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Abstract 

The exponentially weighted moving average (EWMA) control chart is a memory-type chart 

known to be more efficient in detecting small and moderate shifts in the process parameter. 

The double EWMA (DEWMA) chart is an extension of the EWMA chart that is more 

effective than the latter in the detection of small-to-moderate shifts. This paper proposes a 

new distribution-free (or nonparametric) triple EWMA (TEWMA) control chart based on the 

Wilcoxon rank-sum (W) statistic to improve the detection ability in the process location 

parameter. Moreover, a new fast initial response (FIR) feature is added to further improve the 

sensitivity of the new TEWMA chart. The performance of the proposed TEWMA chart with 

and without FIR features is compared to those of the existing EWMA and DEWMA W 

charts. It is observed that the TEWMA chart with and without FIR features is superior to the 

competing charts in most situations. A real-life illustration is provided to show the 

application and implementation of the new chart. 

 

Keywords: Double EWMA chart; EWMA chart; Fast initial response; Nonparametric chart; 

Overall performance; Run-length; Triple EWMA.  

 

1. Introduction 

All production lines and service-rendering establishments are recommended to use statistical 

process monitoring (SPM) techniques. This will assist with producing or rendering high 

quality services or products that will meet needs of end users with low risk benefits. In 

applications where very little information is known about the underlying process, it is mostly 

advised to use nonparametric or distribution-free charts rather than the parametric ones. This 

is because they do not depend on any specific underlying distribution and they are generally 

in-control (IC) robust; see for instance, the arguments in Chakraborti and Graham
1
. For 

efficiency, memory-type control charts are usually used to detect small-to-moderate shifts of 

any process parameter. There are four different types of memory-type control charts in the 

SPM literature and these are: (i) Exponentially weighted moving average (EWMA) chart by 

Roberts
2
, (ii) Cumulative sum (CUSUM) chart by Page

3
, (iii) Generally weighted moving 

average (GWMA) chart by Sheu and Lin
4
, and (iv) Homogeneously weighted moving 

average (HWMA) chart by Abbas
5
. For more detailed studies or literature reviews on the 

latter memory-type schemes, see Hawkins and Olwell
6
, Ruggeri et al

7
, Mabude et al

8
, Nawaz 

and Han
9
, Abid et al

10
, Adegoke et al

11
 and Adeoti and Koleoso

12
. The focus of this paper is 
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on improving the performance of the nonparametric EWMA-type charts to monitor the 

process location, especially during start-up period. Improving the performance of the 

EWMA-type control charts during start-up period has never been addressed for the 

nonparametric SPM context. For some recent contributions to nonparametric charts, refer for 

instance to Mukherjee et al
13

, Triantafyllou
14

, Chong et al
15,16

 and Shafqat et al
17

. Next 

though, a literature review of some related parametric research works are discussed and 

thereafter, the objective of this paper is outlined.  

With an end goal to increase the responsiveness of the EWMA control charts to detect small 

shifts in a process mean, Shamma and Shamma
18

 proposed the double EWMA (DEWMA) 

control chart. Originally not aware of the latter paper, Zhang and Chen
19

 also studied the 

performance of the DEWMA chart to monitor the process mean; note though, there are 

additional aspects that were considered in the latter paper but absent in the former. Some 

additional studies on the DEWMA charts in different contexts can be found in Hong et al
20

, 

Alkahtani
21

, Teh et al
22

, Chao et al
23

 and, Alevizakos and Koukouvinos
24

. Based on latter 

publications, it is generally accepted that the DEWMA charts are more sensitive than EWMA 

charts for small-to-moderate shifts. For the nonparametric case, Karakani et al
25

 showed that 

the DEWMA based on the exceedance statistic is superior to the EWMA one in detecting 

small shifts. 

The focus of this paper is on the Wilcoxon rank sum statistic, denoted as  . Note that Li et 

al
26

 presented the EWMA   chart with measurements utilizing a simple random sampling 

method. A while later, Malela-Majika and Rapoo
27

 presented the EWMA   chart utilizing 

structured sampling techniques (i.e. based on rank set sampling method). More recently, 

Malela-Majika
28

 proposed a DEWMA   chart which is shown to have better out-of-control 

OOC performance in detecting small-to-moderate shifts in the process location than the 

EWMA   chart. Other discussions on control charts based on the   statistic can be found in 

Tapang et al
29

, Malela-Majika and Rapoo
30

, Chakraborti and Graham
1,31

, Triantafyllou
32

, 

Mabude et al
33

, Tercero-Gomez et al
34

 and Qiu
35

.  

Therefore, the main objective of this paper is to improve further on the research works by Li 

et al
26

 and Malela-Majika
28

, by proposing a new triple EWMA (TEWMA)   chart to 

monitor the process location shifts and then compare its performance to that of EWMA and 

DEWMA   charts. Note that there is no work in the SPM literature that addresses the use of 

TEWMA chart in a distribution-free context. To the best of authors’ knowledge, Alevizakos 

et al
36,37

 investigated the performance of the TEWMA chart for monitoring the process mean 
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and time between events, respectively. Moreover, Alevizakos et al
36,37

 compared the 

performance of each TEWMA chart against the corresponding EWMA and DEWMA charts, 

where it is observed that the TEWMA charts have better performance in most situations. 

Note though, for thorough derivations of the run-length properties of the TEWMA chart for 

any independent and identically distributed (i.i.d.) process, readers are referred to Alevizakos 

et al
36

.  

The fast initial response (FIR), initially suggested in the SPM literature by Lucas and 

Crosier
37

, is a  head-start feature with similar (but, slightly more pronounced) positive effects 

compared to the time-varying control limits as it identifies issues during the start-up period. 

Thereafter, more researchers have used this enhancement technique at the start-up period of 

the monitoring process; see for instance Rhoads et al
39

, Knoth
40

 and Lu
41

. Note that Steiner
42

 

proposed the use of a more formal multiplicative factor expression that yields tighter control 

limits at start-up and converges to the standard control limits as time increases. The basic FIR 

feature in Steiner
42

 is denoted as FIR in this paper. Later, Haq et al
43

, proposed a modified 

FIR (MFIR) feature which is shown to yield better OOC performance than the Steiner
42

’s FIR 

feature. Therefore, in addition to introducing the TEWMA   chart; in this paper, a new 

improved MFIR (IMFIR) feature is incorporated to the TEWMA   chart to improve its 

performance during the start-up period. For the sake of completeness and comparison 

purpose, the basic FIR and MFIR are also incorporated to the EWMA, DEWMA and 

TEWMA   charts.  

The rest of the paper is structured as follows: Section 2 provides some design background of 

the   test statistic as well as the EWMA and DEWMA   charts. The design of the proposed 

TEWMA   charts with and without FIR features are discussed in Section 3. Section 4 gives 

an empirical performance of the proposed TEWMA   chart and some comparisons against 

the EWMA and DEWMA   charts. An illustrative example is given in Section 5 using real-

life data. Finally, Section 6 provides some concluding remarks. 

 

2. The design of the EWMA and DEWMA   charts  

2.1 Wilcoxon rank sum test ( ) 

Assume that    {     1,2,…, } is an IC reference (i.e. Phase I) sample with unknown 

cumulative distribution function (c.d.f.),     , and    {   ,    1,2,3, …;    1,2,3, …, }, 

simply denoted as  , is a set of test samples with c.d.f.     . The observations from the 

reference sample are assumed to be independent from each other and from the ones in the test 
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samples. However, the distribution of the test samples is the same as the one of the reference 

sample with a difference in the location shift only. In other words,            , where 

  represents the change (or shift) in the location parameter. Thus, when the process is in-

control (IC),    0; hence,    . However, when    0, the process is said to be out-of-

control (OOC). Wilcoxon
44

 proposed the   statistic by merging the   reference observations 

with the   observations of the     test sample together and re-arranging all values of the 

      observations in an ascending order. Let 

                                          be the resulting ordered sample, where 

        if    is the smallest     value from the newly formed sample  , also         if    

is the smallest     value from  , this means that    {1, 2, …,    },    {1, 2, …,  } and 

   {1, 2, …,  }. 

Let        
      

          
             

        
   be the sample of the indicators where 

    
   1 if        and     

   0 if       . Then, at time  , the   statistic is defined by 

   ∑(       
 )

   

   

 (1) 

Assuming that there are no ties (i.e. duplicated values in the combined observations), the 

mean and the variance of the   statistic are respectively given by (see for instance Li et al
26

): 

         
        

 
  

and (2) 

           

  
         

  
  

 

2.2 The EWMA W control chart 

The EWMA   chart was proposed by Li et al
26

 and its charting statistic is defined by  

                  (3) 

where           is a smoothing parameter and      . After some basic algebraic 

manipulation, the mean and variance of (3) are respectively given by  

             

and  (4) 

           

    
 (

 

   
)              

 

Hence, the upper and lower control limits of the EWMA   chart are computed as follows: 

                   
  (5) 
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where      is the control limits coefficient which has to be calculated such that the 

attained IC     (    ) is close or equal to the pre-specified nominal     . Thus, the 

EWMA   chart gives a signal if    plots beyond the control limits. 

2.3 The DEWMA   chart 

The DEWMA   chart was proposed by Malela-Majika
28

 and its charting statistic is given by   

                  (6) 

where     is as given in (3) and      . That is, the smoothing procedure is applied twice, 

i.e. the first smoothing is done in (3) and the second one is done in (6). After some basic 

algebraic manipulation, the mean and variance of (6) are respectively given by  

              

and (7) 

           

  
            [                            ] 

        
   

   
 

with       . Hence, the upper and lower control limits of the DEWMA   chart are 

computed as follows: 

                   
 (8) 

where      is the control limits coefficient which has to be calculated such that the 

attained      is close or equal to the pre-specified nominal     . Thus, the DEWMA W 

chart produces an OOC signal when    value plots beyond the control limits in (8). 

 

3. The design of the TEWMA   chart with and without FIR features 

3.1 TEWMA   chart without FIR features 

The TEWMA design entails applying the smoothing procedure three times; instead of twice 

as for the DEWMA or once as for the EWMA. Following on similar line of argument as 

Alevizakos et al
36

, it follows that the charting statistic of the TEWMA   chart is given by 

                  (9) 

where    is given in (6) and      . From (3), (6) and (9):  

                  

                  

                  

(10) 

that is, the original    statistic in (1) goes through a smoothing procedure three times; hence, 

simplifying each expression in (10) leads to the following: 
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    ∑        

 

   

            

    ∑        

 

   

            

    ∑        

 

   

             

(11) 

Substituting    into   , and thereafter substituting    into   , then after some algebraic 

manipulations, the charting statistic of the TEWMA   chart can also be re-written as 

    
  

 
∑        

 

   

                 (
      

 
)                   (12) 

For a more detailed algebraic derivation in the case of the parametric TEWMA  ̅ chart, 

readers are advised to consult Alevizakos et al
36

. Hence, the mean and variance of (9) or (12) 

are respectively given by 

             

and (13) 

           
  (

  

 
∑                           

 

   

)  
   

 

The simplified version of the         is given in the Appendix. The upper and lower control 

limits are respectively given by 

                     (14) 

where      is the control limits coefficient which has to be calculated such that the 

attained      is close or equal to the pre-specified nominal     . Thus, the TEWMA   

chart gives an OOC signal when    value plots beyond the control limits in (14). 

3.2 TEWMA   chart with a basic FIR feature 

To improve the sensitivity of the standard TEWMA   chart in detecting shifts during start-

up, the basic FIR feature is added. This feature can be implemented to get an early alert at the 

beginning period of monitoring (when a change is suspected to be present) or after an OOC 

signal. The basic FIR feature proposed by Steiner
42

 is computed as 

                          (15a) 

where it is suggested to use       and      , with   as a segment of an interval from a 

start-up value to the control limits. Based on the latter formulation, Steiner
42

 showed that the 

FIR feature has ‘very little to none’ effect in narrowing control limit of the time-varying 



7 
 

control chart after the 20
th

 observation. Combining (14) and (15a) yields the control limits of 

the FIR-TEWMA   chart:   

                             (15b) 

At time  , the FIR-TEWMA   chart produces an OOC signal when    value plots beyond 

the control limits in (15b). 

3.3 TEWMA   chart with a MFIR feature 

As an improvement to Steiner
42

’s FIR feature, Haq et al
43

 introduced the MFIR feature. The 

MFIR is computed as 

         (                 )
(  

 
 
)
  (16a) 

Combining (14) and (16a) yields the control limits of the MFIR-TEWMA   chart:   

                              (16b) 

The MFIR-TEWMA   chart produces an OOC signal at time   when    value plots beyond 

the control limits in (16b). Haq et al
43

 similarly showed that after the 20
th

 observation, the 

MFIR feature has a ‘very little to none’ effect on narrowing the control limits of the time-

varying control chart. 

3.4 TEWMA   chart with a IMFIR feature  

This paper also proposes a new FIR feature called the IMFIR feature where the power 

transformation factor is multiplied by square root of time. As it will be seen, the advantage of 

this new feature is that the sensitivity of the proposed TEWMA   chart increases the ability 

to detect any shifts at start-up period of the process as soon as possible. That is, it allows 

time-varying control limits to be narrower at the early stages of the process to better detect 

start-up problems, while ensuring that the long-run properties of the time-varying monitoring 

scheme are not disturbed. The IMFIR feature is defined by 

         (                 )
√ (  

 
 
)
  (17a) 

where the values of   and   are taken as 0.5 and 0.3, respectively. Combining (14) and (17a) 

yields the control limits of the IMFIR-TEWMA   chart:   

                               (17b) 

The IMFIR-TEWMA   chart produces an OOC signal when    value plots beyond the 

control limits in (17b). 

In Figure 1, the adjustment factors in (15a), (16a) and (17a) are compared against each other 

as time increases. This is an extension of Figure 1 in Haq et al
43

 to illustrate how the new 

IMFIR feature is an improvement of both FIR and MFIR features by Steiner
42

 and Haq et 
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al
43

. The adjustment factors of FIR, MFIR and IMFIR converge to unity as time increases; 

based on Figure 1, it is apparent that those of FIR and MFIR does so at time point equal to 

24, while that of IMFIR does so at time point equal to 32. Moreover, while the adjustment 

factor of MFIR is smaller than that of FIR whenever    15 and thereafter, they are equal; 

that of IMFIR is only equal to those of FIR and MFIR at sampling time 32 and onwards. This 

implies that the IMFIR feature reduces the control limits much further than the FIR and 

MFIR features at the start-up period (while not disturbing its long-run properties), and thus 

increase the detection capability of a time-varying TEWMA scheme.  

 

 
Figure 1: Comparison of the FIR, MFIR and IMFIR adjustment factors with respect to time 

 

3.5 The implementation of IMFIR-TEWMA   charts  

The IMFIR-TEWMA   chart can be implemented as follows: 

Step 1: Generate a phase I sample of size m,  , from an IC process (e.g., from N(0,1)). 

Step 2: Generate a phase II sample of size n,  . When the process is IC, the distributions of 

the phases I and II are identical (i.e.    0). Otherwise, the distribution for the phase 

II sample is taken to be similar to that for the phase I sample, but with a change in 

the mean parameter (   0) (e.g. from N( ,1)). 

Step 3: The   statistic is computed by combining the phase I and phase II samples using 

(1).   
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Step 4: Find the mean and variance of   when the process is IC using (2). These are used in 

Steps 5 and 6.    

Step 5: Compute the plotting statistic using (9) or (12) and choose    such that the attained 

      500. The time-varying control limits of the IMFIR-TEWMA chart are 

calculated using (17b).  

Step 6: The IMFIR-TEWMA   chart gives a signal if the plotting statistic computed is Step 

5 plots beyond the control limits calculated in Step 5. 

The FIR-TEWMA and MFIR-TEWMA charts can also be implemented in a similar way. 

 

4. Performance analysis and comparisons of the proposed control charts 

4.1 Performance metrics 

The run-length (RL), ARL, standard deviation of the RL (SDRL) and expected ARL (EARL) 

characteristics are often used to explore how sensitive is the explored control chart. The RL 

refers to the number of charting statistics to be plotted on the chart before the first OOC 

signal. In this paper, Monte Carlo simulations are used with 20 000 replications to assess the 

TEWMA schemes with and without FIR features. When the overall performance is of 

interest, the EARL metric is recommended. The EARL is mathematically defined by 

              ]  
 

 
∑       

    

      

 (18) 

where   is the number of increments between the      (lower limit of  ) and      (upper 

limit of  ). 

4.2 IC robustness 

To study the robustness of the proposed charts, three distributions are considered, i.e., the 

standard normal (denoted as N(0,1)), Student’s  (v) (with v = 5, 15 and 30), Gamma ( ,1) 

(denoted by GAM( ,1) with    1, 3 and 15) distributions are used. A control chart is 

considered to be IC robust when the characteristics of the IC RL are approximately the same 

across all continuous probability distributions (see for instance Chakraborti and Graham
1
). 

Table 1 shows the robustness of the TEWMA   charts with and without FIR features when 

       (100, 5) and    {0.05, 0.5} for a nominal     =500. From Table 1, it can be 

noticed that, the attained IC      values are close to each other across different distributions 

and similarly, the attained IC       are also close to each other across different 

distributions. For instance, the attained IC      are around 500 for all the distributions 

considered in this paper. In addition, it is observed that the TEWMA   chart with no FIR 
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feature has lower       values than the ones with FIR features. Note that 5
th

, 25
th

, 50
th

, 75
th

 

and 95
th

 percentiles are denoted as P5, P25, P50, P75 and P95, respectively and are presented 

in Figure 1. Moreover, it is shown in Figure 2 that the     , P5, P25, P50 and P75  of the RL 

distribution are almost constant, while the ones of the       and P95 have a slight (but 

insignificant) variation. Thus, based on Table 1 and Figure 2, it can be deduced that the 

TEWMA   chart with or without FIR features is IC robust. It is important to mention that 

the      and P95 profiles of the TEWMA   with the IMFIR feature are larger than the one 

with no FIR feature, see Figures 2(a) and (b); a high IC      is undesired as it may lead to a 

high probability of an OOC signal, when in fact the process is IC. 

 

Table 1. Robustness of the TEWMA   with and without FIR feature when      =(100,5), 

   {0.05, 0.5} for a nominal     =500 under different distributions 

  
TEWMA FIR-TEWMA MFIR-TEWMA IMFIR-TEWMA 

  Distribution                                             

0.05 

N(0,1) 500.3 961.3 502.9 1166.7 500.8 1697.0 499.3 1506.6 
t(5) 496.2 939.3 502.0 1128.6 514.0 1611.0 497.3 1580.4 

t(15) 508.2 961.6 506.5 1163.4 501.3 1670.9 495.5 1480.5 

t(30) 496.5 941.2 507.7 1173.2 519.3 1660.0 504.0 1807.9 
GAM(1,1) 501.4 956.3 503.8 1138.0 489.5 1616.6 499.1 1638.8 

GAM(3,1) 500.4 945.8 500.4 1142.6 517.0 1657.3 505.4 1710.0 
GAM(15,1) 510.1 950.8 502.8 1125.5 502.1 1563.4 500.7 1619.7 

    2.321 2.424 2.624 2.617 

0.5 

N(0,1) 500.2 725.0 498.5 870.7 506.2 1228.2 494.4 1592.5 
t(5) 507.1 735.6 508.2 879.6 498.7 1152.5 511.0 1631.2 

t(15) 507.1 778.6 496.0 867.5 503.0 1240.2 511.2 1635.5 

t(30) 501.6 739.4 508.2 882.4 500.5 1171.9 505.5 1591.6 
GAM(1,1) 495.7 702.9 505.9 884.7 507.6 1192.5 509.4 1626.7 

GAM(3,1) 495.5 705.6 496.4 896.6 502.0 1181.0 508.7 1623.8 
GAM(15,1) 511.6 729.0 501.0 871.2 508.9 1229.2 498.5 1529.5 

    2.933 2.995 3.126 3.210 

 

  
(a) TEWMA   chart (with no FIR feature) (b) IMFIR-TEWMA   chart 

Figure 2. Robustness of the proposed charts when        (100,5),    0.05 for a nominal 

    =500 under different distributions 
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4.3 OOC performance 

Table 2 shows that the OOC ARL of the TEWMA   chart are lower for small values of  , 

but increase as   increases, indicating a deteriorating performance. For small and moderate 

shifts in the process location, the proposed chart performs better under the heavy-tailed  -

distribution followed by the normal distribution. However, for large shifts, their performances 

under the different distributions are almost similar. For skewed gamma distribution, the 

higher the value of  , the worse the performance; for instance, when    0.1,    0.9, under 

the GAM(3,1) distribution, the OOC ARL is equal to 534.8 (i.e. higher than the nominal      

value of 500, which implies that it is ARL-biased). Next, the EARL values increase as   

increases for each distribution in Table 2, indicating a deteriorating OOC performance. For 

instance, under the N(0,1) distribution, when    0.05, 0.5 and 0.9, then the corresponding 

EARL values are equal to 38.3, 45.4 and 61.7, respectively. In addition, Figure 3 studies the 

effect of Phase II sample size, i.e.    {3,5,10}, on the OOC performance using the EARLs 

when    {0.05, 0.5}. Figure 3 shows that as the Phase II sample size increases, the better the 

Phase II OOC performance becomes, thus indicating an improvement in the detection ability. 

Similarly, Figure 4 shows that the larger the Phase I sample size ( ), the better the Phase II 

OOC performance. Figures 3 and 4 show that the larger the smoothing parameter, the less 

sensitive is the TEWMA   chart, since the EARLs become larger; especially for the skewed 

gamma distribution. 

   

Table 2. The     profile of the TEWMA   chart when        (100, 5),    {0.05, 0.5, 

0.9},     =0 and     =1.5 with an increment of 0.1 for a nominal     =500 under different 

distributions 

 
N(0,1) t(5) GAM(3,1) 

Shift    0.05    0.5    0.9    0.05    0.5    0.9    0.05    0.5    0.9 
0.1 355.3 369.1 408.3 304.5 360.0 401.9 339.9 435.2 534.8 

0.2 126.5 176.5 244.4 93.3 137.6 224.7 110.1 192.1 357.9 

0.3 36.7 63.6 121.9 24.1 39.9 103.9 28.9 63.9 184.6 

0.4 16.4 24.6 61.0 11.8 16.3 46.4 13.2 21.5 82.2 

0.5 9.7 12.2 32.8 7.5 8.9 23.4 7.6 10.3 42.1 

0.6 6.7 7.8 17.7 5.3 5.9 12.7 5.3 6.3 23.1 

0.7 4.9 5.4 10.9 3.9 4.5 7.8 3.9 4.6 12.4 

0.8 3.8 4.3 7.3 3.1 3.5 5.3 3.0 3.6 7.9 

0.9 3.1 3.5 5.3 2.5 2.9 3.8 2.4 3.0 5.4 

1.0 2.5 3.0 4.0 2.1 2.5 3.0 2.0 2.6 3.9 

1.1 2.1 2.6 3.2 1.8 2.3 2.5 1.7 2.3 2.9 

1.2 1.9 2.3 2.6 1.6 2.0 2.2 1.5 2.1 2.4 

1.3 1.6 2.1 2.3 1.4 1.8 1.8 1.4 1.9 2.1 

1.4 1.5 1.9 2.0 1.3 1.7 1.7 1.2 1.8 1.8 

1.5 1.3 1.7 1.8 1.2 1.5 1.5 1.1 1.6 1.6 

          ] 38.3 45.4 61.7 31.0 39.4 56.2 34.9 50.2 84.3 

   2.321 2.933 2.851 2.321 2.933 2.851 2.321 2.933 2.851 
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(a)    0.05 (b)    0.5 

Figure 3. The effect of Phase II sample size on the performance TEWMA   chart using the 

EARL when    100,    {3, 5, 10},    {0.05, 0.5},     =0 and     =2 with an increment 

of 0.1 

 

  
(a)    0.05 (b)    0.5 

Figure 4. The effect of Phase I sample size on the performance TEWMA   chart using the 

EARL when    100,    {50, 100, 500},    {0.05, 0.5},     =0 and     =2 with an 

increment of 0.1 

 

At each shift value and for different EARLs, the best performing chart is boldfaced in Tables 

4 to 6. Note that           ],           ] and           ] denote overall performance metrics 

defined in (18) for ‘small’, ‘large’ and ‘small-to-large’ shifts, respectively. Based on the OOC 

ARL performance illustrated in Table 3, it shows that the IMFIR-TEWMA   chart is more 

sensitive than the standard TEWMA, FIR-TEWMA and MFIR-TEWMA   charts for all 

shift values as well as in terms of the EARL values under symmetric distributions. However, 

for small shifts under skewed distributions, the IMFIR-TEWMA   chart is outperformed by 

its competitors, see Table 3 when    0.1 under the GAM(3,1) distribution. For symmetric 

distributions, the IMFIR-TEWMA   chart has a better overall performance than the other 

charts, see the EARL values under the N(0,1) and t(5) distributions. However, for the skewed 

gamma distribution, the FIR-TEWMA   chart is slightly better than the other charts. It is 

important to note that, in Table 3, the TEWMA   chart with no FIR feature has the worst 

performance than those with FIR, MFIR or IMFIR.   
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Table 3. The     profile of the TEWMA   with and without FIR features when          

(100, 5, 0.5) for a nominal     =500 under different distributions 

 
N(0,1) t(5) GAM(3,1) 

Shift TEWMA 
FIR- 

TEWMA 

MFIR- 

TEWMA 

IMFIR- 

TEWMA 
TEWMA 

FIR- 

TEWMA 

MFIR- 

TEWMA 

IMFIR- 

TEWMA 
TEWMA 

FIR- 

TEWMA 

MFIR- 

TEWMA 

IMFIR- 

TEWMA 

0.1 369.1 371.8 373.9 357.5 360.0 351.5 340.6 328.2 435.2 428.9 452.9 478.5 

0.2 176.5 170.1 157.8 142.0 137.7 127.2 119.2 98.6 192.1 203.5 197.8 187.1 

0.3 63.6 51.7 47.2 35.7 40.0 30.5 28.2 18.0 63.9 59.0 56.6 39.4 

0.4 24.6 15.6 13.8 9.5 16.3 9.7 7.2 4.6 21.5 14.2 11.9 14.2 

0.5 12.2 6.6 4.9 3.0 9.0 4.7 3.0 2.1 10.3 5.6 3.8 2.3 

0.6 7.8 4.0 2.7 1.9 5.9 2.8 1.9 1.6 6.3 3.0 2.1 1.6 

0.7 5.4 2.7 1.9 1.5 4.5 2.1 1.5 1.3 4.6 2.1 1.5 1.3 

0.8 4.3 2.0 1.5 1.3 3.5 1.7 1.3 1.2 3.6 1.6 1.2 1.1 

0.9 3.5 1.7 1.3 1.2 3.0 1.4 1.2 1.1 3.0 1.3 1.1 1.1 

1.0 3.0 1.4 1.2 1.1 2.5 1.3 1.1 1.1 2.6 1.2 1.0 1.0 

1.1 2.6 1.3 1.1 1.1 2.3 1.2 1.1 1.1 2.3 1.1 1.0 1.0 

1.2 2.3 1.2 1.1 1.0 2.0 1.1 1.0 1.0 2.1 1.1 1.0 1.0 

1.3 2.1 1.1 1.0 1.0 1.8 1.1 1.0 1.0 1.9 1.0 1.0 1.0 

1.4 1.9 1.1 1.0 1.0 1.7 1.1 1.0 1.0 1.8 1.0 1.0 1.0 

1.5 1.7 1.1 1.0 1.0 1.6 1.0 1.0 1.0 1.6 1.0 1.0 1.0 

          ] 129.2 123.2 119.5 109.5 112.6 104.7 99.6 90.3 144.6 142.2 144.6 144.3 

          ] 2.1 1.2 1.0 1.0 1.9 1.1 1.0 1.0 1.9 1.0 1.0 1.0 

          ] 45.4 42.2 40.8 37.3 39.5 35.9 34.0 30.9 50.2 48.4 49.0 48.8 

   2.933 2.995 3.126 3.2095 2.933 2.995 3.126 3.2095 2.933 2.995 3.126 3.2095 

 

Since the ARL values are spread over a wide range of values; hence, in Figure 5, they are 

displayed in a compact manner using the log scale, i.e.           . From Figure 5, it is 

observed that, in general, the standard TEWMA   chart will take longer to give a signal as 

compared to the FIR-TEWMA, MFIR-TEWMA and IMFIR-TEWMA   charts for the 

majority of shifts. However, for most shifts, the IMFIR-TEWMA   chart detects changes in 

the location parameter faster, with the MFIR-TEWMA and FIR-TEWMA   charts, being 

the second and third best for the majority of shifts, respectively.  

   

(a) N(0,1) distribution (b) t(5) distribution (c) GAM(3,1) distribution 

Figure 5. The OOC            profile comparison of the proposed schemes when        

(100, 5),    0.05 for a nominal     =500 under different distributions   

 

4.4 Performance comparison of the EWMA, DEWMA and TEWMA   charts 

In Tables 4 to 6, the proposed TEWMA   chart is compared to the EWMA and DEWMA   

charts with and without FIR features when   = 0.5, m = 100 and n = 5 under the N(0,1), t(5) 
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and GAM(3,1), respectively. It is worth mentioning that the EWMA and DEWMA   charts 

discussed in Li et al
26

 and Malela-Majika
28

 did not incorporate any of the FIR features 

discussed here. For control charts with no FIRs (i.e. labelled ‘Standard’ in Tables 4 to 6), the 

TEWMA   chart has the best small as well as large shifts performance; however, the 

DEWMA   chart has better moderate shifts performance. With respect to EARLs, the 

TEWMA   chart has the best performance followed by the DEWMA   chart and finally, 

the EWMA   chart being the worst performing.  

Next, for control charts with FIR and MFIR features, the DEWMA and TEWMA   charts 

seem to have the best small shifts performance, with the TEWMA chart having a slight 

advantage based on the           ] values. Note though, for moderate shifts, the DEWMA   

chart has better performance. For large shifts, i.e. for    1, the competing charts are almost 

equivalent, see the           ] values in Tables 4 to 6.  

Finally, for control charts with IMFIR feature, the TEWMA   chart seems to have the best 

small shifts performance, see the           ] values in Tables 4 to 6; with the DEWMA   

chart having the second best performance. Again, for moderate shifts, the DEWMA   chart 

has a better performance. For large shifts, all the competing charts are almost equivalent; see 

the           ] values in Tables 4 to 6.  

In general, from Tables 4 to 6, it is observed that in most situations (with or without the FIR 

features), the TEWMA   chart has relatively better OOC performance for small and large 

shifts; however, the DEWMA   chart has excellent moderate shifts detection ability than its 

competitors. Moreover, comparing the EWMA, DEWMA and TEWMA   charts’ ARL and 

EARL values from the columns, ‘Standard’ vs. ‘FIR’ vs. ‘MFIR’ vs. ‘IMFIR’: the feature that 

results in the lowest ARL and EARL values, correspond to the IMFIR. The latter shows that 

for each chart, the IMFIR feature yields the best performance in most situations. 
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Table 4. The OOC     profile comparison of the EWMA, DEWMA and TEWMA charts 

with and without FIR features when          (100, 5, 0.5) for a nominal     =500 under 

the N(0,1) distribution 

 
Standard FIR MFIR IMFIR 

Shift EWMA DEWMA TEWMA EWMA DEWMA TEWMA EWMA DEWMA TEWMA EWMA DEWMA TEWMA 

0.1 357.7 354.3 352.7 353.2 335.8 349.1 340.4 327.5 340.8 340.2 326.1 333.6 
0.2 142.5 128.5 118.0 132.3 117.6 120.6 116.6 116.5 108.2 117.7 110.9 99.2 
0.3 38.9 36.6 37.5 32.9 33.1 32.6 26.4 25.9 25.1 27.0 26.6 23.7 
0.4 15.6 14.2 15.6 12.7 11.7 13.0 9.2 9.0 9.1 9.1 8.1 9.3 
0.5 9.3 8.8 9.8 7.3 7.0 7.8 5.1 4.2 5.4 5.2 5.1 5.4 
0.6 6.5 6.1 6.7 5.0 4.7 5.2 3.3 2.8 3.8 3.4 3.3 3.6 
0.7 5.0 4.7 5.1 3.5 3.4 3.7 2.4 2.0 2.7 2.5 2.4 2.6 
0.8 4.0 3.6 3.8 2.7 2.6 2.7 1.8 1.5 2.0 1.9 1.9 2.0 
0.9 3.3 3.0 3.0 2.2 2.0 2.1 1.5 1.3 1.6 1.5 1.5 1.5 
1.0 2.9 2.5 2.5 1.8 1.7 1.7 1.3 1.2 1.4 1.3 1.3 1.3 
1.1 2.5 2.1 2.1 1.5 1.5 1.4 1.2 1.2 1.2 1.2 1.2 1.2 
1.2 2.2 1.9 1.9 1.3 1.3 1.2 1.1 1.1 1.1 1.1 1.1 1.1 
1.3 2.0 1.7 1.6 1.2 1.2 1.2 1.1 1.0 1.1 1.1 1.1 1.1 
1.4 1.9 1.5 1.5 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 
1.5 1.7 1.4 1.3 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

          ] 112.8 108.5 106.7 107.7 101.0 104.6 99.5 96.6 97.7 99.8 95.4 94.2 
          ] 2.1 1.7 1.7 1.3 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 
          ] 39.7 38.1 37.5 37.3 35.0 36.3 34.2 33.1 33.7 34.3 32.8 32.5 

   2.906 2.474 2.318 2.991 2.575 2.423 3.135 2758 2.624 3.12 2.75 2.623 

 

Table 5. The OOC     profile comparison of the EWMA, DEWMA and TEWMA charts with and 

without FIR features when          (100, 5, 0.5) for a nominal     =500 under the t(5) 

distribution 

 
Standard FIR MFIR IMFIR 

Shift EWMA DEWMA TEWMA EWMA DEWMA TEWMA EWMA DEWMA TEWMA EWMA DEWMA TEWMA 

0.1 337.5 318.7 306.3 322.3 316.1 308.7 320.1 300.1 315.3 324.5 293.8 277.4 
0.2 97.1 87.5 88.0 93.0 77.9 77.8 88.8 75.5 75.3 86.1 74.7 81.8 
0.3 26.5 22.2 25.1 21.4 21.5 23.3 15.2 16.4 13.9 17.2 15.6 15.9 
0.4 11.3 10.6 12.1 9.6 8.7 10.4 6.4 6.1 6.7 6.2 6.1 6.7 
0.5 7.3 6.7 7.5 5.8 5.4 6.0 3.8 3.7 4.2 3.9 3.7 4.1 
0.6 5.3 4.8 5.3 3.8 3.7 4.0 2.6 2.6 2.9 2.6 2.5 2.8 
0.7 4.1 3.7 4.0 2.8 2.7 2.8 2.0 1.9 2.1 1.9 1.9 2.0 
0.8 3.3 2.9 3.1 2.2 2.1 2.1 1.5 1.6 1.6 1.5 1.5 1.5 
0.9 2.8 2.4 2.5 1.8 1.7 1.7 1.3 1.3 1.4 1.3 1.3 1.3 
1.0 2.5 2.1 2.1 1.5 1.4 1.4 1.2 1.2 1.2 1.2 1.2 1.2 
1.1 2.2 1.8 1.8 1.3 1.3 1.3 1.1 1.1 1.1 1.1 1.1 1.1 
1.2 2.0 1.6 1.6 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1 1.1 
1.3 1.8 1.5 1.4 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 
1.4 1.6 1.4 1.3 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 
1.5 1.5 1.3 1.3 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

          ] 95.9 89.2 87.8 90.4 85.9 85.2 86.9 80.4 83.1 87.6 78.8 77.2 
          ] 1.8 1.5 1.5 1.2 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 
          ] 33.8 31.3 30.9 31.3 29.8 29.6 29.9 27.7 28.7 30.1 27.2 26.7 

   2.906 2.474 2.318 2.991 2.575 2.423 3.135 2758 2.624 3.12 2.75 2.623 
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Table 6. The OOC     profile comparison of the EWMA, DEWMA and TEWMA charts 

with and without FIR features when          (100, 5, 0.5) for a nominal     =500 under 

the GAM(3,1) distribution 

 
Standard FIR MFIR IMFIR 

Shift EWMA DEWMA TEWMA EWMA DEWMA TEWMA EWMA DEWMA TEWMA EWMA DEWMA TEWMA 

0.1 356.8 345.5 332.4 363.4 356.2 343.9 375.3 370.5 354.0 362.2 355.5 343.6 
0.2 133.3 111.3 110.0 131.8 112.7 110.0 109.5 101.3 104.8 120.8 116.6 116.5 
0.3 31.7 30.4 27.7 35.2 24.6 24.4 25.4 20.9 21.4 31.2 24.5 21.0 
0.4 12.2 11.9 12.2 10.8 9.4 10.1 8.5 6.9 7.8 8.4 6.8 7.1 
0.5 7.5 7.0 7.6 6.1 5.5 6.0 4.0 3.8 4.2 3.9 3.8 4.2 
0.6 5.4 4.8 5.3 4.0 3.6 3.8 2.5 2.4 2.7 2.5 2.5 2.6 
0.7 4.2 3.7 3.9 2.9 2.6 2.6 1.8 1.7 1.8 1.8 1.7 1.8 
0.8 3.4 2.9 3.0 2.1 1.9 1.9 1.4 1.3 1.4 1.4 1.3 1.3 
0.9 2.9 2.4 2.4 1.6 1.5 1.5 1.2 1.2 1.2 1.2 1.2 1.1 
1.0 2.5 2.1 2.0 1.4 1.3 1.2 1.1 1.1 1.1 1.1 1.1 1.1 
1.1 2.2 1.8 1.7 1.2 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 
1.2 2.0 1.6 1.5 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.3 1.8 1.4 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.4 1.7 1.3 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.5 1.6 1.2 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

          ] 108.3 101.2 98.0 109.4 101.7 98.9 104.5 100.7 98.4 105.3 101.4 98.5 
          ] 1.9 1.5 1.4 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
          ] 37.9 35.3 34.2 37.6 35.0 34.0 35.7 34.4 33.7 36.0 34.7 33.7 

   2.906 2.474 2.318 2.991 2.575 2.423 3.135 2758 2.624 3.12 2.75 2.623 

 

5. Illustrative example 

The implementation of the proposed TEWMA   control chart with and without the IMFIR 

feature using a dataset on the size of piston rings from Montgomery
45

 for which a goodness 

of fit test for normality is not rejected since the p-value is equal to 0.4167. Setting an 

    =500, we use  =0.50 and   =2.937, so that the attained      value of the TEWMA W 

chart be equal to 500.14 for ( , )=(125,5). The TEWMA   chart is shown in Figure 6 and 

no charting statistic plots beyond the control limits, i.e. it does not give a signal in the 

prospective phase. When the IMFIR feature is incorporated in the TEWMA   chart, it is 

found that    = 3.177 yields an attained      value of 501.22. The IMFIR-TEWMA   chart 

is also shown in Figure 6 where we observe that it gives a signal on the first sample in the 

prospective phase. Moreover, it is observed in Figure 6 that, the IMFIR adjustment factor 

narrows the control limits during the start-up period. This in turn, ensures that the IMFIR-

TEWMA   chart has a better detection ability than the TEWMA   chart (without the 

IMFIR feature). Also, it can be seen that, as the time increases, the control limits of the 

IMFIR-TEWMA   chart converges towards those of the TEWMA   chart without the 

IMFIR, which shows that the effect of the IMFIR feature is only applicable during start-up 

only and gradually disappears as time increases. 
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Figure 6. Illustrative example of the standard TEWMA and IMFIR-TEWMA   control 

charts using the piston ring data from Montgomery
45

 

 

6. Conclusion 

This paper proposed the TEWMA chart based on the Wilcoxon rank-sum ( ) statistic with 

and without the IMFIR feature. A comparison against other FIR features indicates that the 

IMFIR feature has the best detection ability for the new TEWMA   chart in most situations. 

More importantly, the TEWMA chart outperforms the DEWMA and EWMA   charts with 

and without the FIR features, especially for small shifts. However, the DEWMA   chart has 

the best performance in detecting moderate shifts. Therefore, it can be said that the proposed 

TEWMA   chart with IMFIR feature can be used over the DEWMA and EWMA   charts 

as it is shown that it is more sensitive and results in earlier OOC signals in most situations as 

compared to its competitors. 

For future research, we intend to propose the TEWMA chart to monitor variability using the 

Ansari-Bradley statistic (refer for instance to Zhou et al
46

) and also study the effect of the 

IMFIR feature. 

 

Appendix 

With the help of a formal calculus software,         can equivalently be written as 



18 
 

        (
  

 
∑                           

 

   

)  
 

 
 

        
(                                    

                                               

                                     

                                                

                                               

                         

                        )  
   

Another alternative formulation of the above expression is provided in Alevizakos et al
36

. 
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