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Abstract 

 

Whether or not to vaccinate one's child is a decision that a parent may approach in several ways. The 

vaccination game, in which parents must choose whether to vaccinate a child against a disease, is one with 

positive externalities (herd immunity). In some societies, not vaccinating is an increasingly prevalent 

behavior, due to deleterious side effects that parents believe may accompany vaccination. 

The standard game-theoretic approach assumes that parents make decisions according to the Nash 

behavioral protocol, which is individualistic and non-cooperative. Because of the positive externality that 

each child’s vaccination generates for others, the Nash equilibrium suffers from a free-rider problem. 

However, in more solidaristic societies, parents may behave cooperatively –they may optimize according 

to the Kantian protocol, in which the equilibrium is efficient. We test, on a sample of six countries, whether 

childhood vaccination behavior conforms better to the individualistic or cooperative protocol. In order to 

do so, we conduct surveys of parents in these countries, to ascertain the distribution of beliefs concerning 

the subjective probability and severity of deleterious side effects of vaccination.  

We show that in all the countries of our sample the Kant model dominates the Nash model. We 

conjecture that, due to the free-rider problem inherent in the Nash equilibrium, a social norm has evolved, 

quite generally, inducing parents to vaccinate with higher probability than they would in the non-

cooperative solution. Kantian equilibrium offers one precise version of such a social norm. 

 

Keywords: Kantian equilibrium, Nash equilibrium, vaccination, social norm. 

JEL code: C72 D62 D63 I12



1 Introduction 

 Vaccination against childhood diseases has improved child health and life expectancy dramatically 

over the last fifty years. Researchers from the US Center for Disease Control and Prevention (CDC) and 

the World Health Organization (WHO) write that in 2017, 110,000 children died of measles infection 

globally, and that in the period 2000-2017, 21 million lives were saved by measles vaccination (Dabbagh, 

Laws et alii, 2018, Table 2). The fraction of children globally who are vaccinated against measles rose in 

this period from 72% to 85%. Sweden and China have vaccination coverage rates in 2019 of 97% and 99%, 

respectively (World Bank, https://data.worldbank.org/indicator/SH.IMM.MEAS?view=map). 

 Our interest in this article, however, is not epidemiological, but rather behavioral. Vaccination is a 

choice in which cooperation among the population is important. Because of the phenomenon of herd 

immunity, the choice of each person to vaccinate has a positive welfare consequence for others. As the 

coverage rate of vaccination for a disease increases, it becomes more difficult for the virus to find hosts, 

and hence the probability that unvaccinated persons contract the disease decreases. Here, we model 

vaccination behavior as a game, in which the strategy of parents is to choose whether or not to vaccinate 

their child, or, in a more general version, a parent’s mixed strategy is a probability that she will vaccinate 

her child.  

 The main equilibrium concept that economic theory employs to analyze this behavior is Nash 

equilibrium. A Nash equilibrium is a profile of vaccination probabilities for the population of parents such 

that, given the coverage rate, no parent can increase her expected welfare by altering her strategy 

(vaccination probability). Computing expected welfare requires trading off one possible lottery for another. 

If the parent does not vaccinate her child, the child may contract the disease, but is less likely to do so if the 

coverage rate is high; on the other hand, if vaccinated the child may be healthy, or suffer a possibly serious 

side effect of vaccination, or so the parent may believe. Expected welfare of the parent is the probability of 

vaccinating multiplied by the expected utility of the ‘side-effect lottery,’ plus the probability of not 

vaccinating times the expected utility of the ‘unvaccinated’ lottery. 

https://data.worldbank.org/indicator/SH.IMM.MEAS?view=map


 4 

 The vaccination game, that we model explicitly below, has the property of being a monotone 

increasing game, which means that as long as the parent’s probability of vaccinating her child is less than 

one, her expected utility will be greater the higher is the coverage rate (the more that other parents 

vaccinate). The general definition of a monotone increasing game is one in which each player’s payoff is 

an increasing function of the strategies of the other players. The higher the probability that others vaccinate, 

the higher is my welfare, due to the increase in herd immunity. Now a Nash equilibrium of a monotone 

increasing game always suffers from the free-rider problem. People do not vaccinate ‘enough’ in the Nash 

equilibrium. This is because, in that equilibrium, no parent takes into account the positive effect of her 

choice to vaccinate on the welfare of other parents (or children). The consequence is Pareto inefficiency of 

the equilibrium: all could increase their welfare if all increased their probabilities of vaccination from the 

Nash equilibrium strategies. This is a generic welfare pathology of Nash equilibrium in monotone 

increasing games. 

 Nash equilibrium models the ethos of ‘going it alone;’ each parent takes as given – as part of her 

environment – the strategies of other parents, and asks only if she should alter her own strategy. She treats 

other parents’ behaviors as fixed, and it is this assumption that gives rise to the free-rider problem.  

 There is, however, another equilibrium concept that models the ethos of cooperation, in contrast to 

the ethos of ‘going it alone.’ This is called Kantian equilibrium, which comes in different varieties. The 

simplest one applies only when all players in the game are identical. In our case, this would mean that all 

players have the same beliefs about the relevant probabilities of death from measles and of possibly 

suffering a bad side effect from the vaccination. In the case of identical players, each player asks herself: 

What is the action I would like everyone to take? Would I prefer everyone to vaccinate, or nobody to 

vaccinate, or everyone to vaccinate with the same probability a? If all parents were identical, they will all 

agree on the answer to this question: it will be, for some number 𝑎∗ ∈ [0,1], that all players vaccinate with 

probability 𝑎∗. The consequence will be that (in a large population) the coverage rate will be 𝑎∗. The 

important result is that this ‘Kantian’ equilibrium is always Pareto efficient in a monotone increasing game: 

the free-rider problem does not occur.  
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 It’s important to note that the Kantian optimization protocol does not rely on altruism of parents. 

When a parent asks ‘what strategy should we all play?’ she is forced to take into account the external effect 

on her own welfare implied by the actions of others. If we are all to play the same strategy, and if that is a 

low probability of vaccinating, the coverage rate will clearly be lower than otherwise, which is bad for my 

child. The question the player poses induces her to take into account the positive externality of vaccination. 

The consequence, though not obvious, is that Pareto efficiency is achieved in the equilibrium. 

 The ‘simple Kantian equilibrium’ just described will typically not exist if players are different –if 

they have different beliefs about the trade-offs required to evaluate whether or not to vaccinate. In this case, 

Kantian equilibrium takes a different form. Suppose there is a given profile of probabilities of vaccination 

among a population of parents. Now each parent asks: Would I like to re-scale the entire vector of 

probabilities by some positive (or zero) multiplicative constant? If all answer ‘no’ to this question, the 

profile is a multiplicative Kantian equilibrium.  

  Notice the difference between the question the Kantian player asks and the Nash player asks. The 

Kantian asks if she would like to re-scale everyone’s vaccination probability, while the Nash parent asks if 

she would like to change only her own probability. The Kantian question builds symmetry into the 

equilibrium concept that is absent in Nash equilibrium. It turns out that, if all probabilities in the equilibrium 

profile are positive, then the Kantian equilibrium is Pareto efficient. Again, the free-rider problem 

dissolves.1 

 This equilibrium concept is called Kantian because it models the idea to ‘take an action if and only if 

you would will that it be universalized,’ the categorical imperative of Immanuel Kant. Mathematically, the 

concept is a first cousin of Nash equilibrium, although the consequences are quite different in the two cases. 

Nash’s approach, of defining an equilibrium of a game when no player wishes to choose another strategy 

 
1 The theorems concerning the Pareto efficiency of Kantian equilibrium are presented in Roemer (2019, 

chapters 2 and 3). 
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profile from a set of counterfactual profiles, can be altered to model not competition among players, but 

cooperation among them.  

 We can now state our project in this article. We will calibrate the parameters of the vaccination game 

using surveys that interview parents in a set of countries about their beliefs and their vaccination choices. 

We will then compute the Nash equilibrium and the Kantian equilibrium of the game in each country. This 

will consist of two profiles of vaccination probabilities in the country, and their implied equilibrium 

coverage rates. We will then ask which of these equilibria appears to better explain observed vaccination 

behavior in the country. Do parents appear to be ‘going it alone’ or cooperating? Of course, the reality is 

surely that some people go it alone and some behave cooperatively, but we will not attempt to analyze a 

model that is so nuanced: we will be satisfied with the simpler question just posed.  

 Section 2 presents a random utility model of vaccination and the equilibrium theory. Section 3 

describes the data. Section 4 presents our method of estimation, that is, of testing whether the Nash or 

Kantian model better explains vaccination behavior in six countries. Section 5 presents our major finding: 

in all six countries, the Kantian model performs significantly better than the Nash model in explaining 

behavior. Section 6 argues that the reason this is true is that, due to the herd-immunity effect, a social norm 

has evolved to vaccinate one’s children, and this engenders vaccination rates that are uniformly greater than 

those predicted by Nash equilibrium. Section 7 offers a short conclusion. The Online Appendix presents 

details that are elided in the main text. 

2 A random utility model of vaccination behavior 

2.1 The set-up 

 We model the problem of the parent who must decide whether or not to vaccinate her child against 

measles. For now, we assume there are no laws or regulations mandating vaccination. If the child is not 

vaccinated, there is the possibility that he will contract measles and possibly die or suffer a debilitating 

illness. If he is vaccinated, he will either be healthy and protected from measles, or may suffer a side effect 

from the vaccination of some severity (or so the parent may believe).  
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 We define three states of the child’s health: healthy (H), suffering a possibly severe side effect from 

an inoculation (E), or contracting measles and possibly suffering a very severe outcome or death (D). Table 

1 presents the probabilities of the three health states if vaccinated and if not vaccinated, and the von 

Neumann –Morgenstern utilities of the parent (the decision maker) based upon the child’s health outcome. 

Table 1. Utilities and probabilities of health states. 

 
Healthy Side effect Death/Severe Disability 

Utility 1 𝑢 0 

Probability if not vax 1 − 𝑝0 0 𝑝0 

Probability if vax 1 − 𝑝 𝑝 0 

 

The utilities of the states Healthy and Death are a normalization that fixes the von Neumann-Morgenstern 

utility function of the parent. The utility u from the possible side effect is strictly between zero and one. We 

call the ordered pair ( p,u)  the parent’s type; it is her beliefs about the utility-relevant facts concerning the 

side effect of vaccination. 𝑝0 is probability of death or severe disability conditional upon contracting 

measles. We will take 𝑝0 to be common knowledge of parents. We assume the population is characterized 

by a Beta distribution 𝑄 of (𝑝, 𝑢) defined on the unit square. (Thus, we assume that 0 < 𝑢 < 1 for all types.) 

The parent’s mixed strategy will be a number 𝑎 ∈ [0,1], the probability with which she will vaccinate her 

child. The parent’s (von Neumann Morgenstern) expected utility is defined on the ordered pair (𝑎, 𝑎 ), where 

𝑎̅ is the coverage rate in the population, defined as the average probability of vaccination across all 

(relevant) parents. There is a probability function 𝜋: [0,1] → [0,1]: 𝑎̅ → 𝜋(𝑎̅) which gives the probability 

that an unvaccinated child will contract measles if the coverage rate is 𝑎̅. Herd immunity is modeled by 

supposing that 𝜋 is a strictly decreasing, continuous function. Expected utility for a parent of type (𝑝, 𝑢) is 

given by: 

 𝑉(𝑝,𝑢)(𝑎, 𝑎̅) = 𝑎 ((1 − 𝑝) ⋅ 1 + 𝑝𝑢 + ε)
⏞              

ex utility if vacc

+ (1 − 𝑎) (𝜋(𝑎̅)(1 − 𝑝0) + (1 − 𝜋(𝑎̅)))
⏞                  

ex utility if not vacc

   (2.1) 
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  The number ε is the realization of a random variable distributed according to a distribution function 

L(×) on support ℝ, which is drawn i.i.d. across all parents. It is assumed that 99% of the support of L lies 

on the non-negative real numbers: this models a positive utility saltus that the parent receives if she 

vaccinates her child –because she is doing what physicians and society recommend, what most of her 

neighbors are doing, and so on. The main motivation for inserting this random element into utility is that it 

will guarantee that the Nash and Kant equilibrium strategies all lie in the open interval (0,1), a property that 

is essential for our estimation strategy (see Section 4 below). Thus, the data of the problem are 

{𝑄, 𝑝0, π(⋅), 𝐿(⋅)}.  

 We call the set of parents of a given type (𝑝, 𝑢) a tranche. It is assumed, in particular, that ε is 

distributed i.i.d. within every tranche. This means that we will observe the behavior of a type (𝑝, 𝑢) as a 

mixed strategy, even if every member of the tranche has a pure strategy, as long as the effect of the random 

variate differs across individuals. The statistician will only observe the average probability of vaccination 

within each tranche, which we will denote 𝑎(𝑝, 𝑢). This is to be thought of as the fraction of those of type 

(𝑝, 𝑢) who decide to vaccinate, depending on their draw of the utility bump ε. 

2.2 Nash equilibrium 

 A Nash equilibrium of the game, given a realization of the random variate L, is an action of ‘vaccinate’ 

or ‘do not vaccinate’ for every individual within every type given by: 

   vaccinate =

1,if 
dV

( p,u)

da
º p(u -1) + p

0
p(a N ) + e > 0

0,  if
dV

( p,u)

da
º   p(u -1) + p

0
p(a N ) + e < 0

ì

í

ï
ï

î

ï
ï

 ,    (2.2) 

Where 𝑎̅𝑁 is the fraction of individuals who vaccinate in equilibrium2. Formally, we say that the Nash 

equilibrium is a strategy α𝑁(𝑝, 𝑢, ε) for each individual (𝑝, 𝑢, ε) and a coverage rate 𝑎̅𝑁 such that: 

 
2 We can ignore the null set of types for which 𝑝(𝑢 − 1) + 𝑝0π(𝑎̅

𝑁) + ε = 0  
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    α𝑁(𝑝, 𝑢, ε) = {
1 if ε > 𝑝(1 − 𝑢) − 𝑝0π(𝑎̅

𝑁)

0 if ε < 𝑝(1 − 𝑢) − 𝑝0π(𝑎̅
𝑁)

    (2.3) 

and: 

 𝑎̅𝑁 = ∫ ∫ 𝑑𝐿(ε)𝑑𝑄(𝑝, 𝑢)
∞

𝑝(1−𝑢)−𝑝0π(𝑎̅
𝑁)(𝑝,𝑢)

= ∫(1 − 𝐿(𝑝(1 − 𝑢) − 𝑝0π(𝑎̅
𝑁)))𝑑𝑄(𝑝, 𝑢) (2.4) 

 Thus, vaccinate if and only if ε > 𝑝(1 − 𝑢) − 𝑝0𝜋(𝑎̅
𝑁), an event that occurs (in the (𝑝, 𝑢) tranche) 

with probability 1 − 𝐿(𝑝(1 − 𝑢) − 𝑝0π(𝑎̅
𝑁)). The fraction of this tranche that vaccinates is: 

 𝑎𝑁(𝑝, 𝑢) = ∫ α𝑁(𝑝, 𝑢, ε)𝑑𝐿(ε)
∞

𝑝(1−𝑢)−𝑝0π(𝑎̅
𝑁)

= 1 − 𝐿(𝑝(1 − 𝑢) − 𝑝0π(𝑎̅
𝑁))  (2.5) 

Equation (2.4) is a single equation in the unknown 𝑎̅𝑁. We solve it for 𝑎̅𝑁, and then compute the Nash 

equilibrium strategy profile from equation (2.5). Note that it appears as if the type (𝑝, 𝑢) has a (single) 

mixed strategy, 𝑎𝑁(𝑝, 𝑢). 

 It is also noteworthy that, because the support of L is the entire real line, every Nash and Kantian 

strategy is in the open interval (0,1). This will be an important fact in what follows. 

 

2.3 Kantian equilibrium 

 It will be convenient to define: 

      p*(u,a) =
p

0
p(a)

1- u
 .     (2.6) 

 As discussed in Section 1, a multiplicative Kantian equilibrium of a game in normal form among M 

players with payoff functions {𝑉𝑖} is a strategy profile 𝑎(𝑝, 𝑢) and a coverage rate 𝑎̅ = ∫ 𝑎(𝑝, 𝑢)𝑑𝑄(𝑝, 𝑢) 

such that no player would like to re-scale the profile by any non-negative factor, that is: 

     [∀(𝑝, 𝑢)] [1 = argmax
ρ≥0

𝑉(𝑝,𝑢)(𝜌𝑎(𝑝, 𝑢), 𝜌𝑎̅) ].    (2.7) 

A profile of vaccination strategies α𝐾(𝑝, 𝑢, ε), where α̅𝐾 = ∫ αK(𝑝, 𝑢, ε)𝑑𝐿(ε)𝑑𝑄(𝑝, 𝑢) is a multiplicative 

Kantian equilibrium of the vaccination game after the random variate L is realized if no player (𝑝, 𝑢, ε) 

would like to re-scale the entire profile by any non-negative factor ρ (see equation (2.9)).  
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 What is the domain of 𝜌 for a player (𝑝, 𝑢, ε) –that is, in the game where the draw from the random 

variate L has been realized? At a Kantian equilibrium, a player (𝑝, 𝑢, ε) must choose ρ ∈

[0, 1 (α𝐾(𝑝, 𝑢, ε))⁄ ] –that is, she cannot contemplate a re-scaling of the profile that gives her a vaccination 

probability greater than one. Furthermore, she must truncate at one, if need be, the re-scaling for other 

players so that they are not required to play infeasible strategies.  

 We must distinguish carefully between the equilibrium after the random variable L has assigned a 

value ε to every player, and what the statistician observes, not knowing the realization of L. Since at the 

observed equilibrium there will be players with all values of ε at a given (𝑝, 𝑢) in the support of Q, and 

these players will have different strategies α𝐾(𝑝, 𝑢, ε), what the statistician will observe is that the (𝑝, 𝑢) 

tranche is playing a mixed strategy: 

  𝑎𝐾(𝑝, 𝑢) = ∫ α𝐾(𝑝, 𝑢, ε)𝑑𝐿(ε) . (2.8) 

Note that 𝑎̅𝐾 = ∫𝑎𝐾(𝑝, 𝑢)𝑑𝑄(𝑝, 𝑢) = α̅𝐾, because we have already integrated over both (𝑝, 𝑢) and ε in the 

definition of α̅K. 𝑎̅K or α̅K is the vaccination rate in the population, observed by the statistician. 

 If a player/parent contemplates a re-scaling of a strategy profile α(𝑝, 𝑢, ε) by a factor 𝜌 that is larger 

than one but very close to one, the fraction of players who vaccinate (in the rescaled profile) will be very 

close to ρα̅ + (1 − ρ)𝑄(𝐴), where A is the set of voters (𝑝, 𝑢, ε) for whom α(𝑝, 𝑢, ε) = 1. This is the result 

of truncating the rescaled policies so that no player is required to vote with a probability greater than unity.  

 Thus, the expected utility of the parent in a rescaled profile is, for 𝜌 close to one, given by: 

𝑉̃(𝑝,𝑢,ε)(α, 𝑎̅, ε; ρ) =

{
 
 

 
 
ρα ((1 − 𝑝) ⋅ 1 + 𝑝𝑢 + ε)⏞              

ex utility if vacc

+ (1 − ρα) (π(ρ𝑎̅ + (1 − ρ)𝑄(𝐴))(1 − 𝑝0) + (1 − π(ρ 𝑎̅ + (1 − ρ)𝑄(𝐴))))
⏞                                          

ex utility if not vacc

if ρ > 1

ρα ((1 − 𝑝) ⋅ 1 + 𝑝𝑢 + ε)⏞              
ex utility if vacc

+ (1 − ρα) (π(ρ𝑎̅)(1 − p0) + (1 − π(ρ 𝑎̅)))
⏞                    

ex utility if not vacc

 if 𝜌 ≤ 1

   (2.9) 

By definition, a profile α𝐾(𝑝, 𝑢, ε) is a Kantian equilibrium of the game where L has been realized exactly 

when: 
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  for all (𝑝, 𝑢, ε), 1 = argmax
0≤𝑝≤(

1

α𝐾(𝑝,𝑢,ε)
)

𝑉̃(𝑝,𝑢,ε)(α
K, 𝑎̅𝐾 , ε; ρ)  (2.10) 

 What are the first-order conditions associated with the optimization   (2.10)? Note that 

𝑉̃(𝑝,𝑢,ε) is not differentiable at 𝜌 = 1, where there is a kink in the function. So, the f.o.c.s guaranteeing   

(2.10) if α𝐾(𝑝, 𝑢, ε) < 1 are: 

    ,   (2.11) 

where 
d -

dr
 and 

d +

dr
 are the left-hand and right-hand derivatives, respectively. If α𝐾(𝑝, 𝑢, ε) = 1, the f.o.c. 

is  alone, because the relevant domain of ρ in the second expression in (2.11) becomes 

[0,1]. 

 Now we compute: 

   (2.12) 

Both conditions in (2.12) must hold if α𝐾(𝑝, 𝑢, ε) < 1 . If α𝐾(𝑝, 𝑢, ε) = 1, the first condition only need 

hold, and it becomes: 

𝜀 ≥ (1 − 𝑢)(𝑝 − 𝑝∗(𝑢, 𝑎̅)). 

 Define α𝐾(𝑝, 𝑢, ε) so that = 0 when ε < (1 − 𝑢)(𝑝 − 𝑝∗(𝑢, 𝑎̅)), and define α𝐾 = 1 

otherwise. From (2.12) this requires: 

  a
K ( p,u,e) =

 
- p

0
¢p (a K )a K

(1- u)( p - p*(u,a K )) - e - p
0
¢p (a K )a K

,  if e < (1- u)( p - p*(u,a))

1 if e ³ (1- u)( p - p*(u,a))

ì

í
ïï

î
ï
ï

  (2.13) 

The statistician sees only the average coverage rate for each tranche (𝑝, 𝑢). This is given by: 
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𝑎𝐾(𝑝, 𝑢) = ∫
−𝑝0𝜋

′(𝑎̅𝐾)𝑎̅𝐾

(1 − 𝑢)(𝑝 − 𝑝∗(𝑢, 𝑎̅𝐾)) − 𝜀 − 𝑝0𝜋′(𝑎̅𝐾)𝑎̅𝐾
𝑑𝐿(𝜀)

(1−𝑢)(𝑝−𝑝∗(𝑢,𝑎̅𝐾))

−∞

+ 

    1 − 𝐿 ((1 − 𝑢)(𝑝 − 𝑝∗(𝑢, 𝑎̅𝐾))).     (2.14) 

Integrating over all (𝑝, 𝑢): 

𝑎̅𝐾 = ∫ ∫
−𝑝0𝜋

′(𝑎̅𝐾)𝑎̅𝐾

(1 − 𝑢)(𝑝 − 𝑝∗(𝑢, 𝑎̅𝐾)) − 𝜀 − 𝑝0𝜋′(𝑎̅𝐾)𝑎̅𝐾
𝑑𝐿(𝜀)𝑑𝑄(𝑝, 𝑢)

(1−𝑢)(𝑝−𝑝∗(𝑢,𝑎̅𝐾))

−∞

+ 

∫ [1 − 𝐿 ((1 − 𝑢)(𝑝 − 𝑝∗(𝑢, 𝑎̅𝐾)))]𝑑𝑄(𝑝, 𝑢),    (2. 15) 

which is an equation in the single unknown 𝑎̅𝐾. We solve it for the Kantian coverage rate, and then compute 

the equilibrium strategy profile from    (2.14). 

 To check that the strategy profile α𝐾, so defined, is a Kantian equilibrium of the game that takes place 

after the random variable L has been realized, we need only check that (2.11) holds. By definition, we have 

 when α𝐾 < 1. Now note from the formulae in (2.12) that: 

     .   (2.16) 

But the term (1 − α)𝑝0π′(𝑎̅)𝑄(𝐴) is negative or zero, which implies that  , and so (2.11) 

follows. Finally, note that when α𝐾 = 1, , and the second condition in (2.12) becomes vacuous, 

because the domain of ρ becomes {1}. 

 

2.4 Comparison of Kantian and Nash vaccination equilibria 

 We noted in Section 1 that the vaccination game is a monotone increasing game. (Just check in 

equation (2.1) that 𝑉(𝑝,𝑢) is an increasing function of 𝑎 .) This is the mathematical consequence of herd 

immunity. It follows that the Nash equilibrium of the game will suffer from the free-rider problem, but 
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the multiplicative Kantian equilibrium will be Pareto efficient. Intuitively, people will vaccinate ‘too 

little’ in the Nash equilibrium. The precise consequence is this: 

Theorem 1 𝑎̅𝐾 > 𝑎̅𝑁. 

The coverage rate is greater in Kantian equilibrium. 

Proof: 

 Suppose to the contrary that 𝑎̅𝑁 ≥ 𝑎̅𝐾. Then 𝑝∗(𝑢, 𝑎̅𝐾) ≥ 𝑝∗(𝑢, 𝑎̅𝑁) and this implies that the second 

term in the r.h.s. of equation (2.15) is greater than the r.h.s. of equation (2.5). A fortiori, 𝑎̅𝐾 > 𝑎̅𝑁 because 

the first term on the r.h.s. of equation (2.15) is positive. This contradiction proves the claim. n 

 

 In fact, we can say more. Note that although we have defined a parental type as an ordered pair of 

traits/beliefs (𝑝, 𝑢), in fact the population profile of traits can be more parsimoniously written as depending 

only on the single variable 𝑤 = 𝑝(1 − 𝑢). For we can write the Nash and Kantian equilibrium policies, 

from equations (2.5) and (2.14) respectively as: 

  (2.17) 

and: 

3 (2.18) 

Since the domain of (𝑝, 𝑢) is the unit square, the domain of w is [0,1]. We can plot the difference 

of the two equilibrium profiles 

Δ𝑎̃(𝑤) = 𝑎̃𝐾(𝑤) − 𝑎̃𝑁(𝑤). 

 (2.19) 

 
3 Note we have written the coverage rates in equations (2.17) and (2.18) as 𝑎̅𝑁 and 𝑎̅𝐾. We could have 

written these as 𝑎  ̅𝑁and 𝑎  ̅𝐾. The coverage rates will be the same whether we integrate 𝑑𝑄(𝑝, 𝑢) or 

𝑑𝑄̃(𝑤), where 𝑄̃(⋅) is the distribution function of w induced by Q. 
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See Figure 1a in Section 5 below. When w is small then either p is small or u is close to one, or both, so the 

parent either believes that the probability of a severe side effect from vaccination is small, or if the side 

effect occurs, it is not severe (u close to one means the health status of a child with the side effect is close 

to full health). So parents with w close to zero will be likely to vaccinate according to our model and parents 

with w close to one will be likely not to vaccinate. 

 

3 Producing the data 

 The data we require to compute the Kantian and Nash equilibria for a society are 𝑝0, the distribution 

Q of (𝑝, 𝑢), and the function π(⋅). We describe the choice of the logistic variate L below. We have 

administered the survey to adults aged 20 to 45 in the US, the UK, Germany, France, Canada, and Mexico. 

The survey is presented in Section III of the Online Appendix.  

Table 2 shows some descriptive statistics. 

Table 2. Descriptive statistics of the country surveys 

 Canada France Germany UK US Mexico 

Mean age 35.3 34.7 33.1 33.9 32.2 31.3 

Female % 49.1 53.5 54.3 52.3 60.3 55.6 

Parents since 2011 % 32.3 56.1* 33.8 41 32.8 56.5 

Measles vaccine % 88.9 90.3 89.3 89.2 82.9 96.8 
Covid vaccine % 73.2 50 64.1 77.3 54.1 88.7 

N 1052 1188 1146 1054 1210 1063 
* In the French survey the question asked was "Do you have a child born in or before 2018?". 

 

 The probabilities 𝑝 and 𝑝0 representing the individual’s beliefs are ascertained in a standard way in 

the questionnaire.  

 We estimate u by presenting the respondent with a series of binary choices over pairs of lotteries. 

This technique allows us to place the respondent’s value of u in a relatively small interval within [0,1]. The 

method assumes the individual is an expected utility maximizer.4 We pose the question: 

 
4 See Holt and Laury (2002) for a description of this approach. 
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• In the following scenario, would you prefer event A or event B:  

A. For your child to have a bad side effect from a measles vaccination, or 

B. For your child to face an unrelated risk in which he/she has a 99% chance of being healthy, and a 1% 

chance of dying. 

Suppose the respondent answers B. If utility is normalized as in Table 1, then we conclude that 

(0.99 × 1 + 0.01 × 0) = 0.99 > 𝑢. Next, we ask: 

• In the following scenario, would you prefer event A or event B:  

A. For your child to have a bad side effect from a measles vaccination, or 

B. For your child to face an unrelated risk in which he/she has a 95% chance of being healthy and a 

5% chance of dying. 

Suppose the respondent answers A. Then we conclude that 𝑢 > (0.95 × 1 + 0.05 × 0) = 0.95, and hence 

we know that uÎ(0.95,0.99) . We assign this respondent a value of u chosen randomly from this interval. 

Thus, we ascertain the respondent’s value of u by posing a series of such questions about lottery choice. 

 We then fit a bivariate Beta distribution defined on [0,1]2 to the respondents’ values of (𝑝, 𝑢). The 

Beta distribution is calculated knowing the observed means and variances of p and u, and their covariance.  

Table 3 presents these data for our six countries. 

Table 3. Data from the country surveys 

 Mean p Var p Mean u Var u Cov(p,u) Median 𝑝0 
US 0.048 0.026 0.851 0.061 -0.009 0.003 
UK 0.020 0.009 0.891 0.043 -0.004 0.002 
Germany 0.020 0.010 0.863 0.054 -0.004 0.002 
France 0.022 0.011 0.743 0.094 -0.002 0.003 
Canada 0.017 0.052 0.874 0.052 -0.0009 0.001 
Mexico 0.035 0.015 0.774 0.068 -0.0005 0.005 
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 We choose the common value of 𝑝0 from the survey to be the median response to the appropriate 

question on the survey. The median is a better choice than the mean value, as the latter is distorted by 

several very high and unreasonable values for 𝑝0.
5 

 We comment on the value of 𝑝0, the median value of respondents’ opinions on the probability of 

dying from a measles infection. Dabbagh, Laws et alii (2018, Table 1) report that in 2017, for the continent 

of Europe the actual value is 𝑝0 = 0.004 = 0.4%, slightly larger than the median respondent’s opinion. 

Unfortunately, this article does not present the value for the United States. But for Africa, the reported value 

of 𝑝0 has a point estimate of 0.66, and the lower-bound estimate in the 95% confidence interval is 0.31. 

Measles can be a deadly disease if medical care is poor.  

 The most severe side effect of MMR (measles, mumps, rubella) vaccination is aseptic meningitis, 

which occurs in 1 in 10 million cases. The probabilities p that respondents to our survey give are greater 

than this by four orders of magnitude; however, from the values of u respondents provide, they are on 

average viewing side effects as not terribly severe (a value of 𝑢 = 0.85 says that good health is 15% reduced 

by the side effect). The possibly bad outcomes of measles are considerably worse, and include, besides 

death, anaphylaxis, febrile seizures, thrombocytopenic purpura and encephalitis (see Strebel and Orenstein, 

2019, which also gives the probabilities). The anti-vaccination movement is often motivated by fears that 

vaccination may cause autism, which were falsely aroused in a 1998 article published in Lancet, later 

retracted by Lancet in 2010.  

 We use the following parametric form for the probability function: 

      π(𝑎̅) = (1 − 𝑎̅)𝛾,     (3.1) 

where 𝑎̅ is the observed measles vaccination coverage rate for the country. We chose the parameterization 

(3.1) as possibly the simplest functional form that gives a decreasing function passing through the points 

(0,1) and (1,0). In the Appendix A, we describe the precise definition of the function π and how we estimate 

 
5 However, we report the mean values of p and u because these are used to fit the Beta distribution Q to 

the data. 
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γ. For Canada and the United States, we estimate γ =3.1. For the UK, France, Germany and Sweden, we 

estimate 𝛾 = 1.995.6 We split our set of countries in two because the number of cases of measles in the last 

five years in Europe has been an order of magnitude larger than in North America (Canada and the US), 

despite the higher coverage rates enjoyed by the European countries. In particular, the number of measles 

cases in Germany in 2015 was several orders of magnitude higher than in Canada and the US, and this is 

doubtless because 2015 was the year during which Prime Minister Angela Merkel admitted one million 

refugees from the Middle East. We presume the infection process therefore differs between recent European 

experience and the North American, justifying different values of γ in equation (3.1).7 

 At the WHO-reported8 coverage rate of 0.916 for the US, the probability that an unvaccinated child 

in a given cohort in the US contracts measles before the age of five, defined as the number of measles cases 

in her birth cohort divided by the number of unvaccinated children in her cohort, is 4.5 × 10−4, or about 

one in 2000.  

 The last year measles was endemic in the United States was 2000.9 The aforementioned WHO data 

set reports that in 2019, measles was endemic in Germany and France. It is probably also endemic in 

Mexico, although the data are incomplete. We cannot use the SIR model to compute the probability of 

contracting measles because this model is not applicable to analyzing very small occurrences of the disease 

that are quickly stamped out10. In any case, the SIR model will not give us a probability as a function of the 

 
6 We had planned to include Sweden in our sample of countries, and so included it in the estimation of γ. 

Unfortunately, doing so was eventually not possible. Estimating the European value of γ without Sweden 

gives a value of 2.007. Based on the small difference between this value and 1.995, we elected not to re-

run all the equilibrium calculations for the UK, France and Germany with γ = 2.007, a costly procedure.  

7 Without morbidity data for Mexico, we use the European value of γ = 1.995. Nevertheless, results do 

not change significantly when using the North American value. 

8 Data source https://apps.who.int/immunization_monitoring/globalsummary/. 

9 A contagious disease is endemic if an outbreak induces a sequence of contagion that does not terminate 

within a year. 

10 A useful description of the SIR model is found in Avery, Bossert et al (2020). 

https://apps.who.int/immunization_monitoring/globalsummary/
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coverage rate only: in that model, the probability that a susceptible individual contracts the disease is a 

function of two numbers –for instance, the fraction of susceptible (uninoculated) individuals (S), and the 

fraction of recovered individuals (R).  

 Our definition of the function p  as the probability that a child who is unvaccinated contracts measles 

by the age of five is meant to model the relevant probability that a parent needs in order to decide whether 

or not to vaccinate her child.  

Table 4. Coverage rates for measles, five-year average (WHO)  

Country US UK Germany France Canada Mexico 

Coverage 91.6% 92.% 97.% 90.2% 89.6% 86% 

 

It is important to note that measles vaccination in our six countries is, or was until recently, de facto 

voluntary. In the United States, there is no federal law requiring children be vaccinated –such laws are left 

to the states. All 50 states require children be vaccinated against measles before attending childcare or 

public school; however, all states permit exemptions for medical, religious, or reasons of conscience, and 

the standards are not strict. In Canada, vaccination policies are taken at the provincial level. Only three 

provinces (Ontario, New Brunswick and Manitoba) have legislated requirements; however, exemptions are 

granted on medical or religious grounds, or simply out of conscience in these provinces. In the UK, 

childhood vaccination is not mandatory. In Germany, a federal law now requires measles vaccination, but 

only since March 1, 2020. In our German survey, we asked parents whether they vaccinated or did not 

vaccinate their child prior to that date. In France, vaccination was only recommended prior to 2018, and in 

the French questionnaire, we asked parents for the vaccination status of their child prior to 2018. Mexico 

has no law requiring vaccination. 

4 Estimation procedure 

 We wish to decide whether the Nash model or the Kantian model provides a better explanation of 

observed vaccination behavior in a country. We have samples of roughly 1000 (N) respondents for each 
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country. Each respondent is characterized by a triple (𝑝, 𝑢, 𝑣) where (𝑝, 𝑢) ∈ [0,1]2 is the vector of 

respondent traits and vÎ{0,1} indicates that the respondent did (1) or did not (0) vaccinate her child. We 

call vobs,s
0

= (v1,...,vN )  the observation or observed vaccination behavior of the original sample. The 

superscript in s0
 refers to the original survey sample for the country. 

 There are three sources of randomness in our models. First, there is a logistic variate L, 99% of whose 

mass lies on the positive real line (more below). Each parent who chooses to vaccinate draws a realization 

of this variate i.i.d. across individuals, which is interpreted as a positive saltus in utility that the parent 

enjoys if she vaccinates her child. Secondly, since the equilibrium strategies observed by the statistician in 

both the Nash and Kantian model are mixed strategies, there is a random process which must determine 

whether a player with an equilibrium strategy 𝑎 ∈ (0,1) chooses 𝑣 = 0 or 1. Third, there is a ‘trembling 

hand’ introduced below: with some probability q each player, when choosing the action v, misreads the 

coin flip that determines what her behavior should be. (These trembles will be i.i.d.) The purpose of the 

first and third sources of randomness is to make the models more realistic, so as to achieve a better fit to 

the observed vaccination behavior, and to guarantee that the Nash and Kant equilibrium strategies are all 

strictly mixed strategies (lie in the open interval (0,1)). The second source is due to the mixed-strategy 

character of the equilibria. 

 

4.1 The logistic variate L 

 It is useful for computation to have the support of L be the entire real line: this guarantees that all 

equilibrium strategies, Nash and Kant, are in the open interval (0,1). This motivates our choice of a logistic 

distribution. See equations (2.5) and (2.14), which guarantee that the probabilities of vaccination are never 

zero or one when L’s support is ℝ. We shall determine L by a single parameter, its mean value μ. The 

logistic variate is in fact characterized by two parameters, denoted (μ, β) . Denote by L(m,b)
 the c.d.f. of the 

logistic with parameters(μ, β). Given μ, we choose β so that: 

      𝐿(𝜇,𝛽)(0) = 0.01;     (4.1) 
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that is, 99% of L’s mass is on the positive real line. Hence L is chosen from a single parameter family, 

where the parameter is μ. 

 

4.2 Nash and Kantian equilibria 

 We will perform the estimation procedure outlined in this section for a large number 𝐵 of 

bootstrapped samples, obtained from the original survey sample 𝑠0 by sampling from it with replacement. 

Let the size of the mother sample 𝑠0 and of all the bootstraps for a particular country be N. Here we describe 

the estimation procedure using the mother sample 𝑠0; the identical procedure will be carried out for every 

bootstrap sample 𝑠. 

 Given the sample 𝑠0, we fit a bivariate Beta distribution 𝑄0 to the observed distribution of (𝑝, 𝑢). μ 

is chosen to be a small positive number. For any choice of μ , the logistic distribution 𝐿(μ,β) is determined, 

see (4.1). Given L and 𝑄0 we can compute the Nash and Kantian equilibria of the vaccination game as 

described in Section 2. The Nash equilibrium is a profile of strategies (probabilities of vaccinating) 

𝑎𝑁(𝑝, 𝑢: 𝑠0, μ) and the Kantian equilibrium is a profile of strategies 𝑎𝐾(𝑝, 𝑢: 𝑠0, μ). 

 Given these two equilibria, we can compute the log likelihood of the observed vaccination behavior 

𝐯𝑜𝑏𝑠,𝑠
0
. This is defined, for the Nash equilibrium, as: 

 Ψ𝑁𝑎(𝑠0, μ, 𝐯𝑜𝑏𝑠,𝑠
0
) = ∑ log 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ){(𝑝,𝑢)|𝑣=1} + ∑ log(1 − 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ)){(𝑝,𝑢)|𝑣=0} ,  (4.2) 

and for the Kantian equilibrium as: 

 Ψ𝐾𝑎(𝑠0, μ, 𝐯𝑜𝑏𝑠,𝑠
0
) = ∑ log 𝑎𝐾(𝑝, 𝑢; 𝑠0, μ){(𝑝,𝑢)|𝑣=1} + ∑ log(1 − 𝑎𝐾(𝑝, 𝑢; 𝑠0, μ)){(𝑝,𝑢)|𝑣=0} ,  (4.3) 

where the original sample is the collection of triples {(𝑝, 𝑢, 𝑣)}. 

 Since the strategies are all in the open interval (0,1), the two log likelihood functions are well-

defined. Because of precision problems in computation, we in fact encounter some zero values in the 

computation of 𝑎𝑁(𝑝, 𝑢). Rather than eliminating these respondents from the sample, we replace the zero 

values of 𝑎𝑁(𝑝, 𝑢) with 𝑟𝑎𝐾(𝑝, 𝑢)  where 𝑟 = mean
{(𝑝,𝑢)|𝑎𝑁(𝑝,𝑢)>0}

[𝑎𝑁(𝑝, 𝑢) 𝑎𝐾(𝑝, 𝑢)⁄ ]. It will turn out that 𝑟 <

1, because aN (p,u) < aK (p,u) for all (𝑝, 𝑢).  
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4.3 Analyzing the sample 

 Next, we ask: Could it be that 𝐯𝑜𝑏𝑠,𝑠
0
can be explained as an outcome of Nash behavior, but amended 

by a trembling hand that causes each respondent to choose the opposite behavior from what the Nash coin-

flip produces? Let’s say the tremble occurs i.i.d. for each respondent with probability q. In this case, an 

agent (p,u) chooses to vaccinate (𝑣 = 1) with probability : 

    𝑎∗𝑁(𝑝, 𝑢) = (1 − 𝑞)𝑎𝑁(𝑝, 𝑢) + 𝑞(1 − 𝑎𝑁(𝑝, 𝑢)).    (4.4) 

Suppose we run a large number, Λ, of trials with this model, all with the sample 𝑠0. The only thing that 

differs across trials is the realization of the coin flips that implement the tremble: the expected value of the 

coin flip for an agent (𝑝, 𝑢) is always given by 𝑎∗𝑁(𝑝, 𝑢) in (4.4). Denote the index of the trial by l. Define: 

𝟏𝑞
𝑙 = {(𝑝, 𝑢)|𝑎∗𝑁(𝑝, 𝑢) coinflip 𝑙 → 1}, 𝟎𝑞

𝑙 = {(𝑝, 𝑢)|𝑎∗𝑁(𝑝, 𝑢) coinflip 𝑙 → 0} 

We ask: What log likelihood would this observed vaccination outcome have if we mistakenly thought the 

true Nash model (absent the coin-flip) were the correct model? That likelihood is given by: 

 Ψ(𝑞, 𝑙; 𝑠0, μ) = ∑ log 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ)(𝑝,𝑢)∈𝟏𝑞
𝑙 +∑ log(1 − 𝑎𝑁(𝑝, 𝑢; 𝑠0, μ))(𝑝,𝑢)∈𝟎𝑞

𝑙 .   (4.5) 

We are taking the log likelihood of the observed behavior from the trembling-hand coin-flip experiment 

and evaluating it with respect to the pure Nash model, without the trembling hand. 

 Next, we want to compute the expected value of Ψ(𝑞, 𝑙) over 𝑙 = 1,2, … , Λ. We can write the expected 

log likelihood of the experiment as the number of trials Λ becomes large as: 

𝑀(𝑞) ≡ lim
Λ→∞

1

Λ
∑ Ψ(𝑞, 𝑙)Λ
𝑙=1 = ∑ 𝑎∗𝑁(𝑝, 𝑢) log 𝑎𝑁(𝑝, 𝑢) + (1 − 𝑎∗𝑁(𝑝, 𝑢)) log(1 − 𝑎𝑁(𝑝, 𝑢))(𝑝,𝑢) . (4.6) 

This is the key step. It’s true because if we look at the sums in (4.5) over all l, by definition, a given (p,u) 

will lie in the set  for a fraction a*N (p,u)  of the Λ trials, as  Λ becomes large. And (𝑝, 𝑢) will lie in 𝟎𝑞
𝑙  

a fraction 1 − 𝑎∗𝑁(𝑝, 𝑢) of the time. 

 Our strategy is to ask how large a tremble is needed to produce the log likelihood Φ𝑁𝑎(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠
0
). 

Our claim is: the smaller the tremble needed to ‘rationalize’ the observed vaccination behavior, the better 
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explanation the model provides of observed behavior. In other words, since we view the trembling hand as 

a device for inserting randomness into the Nash (or Kant) model, then the less randomness required to 

explain the observed behavior, the better the model’s explanatory power. 

 Consequently, we wish to solve the following program for the tremble q:  

     min
𝑞
(𝑀(𝑞) − Φ𝑁𝑎(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠

0
))
2
.     (4.7) 

 Note, from the definition (4.6), that 𝑀(⋅) is a linear function of q. So we can solve program (4.7)) by setting 

the derivative of the objective equal to zero. Compute from (4.6) that: 

   𝑀′(𝑞) = ∑ (1 − 2𝑎𝑁(𝑝, 𝑢)) log
𝑎𝑁(𝑝,𝑢)

1−𝑎𝑁(𝑝,𝑢){(𝑝,𝑢)|0<𝑎𝑁(𝑝,𝑢)<1}    (4.8) 

Now the f.o.c. for program (4.7) is: 

     2 (𝑀(𝑞) − Φ𝑁𝑎(𝑠0, μ, 𝑣𝑜𝑏𝑠,𝑠
0
))𝑀′(𝑞) = 0.   (4.9) 

From (4.8), we see that generically, 𝑀′(𝑞) < 0. (Each term in the sum in (4.8) is negative, except if 

aN = 1/ 2  .) Therefore, the solution of (4.9) requires: 

      𝑀(𝑞) = Φ𝑁𝑎(𝑠0, μ, 𝑣𝑜𝑏𝑠,𝑠
0
).     (4.10) 

Recalling that M is linear, we easily solve (4.10) for q, giving: 

 𝑞𝜇
∗Nash =

Φ𝑁𝑎(𝑠,μ,𝐯𝑜𝑏𝑠,𝑠
0
)−[∑ 𝑎𝑁 log𝑎𝑁{(𝑝,𝑢)|0<𝑎𝑁<1} +∑ (1−𝑎𝑁) log(1−𝑎𝑁){(𝑝,𝑢)|0<𝑎𝑁<1} ]

∑ (1−2𝑎𝑁) log
𝑎𝑁

1−𝑎𝑁{(𝑝,𝑢)|0<𝑎𝑁<1}

.  (4.11) 

Actually, this is the solution if the quantity on the r.h.s. of (4.11) lies in [0,1]. If the r.h.s. of (4.11) is greater 

than 1, then 𝑞𝜇
∗𝑁 = 1 and if it is less than 0, then 𝑞𝜇

∗𝑁 = 0.  In other words, if the true solution of (4.9) were 

at a corner of [0,1], the f.o.c. (4.10) becomes an inequality.11 

 
11 It turns out that for all our countries and samples, the numbers 𝑞∗𝐽(𝑠), for 𝐽 =Nash, Kant are in (0,1). 

This means that, at the optimal values of q, 𝑀(𝑞∗𝐽(𝑠)) = Φ𝐽(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠). We are able to adjust the tremble 

so that the expected value of the log likelihood of the trembling-hand model is precisely the observed log 

likelihood for that sample and model.  
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 This completes the estimation procedure for the sample 𝑠0. We repeat the estimation procedure for 

each of B=1200 bootstrap samples. Denote, for bootstrap sample s, the q’s defined in equation (4.11) as 

𝑞∗𝐽(𝑠), for 𝐽 =Nash, Kant. 

  We finally define two functions for all bootstrap samples s: 

 Δ(𝑠) = 𝑞∗𝐾(𝑠) − 𝑞∗𝑁(𝑠) and Γ(𝑠) = Φ𝐾(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠) − Φ𝑁(𝑠, μ, 𝐯𝑜𝑏𝑠,𝑠),  (4.12) 

and deduce statistics on Δ and Γ using the 1200 bootstrap samples. For instance, if we find that the mean of 

the distribution Δ(𝑠) is negative and more than two standard deviations below zero, we will say that the 

Kant model provides a better explanation of vaccination behavior than the Nash model, at the 95% 

significance level. A similar inference would be drawn if Γ(s) is positive and at least two standard 

deviations away from zero.  

 In Section II of the Online Appendix, we perform a robustness check by running the program for 

several values of μ. 

 

5 Major findings 

 We summarize the main findings of our analysis. The Online Appendix offers details on the survey, 

the bootstrap strategy, and the results for each country, as well as brief historical discussions of measles 

vaccination in each country. 

 

(i) For all countries, the profile of Kantian equilibrium strategies dominates the profile of 

Nash equilibrium strategies: that is, for all types (𝑝, 𝑢), 𝑎𝐾(𝑝, 𝑢) > 𝑎𝑁(𝑝, 𝑢) or, 

equivalently, for all w, 𝑎̃𝐾(𝑤) > 𝑎̃𝑁(𝑤). This is illustrated in two different spaces in 

Figure 1. Kantians always vaccinate with higher probability than Nashers. The 

continuous functions Δ𝑎̃(𝑤) are graphed in Figure 1a (recall the definitions in 

equations (2.17) – (2.19)). The observed values of w in any country sample comprise 
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a set of approximately 1000 values, which will lie along these curves. Figure 1b 

presents the graphs of the actual equilibrium profiles in the space (𝑎𝑁(𝑝, 𝑢), 𝑎𝐾(𝑝, 𝑢)). 

 From Figure 1a, note that the differences between the Nash and Kantian strategies 

are greatest for Mexico: this is verified for the empirical distributions in the Mexican 

graph in Figure 1b. Contrast Mexico with Canada. We see from Figure 1a that the 

differences Δ𝑎̃(𝑤) are very small in Canada: this is verified in Figure 1b, where we 

see that observed strategy pairs are very close to (but lie above) the 45º line. We 

emphasize that the graphs in Figure 1a are derived from the estimated beta-

distributions of types Q in the six countries. 

(ii) Our estimation procedure shows that the optimal tremble for the Kantian model, over 

all bootstrap samples, is significantly less than the optimal tremble for the Nash model. 

See Figure 2. In all six countries, the difference of the optimal trembles (𝑞𝐾 − 𝑞𝑁)) is 

significantly less than zero at the 99.9% significance level (that is, ∆(𝑠) < 0). Our 

interpretation of this fact is that the Kantian model provides a significantly better 

explanation of vaccination behavior than the Nash model, as we discussed in Section 

4. In addition, in all six countries, the difference of the log likelihood functions (Γ(𝑠) =

Φ𝐾(𝑠) − Φ𝑁(𝑠)) is significantly greater than zero at the 99.9% significance level. See 

Figure 3. The interpretation is, again, that the Kantian model provides a significantly 

better explanation of vaccination behavior than the Nash model. The significance 

levels are reported in the Online Appendix.  

  In figures Figure 2 and Figure 3, we plot over each histogram the graph of the 

density function of the normal distribution with mean and standard deviation of the 

histogram, over the interval ± three standard deviations from the mean, verifying 

visually our claim concerning significance levels.  
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(iii) Figure 4 gives the histogram (over all bootstrap samples) of the values of the optimal 

tremble for the Nash and Kant model. These differ somewhat across countries. 

(iv) Figure 5 presents the histograms for the Nash and Kant log likelihood functions for all 

countries. 

(v) Figure 6 gives the histogram of the absolute value of the difference between the 

‘observed’ coverage rate and the Nash (or Kant) equilibrium coverage rates at the 

optimal trembles, averaged over all samples. These differences are quite large. But 

recall that our estimation strategy is to minimize the tremble, not the difference 

between the equilibrium coverage rate and the observed coverage rate. 

(vi) Figure 7 and Figure 8 show that vaccine hesitancy with respect to measles vaccination 

is significantly less than hesitancy with respect to COVID-19 vaccination. We 

comment further on the distribution of vaccine hesitancy by political identification in 

the Online Appendix. 
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Fig. 1a. The difference between the Kantian and the Nash equilibrium strategy profiles: Δ𝑎̃(𝑤), where 𝑤 = 𝑝(1 − 𝑢). 
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Fig. 1b. Equilibrium strategy profiles from the original survey data. Kantian vs. Nash strategies for the observed strategy pairs (𝑎̃𝑁(𝑤), 𝑎̃𝐾(𝑤))  

Figure 1. Kantian vs. Nash strategy profiles. 
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Figure 2. Probability density histogram of 𝛥 = 𝑞∗𝐾 − 𝑞∗𝑁, and the PDF of a Normal distribution 𝑁(𝑚, 𝜎) with 𝑚 = Mean (𝛥) and 𝜎 = StaDev (𝛥), 

truncated at three standard deviations from the mean. 
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Figure 3. Probability density histogram of the difference of the per capita log-likelihoods (𝛤 = 𝛷𝑁 −𝛷𝐾), and the PDF of a normal distribution 

𝑁(𝑚, 𝜎) with 𝑚 = Mean (𝛤) and 𝜎 =StaDev (𝛤), truncated at three standard deviations from the mean. 
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Figure 4. Histograms of the optimal tremble for the Nash (𝑞∗𝑁) and Kantian (𝑞∗𝐾) equilibrium. 
  

q*N(s)

q*K (s)

0100200300 0 100 200 300

0.15

0.20

0.25

0.30

q*N (s)

q
*K

(s)

0100200 0 100 200

0.100

0.125

0.150

0.175

0.200

q
*N(s)

q*K (s)

0200400 0 200 400

0.075

0.100

0.125

0.150

0.175

0.200

0.225

q*N (s)

q*K (s)

0100200 0 100 200

0.075

0.100

0.125

0.150

0.175

0.200

q
*N(s)

q*K (s)

0200400 0 200 400

0.125

0.150

0.175

0.200

0.225

0.250

0.275
q

*N(s)

q*K (s)

0200400600800 0 200 400 600 800

0.05

0.10

0.15

0.20

0.25

0.30



 31 

 

 

 USA Canada UK 

  
 

 Germany France Mexico 

  
Figure 5. Histograms of the Nash (𝛷𝑁) and Kantian (𝛷𝐾) log-likelihoods. 
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Figure 6. Distributions of the difference between coverage at the survey sample ( 𝑎̅0) and at the Nash and Kantian equilibrium coverage (𝑎̅𝐽, 𝐽 = 𝑁,𝐾) at the 

‘optimal’ tremble. 
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Figure 7. Percentage of respondents who report choosing to vaccinate against measles among different ideological groups. Vaccinating against measles means 

that respondents either vaccinated their child or would have vaccinated their child had they had one. Ideological identification is self-reported.18 “Other” 

includes those who responded “not sure” and no answers. Surveys conducted in December 2020. 

  

 
Figure 8. Percentage of respondents who would vaccinate against Covid-19 if a vaccine were available at no cost. Ideological identification is self-reported.19 

“Other” includes those who responded “not sure” and no answers. Surveys conducted in December 2020. 

 
18 Ideological labels respond to the options offered in the survey for all countries but France, where respondents had to locate in a Left-Right dimension with a 0 to 10 scale. For 

comparison purposes, responses were recoded as follows: Very Liberal = {0,1}, Liberal = {2,3}, Moderate = {4,5,6}, Conservative = {7,8}, and Very Conservative = {9,10}. 
19 See previous footnote. 
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6 Why does the Kantian model of vaccination give a superior 
explanation?  

We propose that the reason the Kant model is superior to the Nash model is that it gives uniformly 

higher probabilities of vaccination than the latter, and the coverage rates in the Kantian equilibria are closer 

to the observed coverage rates in our samples than the Nash coverage rates. See the six panels in Figure 9. 

Coverage rates at the survey sample (𝑎̅0), at the Nash equilibrium strategies (𝑎̅𝑁(𝑞∗𝑁)), and at the Kantian 

equilibrium strategies (𝑎̅𝐾(𝑞∗𝐾)). For all countries, 𝑎̅𝑁(𝑞∗𝑁) < 𝑎̅𝐾(𝑞∗𝐾). For all countries, except for 

Canada and the UK, 𝑎̅𝑁(𝑞∗𝑁) < 𝑎̅𝐾(𝑞∗𝐾) < 𝑎̅0. See the Online Appendix for numerical comparisons., 

where we plot the equilibrium coverage rates in the Nash and Kant equilibria of our 1200 bootstrap samples, 

in comparison to the observed coverage rate of sample 𝑠0 (for each country). We believe that actual 

vaccination behavior is more pervasive than the Nash model predicts because in all countries in our sample 

there is a social norm to vaccinate. The social norm shares with the Kantian equilibrium the property of 

inducing more pervasive vaccination behavior than Nash equilibrium predicts. Even though the Kantian 

equilibrium strategies appear to be not much larger than the Nash probabilities, the fact that they are always  

larger than the latter, on the space of types, makes the likelihood of the Kantian equilibrium significantly 

greater than the likelihood of the Nash equilibrium. (See our major finding (i) in Section 5.) 

Why has a social norm to vaccinate developed in all these countries? Because, we conjecture, of the 

phenomenon of herd immunity. We pointed out in Section 1 that the Nash equilibrium of the vaccination 

game will always be Pareto inefficient, because of the positive externality associated with vaccination. 

Kantian optimization is one way to repair this inefficiency: another way to do so is through the development 

of a social norm to vaccinate. We are suggesting that the latter has indeed occurred in many societies, and 

this is why the Kantian equilibrium gives a better explanation of vaccination behavior than the Nash 

equilibrium.  

We might point out that a similar explanation applies to explaining the payment of income taxes, which, 

in all highly developed countries is more pervasive than Nash equilibrium predicts. (There is a literature 
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showing that in the United States, given the penalties associated with tax evasion and the probability of 

being caught for doing it, evasion should be significantly higher than it is, assuming reasonable attitudes 

towards risk (see Alm (2019) and the many references therein). The reason is that there is a social norm to 

pay one’s taxes. And this norm has developed precisely because the ‘tax game’ is a monotone increasing 

game: the taxes you and others pay make me better off, because they finance public goods and social 

insurance from which I benefit.20 

 To test this conjecture, we administered a second survey on the motivation to vaccinate, which was 

inadequately covered in our first survey, in the US and France, two countries that have significant anti-vax 

movements. We report the key findings of both surveys in the next three tables. In our follow-up survey we 

received 1243 responses from Americans and 1490 responses from French residents.21 Herd immunity and 

vaccination behavior of others is clearly indicated to be encouraging rather than discouraging own 

vaccination, which is in line with Kantian optimization and a strong social norm, but not with Nash 

equilibrium. (A Nash optimizer will be discouraged to vaccinate her child if herd immunity is attained.) In 

a scenario of well-established herd immunity for a child illness, 68.4% of US respondents (57.5% of French 

ones) are either ‘strongly encouraged or encouraged’ to vaccinate their own child (Table 5), while only 

6.24% (7.04%, resp.) are discouraged. 

  

 
20 Or perhaps the tax norm has developed for another reason: that people have an aversion to cheating.  

21 These counts include all responses (including those who simply declined consent and ended the survey) 

but exclude any responses classified as “spam” by Qualtrics. We report in Appendix B the results obtained 

without removing those respondents who either did not answer all questions (for both the US and France) 

or gave low quality responses (US only). Results are qualitatively similar. 
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Table 5. “Imagine herd immunity is already well-established for a specific child illness because of a high 

vaccination rate. Would that encourage or discourage you from vaccinating your own child? (Q4.6; US and France)” 

 
US France 

 Frequency Percent Frequency Percent 
Strongly encourage 475 43.58 372 28.48 
Encourage 271 24.86 379 29.02 
Leave unchanged 276 25.32 463 35.45 
Discourage 41 3.76 58 4.44 
Strongly discourage 27 2.48 34 2.60 
N 1,090 100 1,306 100 

 

The same reaction is observed to an individual act of vaccination. Learning that others have vaccinated 

their child ‘strongly encourages or encourages’ 61.4% of US respondents (and 45.9% of French ones, see 

Table 6). Likewise, own vaccination is expected to strongly encourage or encourage others’ vaccination by 

64.6% of US respondents (and 50.4% of French ones, see Table 7), indicating that a parent believes a social 

norm is operative. 

Table 6. “If you learn that others have vaccinated their child, would that encourage or discourage you to 

vaccinate your child? (Q4.3; US and France)” 

 

USA France 

 Frequency Percent Frequency Percent 

Strongly encourage 390 35.78 236 18.02 
Encourage 279 25.60 365 27.86 
Leave unchanged 368 33.76 673 51.37 
Discourage 25 2.29 15 1.15 
Strongly discourage 28 2.57 21 1.60 
N 1,090 100 1,310 100 

 

Table 7. “When you vaccinate your child, would you expect others to be encouraged or discouraged by 

your action to also vaccinate their child? (Q4.4; US and France)” 

 USA France 

 Frequency Percent Frequency Percent 
Strongly encouraged 360 33.03 255 19.47 
Encouraged 344 31.56 405 30.92 
Leave unchanged 351 32.20 624 47.63 
Discouraged 19 1.74 16 1.22 
Strongly discouraged 16 1.47 10 0.76 
N 1090 100 1310 100 
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 For those respondents who have or would vaccinate their child, 73.5% of US respondents (and 

72.6% of French ones) indicate that “Vaccination protects my child from disease” is a very important reason 

for that decision. Other reasons that relate to herd immunity or social norms are also deemed very important 

by large fractions of respondents, “Vaccination of my child contributes to herd immunity” by 54.9% of US 

respondents (46.2% of French ones) and “I vaccinate because other parents I know choose to vaccinate” by 

35.4% of US respondents (20.4% of French ones). Conversely, for those respondents who have not or would 

not vaccinate their child, side effects and choice autonomy are deemed as very important more often than 

matters of herd immunity or social norms. This can be seen in the contrast between “There are possibly 

severe side effects to vaccination” (56.4% in the US, 61.6% in France) and “Vaccination should be a matter 

of free choice” (54.3% in the US, 58.0% in France) on the one side and on the other side “If vaccination 

coverage is already high in the community, my child will be safe without vaccination” (30.9% in the US, 

24.1% in France) and “Other parents I know are choosing not to vaccinate” (31.9% in the US, 32.1% in 

France). 

 



 USA Canada UK 

   
 

 Germany  France Mexico 

   
 

 

Figure 9. Coverage rates at the survey sample (𝑎̅0), at the Nash equilibrium strategies (𝑎̅𝑁(𝑞∗𝑁)), and at the Kantian equilibrium strategies (𝑎̅𝐾(𝑞∗𝐾)). 
For all countries, 𝑎̅𝑁(𝑞∗𝑁) < 𝑎̅𝐾(𝑞∗𝐾). For all countries, except for Canada and the UK, 𝑎̅𝑁(𝑞∗𝑁) < 𝑎̅𝐾(𝑞∗𝐾) < 𝑎̅0. See the Online Appendix 

for numerical comparisons. 
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7 Conclusion 

 The vaccination of children can be modelled as a game in which there are significant positive 

externalities from the individual’s choice to vaccinate; we say the game is monotone increasing. The Nash 

equilibria of such games are inefficient, a fact colloquially known as the free-rider problem. The Kantian 

equilibria of such games are generically efficient. We have shown, in a sample of six countries, that the 

Kantian model provides a superior explanation of vaccination behavior than the Nash model.  

 This might seem surprising: can we argue that some social institution is guiding parents to optimize 

in the Kantian manner? We do not do so here. However, we do conjecture that a fairly strong social norm 

is operative in many countries that induces parents to vaccinate at higher rates than they would were they 

playing the Nash equilibrium of the game. The social norm shares this property with the Kantian 

equilibrium, which, we argue, is the reason the Kantian model is more predictive of real behavior than the 

Nash model. 

 Indeed, the same reasoning applies to monotone decreasing games –ones in which each player’s 

contribution imposes a negative externality on the welfare of others. The Nash equilibrium in monotone 

decreasing games is also inefficient, a fact known colloquially as the tragedy of the commons. The canonical 

fishing game, in which an increase in each fisher’s labor decreases the productivity of the fishery for other 

fishers, is the textbook example. Elinor Ostrom (1990) studied common-pool resource problems in many 

communities around the world, and found that the participants often achieve efficient solutions, in the face 

of Nash equilibria that suffer from the tragedy of the commons, through the evolution of social norms that 

induce them to internalize the externalities of their behavior. Unfortunately, when Ostrom worked, the 

Kantian tool was not yet available: we suggest its fruitful application to the problems she studied.  
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APPENDIX A: Estimation of the parameter 𝛾  

 We use the source “WHO vaccine-preventable diseases: Monitoring system, 2020 global summary,” 

https://apps.who.int/immunization_monitoring/globalsummary/, which contains data for a large set of 

countries on infectious disease immunization rates and morbidity. 

 A cohort of children is the set of children in the country born in a given year. 

 For a particular country, let: 

𝑛′ = total population of children ages 0-5 in year 𝑡, 𝑡 = 2015, … ,2019 

𝑟′ = measles immunization coverage rate, children under 5, year t 

𝑐′ = number of measles cases, year t 

𝑢̅ = number of susceptible children under 5 in a given cohort 

𝑛̅ =
∑ 𝑛𝑡5
𝑡=1

5
;     𝑛̅ 5⁄ = number of children in a given cohort 

𝑟 =
∑ 𝑟𝑡5
𝑡=1

5
   

𝑐 =
∑ 𝑐𝑡5
𝑡=1

5
   

𝑝 = probability that a susceptible child of a given cohort contracts measles in a given year 

π = probability that a susceptible child of a given cohort contracts measles by five years of age 

 By definition, 𝑢̅ =
𝑛̅

5
(1 − 𝑟 ). The median age of contracting measles is age five. Therefore, the 

number of cases of measles of children under five in a given cohort in a given year is 
𝑐 

10
. Therefore 𝑝 =

𝑐 10⁄

𝑢
=

𝑐 

10𝑢
 . 

 Assume that an unvaccinated (susceptible) child in a given cohort has a probability p of contracting 

measles in each year under five. Then: 

π = 𝑝 + 𝑝(1 − 𝑝) +⋯+ 𝑝(1 − 𝑝)4 = 𝑝
1 − (1 − 𝑝)5

𝑝
= 1 − (1 − 𝑝)5. 

 In our model we have π(𝑟) = (1 − 𝑟)𝛾. We propose that π(𝑟) is precisely the value π defined above: 

as a parent, I am concerned with the probability that my young child contracts measles if I choose not to 

vaccinate her, knowing that the coverage rate is r.  

https://apps.who.int/immunization_monitoring/globalsummary/
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 As described in the text, we assume the contagion process in North America (Canada and the US) is 

different from in Europe (UK, Germany, France). For each country j, we compute a data point (𝑟, π). Hence, 

we compute two values of γ: γNA gives the best fit of the function π(⋅) to the points 

{(𝑟US, πUS), (𝑟Can, πCan)} and γEUR gives the best fit of the function π(⋅) to the points {(𝑟𝑗 , π𝑗)| 𝑗 ∈

{UK, France, Germany}}. See figures Figure A.1 and Figure A.2. 

 Unfortunately, the data set does not provide measles morbidity for Mexico. 

 

 

Figure A.1 Fitting the function 𝜋(⋅) for the US and Canada: 𝛾𝑁𝐴 = 3.110. 

 

Figure A.2 Fitting the function 𝜋(⋅) for the four European countries (Sweden included): 𝛾𝐸𝑈𝑅 =
1.995. 
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Appendix B: Survey Two with all responses 

Here we reproduce the tables from Section 6 without removing those respondents who either did not answer 

all questions (for both the US and France) or gave low quality responses (US only). The total N for each 

question includes only those respondents who answered one of the five options — “blank” (no response) 

answers are excluded from the total N and percentage calculations. 

Table B.1 “Imagine herd immunity is already well-established for a specific child illness because of a high 

vaccination rate. Would that encourage or discourage you from vaccinating your own child? (Q4.6; US and 

France)” 

 
US France 

 Frequency Percent Frequency Percent 

Strongly encourage 475 43.58 372 28.48 
Encourage 271 24.86 379 29.02 
Leave unchanged 276 25.32 463 35.45 
Discourage 41 3.76 58 4.44 
Strongly discourage 27 2.48 34 2.60 
N 1090 100 1306 99.99 

Table B.2 “If you learn that others have vaccinated their child, would that encourage or discourage you to 

vaccinate your child? (Q4.3; US and France)” 

 
US France 

 Frequency Percent Frequency Percent 

Strongly encourage 390 35.78 236 18.02 
Encourage 279 25.60 365 27.86 
Leave unchanged 368 33.76 673 51.37 
Discourage 25 2.29 15 1.15 
Strongly discourage 28 2.57 21 1.60 
N 1090 100 1310 100 

Table B.3 “When you vaccinate your child, would you expect others to be encouraged or discouraged by 

your action to also vaccinate their child? (Q4.4; US and France)” 

 
US France 

 Frequency Percent Frequency Percent 

Strongly encouraged 360 33.03 255 19.47 
Encouraged 344 31.56 405 30.92 
Leave unchanged 351 32.20 624 47.63 
Discouraged 19 1.74 16 1.22 
Strongly discouraged 16 1.47 10 0.76 
N 1090 100 1310 100 

 

 For the other questions the results are also very similar to those in the main text when including all 

responses.  
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Table B.4 Percentage of respondents who have or would vaccinate their child(ren) answering that a 

particular reason is “very important” in their choice to do so. 

 
US France 

Vaccination protects my child from disease 73.49% 72.57% 
Vaccination of my child contributes to herd immunity 54.84% 46.24% 
I vaccinate because other parents I know choose to vaccinate 35.38% 20.42% 

Table B.5 Percentage of respondents who have not or would not vaccinate their child(ren) answering that 

a particular reason is “very important” in their choice to not do so. 

 
US France 

There are possibly severe side effects to vaccination 56.38% 61.61% 
Vaccination should be a matter of free choice 54.26% 58.04% 
If vaccination coverage is already high in the community, my 

child will be safe without vaccination 30.85% 24.11% 
Other parents I know are choosing not to vaccinate 31.91% 32.14% 
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