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Introduction

Let S be a surface of finite type with χ(S) < 0, and denote by S the set of homotopy classes of unoriented essential simple closed curves. (This set can be seen as a subset of π 1 (S)/(x ∼ x -1 )). We are interested in the space of representations Hom(π 1 (S), SL(2, C)) and the character variety X (S) := Hom(π 1 (S), SL(2, C))/SL(2, C), and define the following quantity that we called the trace systole tys(ρ) of a representation ρ as follows : tys(ρ) = inf {| tr(ρ(γ))| , γ ∈ S } .

By invariance of the trace by conjugation, this descends to a map on the character variety X (S) = Hom(π 1 (S), SL(2, C))/SL(2, C).

When S is a closed surface, one can show that tys is bounded on the character variety and attains its maximum, so we denote by Tys(S) the maximum of this function. When S has boundary components, the fundamental group π 1 (S) is a free group and tys is an unbounded function on the whole character variety. However, one can consider the restriction on relative character varieties, with prescribed traces on the boundary. If S has p boundary components, with c 1 , . . . , c p ∈ π 1 (S) representing boundary loops, and we let B = (b 1 , . . . , b p ) ∈ C p , we can consider

X B (S) = {[ρ] ∈ X (S) , ∀i, tr(ρ(c i )) = b i }
In that case we define Tys B (Σ) as the maximum of tys on X B (S).

The first result of this article is the explicit computation of this value for certain surfaces of characteristic -1. (1) Let Σ 1,1 be a one-holed torus and µ ∈ C \ {4}. We denote by t µ the dominant root of the polynomial X 3 -3X 2 + µ. We have

Tys µ (Σ 1,1 ) = |t µ |
(2) Let N 3 be the closed non-orientable surface of genus 3.

Tys(N 3 ) = 3 + √ 17
The next results concerns the four-holed sphere, for which we only get explicit values when the boundary data are real and positive.

Theorem B. Let Σ 0,4 be a four-holed sphere and B = (a, b, c, d) ∈ R 4 + with B = (0, 0, 0, 4). We denote by t B the largest positive real root of

X 3 -3X 2 -(ab + bc + cd + ac + bd + ad)X + (4 -a 2 -b 2 -c 2 -d 2 -abcd) = 0
Then we have Tys B (Σ 0,4 ) = t B This trace systole is intimately related to the usual systole sys(X) of an hyperbolic surface X. Indeed, if X is an hyperbolic surface which is homeomorphic to S then it gives rise to an holonomy representation ρ X : π 1 (S) → PGL(2, R) which is well-defined up to conjugacy. The length l X (γ) of a closed geodesic γ on the hyperbolic surface X is related to the trace of its image by the holonomy representation by

l X (γ) =    2 cosh -1 tr(ρ X (γ)) 2 if γ is 2-sided 2 sinh -1 tr(ρ X (γ)) 2 if γ is 1-sided
This gives a natural relation between the value of the trace systole of a Fuchsian representation and the usual systole of the corresponding hyperbolic surface. This relation can be generalised for any quasi-Fuchsian representation of these surfaces and can also be understood for incomplete hyperbolic structure on singular surfaces with conical singularities. Using this, we obtain the following results : Theorem C.

(1) If X is an hyperbolic one-holed torus, with geodesic boundary of length l, then cosh sys 2 ≤ cosh l 6 + 1 2 (2) If X is a quasi-Fuchsian structure of a once-punctured torus (with a cusp), then cosh sys 2 ≤ 3 2 (3) If X is a singular hyperbolic structure on a torus with a conical singularity of angle θ, then cosh sys 2 ≤ cos θ 6 + 1 2

(4) If X is a quasi-Fuchsian hyperbolic structure on a four-punctured sphere, then : cosh sys 2 ≤ 7 2 (5) If X is a quasi-Fuchsian structure on N 3 , then cosh(sys) = 5 + √ 17 2 Some of these results were already known see [3, ?], but we give here an alternate proof that is less dependant on hyperbolic geometry. Other results on the list appear to be new, even if the formulas were already known in the hyperbolic case.

We can also use the methods developped here to answer a question of Bowditch. Given a type-preserving representation of a surface that is not discrete, does there exists a simple closed curve such that ρ(γ) is not an hyperbolic element ? An equivalent way to formulate this question is to ask if the maximum of the trace systole function outside Teichmuller space is less than 2 ? The answer to this question is already known for the closed surface of genus 2 and was proven by Marche and Wolff [?], using results on domination of non-Fuchsian representations by Fuchsian ones, and the explicit computation of the Bers constant by Gendulphe. We give here an alternative proof using our results on trace systoles of representations. We hope that such methods could be used for more general surfaces, where then answer to BOwditch question is still unknown.

The strategy to prove these results consists mainly of a careul analysis using trace functions on simple closed curves and the simple description of the curve complex of the three surfaces studied here. Indeed, for each surface, the curve complex will correspond to the Farey graph on Q ∪ {∞} or is constructed naturally from this graph. One can then consider the dual graph to this curve complex which is an infinite trivalent tree embedded in the disk, and such that the set Ω of complementary regions corresponds to the simple closed curves on S (or one-sided non-orientable curves in the case of N 3 ). Then, for any representation ρ ∈ X (S) with certain boundary data, one can define a so-called Markoff map, which is a map φ ρ : Ω → C that is simply defined as φ ρ (X) = tr(ρ(γ)) where γ is the simple closed curve corresponding to region X.

From such a map, one can assign an orientation on the trivalent tree. We then relate trace systoles of these representations to sinks of Markoff maps, which are vertices in Ω such that every incident arrow is pointing towards that vertex. By a careful analysis of the sinks, we can find an explicit value M , the so-called sink constant, depending on the boundary data, such that for any sink, at least one of the regions touching that sink is less than M .

We will first recall the necessary background on Markoff maps in Section 2, and then in Section 3 we will explicitely compute the sink constant in the relevant cases. Then in Section 4 we will give the precise relation between character varieties of surface groups and the Markoff maps, so that we can give the main results in terms of systoles in Section 5. Finally, in Section 6 we will use the same tools to give an alternate proof of Marche-Wolff result in genus 2

Generalized Markoff maps

In this section we recall the main notations and properties of generalized Markoff maps, and refer to previous work [START_REF] Bowditch | Markoff triples and quasi-Fuchsian groups[END_REF][START_REF] Ser Peow Tan | Generalized Markoff maps and McShane's identity[END_REF][START_REF] Maloni | On the character variety of the four-holed sphere[END_REF] for more details.

Farey triangulation and binary tree.

We let F be the Farey triangulation of the hyperbolic plane H 2 . Recall that the ideal vertices of F correspond to Q ∪ {∞} ⊂ ∂H 2 and that two vertices p q , r s of F are joined by an edge if |pq -rs| = 1 (where we assume that p, q, r, s ∈ Z and p ∧ q = r ∧ s = 1). We let Σ be the dual graph to F, where vertices correspond to the triangles of F. We know that Σ is a countably infinite simplicial tree properly embedded in the plane all of whose vertices have degree 3. We note V (Σ) and E(Σ) the set of vertices and edges of Σ respectively.

A complementary region of Σ is the closure of a connected component of the complement. We denote by Ω = Ω(Σ) the set of complementary regions of Σ. The regions are in correspondance with vertices of F and hence they are indexed by elements of Q ∪ {∞}.

We will use the letters X, Y, Z, W, . . . to denote elements of Ω. For e ∈ E(Σ), we will note e ↔ (X, Y ; Z, W ) to indicate that e = X ∩ Y and e ∩ Z and e ∩ W are the endpoints of e; see Figure ??.

We choose a tri-coloring of the regions and edges, namely a map C : Ω(Σ) ∪ E(Σ) -→ {1, 2, 3} such that for any edge e ↔ (X, Y ; Z, W ) we have C(e) = C(Z) = C(W ) and such that C(e), C(X) , C(Y ) are all different. This implies that the colors of three regions meeting at a vertex are all different. In fact, the coloring is completely determined by a coloring of the three regions around any specific vertex, and hence is unique up to a permutation of the set {1, 2, 3}. We denote by Ω i = Ω i (Σ) the set of complementary regions with color i, and by E i = E i (Σ) the set of edges with color i.

As a notational convention in the following, when X, Y, Z are complementary regions around a vertex, we will consider that X ∈ Ω 1 , Y ∈ Ω 2 and Z ∈ Ω 3 , or in general that X i ∈ Ω i (Σ) .

µ-Markoff triples.

For a complex quadruple µ = (λ 1 , λ 2 , λ 3 , s) ∈ C 4 , a µ-Markoff triple is an ordered triple (x 1 , x 2 , x 3 ) of complex numbers satisfying the µ-Markoff equation, also called the vertex equation:

x 2 1 + x 2 2 + x 2 3 -x 1 x 2 x 3 + λ 1 x 1 + λ 2 x + λ 3 x 3 = s (1) 
Remark 2.1. Note that we slightly changed the convention used in our previous paper [START_REF] Maloni | On the character variety of the four-holed sphere[END_REF] for consistence with the notation of Tan-Wong-Zhang [START_REF] Ser Peow Tan | Generalized Markoff maps and McShane's identity[END_REF]. To pass from one convention to the other, one simply has to replace (x 1 , x 2 , x 3 ) by (-x 1 , -x 2 , -x 3 ). Note that, with this convention, if (x 1 , x 2 , x 3 ) is a µ-Markoff triple in the sense of Tan-Wong-Zhang, with µ ∈ C, then (x 1 , x 2 , x 3 ) is a µ-Markoff triple in our sense, with µ = (0, 0, 0, µ).

It is easily verified that, if (x 1 , x 2 , x 3 ) is a µ-Markoff triple, so are the triples

(x 1 , x 2 , x 1 x 2 -x 3 -λ 3 ), (x 1 , x 1 x 3 -x 2 -λ 2 , x 3 ) and (x 2 x 3 -x 1 -λ 1 , x 2 , x 3 ). (2)
It is important to note that in general, permutations triples are not µ-Markoff triples, unlike the µ-Markoff triples considered by [START_REF] Ser Peow Tan | Generalized Markoff maps and McShane's identity[END_REF]. Namely, if (x 1 , x 2 , x 3 ) is a µ-Markoff triple, then the triples (x 2 , x 3 , x 1 ), (x 3 , x 1 , x 2 ), . . . have no reason to be µ-Markoff triples.

2.3. µ-Markoff map. Definition 2.2. A µ-Markoff map is a function φ : Ω -→ C such that (i) for every vertex v ∈ V (Σ), the triple (φ(X 1 ), φ(X 2 ), φ(X 3 )) is a µ-Markoff triple,
where X 1 , X 2 , X 3 ∈ Ω are the three regions meeting v such that X i ∈ Ω i ; (ii) For any i ∈ {1, 2, 3} and for every edge e ∈ E i (Σ) such that e ↔ (X j , X k ; X i , X i )

we have:

φ(X i ) + φ(X i ) = φ(X j )φ(X k ) -λ i . (3) 
We denote by Φ µ the set of all µ-Markoff maps.

If the edge relation ( 3) is satisfied along all edges, then it suffices that the vertex relation ( 1) is satisfied at a single vertex. So one may establish a bijective correspondence between µ-Markoff maps and µ-Markoff triples, by fixing three regions X 1 , X 2 , X 3 which meet at some vertex v 0 , and considering a map φ → (φ(X 1 ), φ(X 2 ), φ(X 3 )).

This process may be inverted by constructing a tree of µ-Markoff triples as Bowditch did in [START_REF] Bowditch | Markoff triples and quasi-Fuchsian groups[END_REF] for Markoff triples and as Tan, Wong and Zhang did in [START_REF] Ser Peow Tan | Generalized Markoff maps and McShane's identity[END_REF] for the µ-Markoff triples: given a µ-Markoff triple (x 1 , x 2 , x 3 ), set φ(X i ) = x i , and extend over Ω as dictated by the edge relations. In this way one obtains an identification of Φ µ with the algebraic variety in C 3 given by the µ-Markoff equation. In particular, Φ µ gets an induced topology as a subset of C 3 .

Given φ ∈ Φ µ and k ≥ 0, the set Ω φ (k) ⊆ Ω is defined by

Ω φ (k) = {X ∈ Ω | |φ(X)| ≤ k}.
These sets will be crucial in the proof of our main results. For a given map φ, a vertex with all three arrows pointing towards it is called a sink, one where two arrows point towards it and one away is called a merge, and vertex with two (respectively three) arrows pointing away from it is called a fork (respectively source).

Sink Constant

The following theorem is from Maloni-Palesi-Tan : Lemma 3.1. There exists a constant m(µ) ∈ R >0 such that for all φ ∈ Φ µ , if three regions X 1 , X 2 , X 3 meet at a sink, then

min i {|φ(X i )|} ≤ m(µ).
A natural question is to understand the lowest possible value of this constant m(µ), which we we call the sink constant. We denote this optimal constant by M (µ). This question was first asked by Tan-Wong-Zhang in [START_REF] Ser Peow Tan | Generalized Markoff maps and McShane's identity[END_REF], where the authors only study the (0, 0, 0, µ)-case and remark that finding the optimal value seems to be a difficult problem. Previously, Bowditch [START_REF] Bowditch | Markoff triples and quasi-Fuchsian groups[END_REF] considered the simplest possible case µ = (0, 0, 0, 0) and found the optimal value to be equal to 3.

In this section, we answer the question of Tan-Wong-Zhang and also compute the Sink constant in certain cases.

3.1. Case λ 1 = λ 2 = λ 3 = 0. 3.1.1. Complex case.
The exact value of the sink constant will be expressed using the following function:

Definition 3.2. Let a ∈ C.
We denote by t a the dominant root of the polynomial equation

X 3 -3X 2 + a = 0.
We first make an observation on the value t µ .

Lemma 3.3. For all µ ∈ C, we have (t µ ) ≥ 2 with equality if and only if µ = 4.

Proof. Let x 1 ≤ x 2 ≤ x 3 ∈ [-2
, 2] such that x 1 + x 2 + x 3 = 3. Then x 2 1 + x 2 2 + x 2 3 ≤ 9 with equality when (x 1 , x 2 , x 3 ) = (-1, 2, 2). Indeed, we get

x 1 ∈ [-1, 1] directly from x 1 = 3 -x 2 -x 3 . And x 3 ≥ 3-x 1 2 . If we fix x 1 , it is clear that the maximum of the function f (x) = x 2 1 + (3 -x 1 -x) 2 + x 2 on the interval [ 3-x 1
2 , 2] is attained when x = 2 and is equal to 2x 2 1 -2x 1 + 5. And the maximum of this function on [-1, 1] occurs when x = -1. Now, Let t 1 , t 2 , t 3 be the three roots with multiplicity of x 3 -3x 2 + µ = 0. From Vieta's formula, we have that t 1 + t 2 + t 3 = 3 and t 2 1 + t 2 2 + t 2 3 = 9. If we denote x i = (t i ), and assume that |x i | < 2, then we can apply the previous result and get

x 2 1 + x 2 2 + x 2 3 < 9. But As (z 2 ) ≤ ( (z))) 2 , we see that if (t j ) < 2, then (t 2 1 + t 2 2 + t 2 3 ) ≤ x 2 1 + x 2 2 + x 2 3 < 9, which is a contradiction. So at least one of the t j is such that (t j ) ≥ 2.
The rest of this section will be devoted to the proof of this Theorem. Theorem 3.4. Let µ ∈ C and µ = (0, 0, 0, µ), then

M (µ) = |t µ |.
The theorem can then be seen as a consequence of the following technical lemma : Lemma 3.5. The minimum of the function f (p, q, r) = |pq| on the domain :

D µ = (p, q, r) ∈ C 3 , |p| ≥ |q| ≥ |r|, (p), (q), (r) ≤ 1 2 , p + q + r -1 = µpqr occurs for p = q = r.
Proof of Theorem 3.4 using Lemma 3.5. Let φ ∈ Φ µ , and assume that X 1 , X 2 , X 3 ∈ Ω are three regions meeting at a sink for φ. We denote x i = φ(X i ). Then, the directions of the three arrows give the three inequalities, called the sink conditions :

|x 1 | ≤ |x 2 x 3 -x 1 |, |x 2 | ≤ |x 1 x 3 -x 2 |, |x 3 | < |x 1 x 2 -x 3 |
Without loss of generality, we can assume that x i = 0, for otherwise min i {|x i |} = 0, and

that |x 1 | ≥ |x 2 | ≥ |x 3 |. We want to prove that |x 3 | < |t µ |. We set p = x 1 x 2 x 3 , q = x 2 x 3 x 1 and r = x 3 x 1 x 2 . So we have |p| ≥ |q| ≥ |r| and |pq| = 1 |z| 2 . We have that |x| ≤ |yz -x| ⇔ (p) ≤ 1
2 . So, the sink conditions are equivalent to (p), (q), (r) ≤ 1 2 . And the vertex equation becomes:

p + q + r -1 = µpqr
. The Lemma shows that the minimal value of |pq| is obtained when p = q = r, which means that this minimum is smaller than the dominant root τ µ of the polynomial equation 3X -

1 -µX 3 = 0. It's easy to see that τ µ = 1 tµ . So we have 1 |x 3 | 2 = |pq| ≤ 1 |tµ| 2
, and hence |x 3 | ≤ |t µ | as wanted. Moreover, the triple (t µ , t µ , t µ ) defines a µ-Markoff map such that the three regions meet at a sink. Indeed, as

|t µ | ≥ 2 from Lemma 3.3, we get that |t 2 µ -t µ | ≥ ||t µ | 2 -|t µ || ≥ |t µ |. So the constant |t µ | is optimal.
Proof of Lemma 3.5.

Recall that τ µ is the dominant root of the polynomial equation 3X -1 -µX 3 = 0. AS τ µ = 1 tµ and (t µ ) > 2, we have that τ µ is included in the disk of diameter [0, 1 2 ]. As the triple (τ µ , τ µ , τ µ ) satisfies the sink conditions, we know that the minimum of the function f on the domain D is less or equal to |τ µ | 2 .

Let (p, q, r) ∈ D realizes the minimum of the function f on the domain D.

(

) As |pq| < |τ µ | 2 and |p| ≥ |q|, we have directly that |q| < |τ µ | < 1 2 . Note that for any z ∈ C such that |z| < 1 2 , we have (z) < 1 2 1 
If we assume that |q| > |r|, then we consider p = (1 -ε)p and q = (1 -ε)q for > 0. We let r be the unique complex number such that p + q + r -1 = µp q r . By continuity of r with respect to ε, we get that for ε small enough, we have (p , q , r ) ∈ D and |p q | < |pq|, which contradicts the minimality.

So we have (3) Now consider the function F (y) = y 1 -2y 1 -µy 2 = f (y, y) on the domain

|q| = |r|. (2) Let R > 0 so that |q| = |r| = R. Let f be the function f (x, y) = 1 -x -y 1 -µxy defined on the set K = {(x, y) ∈ C, |x| = |y| = R}. The image f (K) is a compact set in C,
K = y ∈ C , |y| ≤ |τ µ |, 1 -2y 1 -µy 2 ≤ 1 2
Again, this function is bounded away from 0, so by the maximum principle, the minimum of |F | is attained on the boundary of the domain K . From the previous discussion, the minimum of this function is precisely the minimum of φ on D.

On the boundary where |y| = |τ µ |, we see that the minimum of |F | occurs precisely when y = τ µ . Indeed, we already proved that if |y| = |τ µ |, then |f (y, y)| ≥ |τ µ |, and on the other hand we have F (τ µ ) = τ 2 µ (4) We can now prove that the minimum on the boundary given by the equation

1-2y 1-µy 2 ≤ 1 2 is greater than |τ µ | 2 .
We see that the equation 1-2y 1-µy 2 = α has two solutions which are :

y ± (α) = 1 ± 1 -µα + µα 2 µα
If we denote by α = 1 2 + iβ for β ∈ R, we only have to consider a function of a single real variable ψ(β)

= 1 2 + iβ |q ± ( 1 2 + iβ)|.
A direct computation proves that the minimum of this function occurs at b = 0 and is equal to :

1 ± 1 -µ 4 µ < |τ µ | 2
Note that this inequality is an equality if and only if µ = 4. So this means that the minimum of |F | occurs when q = r = τ µ , which implies that p = τ µ , so this conlcudes the proof of the Lemma.

3.1.2.

Upper bound for the minimum of a Markoff map. Recall the following proposition ([8], Lemma 3.11), Proposition 3.6. Let φ be a (0, 0, 0, µ)-Markoff map with µ = 4, and assume that β is an infinite ray in Σ consisting of a sequence (e n ) n∈N of edges of Σ such that the arrow on each e n assigned by φ is directed towards e n+1 . Then there exists at least one region X ∈ Ω with |φ(X)| < 2.

Combining this proposition with Theorem 3.4 we obtain : Theorem 3.7. Let µ = 4 and φ be a (0, 0, 0, µ)-Markoff map. Then there exists a region X such that |φ(X)| ≤ |t µ |.

Proof. We consider a trace reduction algorithm. Starting from three regions X, Y, Z meeting at a vertex v 0 , we follow a flow defined by φ, which means that we consider a maximal sequence of vertices (v n ) such that v n+1 is a vertex adjacent to v n and the arrow from v n to v n+1 is pointing towards the latter. There are only two behaviors that can occur :

• The sequence is finite. In that case, the last vertex of the sequenc is a sink. In that case, one of the regions around that sink such that |φ(X)| ≤ |t µ | • The sequence is infinite, in which case we have an infinite descending ray, and hence there exists a region such that |φ(X)| < 2 ≤ |t µ |.

Note that when µ = 4, we have t µ = 2, and yet there are Markoff maps such that for all regions X we have |φ(X)| > 2. However, in that case inf{|φ(X)|, X ∈ Ω} = 2.

As a corollary, we state the theorem in terms of matrices only :

Corollary 3.8. Let A, B ∈ SL(2, C) such that tr([A, B]) = µ ∈ C \ {2}. Then there exists a primitive word w ∈ F 2 such that | tr(w(A, B))| ≤ |t µ |. 3.1.3. Real Case. When µ ∈ R 4
, one can consider real Markoff maps φ : Ω -→ R, and we denote by Φ R µ the set of such maps. In that case, one can refine the previous theorem. Indeed, only the real roots of the polynomial X 3 -3X 2 + µ = 0 will play a role. Theorem 3.9. Let µ ∈ R \ {4}. Let t µ be the largest (in absolute value) real root of the polynomial X 3 -3X 2 + µ = 0. Then for all φ ∈ Φ R µ , if three regions (X, Y, Z) meet at a sink, then :

min{|x|, |y|, |z|} ≤ max(|t µ |, 2)
Note that this theorem gives indeed more information than the previous one in the case of real Markoff maps. For example, consider µ = 54. Then the only real root of the equation X 3 -3X 2 + 54 = 0 is t µ = -3, however, the largest complex roots is t µ = 3 + 3i, and hence

|t µ | < |t µ |.
Note that in the real case we have precise information on the roots of the polynomial. The discriminant of such an equation is

∆ = 18abcd -4b 3 d + b 2 c 3 -4ac 3 -27a 2 d 2 = 108µ -27µ 2 = 27µ(4 -µ)
So we can distinguish 5 possible cases depending on the value of µ.

Proposition 3.10. The real roots of X 3 -3X 2 + µ = 0 satisfy the following properties :

(1) If µ < 0, then the equation has a unique real solution. This solution is positive and greater than 3. (5) If µ > 4, then this equation has a unique real solution, and this solution is negative.

In that case |t µ | < 2 if and only if µ < 20.

We can now prove the Theorem 3.9, using a different strategy.

Proof. We consider the set (that we will call the sink domain)

S = (x, y, z) ∈ (R \ {0}) 3 | x yz ≤ 1 2 , y xz ≤ 1 2 , z xy ≤ 1 2
First, we can see that for all µ ∈ R, the triple (t µ , t µ , t µ ) ∈ S . Indeed, if µ > 4, then t µ < 0 is negative and all the equations are trivially satisfied because 1 tµ < 0 < 1 2 . On the other hand, if µ ≤ 4, then t µ ≥ 2 and hence

1 tµ ≤ 1 2 . Note that (2, 2, 2) is also in S . Let f (x, y, z) = x 2 + y 2 + z 2 -xyz.
We compute the gradient of the function f , so we get

∇f =   2x -yz 2y -xz 2z -xy  
We can see easily that if (x, y, z) ∈ S and x, y, z of the same sign, then each coordinates of ∇f is negative at (x, y, z). Note that ∇f = (0, 0, 0) if and only if x = y = z = 2. Now, let (x, y, z) ∈ R 3 such that f (x, y, z) = µ and (x, y, z) ∈ S . Without loss of generality, as f (x, y, z) = f (-x, -y, z) = f (-x, y, -z) = f (x, -y, -z), we can assume that x, y, z are all of the same sign, and non-zero.

Assume by contradiction that |x|, |y|, |z| > max(|t µ |, 2).

• If xyz < 0, then we have µ = f (x, y, z) = x 2 + y 2 + z 2 -xyz ≥ 20 > 4. This implies that t µ < 0, and hence (t µ , t µ , t µ ) and (x, y, z) are both in ] -∞, 0[ 3 . Consider the straight path ν : [0, 1] → R 3 from such that ν(0) = (t µ , t µ , t µ ) and ν(1) = (x, y, z). This path is entirely contained in S and hence f •ν is a strictly increasing function. This means that f (x, y, z) > f (t µ , t µ , t µ ) = µ, which gives a contradiction. • If xyz > 0, assume without loss of generality that 2 < x ≤ y ≤ z then consider the jagged path ν : [0, 1] → R 3 defined by three straight path :

(2, 2, 2) → (x, x, x) → (x, y, y) → (x, y, z)

This path is strictly increasing in each variable and stays in S . Hence f • ν is a strictly decreasing function. So f (x, y, z) < f (2, 2, 2) = 4, which implies that µ < 4 and t µ > 2. Now, the path ν also joins (t µ , t µ , t µ ) to → (x, y, z) . By the same argument, we have f (x, y, z) < f (t µ , t µ , t µ ) = µ. Contradiction.

3.2. General case. We now consider the general case of µ ∈ C 4 . The following remark shows that the optimal bound is not in general the modulus of the largest root of the vertex equation, even in the real case.

Remark 3.11. Let µ = (-50, 30, 50, 0). In that case, the triple (-10, -10, 10) is a µ-Markoff triple, and it's easy to check that this triple corresponds to a sink. However the largest root of X 3 -3X 2 -(-50 + 30 + 50)X = 0 is 1 2 (3 + √ 129) = 7.17... which is smaller than 10. In fact, the triple (t µ , t µ , t µ ) is not a sink, which indicates that the previous arguments cannot work.

This suggests that the optimal constant in the general case is much more difficult to compute. But adapting the previous proof, we can see that there are certain cases of geometrical significance that can be studied with similar methods. In particular, we will consider the following set of parameters :

U = [0, +∞[ 3 ×] -∞, 4] ⊂ R 4 Definition 3.12. Let µ ∈ U . A Markoff map φ ∈ Φ µ is said to be positive if Im(φ) ⊂ R + .
We denote by Φ ≥0 µ the set of positive Markoff maps. Theorem 3.13.

Let µ = (λ 1 , λ 2 , λ 3 , s) in U . For all φ ∈ Φ ≥0 µ , if three regions X 1 , X 2 , X 3 meet at a sink, then min{x 1 , x 2 , x 3 } ≤ T µ where T µ is the largest positive real root of X 3 -3X 2 -(λ 1 + λ 2 + λ 3 )X + s = 0. Proof. Let φ ∈ Φ ≥0
µ and let X 1 , X 2 , X 3 be three regions meeting at a sink. The sink condition can be written :

|x i | < |x j x k -x i -λ i | , with{i, j, k} = {1, 2, 3}
As the Markoff map is positive, we have that both x i and x j x k -x i -λ i are positive and hence the condition is equivalent to x j x k 2x i -λ i ≥ 0. This leads to the following definition of the Sink set

S = {(x i , x j , x k ) ∈ [2, +∞[ | x j x k -2x i -λ i ≥ 0, ∀{i, j, k} = {1, 2, 3}} Let t = t µ be the largest real root of P (X) = X 3 -3X 2 -(λ 1 + λ 2 + λ 3 )X + s. As P (2) = s -4 -2(λ 1 + λ 2 + λ 3 ) < 0, we know that t > 2. Moreover, we see that (t, t, t) ∈ S as t(t 2 -2t -p) = t 2 + (q + r)t -s > 0. Now, consider the function f (x, y, z) = x 2 +y 2 +z 2 -xyz +λ 1 x+λ 2 y +λ 3 z. The gradient of this map is ∇f =   2x -yz + λ 1 2y -xz + λ 2 2z -xy + λ 3  
So on S , the coordinates of the gradient are negative. So if min(x 1 , x 2 , x 3 ) > t, then as before we can consider a path ν from (t, t, t) to (x 1 , x 2 , x 3 ) that stays in S and is increasing in each variable. This implies that f • ν is striclty decreasing and hence f (x 1 , x 2 , x 3 ) < f (t, t, t) = s which gives a contradiction.

Character Varieties of surface groups

In this section, we consider the precise relationship between Markoff maps and representations of certain surface group. 4.1. One-holed Torus. Let T be a topological one-holed torus, and Γ be its fundamental group. The group Γ = α, β is the free group of rank two, and α and β correspond to simple closed curves with geometric intersection number one.

The set Ω of free homotopy classes of essential unoriented simple closed curves on T can be naturally identified with Q ∪ {∞} by considering the "slope" of the curve (see [START_REF] Ser Peow Tan | Generalized Markoff maps and McShane's identity[END_REF]). It is a well-known fact that the curve complex of the one-holed torus is isomorphic to the Farey triangulation F described before. This means that we can naturally identify Ω with Ω, so that each region in Ω correspond to a simple closed curve. As a consequence, two regions share an edge if and only if the corresponding curves intersect exactly once on T . Similarly, if three regions meet at a vertex, then there exists a generating set (α, β) of Γ such that the corresponding curves have representatves α, β, αβ ∈ Γ.

For k ∈ C, a representation ρ : Γ → SL(2, C) is said to be a k-representation, if tr([α, β]) = k, where [α, β] = αβα -1 β -1 is the element corresponding to the boundary curve of T . Note that this element is independent of the chosen basis for Γ. The space of equivalence classes of k-representations is denoted X k and is called the k-relative character variety.

There is a natural correspondance X k ≡ Φ µ with µ = (0, 0, 0, k + 2) obtained by fixing a generating set α, β for Γ. Indeed, from this generating set, one can identify Ω and Ω, and hence a character ρ : Γ → SL(2, C) gives rise to a map φ : Ω → C defined by φ(X) = tr(ρ(g)) where g ∈ Γ is the representative of the element in Ω corresponding to X.

The edge and vertex relations then follow from the classical trace identities in SL(2, C) :

tr A tr B = tr AB + tr AB -1 , (4) 
(tr A) 2 + (tr B) 2 + (tr C) 2 -tr A tr B tr C = tr[A, B] + 2 = k + 2 (5) 
Conversely, any µ-Markoff map φ gives rise to an equivalence class of representation in X µ-2 . Indeed, if we consider the three regions ∞, 0 and 1, and consider the µ Markoff triple (x, y, z) = (φ(∞), φ(0), φ(1)). We know that X µ-2 is identified with

{(x, y, z) ∈ C 3 | x 2 + y 2 + z 2 -xyz -2 = µ -2},
and hence the triple (x, y, z) defines a unique k-character in X k . 4.2. Four-holed Sphere. Let S be a topological four-holed sphere, and Γ be its fundamental group. The group Γ admits the following standard presentation Γ = α, β, γ, δ | αβγδ where α, β, γ, δ correspond to homotopy classes of the four boundary components. Note that Γ is isomorphic to the free group on three generators α, β, γ .

As in the one-holed torus case, the set Ω of free homotopy classes of essential unoriented simple closed curves on T can be naturally identified with Q ∪ {∞} by considering the "slope" of the curve, see [START_REF] Maloni | On the character variety of the four-holed sphere[END_REF].

For τ = (a, b, c, d) ∈ C 4 , a representation ρ : Γ → SL(2, C) is said to be a τ representation, when tr(ρ(α)) = a, tr(ρ(β)) = b, tr(ρ(γ)) = c and tr(ρ(δ)) = d.

The space of equivalence classes of τ -representation is denoted X τ and is called the τ -relative character variety. We can consider the map χ : X τ -→ C 3

[ρ] -→ (tr(ρ(αβ)), tr(ρ(βγ)), tr(ρ(γα))) which is injective [START_REF] Goldman | Geometric structures on manifolds and varieties of representations[END_REF]. A classical result on the character variety of the free group in three generators states that the image of χ is given by :

X τ = {(x, y, z) ∈ C 3 | x 2 + y 2 + z 2 + xyz = px + qy + rz + s}
with (p, q, r, s) = GT (a, b, c, d) where GT : C 4 → C 4 is the map defined by :

    a b c d     -→     ab + cd ad + bc ac + bd 4 -a 2 -b 2 -c 2 -d 2 -abcd     =     p q r s    

This map is onto and proper (see [?, Goldman-Toledo]nd [?, Cantat-Loray].

This allows us to identify the relative character variety with the space of Markoff maps. Let N 3 be a topological closed surface of characteristic -1. It is the non-orientable surface of genus 3, namely the connected sum of three projective plane. 4.3.1. Curves on N 3 . Recall that a closed curve on a non-orientable surface is said to be two-sided if it admits a regular neighborhood which is orientable, else it is said to be one-sided. We also say that a simple closed curve is orientable (resp. non-orientable) if the surface cut along that curve is orientable (resp. non-orientable). Note that on a nonorientable surface, a separating curve is necessarily 2-sided and non-orientable. And if the genus of the non-orientable surface is odd, there are no orientable 2-sided curves.

So, on the surface N 3 , there are exactly four types of simple closed curves :

(1) Separating curves. These are necessarily 2-sided and non-essential, as they bound a Mobius band. (2) Non-separating 2-sided curves. The surface obtained by cutting along such a curve is a 2-holed projective plane. (3) Orientable 1-sided curve. There is a unique such curve (4) Non-orientable 1-sided curves. A curve such that S \ γ is non-orientable.

The curve complex of N 3 has the following structure. The orientable 1-sided curve is disjoint from all non-separating 2-sided curves, but intersect all non-orientable 1-sided curve. For each 2-sided non-separating curve, there is a unique non-orientable curve that is disjoint from it. Finally, the subcomplex formed by non-orientable curves is equivalent to the curve complex of the one-holed torus. 4.3.2. Character variety of N 3 . The fundamental group of N 3 is given by the following presentation :

Γ 3 = π 1 (N 3 ) = α, β, γ | α 2 β 2 γ 2
where α, β, γ are homotopy classes of disjoint simple non-orientable 1-sided curves. The unique orientable 1-sided curve is given by δ = αβγ.

The character variety of Γ 3 in SL(2, C) is given by the following theorem :

Theorem 4.2. The map

X (Γ 3 ) -→ C 4 [ρ] -→ (tr(ρ(α)), tr(ρ(β)), tr(ρ(γ)), tr(ρ(δ)))
is injective. Its image is the set

N = (a, b, c, d) ∈ C 4 | | a 2 + b 2 + c 2 -abc d 2 = 4
Proof. We know that X (Γ 3 ) is an algebraic subset of the character variety of the free group in three generators. Which means that we have a first injection X (Γ 3 ) → C 7 where the image is the set of (a, b, c, d, x, y, z) ∈ C 7 satisfying the equation. The relation in Γ 3 implies that (αβ) -1 = βγγα and hence any (a, b, c, d, x, y, z) ∈ X (N 3 ) satisfies x = cd -x. Similarly, we have y = ad -y and z = bd -z. Equivalently, we can write x = cd 2 , y = ad 2 , z = bd 2 . When we substitute the expression of x, y, z in terms of a, b, c, d in the eqation defining X (F 3 ) we get :

a 2 + b 2 + c 2 + d 2 + cd 2 2 + ad 2 2 + bd 2 2 -abcd -4 -(ab + cd) cd 2 -(ad + bc) ad 2 -(ac + bd) bd 2 + cd 2 ad 2 bd 2 = 0 which is equivalent to a 2 + b 2 + c 2 -abc d 2 = 4
This proves the injectivity of the map described in the theorem, and that its image is included in N. To get surjectivity, we can use Theorem 3.2 in [?] which describe X(G) as an explicit closed algebraic set (see the author thesis for more details).

When d = 0, the equation defining N is equivalent to :

x 2 + y 2 + z 2 -xyz = d 2
with the change of variable x = cd 2 , y = ad 2 , z = bd 2 . This allows us to parametrize X (Γ 3 ) as a set of Markoff maps, except in the d = 0 case. Proposition 4.3. An element (a, b, c, d) ∈ C 4 with d = 0, is the character of a representation ρ in X (Γ 3 ) if and only if cd 2 , ad 2 , bd 2 is a (0, 0, 0, d 2 )-Markoff map. An element (a, b, c, 0) is the character of a representation ρ in X (Γ 3 ) if and only if

a 2 + b 2 + c 2 = 4.
Remark 4.4. A natural generalisation of Markoff maps can be related to representation of a three-holed projective plane. The interested reader can refer to [START_REF] Maloni | On the character variety of the three-holed projective plane[END_REF] and [START_REF] Huang | Simple geodesics and markoff quads[END_REF] 5. Trace Systoles 5.1. From hyperbolic surfaces to representations. Let X be an orientable hyperbolic surface of finite type that can be closed or with geodesic boundaries and cusps, and with conical singularities, so that χ(X) < 0 (Recall that χ(X) = 2 -2g -b -s + ( α i 2π -1), where g is the genus, b the number of geodesic boundaries, s the number of cusps and α i the angles of the conical singularities). Let B denote the boundary data, namely the number of cusps, the lengths of boundary components and the angles of conical singularities, if any.

The systole of X is the minimal length of an essential simple closed curve on X and is denoted sys(X). This defines a function sys : T (Σ, B) → R + where T (Σ, B) is the Teichmuller space of hyperbolic structures on the topological surface Σ with prescribed boundary data B.

The holonomy representation of such a structure gives an homomorphism from π 1 (Σ) into PSL(2, R). There is a relation between the length of a closed geodesic on Σ and the trace of its image by the holonomy representation given by

l X (γ) = 2arccosh | tr(ρ X (γ))| 2 (6) 
From this relation, we see that we can extend the notion of systole to the entire space of representations Hom(π 1 (Σ), PSL(2, R)). Definition 5.1. Given a representation ρ : π 1 (Σ) → PSL(2, R), we define the trace systole as

tys(ρ) = inf {| tr(ρ(γ))| , γ ∈ π 1 (Σ), essential simple closed curve}
We restrict ourselves to essential simple closed curves in the definition of the trace systole to have an interesting function for representations that are not discrete. Indeed, if ρ is a representation that is not discrete, then its image is dense in PSL(2, R) and hence inf {| tr(ρ(γ

))|, γ ∈ π 1 (Σ)} = 0.
The definition of tys can be extended to any representation into G = SL(2, R), PSL(2, C) or SL(2, C), because the modulus | tr(ρ(γ))| is well-defined in each of these groups. We will use the same notation when there is no ambiguity on the group G that is used.

We also note that as the trace is conjugation invariant, so the function tys can be defined on the character variety X(π 1 (Σ), G) which is the space of orbit closures for the action by conjugation of G on representations. Hence the trace systole function restricted to the connected components of maximal Euler class admits a maximum, which corresponds to the maximum of the usual systole on Teichmuller space via the relation [START_REF] Maloni | On the character variety of the three-holed projective plane[END_REF].

The work of Marche-Wolff ([?]) and Deroin-Tholozan ( [START_REF] Deroin | Dominating surface group representations by Fuchsian ones[END_REF]) shows that any representation ρ in Hom(π 1 (Σ), PSL(2, R)) is dominated by a Fuchsian representation, which means that there exists j ∈ Hom(π 1 (Σ), PSL(2, R)) of maximal Euler class, such that for any γ ∈ π 1 (Σ) we have | tr(ρ(γ))| ≤ | tr(j(γ))|. This implies that the maximum of the trace systole function on the entire space of representations occurs on the connected components of maximal Euler class.

From this, we deduce that the trace systole function is bounded on each connected component and we can define Tys (k) (Σ) to be the supremum of the function tys when restricted to the component e -1 (k). Marché and Wolff proved that when Σ is orientable of genus 2, and |k| < 2, then Tys (k) (Σ) = 2. The value of this maximum is still unknown in other cases, but a long standing conjecture of Goldman suggests that for orientable surfaces, when k is not maximal, then Tys (k) (Σ) = 2.

Surfaces with boundaries.

When the surface has boundaries, the space of representations is connected. Indeed, in that case, the fundamental group π 1 (Σ) is a free group in n generators and the space of representation is then identified with PSL(2, R) n . Moreover, the trace systole is unbounded on the whole character variety.

However, one can study the restriction of tys to the relative character varieties by fixing the traces (| tr(c 1 )|, . . . , | tr(c r )|) of the boundaries γ 1 , . . . , γ r .

The Euler number of a representation, as defined by Deroin and Tholozan allows us to distinguish the connected components of the relative character varieties. 5.3. One holed torus. In this paragraph we use the main results on the sink constant to get informations on the trace systole for the one-holed torus. 5.3.1. Hyperbolic one-holed torus. From the previous section, we can infer various consequences in terms of representations of a one-holed torus.

Theorem 5.2. Let T be a surface with an hyperbolic metric and sys the length of is systole.

(1) If T is an hyperbolic one-holed torus, with geodesic boundary of lenth l, then

cosh sys 2 ≤ cosh l 6 + 1 2 (2) If T is a once-punctured torus, then cosh sys 2 ≤ 3 2 
(3) If T is a singular hyperbolic structure on the torus with a conical singularity of angle θ, then

cosh sys 2 ≤ cos θ 6 + 1 2
The first two systolic inequalities were well-known before. The last one is probably known to the specialist but we could not find any clear reference on the result.

Proof. Let ρ : π 1 (T ) → PSL(2, R) be the holonomy representation of the hyperbolic structure on T . . Using Theorem 3.4 we have that tys(ρ) ≤ |t µ | with t 3 µ -3t 2 µ = µ. On the other hand, if we denote π 1 (T ) = A, B , then the element [A, B] corresponds to the boundary component of T (or the conical singularity), and we have tr

([A, B]) = µ -2.
Depending on the case we have

tr([A, B]) = µ -2 =    -2 cosh l 2 if T is an hyperbolic one-holed torus -2 if T is once punctured torus -2 cos θ 2 if T is a singular torus
In the first case, using the trigonometric identity cosh(3x) = 4 cosh 3 (x) -3 cosh(x), and setting x = l 6 we see that the equation can be rewritten

t 3 µ -3t 2 µ = 2 + 2 cosh(3x) ⇔ 4 t µ 2 - 1 2 3 -3 t µ - 1 2 = cosh(3x) ⇔ t µ 2 - 1 2 = cosh(x)
We know that tys(ρ) = 2 cosh sys(T)

2

. Hence we have that cosh sys(T) 2 ≤ cosh(x) + 1 2 . The exact same computations apply in the singular case, by replacing cosh(3x) by cos(3x). 5.3.2. Non-Fuchsian component for the one-holed torus. We also get original results for representations of F 2 that do not correspond to hyperbolic structure (singular or not) on a one-holed torus. This corresponds to representations with relative Euler classe 0. Theorem 5.3. Let ρ ∈ X k (T ), with k > 2.

(1) If k ∈]2, 18[, there exists a simple closed curve that is sent to an elliptic element.

(

) If k ≥ 18, there exists a simple closed curve γ ∈ π 1 (T ) with | tr(ρ(γ)| ≤ 2 cosh l 6 - 1, with l = 2 cosh -1 k 2 . Proof. A representation in X k (T ) with k > 2, corresponds to a µ-Markoff map with µ > 4. 2 
Using the same reasoning as in Theorem 3.7, we deduce that this Markoff map either has a sink or an infinite descending ray. If there is an infinite descending ray, then there exists a curve γ such that | tr(ρ(γ))| < 2.

Otherwise, we use Theorem 3.9 and Proposition 3.10 to get the following : Let S be a four-holed sphere and let τ = (a 1 , a 2 , a 3 , a 4 ) ∈ [0, +∞[ 4 . When a i ≥ 2 for all i ∈ {1, 2, 3, 4}, then we can endow S with an hyperbolic structure with geodesic boundaries or cusps such that the length of the boundaries are given by l i = l(a i ) for i = 1, 2, 3, 4 (if l i = 0, then it's a cusp). The equivalence class of the holonomy representation of such a structure is an element of X τ .

• If k ∈]2,
From the previous chapter, this representation corresponds to a µ-Markoff map with µ = GT (τ ). As a i ≥ 2, we have naturally that GT (a 1 , a 2 , a 3 , a 4 ) ∈ U . Such a Markoff map takes values in [2, +∞[, as all simple closed curves are sent to hyperbolic elements. So, we have that any Markoff map constructed from the holonomy representation of an hyperbolic structure is a positive Markoff map A similar reasoning can be made if one replaces one or several boundaries of the sphere by or a conical singularity of angle θ i < π. This corresponds to the case where a i ∈ [0, 2[ and in that case we have θ i = 2 cos -1 x 2 . One can still endow S with an incomplete hyperbolic structure with geodesic boundaries, cusps and conical singularities. The holonomy representation of such a structure is not discrete and faithful, but all the simple closed curves are sent to hyperbolic elements, and hence the corresponding Markoff map is positive.

So applying Theorem 3.13 directly, we can see that Theorem 5.4. Let S be an hyperbolic structure on sphere with p geodesic boundaries, s cusps and r conical singularities of angles such that p + q + r = 4, and we denote γ 1 , . . . , γ 4 the curves around them. For i ∈ {1, . . . , 4} we set a i = 2 cosh( l i 2 ) if γ i corresponds to a geodesic boundary of length, a i = 2 if γ i corresponds to a cusp, and a i = 2 cos( θ i 2 ) if γ i is a conical singularity of angle θ i . We let (λ 1 , λ 2 , λ 3 , s) = GT ( 1 , a 2 , a 3 , a 4 ).

Then the systole of S is smaller than X = 2 cosh -1 (t/2) where t is the solution of t 3 -3t 2 -(λ 1 + λ 2 + λ 3 )t -s = 0. 5.4.2. Quasi-Fuchsian representations of a four-holed sphere. We consider Quasi-Fuchsian representations of a four-punctured sphere. In that case we can assume without loss of generalities that a = b = c = d = 2. The Markoff equation becomes

x 2 + y 2 + z 2 -xyz + 8x + 8y + 8z = -28
We define a different map φ : Ω → C by φ(X) = φ(X)+2. This gives a map with properties that are slightly different from the initial Markoff map. In particular, the vertex relation and the edge relation become :

(x + ŷ + ẑ) 2 = xŷẑ x + ŷ + ẑ xŷ + x + ŷ + ẑ xŷ = 1
Lemma 5.5. Let X, Y, Z be three regions meeting at a vertex and assume that is is a sink for the map φ. Then min{|x|, |ŷ|, |ẑ|} ≤ 9

Proof. The vertex equation

Let p = x + ŷ + ẑ ẑ ŷ , q = x + ŷ + ẑ xẑ , r = x + ŷ + ẑ xŷ
, and assume without loss of generalities that p ≥ q ≥ r. At a sink, we have p, q, r ≤ 1 2 . The vertex equation states that p +q + r = 1 and hence we know that p ≥ 1 3 . Similarly, we get that q ≥ 1 2 (1-p). So we have

pq ≥ 1 2 p(1 -p) ≥ 1 2 1 3 2 3 = 1 9 Now we have that 1 |ẑ| = x + ŷ + ẑ ẑ ŷ x + ŷ + ẑ xẑ ≥ pq ≥ 1 9
Which means that |ẑ| ≤ 9.

From this we can deduce the following systolic inequality Proposition 5.6. Let ρ denote a Quasi-Fuchsian representation for a four-punctured sphere, then

sys(X ρ ) ≤ 2arccosh 7 2 (7) 
In particular the unique maximum of the systole function over the moduli space of all hyperbolic four-punctured sphere is 2arccosh 7 2 . Proof. the previous Lemma implies that there exists a simple closed curve such that |2 + 2 cosh( L 2 )| < 9. As x = 2 cosh L 2 with L = l + iθ the complex translation length of ρ(X), we can infer that

2 + 2 cosh L 2 = 4 cosh 2 L 4 < 4 cosh 2 l 4 .
Finally, we obtain :

|l| ≤ 4arccosh 3 2 = 2arccosh 7 2 
To prove equality, we consider the Markoff triple (7, 7, 7), which is a (8, 8, 8, -28)-Markoff triple. which is a sink in the corresponding Markoff map.

Closed non-orientable surface of genus 3.

We end this section with results concerning representations of π 1 (N 3 ). For non-orientable surface, we have to distinguish two cases depending whether the curve is 2-sided or 1-sided. As the holonomy representation of an hyperbolic structure sends every 1-sided curve on an orientation-reversing isometry, we have : The representation given by the character (it, it, it, it) ∈ N with t = 3 + √ 17 satisfies the equality tys(ρ) = t 5.5.2. Twisted I-bundles. We can refine the previous theorem by noting that for any representation ρ, there exists a 1-sided curve on N 3 such that tr(ρ(γ)) < 3 + √ 17. Hence we can prove the following result : Proposition 5.8. Let ρ be a Quasi-Fuchsian representation for the surface N 3 , and X ρ the corresponding hyperbolic 3-manifold. Then sys(X ρ ) ≤ cosh -1 5 + √ 17 2

l X (γ) =    2arccosh | tr(ρ X (γ))| 2 if γ is 2-sided 2arcsinh | tr(ρ X (γ))| 2 if γ is 1-sided 5.
Proof. From the previous theorem, there exists a 1-sided simple closed cuve such that

| tr(ρ(γ))| 2 ≤ 3 + √ 17. As we have | tr(A)| 2 = |2 sinh lγ (X) 2 2 = |2 cosh(l γ (X)) -2| we get that cosh(l γ (X)) ≤ 5 + √ 17 2
Note that this value was already determined by Gendulphe in the case of hyperbolic surfaces [?]

Application to Bowditch question

As a final section, we apply similar methods to show that a representation of the genus 2 surface with euler class ±1 sends a simple closed curve on a non-hyperbolic element. This result was already proven by Marche and Wolff, but their proof is using hyperbolic geometry and fine estimations of the Bers constant and domination. We give a completely independent proof. Proof. Assume that there is a representation such that each simple closed curve is sent to an hyperbolic element in PSL(2, R). We consider a naive trace reduction algorithm.

Start from any pants decomposition P 0 of the surface and choose the largest curve. Consider the surface obtained by gluing the one or two pair of pants that share this curve (which is a one-holed torus or a pair-of-pants), and find the systole of that subsurface. If the chosen curve is a systole, then choose the next curve in the pants decomposition, if not then this gives a new pants decomposition, and one can continue the same process. Each new pants decomposition arising in this way has one of its curve that is strictly shorter than the previous one.

As all the simple closed curves are sent to hyperbolic elements, only two situations can arise :

(1) After a finite number of steps, we arrive at a pants decomposition where every curve is a systole of the subsurface (one holed torus or four-holed sphere) defined by it. (2) The process continues indefinitely. Assume that we are in case [START_REF] Bowditch | Markoff triples and quasi-Fuchsian groups[END_REF], and consider the final pants decomposition P. Let α and δ be the two curves of minimal length of this pants decomposition. We first show that α and δ are both non-separating. Indeed, if P contains a separating curve γ, then this curves separates Σ 2 into two one-holed torus T 1 and T 2 . The restriction of the representation to each of these torus give two representations ρ 1 and ρ 2 . By additivity of the Euler class, we have that one of these representations has Euler class 0, for example ρ 1 . By hypothesis, the trace systole of ρ 1 is larger than 2, which means that tr(ρ(γ)) ≥ 18. But for | tr(ρ(γ))| ≥ 18, we know that each representation ρ 1 and ρ 2 has a systole which is smaller than | tr(ρ(γ))| and hence the two smallest curves of the pants decomposition are non-separating.

We consider the four-holed sphere, obtained by cutting Σ 2 along α and δ. As the Euler class of the representation ρ restricted to S is +1, without loss of generality, we can assume that the boundary traces of this representation are given by (a, a, d, -d). As the third curve of the pants decomposition is sent to an hyperbolic element and is the systole of the representation ρ we can consider a triple of simple closed curve (X, Y, Z) corresponding to a sink of the associated Markoff map, where X is the separating curve. Without loss of generalities, up to changing signs of the generators, we can assume that 2 < a < d < z < |y|.

The curve X separates Σ 2 into two one-holed torus and the induced representations have Euler class -1 and 0. Which means that |x| > max(a 3 -3a 2 + 2, d 3 + 3d 2 -2) = λ. And (x, y, z) is a sink so that |y| < |xz + y| and |x| < |yz + x -(a 2 -d 2 )|.

Consider z as a constant and consider the function :

f (x, y) = x 2 + y 2 + z 2 + xyz -(a 2 -d 2 )x -(a 2 -2)(d 2 -2)
We want to prove that in this situation f (x, y) = 0. We first consider the case xy > 0. In that case, as x > a 

< -λ 2 + 4λ + 2(a 2 -d 2 ) -(a 2 -2)(d 2 -2) < 0
Now we just need to treat the case [START_REF] Deroin | Dominating surface group representations by Fuchsian ones[END_REF]. In that case, the sequence of traces of the curves in the pants decomposition are decreasing and bounded, so we can consider that for any ε > 0 there is a step n such that the pants decomposition satisfies the following :

• The two shortest curves α and δ of the decomposition are non-separating.

• In the four-holed sphere obtained by cutting along α and δ, we have a sink (X, Y, Z) such that X corresponds to a separating curve, and 2 < a < d < z + ε < |y| + ε. So we can reproduce the same computations with the additional ε, which do not change the final inequalities when ε is small enough.

  and as |x|, |y| < 1 2 we see that this image avoids 0, hence the minimum of |f | occurs on the boundary of its image. The partial functions f (x, •) and f (•, y) are Mobius maps. This means that for x fixed, the image of f (x, •) of the circle of radius R, is also a circle denoted C. And a direct computation shows that C is disjoint from the circle of radius |τ µ | centered at 0, so the condition |f (x, y)| ≥ |τ µ | ≥ R is always satisfied.Finally, by symmetry of the two partial functions, the image of f (•, r) is also C. This implies that the boundary of the image of the function f is exactly the set {f (x, x), |x| = R}. So, the minimum of |f (x, y)| on K is attained when x = y.

( 2 )

 2 If µ = 0 then there are two solutions which are 0 and 3. (3) If µ ∈]0, 4[, then (E µ ) has three real solutions. Exactly one of them is in [2, 3] and the others are in ] -2, 2[. (4) If µ = 4, then there are two solutions -1 and 2.

Proposition 4 . 1 . 4 . 3 .

 4143 Let τ ∈ C 4 . A representation ρ is in X τ if and only if the triple -χ(ρ) is a µ-Markoff triple with µ = GT (τ ). Closed surface of characteristic -1.

5. 2 .

 2 Maximum of the trace systole in the PSL(2, R) case. 5.2.1. Closed orientable surfaces. For a closed orientable surface, the space of representations Hom(π 1 (Σ, PSL(2, R)) has 2|χ(Σ)| + 1 connected components, indexed by the Euler class e(ρ) ∈ [χ(σ), . . . , 0 . . . , -χ(Σ)]. The representations with maximal Euler class |e(ρ)| = |χ(Σ)| correspond to the holonomy representations of hyperbolic structures on Σ.

5 . 4 . 5 . 4 . 1 .

 54541 18[, then µ = k + 2 ∈]4, 20[, and hence there exists a simple closed curve γ such that | tr(ρ(γ))| ≤ |t µ | < 2. So this curve γ is sent to an elliptic element. • If k ≥ 18, then there exists a curve γ such that | tr(ρ(γ))| ≤ |t µ |. A computation similar to the Fuchsian case gives the desired inequality. Four-holed sphere. Markoff maps coming from hyperbolic structures.

Theorem 6 . 1 .

 61 Let ρ : π 1 (Σ 2 ) → PSL(2, R) be a representation with Euler class ±1. Then there exists a simple closed curve γ ∈ π 1 (Σ 2 ) such that | tr(ρ(γ))| ≤ 2.

2 - 4 ,Case 1 :Case 2 : 2 - 2 -

 241222 and d > 2, we have x -(a 2 -d 2 ) > 0. And similarly x > (d 2 -2) and yz > a 2 > a 2 -2) so xyz -(a 2 -2)(d 2 -2)) . Combining these arguments we havef (x, y) = (x 2 -(a 2 -d 2 )x) + (xyz -(a 2 -2)(d 2 -2))) + y 2 + z 2 > 8The case xy < 0 is more interesting. In that case, the sink inequalities become |2y| < |xz| and |2x| < |yz -(a 2 -d 2 )|. WIthout loss of generality,we restrict our study of the function f (x, y) on the domain defined by y > 0, and the inequalities given by 2y < -xz and -2x < yz -(a 2 -d 2 ). This is a convex domain and the partial derivatives are given by :∂f ∂x = 2x + yz -(a 2 -d 2 ) > 0 ∂f ∂y = 2y + xz < 0So it suffices to prove that f (x, y) < 0 on the lower right corner of the domain.This corner has coordinates(x 0 , y 0 ) = λ, max z, 2λ + (a 2 -d 2 ) z If z 2 > 2λ + (a 2 -d 2 ). f (λ, z) = λ 2 + 2z 2 -λz 2 + (a 2 -d 2 )λ -(a 2 -2)(d 2 -2) = -(λ -2)(z 2 -λ) + 2λ + (a 2 -d 2 )λ -(a 2 -2)(d 2 -2) < -(λ -2)(λ + (a 2 -d 2 )) + 2λ + (a 2 -d 2 )λ -(a 2 -2)(d 2 -2) < -(λ -4) + 2(a 2 -d 2 ) -(a 2 -2)(d 2 -2) < 0 If z 2 < 2λ + (a 2 -d 2 ) f λ, 2λ + (a 2 -d 2 ) z = λ 2 + z 2 + 2λ + (a 2 -d 2 ) z λ(2λ + (a 2 -d 2 )) + (a 2 -d 2 )λ -(a 2 -2)(d 2 -= -λ 2 + z 2 + 2λ + (a 2 -d 2 ) z (a 2 -2)(d 2 -2) < -λ 2 + 2λ + (a 2 -d 2 ) + (2λ + (a 2 -d 2 )) 2λ + (a 2 -d 2 ) z 2 -(a 2 -2)(d 2 -2) < -λ 2 + 2(2λ + (a 2 -d 2 )) -(a 2 -2)(d 2 -2)

  5.1. Trace systole. Theorem 5.7. Let ρ : π 1 (N 3 ) → SL(2, C). Then we have Let ρ be such a representation. Recall that if d = 0, then ( cd 2 , ad 2 , bd 2 ) is a (0, 0, 0, d 2 )-Markoff triple and hence corresponds to a d 2 -Markoff map, denoted φ. Assume that |d| > 3 + √ 17. From Theorem 3.4, there exists an element X ∈ Ω such that |φ(X)| ≤ |t d 2 |. The maximal value of t µ for µ ∈ C with |µ| = r occurs for µ = -r. This means that |t d 2 | ≤ |t -|d| 2 |. Moreover, as the function µ → t µ is decreasing on R <0 , we get that |t d 2 | < t -3-

			tys(ρ) ≤ 3 +	√	17
	Moreover, this constant is optimal.						
	Proof. √ A simple computation gives that t -3-17 .	√	17 =	3 +	√ 2	17	. And hence we have
			|φ(X)| <	3 +	√ 2	17	.
	So there exists a 1-sided simple closed curve γ such that φ(X) = tr(ρ(γ)) d 2 . Which means
	that	tr(ρ(γ)) ≤	3 +	√ 17 2	1 3 +	17 √	< 3 +	√	17
	and this ends the proof of the inequality.