i = 0 for i = (γ X + γ Z ) θ 0 + r 0 .

The mean value ARL = E(RL), as well as the standard deviation SDRL = σ(RL) can be easily obtained as

ARL = s (I -Q) -1 1, (15) 
SDRL = 2s (I -Q) -2 Q1 -ARL 2 + ARL. ( 16 
)
where I is the (m + 1, m + 1) identity matrix and 1 is a (m + 1, 1) vector of 1's.

DESIGN OF THE CAEWMA SCHEME

When there is an objective of detecting a shift in a particular direction (either upward or downward), one-sided schemes could be straightforwardly adapted from the two-sided situation. For the upper-sided chart, h L = 0 is set, and it results in c min = 0 and c max = m. Analogously, for the lower-sided case, an upper restriction h U = A will be picked to prevent the statistic Z t from shifting to infinity.

Next, we provide a procedure for the design of the proposed CAEWMA scheme, in which the statistical performances are evaluated in terms of the ARL. Usually, the same ARL 0 value is taken when the process is in-control, and when the process is out-of-control, the smaller the out-of-control ARL 1 value, the better the performance of control charts. Due to the discreteness of the monitoring statistic Z t , ARL(h L , h U , γ X , γ Z , k, θ 0 ) = ARL 0 cannot be exactly attained. Therefore, to satisfy ARL(h L , h U , γ X , γ Z , k, θ 0 ) ≈ ARL 0 , only the combinations of (h L , h U , γ X , γ Z , k, θ 0 ) with a ARL value close to the design one, i.e. ARL(h L ,h U ,γ X ,γ Z ,k,θ0)-ARL0 ARL0 ≤ ζ, will be considered, where ζ is a pre-determined threshold.

• For the upper-sided CAEWMA chart, we suggest to find parameters (h U , γ X , γ Z , k)

giving an optimal performance for detecting a range of shifts:

Min EARL(h U , γ X , γ Z , k, Ω), (17) 
s.t. ARL(h U , γ X , γ Z , k, θ 0 ) ≈ ARL 0 , (18) 
where

EARL = Ω f (θ 1 )ARL(h U , γ X , γ Z , k, θ 1 )dθ 1 , (19) 
and Ω is assumed to be a uniform distribution for the mean shift U [θ 1min , θ 1max ] with f (θ 1 ) = 1 θ1 max -θ1 min .

• For the two-sided CAEWMA chart, one important problem that must be taken into account is that the ARL 0 value is not always larger than the corresponding ARL 1 values. Inspired by Su et al. [START_REF] Su | Adaptive EWMA procedures for monitoring processes subject to linear drifts[END_REF], a two-steps searching procedure is recommended:

1. For a desired ARL 0 value, find the optimal combination of (γ X , γ Z ) for the CEWMA chart, which gives a minimum ARL 1 value at θ 1min .

Some of these combinations could be found in Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF].

2. Based on the same (γ X , γ Z ) value obtained in Step 2, for the CAEW-MA chart, find an optimal k value having the minimum ARL 1 value at θ 1max subject to ARL(h L , h U , γ X , γ Z , k, θ 0 ) ≈ ARL 0 .

PERFORMANCE COMPARISONS

Since it is quite difficult to predict the magnitude and direction of shifts occurring in practice, Han and Tsung [START_REF] Han | A reference-free cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison[END_REF] recommended using the RMI (Relative Mean Index) to evaluate the global performance of control charts, which is defined as follows:

RMI(I) = 1 N N i=1 ARL(I, θ (i) 1 ) -ARL * (θ (i) 1 ) ARL * (θ (i) 1 ) , (20) 
where ARL(I, δ (i) ) is the ARL value for a particular chart I for the shift θ 1 (i), and among these comparative charts I = 1, 2, . . . , ARL * (θ

(i)
1 ) denotes the the 10 minimum ARL value when detecting θ (i)

1 . Here, a discrete uniform distribution for the shift θ 1 is assumed, for example, when θ 0 = 8, consider upward shifts θ 1 ∈ {9, 10, . . . , 20}, θ (i) 1 denotes the i th shift, i.e. θ We have compared the CAEWMA chart with the CEWMA chart proposed in Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF]. From Tables 1 to 6, we can draw the following conclusions:

• It can be seen that, when designing the CEWMA charts, a small 'smoothing ratio' γ X /(γ X + γ Z ) value is effective for detecting small shifts, and a large one is effective for larger shifts. Therefore, for a single CEWMA control chart, it is difficult to balance the overall performance for different shift sizes, at the same time. Taking the upper-sided case as an example, in Table 1, if the CEWMA chart, with (γ X , γ Z ) = (1, 83), can be efficient in the detection of small shifts (e.g. θ 1 = 9), it is unfortunately insensitive to moderate or large ones (e.g. θ 1 > 12).

• For a specified in-control ARL 0 = 1000, Table 1 and 2 compare the performance for upper-sided shifts in the Poisson mean θ 0 ∈ {8, 12}.

Note that, according to Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF], the optimal combination (γ X , γ Z ) = (1, 83) of the CEWMA chart could help in detecting small shifts θ 1 ∈ {9, 10} (when θ 0 = 8) faster. However, based on the results shown in Table 1, the CAEWMA chart always has the minimum ARL 1 for θ 1 ∈ {9, 10, 11, 12}. The same case can also be observed in Table 2, when θ 0 = 12, the CAEWMA chart has the minimum ARL 1 = 2.1 value for θ 1 = 24 compared with the optimal ARL 1 = 2.2 obtained with the CEWMA chart.

• For the lower-sided case in Table 3, when θ 0 = 16, note that the CEWMA chart with (γ X , γ Z ) = [START_REF] Borror | Poisson EWMA control charts[END_REF][START_REF] Woodall | The inertial properties of quality control charts[END_REF] is the only optimally recommended combination in Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF] for all shift sizes. However, the comparison reveals that the CAEWMA chart has a higher detection probability for decreasing shifts θ 1 ∈ {15, 14, 13, 12} and θ 1 ∈ {5, 4, 3} while, for shifts θ 1 ∈ {10, 9, 8, 7}, the differences between these two schemes are negligible.

The advantage of the CAEWMA chart in detecting different shift sizes is also fully verified in terms of the RMI performance. For example, when θ 0 = 20 in Table 4, the CAEWMA chart gives the minimum RMI = 0.206 value compared with all CEWMA charts.

• For the two-sided case in Tables 5 and6, it is interesting to note when similar values of γ X and γ Z are selected, the CAEWMA chart guards against small and large shifts more effectively than the CEWMA chart.

For example, in Table 5, when compared with the CEWMA chart with γ X = 5 and γ Z = 37, the CAEWMA chart with γ X = 5 and γ Z = 38 provides a slightly worse performance for detecting increasing shifts θ 1 ∈ {22, 24, 26}, but better performance for detecting decreasing shifts θ 1 ∈ {18, 16, 14, 12} and increasing shifts θ 1 ∈ {30, 35, 40}. In Table 6, when γ X = 1 and γ Z = 15, there is no loss in the efficiency for the ARL 1 in detecting decreasing shifts θ 1 ∈ {18, 16, . . . , 6}, however, the CAEWMA chart performs better in the detection of increasing shifts θ 1 ∈ {22, 24, . . . , 40} compared to the CEWMA chart.

To sum up, it is shown that the CAEWMA chart outperforms the CEWMA chart in terms of the out-of-control ARL 1 and RMI to efficiently detect both small and large shifts. As the practitioner has usually no clear idea about the actual magnitude of potential shifts, we recommend the use of the CAEWMA chart for practical purposes.

(Please Insert Tables 1 to 6 Here)

AN ILLUSTRATIVE EXAMPLE

The implementation of the proposed CAEWMA chart is illustrated with an example from the traffic flow monitoring. Based on historical data, the number X t of vehicles passing every minute in a particular section of the road follows a Poisson distribution with in-control mean θ 0 = 12. We actually have two data sets recording the number of vehicles passing in a certain section of the road • in the morning period 8 : 00 -9 : 00 (Table 7),

• in the afternoon period 17 : 00 -18 : 00 (Table 8).

For comparison, two upper-sided CEWMA charts are also implemented for the same date sets. The desired ARL 0 = 1000 value is fixed, and based on Rakitzis et al. [START_REF] Rakitzis | A new memorytype monitoring technique for count data[END_REF], the optimal combinations (h U , γ X , γ Z ) = [START_REF] Ryan | Control charts for Poisson count data with varying sample sizes[END_REF][START_REF] Aly | Optimal design of the adaptive exponentially weighted moving average control chart over a range of mean shifts[END_REF][START_REF] Su | Adaptive EWMA procedures for monitoring processes subject to linear drifts[END_REF] and [START_REF] Shen | Monitoring Poisson count data with probability control limits when sample sizes are time varying[END_REF][START_REF] Aly | A reevaluation of the adaptive exponentially weighted moving average control chart when parameters are estimated[END_REF][START_REF] Capizzi | An adaptive exponentially weighted moving average control chart[END_REF] of the CEWMA charts (denoted as CEWMA-1 and CEWMA-2, respectively) are considered here. Concerning the CAEWMA chart, the unique optimal combination is obtained to be (h U , γ X , γ Z , k) = [START_REF] Saghir | Control charts for dispersed count data: an overview[END_REF][START_REF] Borror | Poisson EWMA control charts[END_REF][START_REF] Ryu | Optimal design of a CUSUM chart for a mean shift of unknown size[END_REF][START_REF] Jr | Comparisons of some exponentially weighted moving average control charts for monitoring the process mean and variance[END_REF].

All results are presented in Figures 1 and2. For the morning case (Table 7), the CAEWMA and CEWMA-1 charts give an out-of-control signal at the 38 th observation. It indicates that the traffic congestion caused by the morning peak occurred around 8 : 38. While, no point exceeds the control limit in the CEWMA-2 chart, so no alarm is issued. For the afternoon case (Table 8), both the CAEWMA and CEWMA-2 charts find anomalies at the 23 th observation and the CEWMA-1 chart signals at the 26 th observation. It indicates that the traffic congestion caused by the afternoon peak occurred around 17 : 23. In short, the CAEWMA chart is not only as effective as the CEWMA-1 chart when the shift size is small, but it is also as effective as the CEWMA-2 chart for large shifts.

(Please Insert Figures 1 and2 Here)

CONCLUSIONS

In this work, we have extended the AEWMA scheme to the monitoring of Poisson count data. An appropriate Markov chain technique has been developed to guarantee exact ARL results for discrete statistics, without approximation.

Particularly, to enhance its detection capability for asymmetric distribution, an in-depth study for the one-and two-sided cases have been performed. The one-sided CAEWMA scheme is recommended when shifts toward a particular side are definitely more significant than toward the opposite one. The two-sided CAEWMA scheme should be used when shifts toward either side are equally important. The comparative results support the fact that the CAEWMA chart is able to provide a more balanced detection property against shifts of different magnitudes than the CEWMA chart in both one-and two-sided conditions.

Therefore, this scheme is worth to be considered when the exact size of the shift cannot be pre-determined. 

  and the total number of shifts in this example is N = 12. Obviously, the smaller the value of RMI(I), the better the performance of the proposed chart.
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 12 Figure1: Control charts applied to the morning period 8 : 00 -9 : 00

  respectively. So, at time t -1, all the discrete states are c t-1 ∈ {c min , c min + 1, . . . , c max }, and the total number of states is m + 1 = c max -c min + 1. When the state c t-1 moves to the state c t = (γ X + γ Z )z t + r t , the score ϕ(e t ) needs to satisfy c t = ϕ(e t ) + c t-1 ∈ {c min , c min + 1, . . . , c max }. Since ϕ(e t ) is monotone increasing in e t , the allowable values of x t ≥ 0 must simultaneously satisfy

Table 1 :

 1 Comparisons of the CEWMA and CAEWMA charts, upper-sided case, ARL 0 = 1000

	and θ 0 = 8				
	θ		CEWMA		CAEWMA
	8	995.1 987.8 1011.6	1008.8
	9	83.7 125.7 154.5	75.8
	10	42.7	32.0	40.8	21.4
	11	28.7	13.4	16.3	11.1
	12	21.7	7.7	8.7	7.4
	13	17.4	5.2	5.6	5.6
	14	14.6	4.0	4.1	4.5
	15	12.6	3.2	3.2	3.7
	16	11.1	2.7	2.7	3.2
	17	9.9	2.4	2.3	2.8
	18	8.9	2.1	2.0	2.5
	19	8.2	1.9	1.8	2.2
	20	7.5	1.8	1.7	1.9
	21	7.0	1.6	1.5	1.8
	RMI	2.542 0.129 0.207	0.119
	h L	0	0	0	0
	h U	8	12	13	10
	γ X	1	4	6	8
	γ Y	83	7	7	43
	k				13

Table 2 :

 2 Comparisons of the CEWMA and CAEWMA charts, upper-sided case, ARL 0 = 1000

	and θ 0 = 12				
	θ		CEWMA		CAEWMA
	12	1016.0 1032.0 1008.3	1009.3
	13	74.5	92.0	151.5	135.0
	14	28.1	27.7	41.2	35.8
	15	17.0	14.7	17.6	16.3
	16	12.2	9.9	10.0	9.9
	17	9.6	7.4	6.8	7.0
	18	7.9	6.0	5.1	5.4
	19	6.7	5.1	4.1	4.4
	20	5.9	4.4	3.5	3.7
	21	5.2	3.9	3.0	3.1
	22	4.7	3.5	2.7	2.7
	23	4.3	3.2	2.4	2.4
	24	4.0	2.9	2.2	2.1
	25	3.7	2.7	2.0	1.9
	RMI	0.523	0.210	0.141	0.113
	h L	0	0	0	0
	h U	13	14	16	15
	γ X	1	1	2	3
	γ Y	19	8	5	14
	k				12

Table 3 :

 3 Comparisons of the CEWMA and CAEWMA charts, lower-sided case, ARL 0 = 1000

	and θ 0 = 16				
	θ		CEWMA		CAEWMA
	16	879.0 1015.0 934.8	1010.2
	15	131.4 100.2	66.6	68.6
	14	35.3	27.6	21.6	21.8
	13	15.1	13.4	12.1	12.1
	12	8.7	8.6	8.3	8.3
	11	6.0	6.3	6.4	6.3
	10	4.5	5.0	5.2	5.1
	9	3.7	4.1	4.4	4.3
	8	3.1	3.5	3.8	3.7
	7	2.7	3.1	3.4	3.2
	6	2.4	2.8	3.1	2.8
	5	2.2	2.5	2.8	2.4
	4	2.0	2.2	2.6	2.0
	3	2.0	2.1	2.3	1.5
	RMI	0.172 0.175 0.177	0.079
	h L	13	14	15	15
	h U	30	30	30	30
	γ X	3	3	3	5
	γ Y	13	28	68	114
	k				12

Table 4 :

 4 Comparisons of the CEWMA and CAEWMA charts, lower-sided case, ARL 0 = 1000

	and θ 0 = 20				
	θ		CEWMA		CAEWMA
	20	993.9 1207.2 1005.1	1002.8
	19	285.4 123.1	78.2	79.1
	18	95.1	34.3	26.0	26.1
	17	38.0	16.7	14.6	14.6
	16	18.1	10.7	10.0	10.0
	15	10.2	7.8	7.7	7.7
	14	6.6	6.1	6.2	6.2
	13	4.7	5.1	5.2	5.2
	12	3.6	4.4	4.5	4.5
	11	2.9	3.8	4.0	4.0
	10	2.5	3.4	3.6	3.5
	9	2.2	3.1	3.3	3.2
	8	1.9	2.9	3.1	2.9
	7	1.7	2.6	2.9	2.6
	RMI	0.625 0.274	0.233	0.206
	h L	14	18	19	19
	h U	30	30	30	30
	γ X	3	3	2	1
	γ Y	4	35	55	27
	k				15

Table 5 :

 5 Comparisons of the CEWMA and CAEWMA charts, two-sided case, ARL 0 = 1000

	and θ 0 = 20				
	θ		CEWMA		CAEWMA
	6	2.4	2.0	1.9	2.4
	8	2.9	2.2	2.1	2.9
	10	3.6	2.8	2.6	3.6
	12	4.7	3.9	3.6	4.6
	14	6.9	6.6	5.9	6.8
	16	13.5	16.9	14.0	13.2
	18	62.4	100.8	70.9	58.2
	20	1017.2 1000.3 982.8	1000.0
	22	50.2	110.4 335.9	53.2
	24	14.7	21.1	42.2	15.2
	26	8.3	8.8	13.3	8.4
	28	5.8	5.4	7.0	5.8
	30	4.5	3.9	4.7	4.3
	35	3.0	2.4	2.7	2.5
	40	2.3	1.8	2.0	1.9
	RMI	0.168	0.220 0.656	0.131
	h L	17	15	15	17
	h U	23	26	27	23
	γ X	5	7	3	5
	γ Y	37	17	7	38
	k				17

Table 6 :

 6 Comparisons of the CEWMA and CAEWMA charts, two-sided case, ARL 0 = 1500 and θ 0 = 20

	θ		CEWMA		CAEWMA
	6	3.0	2.1	2.2	3.0
	8	3.5	2.4	2.7	3.5
	10	4.2	3.0	3.4	4.2
	12	5.4	4.1	4.7	5.4
	14	7.7	6.3	8.1	7.7
	16	13.5	13.7	22.4	13.5
	18	47.0	70.7	191.8	47.0
	20	1520.4 1495.6 1517.1	1504.0
	22	50.1	142.9	85.0	50.0
	24	17.2	23.2	17.9	17.2
	26	10.4	10.0	8.3	10.3
	28	7.5	6.3	5.3	7.4
	30	5.9	4.6	3.9	5.7
	35	3.9	2.9	2.5	3.5
	40	3.6	2.2	1.9	2.2
	RMI	0.319	0.258	0.373	0.249
	h L	18	16	15	18
	h U	22	25	25	22
	γ X	1	6	7	1
	γ Y	15	25	23	15
	k				21
			23		

Table 7 :

 7 Data sets for the morning period 8 : 00 -9 : 00

	t	X t	t	X t	t	X t
	1	13 21	2	41 10
	2	15 22 11 42 19
	3	15 23 10 43 16
	4	12 24 10 44 14
	5	12 25 20 45 14
	6	9	26 22 46	8
	7	16 27 10 47 19
	8	15 28 12 48 14
	9	11 29 19 49 13
	10	8	30 15 50 15
	11 10 31	9	51 13
	12 17 32 14 52 11
	13	6	33 15 53 15
	14 12 34 10 54 15
	15 20 35 22 55 16
	16 17 36 17 56 15
	17 14 37 16 57 15
	18 11 38 17 58 12
	19	8	39 15 59 12
	20 14 40 10 60 11
			24			

Table 8 :

 8 Data sets for the afternoon period 17 : 00 -18 : 00

	t	X t	t	X t	t	X t
	1	17 21 14 41 19
	2	7	22 19 42 20
	3	10 23 26 43 20
	4	10 24 18 44 26
	5	10 25 21 45 20
	6	12 26 28 46 22
	7	16 27 31 47 23
	8	10 28 20 48 21
	9	16 29 16 49 24
	10	6	30 18 50 25
	11 15 31 12 51 16
	12	5	32 20 52 25
	13 14 33 21 53 21
	14 13 34 11 54 16
	15 13 35 24 55 20
	16 16 36 16 56 23
	17	8	37 25 57 22
	18 14 38 17 58 18
	19 13 39 19 59 23