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The Aharonov-Bohm debate in 3D

Going from two dimensions (curl and circulation) to three (divergence and flux in electrostatics or 'Newton-Poisson gravity') can shed light on the Aharonov-Bohm debate. The three-dimensional analogy I propose is misleading if taken too literally; it makes sense on a more abstract, formal level (where, for instance, the electromagnetic field is viewed somewhat metaphorically as a 'source'-of the electromagnetic turbulence represented by the potential). A slight tweak is enough to produce (a fictitious) gauge freedom in three dimensions.

Introduction

In the literature one finds three or even four main interpretations (considered in §3 below) of the Aharonov-Bohm effect1 ( §2 below); going from two to three dimensions can shed light on all of them. What I propose is an analogy and by no means an exact rendering of the effect in three dimensions-which in any case would be impossible. More precisely, one has to distinguish between the formalism and (an unduly literal understanding of) the physics: we'll see that the 'overly literal' physics is misleading, whereas the analogy works well at a more abstract, formal level. The scheme depends on differential forms, and is harder to understand in the old vector calculus of curl, divergence etc.

Strictly speaking, the Aharonov-Bohm effect isn't even two-dimensional to begin with: it is three-(or even four-)dimensional. But it is rightly discussed in the literature as two-dimensional: one thinks of a horizontal section, an xy plane. 2 Most of the relevant features vary relatively little along the vertical direction z; even if some (such as the wavefunction) can vary more, the emphasis on two dimensions remains legitimate. And indeed the 'Stokes's theorem' that's used is the two-dimensional version involving curl and circulation around a loop.

Reformulation in three dimensions involves translation of the main entities; again, some of the correspondences can be surprising, even misleading: the electromagnetic field F in the solenoid (2D) becomes the charge density ρ (3D), the electromagnetic potential A (2D) becomes the electric field E (3D) and so on. To avoid misunderstandings it will be best to have not two but three 'languages' or 'vocabularies': one for two dimensions, another for three, and an abstract vocabulary for both. For instance: loop (2D), membrane (3D), boundary (abstract); electromagnetic field (2D), charge density (3D), source (abstract); electromagnetic potential (2D), electric field (3D), primitive (abstract). All this is in the table below ( §4).

Essential and accidental features are confusingly entangled in the standard twodimensional treatment. The entanglement affects the interpretations. The "Abstract" column of the table ( §4) is something like 'essential features disentangled from accidental features.' A logician may even see a 'theory' in the first column alongside two of its models, represented in the other two columns. The wavefunction and screen are rather inessential 3 features of the two-dimensional case, as are the peculiarities of the source (the solenoid); a source, its primitive(s) and enclosing boundar(y/ies) are essential. What's left in the first column is clearly rather bare and mathematical; but at least one's attention is focused on the fundamental structures and logic, without being distracted by confusing and sometimes unimportant details. Abstraction, certainly in the first column, is taken to a level that goes well beyond the idealizations considered in [START_REF] Shech | Two approaches to fractional statistics in the quantum Hall effect: idealizations and the curious case of the anyon[END_REF]Shech ( , 2018a) ) and [START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF]. The solenoid doesn't even bother being infinitely long-it is just replaced by an abstract source; boundaries are perfectly impenetrable etc. Interesting, fundamental aspects of the Aharonov-Bohm effect and debate are situated at this admittedly rather artificial level of abstraction. Other aspects-none the less interesting and fundamental-are of course situated at the level(s) of abstraction found in [START_REF] Shech | Two approaches to fractional statistics in the quantum Hall effect: idealizations and the curious case of the anyon[END_REF]Shech ( , 2018a) ) and [START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF]. We're all familiar with the 'horizontal' choice of subject or discipline: electromagnetism or mechanics or botany or history; but an investigation or analysis also involves the 'vertical' choice of a level of abstraction. Both choices, horizontal and vertical, involve inclusion, omission, emphasis and neglect. Aspects considered at one level of abstraction may not figure at another-that's just part of the choice.

What's special about the standard two-dimensional case isn't even its two-dimensionality; what's special is, if anything, the unmeasurability of the primitive

[A] = [P 2 ] = d -1 S 2
of the source F = S 2 . Part of my agenda is removal of that obstacle to generalisation, by making the electric field E = P 3 just as unmeasurable as the electromagnetic potential A = P 2 . Needless to say, the electric field is in fact measurable-but there's no harm in pretending it isn't. 4The point of the the three-dimensional treatment is that it sheds light on a number of philosophical and foundational issues: non-locality, the relationship between empirical accessibility and gauge freedom, the role of topology and so forth. It is useful to see, for instance, that the Aharonov-Bohm effect is no more topological than electrostatics or gravity; and that in three dimensions, hoops of loops become equivalence classes of two-dimensional membranes.

In §2 I describe relevant features of the Aharonov-Bohm effect, in §3 I briefly describe the four two-dimensional interpretations, in §4 I go into the electrostatic analogy, in §5 I look at the three-dimensional versions of the four interpretations.

The Aharonov-Bohm effect (2D)

A wavefunction Ψ is split into two, and these, having enclosed a (simply-connected, which here means unperforated) region L 2 containing a solenoid, are made to interfere on a screen. The encircling wavefunction is sensitive to any electromagnetism inside inasmuch as the electromagnetic potential A ∈ 1 R 2 , a one-form, contributes a phase5 exp i

B2

A to (the wavefunction along) the boundary B 2 = ∂L 2 and hence to the interference pattern on the screen. The electromagnetism on L 2 is related to the circulation around B 2 by Stokes's theorem

F 2 = B2 A = L2 dA.
One can think of concentric circles: The electromagnetic field6 

F = dA ∈ 2 R 2
produced by the solenoid is confined to a central disc7 I 2 ⊂ L 2 surrounded by an annulus D 2 = L 2 -I 2 where F vanishes but not A. Usually there's just one cylindrical shield, around the solenoid; but for the clean delimitation of an (arbitrarily large) intermediate annulus it can be useful to think of two coaxial cylindrical shields, which cut the xy plane we're considering at two circles: one keeping the electromagnetic field in8 inside another keeping the wavefunction out. 9 The circles not only serve to delimit the conceptually useful annulus D 2 occupied only by A; but they separate the two impenetrability conditions expressed by Earman's two limits n = ∞, L = ∞ and brought together in the ideal Hamiltonians H I AB (Shech) and H A∞ AB (Earman). Earman's various "more realistic Hamiltonians" H L,n allow magnetic field lines to close, thus forming loops (L < ∞); and Ψ to tunnel inwards (n < ∞).

Varying the current through the solenoid shifts the interference pattern, which may or may not be surprising. If Ψ were treated as classically as the current in the solenoid, it would be subject to the Lorentz force ∼ F (U ) and hence only to F ,10 not to A on its own; where U is the four-velocity of the charge and F (•) the electromagnetic two-form F ( • , • ) evaluated only at the second of its two arguments, not at both. Here we see that the 'charge' represented by Ψ is influenced by A where F vanishes.

This paper isn't really about the various idealisations involved, which include the following:

• classical electromagnetism (alongside a quantum-mechanical wavefunction)

• infinitely long solenoid11 

• impenetrable barrier(s).

Again, idealisations are thoroughly considered in [START_REF] Shech | Two approaches to fractional statistics in the quantum Hall effect: idealizations and the curious case of the anyon[END_REF]Shech ( , 2018a) ) and [START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF].

The four interpretations in two dimensions

Before going to three dimensions we can briefly consider the four interpretations in two dimensions. The first three interpretations are distinguished by what they put in the annulus D 2 (outside the inner disk I 2 containing the support of the electromagnetic field F = S 2 ):

(1-2D) nothing at all

(2-2D) electromagnetic potential [A] = d -1 F (3-2D) homotopy class H 2 = [B 2 ].

The electromagnetic field interpretation

It is hard to deny that the electromagnetic potential [A] = d -1 F is somehow present in the annulus D 2 -perhaps only mathematically. What one can try to deny is that the mathematical presence corresponds to anything physical. The electromagnetic field interpretation 12 can be represented as follows: How can a whole class [A], from which one would not know how to extract a particular individual-uncontroversially at any rate-correspond to a physical entity capable of propagating an influence across the annulus? Surely there's nothing physically meaningful in the annulus, and the influence somehow gets from the solenoid to the wavefunction or the screen despite the annulus, without being propagated through the annulus by a physical medium. 13 So the annulus is completely evacuated, at the stroke of a pen, to keep it from being too full. This is tantamount to denying Buridan's ass all sustenance, preemptively as it were, to prevent starvation from symmetry. One would have thought the beast could at least be given a chance to make up its mind (perhaps flipping a coin?) . . . A wavefunction is in fact an equivalence class [Φ] of functions that differ only on a set of vanishing measure; is the cardinality of [Φ] enough to rule out the physical relevance of wavefunctions and indeed the objects (e.g. electrons, the universe) they describe, consigning them all to a shady realm of mathematical fictions? Is embarras de richesses so embarrassing that the riches should all be altogether renounced? Can cardinality be a cardinal vice-so serious as to justify annihilation? loops' as it were. As the magnetic field lines, being of finite length, do in fact close to form loops, some of them will come arbitrarily close to the solenoid. The longer the solenoid, the longer and wider the loops, the weaker the field in the relevant region. 12 Aharonov & Bohm (1959) p. 490: "we might try to formulate a nonlocal theory in which, for example, the electron could interact with a field that was a finite distance away. Then there would be no trouble in interpreting these results, but, as is well known, there are severe difficulties in the way of doing this." See also [START_REF] Healey | Nonlocality and the Aharonov-Bohm effect[END_REF]. 13 Cf. [START_REF] Mattingly | Which gauge matters?[END_REF] p. 246: "how is it that the information about the state of the field goes from the interior of the solenoid out to the path over which the integral is taken?"

The potential interpretation

An equivalence class like [A] can be physically meaningful and even propagate an influence. Modern physics is full of equivalence classes. Purging physics of all equivalence classes is an unreasonable agenda. The electromagnetic 'turbulence' produced in the solenoid is somehow radiated through the annulus by the medium [A], whose cardinality or superabundance or redundancy does not rule out its physical legitimacy. 14

The holonomy interpretation

The equivalence class [A] is somehow more disturbing or more obviously 'infinite' than the equivalence class H 2 = [B 2 ], which is therefore preferred as a medium of propagation. 15 The potential and holonomy interpretations (which are in fact 'dual' to one another) can perhaps be characterised as follows: The Aharonov-Bohm effect is due to an abstract, unfathomable electromagnetic turbulence in D 2 that's hard to pin down and describe unambiguously-ignorance as to its exact nature and structure being somehow captured by the equivalence class [A], or alternatively by the equivalence class H 2 . For a rough understanding of the duality, the 'lines' of the two equivalence classes can be crudely (and most inaccurately) imagined as 'across' and 'along' the turbulence.

Again, the first three interpretations differ in their attitudes to the embarrassing riches of the equivalence class [A], which can be found (1-2D) so embarrassing that they should be altogether renounced (2-2D) not overly embarrassing (3-2D) so embarrassing that they should be replaced by other embarrassing riches. 14 [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF] pp. 490-1: "It would therefore seem natural at this point to propose that, in quantum mechanics, the fundamental physical entities are the potentials, while the fields are derived from them by differentiations. [ . . . ] the potentials must, in certain cases, be considered as physically effective, even when there are no fields acting on the charged particles. [ . . . ] we may retain the present local theory and [ . . . ] try to give a further new interpretation to the potentials. In other words, we are led to regard Aµ(x) as a physical variable." See also [START_REF] Feynman | The Feynman lectures on physics[END_REF] §15-5.

15 See [START_REF] Wu | Concept of nonintegrable phase factors and global formulation of gauge fields[END_REF], [START_REF] Healey | Nonlocality and the Aharonov-Bohm effect[END_REF][START_REF] Healey | On the reality of gauge potentials[END_REF][START_REF] Healey | Gauge theories and holisms[END_REF][START_REF] Healey | Gauging what's real: the conceptual foundations of contemporary gauge theories[END_REF], [START_REF] Belot | Understanding electromagnetism[END_REF], [START_REF] Lyre | Zur Wissenschaftstheorie moderner Eichfeldtheorien[END_REF][START_REF] Lyre | Zur Wissenschaftstheorie moderner Eichfeldtheorien[END_REF]Lyre ( , 2004a,b),b), [START_REF] Myrvold | Nonseparability, classical and quantum[END_REF].

The topology interpretation

The topology interpretation 16 is somewhat different, and seems to rest on a logical mistake 17 along the lines of 'affirming the consequent.'

If a differential form P is closed on an unperforated region L,

dP = 0| L , 18
the integral F through the (outer 19 and only) boundary B = ∂L will vanish. 20 In other words if no source radiates any 'P' anywhere inside the outer boundary B, the flux F through B has to vanish-the topological condition means there can be no inner boundary that might contain a 'P-producing' source, whose flux through the inner boundary would reach the outer boundary as well.

If instead of the unperforated region L we have D, with a hole I, the logic of the matter gets more complicated: the absence of a source on D no longer allows us to conclude that no 'P' is produced anywhere inside the outer boundary B-for there may be an inner boundary containing a 'P-producing' source (whose flux through the inner boundary would reach the outer boundary as well). Closed only means locally exact; globally a closed form may or may not be exact, depending on the topology (and indeed on the presence or absence of sources). So even if dP = 0| L means that F = 0 through B, the condition dP = 0| D is compatible with both F = 0 and F = 0 through the outer boundary B. The topology interpretation seems to suppose that if there's a hole in an otherwise sourceless region, the hole has to contain a source. If an unperforated region 16 Shech (2015) p. 1078: "the Aharonov-Bohm (AB) effect [ . . . ] is also standardly but falsely dubbed as "topological" and attributed to the presence of a non-simply connected topological space"; Shech (2018b) §5.2: "it is standardly claimed that the AB effect can only occur in a non-simply connected configuration space." See [START_REF] Afriat | Topology, holes and sources[END_REF], especially footnote 6, especially Batterman (2003, pp. 544, 552-3, 554-5). Cf. [START_REF] Mattingly | Which gauge matters?[END_REF] p. 255: "So, given that A is non-zero, the integral around the excised region will be nonzero, and there will be a shift in the interference fringes"; even if A is closed ("∇ × A = 0") and there's a hole, the integral can vanish.

The two cases (separarated by "whereas") in footnote 10 of [START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF] amount to a distinction between loops that go around the solenoid and those that don't; but the distinction is only meaningful if the solenoid is on, otherwise there's just a single homotopy class. Only the loops going around the solenoid are sensitive to the current in the solenoid (and to its magnetic field); but that's physics, not a topological theorem. The fact that Stokes's theorem cannot be applied within the non-simply connected electron configuration space R = R 3 \S∞ means that the line integral may not vanish, not that the solenoid is on.

17 [START_REF] Shech | Two approaches to fractional statistics in the quantum Hall effect: idealizations and the curious case of the anyon[END_REF] p. 1081 seems to be making a (different but) related point: "it is not legitimate to model the configuration space that corresponds to H I AB [ . . . ] as an idealized non-simply connected space. This is so because [ . . . ] such topological idealizations are pathological in the sense that the non-simply connected topology is a property of a limit system that does not match the corresponding limit property-any minute deidealization renders the topology of the space simply connected. This is also the case for systems manifesting the AB effect: as long as the solenoid is finite and penetrable, the space in which the AB effect takes place will be simply connected. It is only at the limit that the property of non-simple connectedness arises, so it makes no sense to talk about the space being "approximately" multiply connected." 18 The notation, with the vertical bar, means that the statement holds where indicated (here on L). 19 The notions of "outer/inner boundary" make perfect sense here. Elsewhere (torus, Klein bottle, Möbius strip etc.) they may not. In general the notion of 'surface contractible (or not) to a point' is retained. 20 Cf. [START_REF] Shech | Two approaches to fractional statistics in the quantum Hall effect: idealizations and the curious case of the anyon[END_REF] p. 1083: "the non-trivial holonomy arises from the non-flatness of the derivative operator on the principal bundle, which need not be non-simply connected for nontrivial holonomies." If the space is simply connected, nontrivial holonomies will require a curved derivative operator (which here corresponds to F = dA = 0); but the presence of a hole makes nontrivial holonomies compatible with a flat derivative operator (F = dA = 0| D ).

is sourceless, it is simply sourceless, period, we all agree. But the sourcelessness of the perforated region D only means that the unperforated region L may contain a source, not that it does contain a source. In a sense one needn't even refer to the perforated region D: the fact that a region L may contain a source doesn't mean that it does contain a source. If there is a source in L, there will be a flux through B; if L may contain a source, there may be a flux through the B. 21 So the topology interpretation seems to rest on the following mistake: "If L may contain a source, there will be a flux through B."

The interpretation in two dimensions is given by specifying the subscript "2" above, so that the primitive P becomes the electromagnetic potential A = P 2 in particular; the abstract flux F becomes the circulation F 2 of A around a loop enclosing the solenoid; and so on. [START_REF] Shech | Two approaches to fractional statistics in the quantum Hall effect: idealizations and the curious case of the anyon[END_REF]Shech ( , 2018a) ) and [START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF] have the right approach to topology, or rather the hole: they consider what's inside it and what the wavefunction does at its boundary-the hole on its own, apart from its contents, being relatively uninteresting.

An analogy: Consider two coaxial cylinders in R 3 , and the two circles they cut in a generic perpendicular section R 2 . If the magnetic one-form B ∈ 1 R 2 is closed everywhere inside the larger circle, we know there's no current J through the outer cylinder, and that the circulation of B around the outer circle vanishes. But if we only know that B is closed on the annulus between the circles, there may or may not be a current through the inner cylinder, and the circulation of B around the outer circle may or may not vanish. The magnetism, the circulation of B around the outer circle, is produced by the source (the current in this case), however, not by logically sloppy topological circumlocution.

Abstract

Two dimensions Three dimensions source S EM field S 2 = F charge density S 3 = ρ primitive P EM potential P 2 = A electric field

P 3 = E equiv. class [P] = d -1 S equ. class [A] = d -1 F equ. class [E] = d -1 ρ support I (of S)
inner disc I 2 inner sphere I 3 larger region L larger disc L 2 larger sphere

L 3 difference D annulus D 2 difference D 3 boundary B = ∂L loop B 2 = ∂L 2 membrane B 3 = ∂L 3 homotopy class H = [B] hoop H 2 = [B 2 ] homotopy class H 3 = [B 3 ] flux F circulation F 2 flux F 3 exterior derivative d curl ∇× divergence ∇• source interpretation EM field

interpretation charge interpretation primitive interpretation potential interpretation electric field interpretation boundary interpretation holonomy interpretation membrane interpretation topology interpretation topology interpretation topology interpretation

In three dimensions we have a charge ρ = dE ∈ 3 R 3 radiating an electric field E ∈ 2 R 3 which is then caught by an enclosing membrane B 3 = ∂L 3 ; Stokes's theorem becomes

F 3 = ∂L3 E = L3 dE = L3 ρ.
Here we can think of the multiply-connected isolating region D as the difference D 3 = L 3 -I 3 between the region L 3 bounded by the membrane B 3 and the support I 3 of ρ. To obtain a satisfactory analogy, it won't even be necessary to modify standard electrostatics: a slight tweak will be enough. What we need is a three-dimensional (electrostatic) freedom like

[A] = [A + dλ] λ = d -1 F ,
where λ ∈ 0 R 2 is a function and [A] the equivalence class of all one-forms differing by an exact term dλ-which corresponds to the kernel22 of the curl d :

1 R 2 → 2 R 2 . In a sense we already have the right freedom in ( 1)

[E] = [E + dξ] ξ = d -1 ρ,
where dξ ∈ 2 R 3 is the curl of a one-form ξ ∈ 1 R 3 . The difference being that the electric field E is empirically accessible (through the Lorentz force law), whereas the potential A isn't. So we'll have to assume that the individual electric field E (as opposed to the class (1)) is just as unmeasurable as A in two dimensions. The electric charge ρ and flux F 3 , which remain measurable here, determine the class (1), not an individual electric field E.

In what sense is F a source S? Just as the charge ρ = S 3 is the source of the electric field E = P 3 (a perturbation of the surrounding medium) which is then caught by the boundary B 3 , the electromagnetic field F = S 2 (a curl, after all) is the source of the surrounding electromagnetic 'turbulence' which, conveyed by the potential A = P 2 , is likewise caught by the boundary B 2 .

Newton-Poisson gravity23 (where ρ is the gravitational source density, E the gravitational field and so on) is isomorphic to electrostatics and would be equivalent for our purposes. I have concentrated on electrostatics which is no doubt more familiar.

The four interpretations in three dimensions

The following terms can be used for the four interpretations in three dimensions:

(1-3D) electric charge interpretation (2-3D) electric field interpretation (3-3D) membrane interpretation (4-3D) topology interpretation.

The electric charge interpretation

This interpretation can be expressed as follows: Since (1) is a class, full of individuals, it has to be a physically meaningless mathematical fiction; which means there's nothing at all between the source and the boundary B 3 . The flux F 3 through the boundary is therefore a non-local effect, in the sense that it isn't conveyed by a 'carrier' E.

The electric field interpretation

The flux F 3 is carried from the source to the boundary B 3 by the electric field E ∈ [E].

To the question "which E ∈ [E] in particular?"24 there are at least three answers:

a) It really doesn't matter, any E ∈ [E] will do-all elements of [E] are on an equal footing.

b) The elements of [E] are not all on an equal footing; only one of them, E, is the right one. But since the distinguished element E is assumed to be empirically inaccessible, any element of [E] will do.

c) The elements of [E] are all on an equal footing, empirically. But measurement is not the only way of selecting or ruling out elements of [E]: some could be aesthetically or pragmatically (or even historically 25 ) privileged; simplicity, elegance, beauty, economy, convenience or even computational considerations could be relevant.26 

The membrane interpretation

Since (1) is a class, full of individuals, it has to be a physically meaningless mathematical fiction. But to avoid the non-locality of the electric charge interpretation, something in D 3 has to carry the flux F 3 from the source to the boundary. Since the flux is the same for the whole homotopy class H 3 , we can replace E with H 3 ; so a class of boundaries somehow conveys the electric field, or rather (1) (or whatever it is that manifests itself at the boundary as an electric flux F 3 ). In other words: There has to be something in D; if it cannot be the class [P] (being a class), it has to be the class H. So far we have assumed that the individual P ∈ [P] is unmeasurable. The homotopy class H owes its physical legitimacy to the empirical inaccessibility of P. Now suppose that P somehow becomes measurable-a new experiment is devised to pick a single P out of the class [P]. The 'gauge revealing' experiment dissolves H, degrading it into a mere mathematical fiction. But how can an experiment concerning P alter the ontological status of H? Conservation of. . . reality? If this is too numerous to be real, that has to be real instead? Or perhaps differentially-whatever reality is lost by P somehow gets continuously transferred to H of all things? There would be ways of making the measurability of P a matter of degree: more or less measurable, to some degree or other (say one-half, or perhaps 0.73, on a scale from zero to one), rather than just entirely measurable or not at all. Would the ontological status of H vary accordingly? Very real rather than somewhat real? One can imagine an 'ontological intensity lever' which, by controlling the measurability of P, determines the ontological intensity or degree of reality of the homotopy class H: at one end the lever makes H a mere mathematical abstraction, at the other it gives H full physical legitimacy.

Summing up, these first three interpretations can be distinguished by what they put in the isolating region D:

(1-3D) nothing at all (2-3D) electric field (3-3D) homotopy class H.

The topology interpretation

If there's no charge in B 3 , the flux F 3 through B 3 will vanish; if there may be a charge in B 3 , the flux through F 3 may not vanish. More generally, if there's no source in B, the flux F through B will vanish; if there may be a source in B, the flux F may not vanish.

But the flux is produced by the source, not the hole.27 Without a source, the (desired) implication {dP = 0| D } ⇒ {F = 0} is groundless, indeed wrong. 28 If one cannot avoid attributing the flux to the source that produced it, why bother with all the confusing topological circumlocution? The 'topologist' seems to want to 'shift the explanation' from the source to the topology, replacing the source with an appropriate topological condition. There's nothing wrong with an emphasis on the flux over the source; but a mere hole on its own doesn't even provide the flux. What's to be gained by attributing the earth's gravitational field not to the earth itself but to a hole that may or may not contain the earth?

Final remarks

The physics of the analogy, if taken too literally, can be misleading: in two dimensions, the electromagnetic field F is viewed as a 'source'; in three dimensions, the electric field E has the same role as the potential A in two; and so on. The analogy makes sense at a more abstract level. A single stipulation is enough to make it work: the individual E ∈ [E] = d -1 ρ must be empirically inaccessible. Indeed we have seen that the problem, the paradox, the whole debate is produced by the unmeasurability of a primitive (A in two dimensions, which corresponds to E in three): if the individual primitive P (rather than the whole inverse image [P] = d -1 S of the source) were measurable, it would carry the effect from the source to the boundary, without non-locality-or the need to look, beyond E, for an 'invariant' medium (a homotopy class of boundaries) to carry the effect in its place.

As to the topology interpretation, one wonders how a flux can be due to a mere hole, that may or may not contain a source. It is clearly produced by the source itself.

The move to three dimensions produces not one but two new schemes (columns in the table): an abstract scheme in which the essentials of what a logician might call the 'theory' are laid bare, disentangled from the accidental features that would then be confined to the models; and a new three-dimensional model, to be considered alongside the standard two-dimensional model. One may even want to view the third column as subordinate to the first, in the sense that the best way to extract a theory from a single model can be the identification of a second model to begin with, so it can then be seen what theory satisfies them both. At any rate the three-dimensional model introduced here fruitfully associates new accidental features with the essential structures represented in the first column. But as the three-dimensional scheme can be considered alongside the other two columns, its accidental features are not confusingly entangled with the bare theory-they can only provide the advantages associated with, for instance, the intuitive familiarity of electrostatics or gravity (a falling apple being more familiar than a shifting interference pattern). Such advantages are encountered in metaphors or similes, perhaps even in allegory.

Again, I am only claiming the three-dimensional analogy sheds light on the debate, not that it captures absolutely everything-indeed it is easy to find features of the twodimensional case that get 'lost in translation,' as well as three-dimensional electrostatic irrelevancies.

I thank Ermenegildo Caccese for relevant insights, not to mention many conversations about electromagnetism, differential forms and so forth.

[START_REF] Ehrenberg | The refractive index in electron optics and the principles of dynamics[END_REF],[START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF]; see also[START_REF] Franz | Elektroneninterferenzen im Magnetfeld[END_REF][START_REF] Franz | Elektroneninterferenzen im Magnetfeld[END_REF][START_REF] Franz | Elektroneninterferenzen im Magnetfeld[END_REF],[START_REF] Olariu | The quantum effects of electromagnetic fluxes[END_REF],[START_REF] Hiley | The early history of the Aharonov-Bohm effect[END_REF].

The nature of an n-form depends on the size of the environment; so a two-form α

∈ 2 R 3 corresponds to a vector in R 3 but to a density α 2 ∈ 2 R 2 on the plane.3 The curious relationship between the phase of the wavefunction and the electromagnetic potential A is hardly uninteresting; but here I've chosen to concentrate on electromagnetism and hence to view the wavefunction, its phase and the interference pattern as things that test A (or perhaps [A] = d -1 F ). The Aharonov-Bohm experiment is often, perhaps even typically viewed as an electromagnetic experiment about the electromagnetic potential (Aharonov & Bohm's title "Significance of electromagnetic potentials in the quantum theory")-more than as a quantum-mechanical experiment about the phase of the wavefunction.

The gauge freedom of the Gauß-Maxwell equation ρ = dE = d(E +dζ) is broken in Maxwell-Lorentz theory by the Lorentz force law-which singles out a gauge corresponding to Coulomb's inverse square rule.

I just take this standard and very accurate expression for granted. But one can no doubt do even better; see[START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF] §5.1 for details.

It is simplest to view F as a purely magnetic field B. Even if I hesitate to confuse the reader with threedimensional objects in what I'm sloppily calling the 'two-dimensional' case, the magnetic field is in fact a two-form B = dA ∈ 2 R 3 in three dimensions produced by the current density J = d * B ∈ 2 R 3 in the solenoid, where the magnetic three-potential A ∈ 1 R 3 is a one-form in three dimensions and the Hodge star * turns the two-form B into the one-form * B ∈ 1 R 3 . Once we confine our attention to the plane, the two-form B ∈ 2 R 2 becomes a density (as does J), whereas one-forms ∈ 1 R 2 remain covector fields.

 7 This corresponds to the S in of[START_REF] Shech | Two approaches to fractional statistics in the quantum Hall effect: idealizations and the curious case of the anyon[END_REF]Shech ( , 2018a)). Here Shech's S in and Sout are separated by the annulus D 2

.8 In two dimensions it makes sense to speak, somewhat sloppily, of 'keeping the magnetism in'; what one really wants to prevent, however, is magnetism going around (above and below) the solenoid, rather than through it. But even an infinitely long solenoid would rely on a 'destructive interference' outside I 2 that may not be perfect-a possibility related to the central thesis of Mattingly (

2007).9 In fact there are not two but three 'discs' or 'circles' or 'loops': first, the support of F ; then, the shield delimiting the annulus on the outside; and finally, the loop running through the wavefunction. To simplify, I have conflated the last two. If one would rather distinguish, there's an 'integration loop' outside a circle 'keeping the wavefunction out' (outside the support

of F ).10 Aharonov & Bohm (1959) p. 490: "In classical mechanics, we recall that potentials cannot have such significance because the equation of motion involves only the field quantities themselves. For this reason, the potentials have been regarded as purely mathematical auxiliaries, while only the field quantities were thought to have a direct

physical meaning."11 The infinite length of the ideal solenoid would 'prevent the magnetic field lines from closing, to form

In three dimensionsWe can begin with a table outlining the correspondences, which should in due course become intelligible.21 Earman (2017) §6: "there are many possible causes hidden within the interior region of the solenoid (including of course a magnetic flux) that could explain the behaviour of the electrons she observes in the exterior."

Differential operators are destructive, their kernels aren't trivial; but the loss can be overcome, or rather reversed, by an appropriate specification (along the lines of a 'constant of integration')-here a zero-form. Each element of [A] = d -1 dA corresponds to a different zero-form; a particular λ restores the original A.

By this I just mean Newtonian gravity with Poisson's equation. The designation "Newtonian gravity with a continuous mass distribution ρ rather than finitely many point masses" is more accurate but too long.

Cf.[START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF] p. 491: "This means that we must be able to define the physical difference between two quantum states which differ only by a gauge transformation."

Duhem (1989) p. 388ff 

For instance, one could favour a primitive P characterised by purely radial lines; in standard electrostatics, with measurable E, this geometrical criterion would (with a spherically symmetric charge) give the right electric field lines. In two dimensions, where the lines are level sets, the criterion would correspond to a very natural gauge choice. Why wouldn't the lines be purely radial? Must they really be allowed to bend and wiggle? I'm not really making a point about gauge fixing or 'one true gauge'; but there do seem to be cases in which one gauge choice does stand out as particularly natural;[START_REF] Mattingly | Which gauge matters?[END_REF] for instance singles out a distinguished gauge most convincingly.

[START_REF] Earman | The role of idealizations in the Aharonov-Bohm effect[END_REF] §5.3: "the non-simple connectedness plays no causal role in producing the observed effects."

See Afriat (2013).