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Abstract—In this paper, we study the performance of two
algorithms for tensor reconstruction in the presence of random
uncertainties: the first one is the non-blind state-of-the-art, and
the second one, new, is blind and is designed to deal with
such uncertainties. Using coupled tensor LL1 models, we show
that the proposed algorithm performs better than the state-
of-the-art, which naturally raises the question of its efficiency.
In that perspective, the standard approach is to resort to the
usual constrained Cramér-Rao bound (CCRB), which appears
to be only partially informative when addressing the asymptotic
achievable performance of the considered model. Indeed, the
usual CCRB is not able to account for randomness in the set of
constraints. To fill this gap, we also introduce a new randomly-
constrained Cramér-Rao bound and we illustrate its relevance
to analyze the relative efficiency of the proposed algorithm. As
a by-product, we provide closed-form expressions for the Fisher
information matrices based on the LL1 model.

Index Terms—Cramér-Rao bounds, random equality con-
straints, tensor models, low-rank approximations.

I. INTRODUCTION

A. Background

In various engineering fields such as remote sensing or
biomedical imaging, the observations often possess more than
two dimensions. For instance, hyperspectral images or MRI
acquisitions through time can be seen as data cubes. These
high-dimensional arrays are referred to as tensors.

In this paper, we consider a specific class of tensor recon-
struction problems which aim at recovering a high-resolution
tensor from two observations with some lower resolutions,
under the assumption that full resolution is always available
in at least one dimension of each observation. Examples of
such reconstruction problems can be found in, e.g., hyperspec-
tral super-resolution [30], biomedical imaging [54], chemistry
[63], spectrum cartography [55] or learning over graphs [64].
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Due to its interesting uniqueness properties and possible
interpretability [48], block-term modeling with ranks (L,L, 1)
was recently considered for spectrum cartography [55] and a
number of remote sensing [40], [41], [56], [65] applications.
Several algorithms based on alternating least squares (ALS)
were proposed [40], [41], [56] and showed competitive per-
formance for solving the reconstruction problems at hand.

However, some of the proposed approaches (see for instance
[30], [55]) for solving the reconstruction problem share a
common limitation: they assume that the observations are
acquired in the same conditions. In practice, acquisition time
difference, variations in the acquisition conditions [34], [35],
miscalibration or aging of the sensors [43]–[46] can lead to
a general variability phenomenon that encompasses unknown
uncertainties in the observation model. For instance, in remote
sensing, these uncertainties depict variations in the seasonal,
atmospheric or illumination conditions [50]–[52]. Although of
great practical interest, the variability phenomenon was only
considered recently for the addressed class of problems.

Theoretical performance analysis of such tensor models
has gained some interest in the signal processing community.
In [26]–[28], uncoupled models admitting canonical polyadic
(CP) decompositions were considered. In [31], it was proposed
to explore the performance of partially-coupled CP models
with (possibly) non-linear couplings. The work of [31] has
been extended in other works of the authors [32], [33] for
coupled CP models that characterize the reconstruction prob-
lem at hand, with specific sets of constraints describing the
hyperspectral super-resolution problem. However, to the best
of our knowledge, performance analysis for tensor models
admitting (L,L, 1) block-term decompositions (LL1-BTD)
has not been addressed at the writing time of this manuscript.

Let us recall that there are two main categories of pa-
rameters. In the first case, the parameters being estimated
are considered to be deterministic, whereas the second cat-
egory considers the parameters as random variables with an
a priori probability. This paper addresses the first category,
i.e., deterministic parameters. In this context, a popular way
to assess the performance of coupled tensor models is to
consider the Cramér-Rao bounds (CRB) (see [7, §8.4] and [8,
Part III]). Historically, the deterministic CRB was introduced
to investigate fundamental limits of deterministic parameters
estimation or to assess the relative performance of a specific
estimator (efficiency) [3]–[6]. Provided that one keeps in mind
the CRB limitations [9]–[13], that is, to become overly opti-
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mistic when the observation conditions degrade (low signal-
to-noise ration and/or low number of snapshots), the CRB is
still of great interest for system analysis and design in the
asymptotic region.

Moreover, in some estimation problems, the definition, in
part or totally, of the parameter space results from determinis-
tic equality constraints, as exemplified in [14]. Hence, numer-
ous works [15]–[20] have been devoted to extend the results
introduced in [14]: 1) by providing a general reparameteriza-
tion inequality and the equivalence between parameterization
change and equality constraints; 2) by studying the CRB mod-
ified by constraints either required by the model or required
to solve identifiability issues; 3) by investigating the use of
parameters constraints from a different perspective: the value
of side (a priori) information on estimation performance. All
these works have shown the versatility of constrained Cramér-
Rao bound (CCRB) for estimation performance analysis and
design of a system of measurement, as highlighted in [21].

In the presence of uncertainties however, the reconstruction
problem at hand fall under the scope of estimation problems
[1], [2], [22]–[24] for which the probability law that governs
the effect of a deterministic parameter vector value on the
observation results from a two-step probabilistic mechanism
involving an additional random vector. In this setting, some
equality constraints on the unknown deterministic parameter
vector may depend on this additional random vector yielding
random equality constraints, a case which can not be tackled
with the standard form of the CCRB. In the preliminary
version of this work [42], the randomly constrained CRB
(RCCRB) was hence introduced to take into account such
random equality constraints.

In this paper, we model the reconstruction problem as a
tensor LL1-BTD model accounting for random uncertainties.
We study the performance of two algorithms. The first one is
state-of-the-art and it is inspired by the work of [55], [57].
It is a fully-coupled (non-blind) ALS algorithm that does
not account for random uncertainties. The second one was
recently proposed in a technical report by the authors [56], and
denoted BTD-Var. Although this new algorithm is partially-
coupled (blind) only, it is designed to be able to account for
the variability phenomenon.

In that perspective, the standard approach to analyse the
relative efficiency of an algorithm is to resort to the usual
CCRB mentioned above, which is shown to be only partially
informative. Indeed, the usual CCRB is not able to account for
randomness in the set of constraints. To fill this gap, we also
consider the RCCRB and we illustrate its relevance for tensor
reconstruction in the presence of random uncertainties. As a
by-product, we provide new closed-form expressions for the
Fisher information matrices (FIM) based on the LL1 model.

This paper is organized as follows. The remaining of
Section I introduces the main notations and important def-
initions regarding the tensor framework. In Section II, we
recall the theoretical results introduced in [42] regarding the
RCCRB. Section III addresses standard CCRBs for coupled
LL1 models and provide the closed-form expressions for the
FIM. In Section IV, we conduct performance analysis of
the state-of-the-art algorithm in the absence of uncertainties.

Section V introduces the main model of interest, in which
the constraints on the parameter involve a random variability
phenomenon. The limitations of the standard tool, together
with the relevance of the RCCRB, are illustrated and lead
to the introduction of the new partially-coupled algorithm
accounting for uncertainties. Finally, the relative efficiency
of this new estimator is assessed in Section VI by using the
RCCRB.

B. Definitions and notations

In this paper, we mainly follow the notations of [36], [37].
We use the following fonts: lower (a) or uppercase (A) plain
font for scalars, boldface lowercase (a) for vectors, boldface
uppercase (A) for matrices and calligraphic (A) for tensors.
The elements of vectors, matrices and tensors are denoted
as ai, Ai,j and Ai1,...,iN , respectively. For a matrix A, its
transpose is denoted by AT . We use the notation IN for the
N×N identity matrix and 0L×K for the L×K matrix of zeros.
The notation 1L denotes an all-ones column vector of size L.
The symbols �, � and � denote the Kronecker, Khatri-Rao
and Hadamard (element-wise) products, respectively, and o (.)
stands for the Landau notation. We use vec{·} for the standard
column-major vectorization of a matrix or a tensor. For two
matrices A and B, the operator Diag{A,B} produces a block-
diagonal matrix whose diagonal blocks are A and B, and for
a vector a, the operator diag{a} produces a diagonal matrix
whose diagonal entries are the elements of a, and the other
entries are zero. For matrices A1, . . . ,AR having the name
number of rows, the notation [A1, . . . ,AR] denotes horizontal
concatenation of these matrices.

Each dimension of a tensor is called a mode. A mode-p
fiber of tensor X is a vector of X obtained by fixing all but
the p-th dimension. In this paper, we restrict to the scope of
three-dimensional tensors.

Definition 1: Outer product – The outer product between
three vectors a ∈ RI , b ∈ RJ , c ∈ RK is an order-3 tensor of
rank 1 defined as X = a ⊗ b ⊗ c ∈ RI×J×K . Each element
of X is accessed as Xi,j,k = aibjck.

Definition 2: Tensor unfoldings – The mode-p unfolding
of a tensor X , denoted by X(p), is the matrix whose rows are
the p-mode fibers of X , ordered according to the vectorization
order. For a third-order tensor X ∈ RI×J×K , we have X(1) ∈
RJK×I , X(2) ∈ RIK×J and X(3) ∈ RIJ×K .

Definition 3: Mode product – The mode-p product between
a tensor X and a matrix M is denoted by X •p M and is
evaluated such that each mode-p fiber of X is multiplied
by M. For instance, the elements of the mode-1 product
between X ∈ RI×J×K and M ∈ RL×I are accessed as
(X •1 M)`,j,k =

∑
i

Xi,j,kM`,i, ` ∈ {1, . . . , L}. Moreover,

it holds that Y = X •p M⇔ Y(p) = X(p)MT .

C. Block-term decomposition with ranks (L,L, 1)

In this subsection, we introduce the tensor block-term
decomposition with ranks (L,L, 1) that we will use to build
our model. We also recall sufficient uniqueness conditions and
useful properties.
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Definition 4: Block-term decomposition with ranks
(L,L, 1) – A tensor X ∈ RI×J×K generally admits a block-
term decomposition with ranks (L,L, 1) (LL1-BTD) as

X =

R∑
r=1

(
ArB

T
r

)
⊗ cr, (1)

where Ar ∈ RI×L, Br ∈ RJ×L, and cr ∈ RK , for
r ∈ {1, . . . , R}. Moreover, we denote the LL1 factors A =
[A1, . . . ,AR] ∈ RI×LR, B = [B1, . . . ,BR] ∈ RJ×LR and
C = [c1, . . . , cR] ∈ RK×R.

Definition 5: Partition-wise Khatri-Rao product – The
partition-wise Khatri-Rao product between two partitioned
matrices A and C defined as above can be expressed as

C�p A = [c1�A1, . . . , cR�AR] ∈ RIK×LR.

Property 1: Tensor unfoldings and LL1-BTD – Using the
above notations, the unfoldings of a tensor X admitting an
LL1-BTD as above can be expressed as

X(1) = (C�p B) AT ,

X(2) = (C�p A) BT ,

X(3) = [(A1 �B1) 1L, . . . , (AR �BR) 1L] CT .

Theorem 1: Generic uniqueness [48, Theorem 4.7] –
Let (A,B,C) denote an LL1-BTD of a tensor X as in (1).
Assume that (A,B,C) are drawn from some joint absolutely
continuous distributions. If IJ ≥ L2R and

min

(
b I
L
c, R

)
+ min

(
bJ
L
c, R

)
+ min(K,R) ≥ 2R+ 2,

then ArB
T
r and cr are generically unique almost surely for

r ∈ {1, . . . , R}.
Under the conditions specified in Theorem 1, the LL1 fac-

tors are unique up to some trivial ambiguities [48]. Indeed, the
factors in a same rank-(L,L, 1) term can be arbitrarily scaled,
provided that their product remains the same. Moreover, the
Ar terms can be postmultiplied by any nonsingular matrix
Dr ∈ RL×L, provided that the Br terms are premultiplied by
D−1
r as

X =

R∑
r=1

(
(ArDr)

(
D−1
r Br

)T)⊗ cr. (2)

When deriving Cramér-Rao bounds, a proper factor nor-
malization1 is required to ensure that the model is statistically
identifiable (see [20] for more details). As a result, we propose
a way to correct the aforementioned ambiguities by setting the
first entry of the cr factors to ones. Moreover, we set the first
(L × L) blocks of the Ar factors to the identity matrix IL,
which corresponds to setting Dr = (Ar)

−1
1:L,1:L in (2).

1Permutation ambiguities in the LL1 model can be neglected in a parameter
estimation framework, since the factors can be permuted after estimation.

II. CRBS WITH RANDOM EQUALITY CONSTRAINTS

A. Background on standard CRBs
As introduced in [1, p53], a model of the general deter-

ministic estimation problem has the following components:
1) a parameter space Θd ⊂ RP , 2) an observation space
Y ⊂ RM , 3) a probabilistic mapping from parameter vector
space Θd to observation space Y , that is the probability law
p (y;θ) that governs the effect of a parameter vector value
θ ∈ Θd on the observation y ∈ Y and, 4) an estimation rule,
that is the mapping of the observation space Y into vector
parameter estimates θ̂ , θ̂ (y). If a closed-form expression
of p (y;θ) is available, the estimation problem at hand is
called a ”standard” deterministic estimation problem [2]. For
such problem, the mean-squared error (MSE) matrix of θ̂ is
a Gram matrix [20] defined on the vector space of square
integrable functions and, therefore, all known standard lower
bounds (LBs) on the MSE can be formulated as the solution of
a norm minimization problem under linear constraints (LCs)
[10], [12]. This formulation of LBs does not only provides
a straightforward understanding of the hypotheses associated
with the different LBs [10], [12], but it also allows to obtain
a unique formulation of each LB in terms of a unique set of
linear constraints. When the lower bound is the CRB, the set of
linear constraints reduces to a set of derivative constraints [20].
Indeed, the CRB is the lowest bound on the MSE of unbiased
estimators, since it is derived from the weakest formulation of
unbiasedness, i.e. local unbiasedness,

Ey;θ+dθ

[
θ̂
]

= θ + dθ + o (‖dθ‖) , (3a)

which means that, up to the first order and in the neighborhood
of θ, θ̂ remains an unbiased estimator of θ independently of
a small variation of the parameters. Interestingly, (3a) can be
rewritten in terms of Taylor expansion of each side, and the
uniqueness of Taylor expansion imposes that the LCs

Ey;θ

[
θ̂ − θ

]
= 0, Ey;θ

[
(θ̂ − θ)

∂ ln p (y;θ)

∂θT

]
= I, (3b)

must be statisfied by any locally unbiased estimator. Then the
CRB is easily obtained by using the following lemma on the
minimization of a Gram matrix (with respect to the Löwner
ordering [25, §7.7]) under LCs. Let U be a Hilbertian vector
space on the field of real numbers R which has a scalar product
〈 · | · 〉. Let C = (c1, . . . , cK) be a family of K linearly
independent vectors and U = (u1, . . . ,uP ) a family of P
vectors. Then

VTG(C)−1V =min
U
{G(U)} s.t. 〈up | ck〉 = Vk,p, (4)

where G(W) denotes the Gram matrix associated with
the family of N vectors W = (w1, . . . ,wN ) defined as
Gn,n′(W) = 〈wn′ | wn〉, 1 ≤ n, n′ ≤ N . Indeed by defining
U = θ̂ − θ and C = (1, ∂ ln p(y;θ)

∂θT
), and by considering the

scalar product 〈f (y) | g (y)〉 = Ey;θ [f (y) g (y)], (4) can be
applied with V =

[
0 I

]
(3b) and leads to

Ey;θ

[
(θ̂ − θ)(θ̂ − θ)

T
]
≥ CRB (θ) = F (θ)

−1
, (5a)

F (θ) = Ey;θ

[
∂ ln p (y;θ)

∂θ

∂ ln p (y;θ)

∂θT

]
, (5b)
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where F (θ) is the Fisher information matrix (FIM). Last, it
has been shown in [20] that the CRB (5a) is also obtained if
(3b) is reduced to

Ey;θ

[
(θ̂ − θ)

∂ ln p (y;θ)

∂θT

]
= I. (6)

B. Random Equality Constraints

In many estimation problems [1], [22]–[24], the proba-
bilistic mapping mentioned above results from a two steps
mechanism involving an additional random vector θr, θr ∈
Θr ⊂ RPr , that is i) θ → θr ∼ p (θr;θ), ii) (θ,θr) → y ∼
p (y|θr;θ), and leading to a compound probability distribu-
tion:

p (y,θr;θ) = p (y|θr;θ) p (θr;θ) , (7a)
p (y;θ) =

∫
Θr

p (y,θr;θ) dθr, (7b)

where p (y|θr;θ) is the conditional p.d.f. of y given θr, and
p (θr;θ) is the prior p.d.f., parameterized by θ. In this setting2,

Ey;θ

[
(θ̂ − θ)(θ̂ − θ)

T
]

= Eθr;θ

[
Ey|θr;θ

[
(θ̂ − θ)(θ̂ − θ)

T
]]
, (8)

which allows one to consider K non-redundant equality con-
straints on the unknown deterministic parameter vector θ
depending on the random parameter vector θr, that is

fθr (θ) = 0, fθr (θ) ∈ RK , 1 ≤ K ≤ P − 1, (9)

where the matrix ∂fθr (θ)

∂θT
∈ RK×P has full row rank.

C. CRBs with Random Equality Constraints

Since the set of K equality constraints (9) Cθr ⊂ Θd is
conditioned on the value of θr, it seems sensible to first
look for a CR-like bound conditioned on θr, taking into
account both local unbiasedness and equality constraints (9).
Conditionally to θr, that is with respect to p (y|θr;θ), local
unbiasedness regarding the parameter vector θ reads

Ey|θr;θ+dθ

[
θ̂
]

= θ + dθ + oθr (‖dθ‖) ,

and leads (similarly to (3a) and (6)) to the LCs

Ey|θr;θ

[(
θ̂ − θ

) ∂ ln p (x|θr;θ)

∂θT

]
dθ = Idθ. (10)

Moreover, if θ and θ + dθ are constrained to belong to Cθr ,
thus, with some manipulation [20], when ‖dθ‖ → 0,{

fθr (θ) = 0
∂fθr (θ)

∂θT
dθ = 0

⇔
{

0 = fθr (θ)
dθ = U

θr
(θ) dλ

where U
θr

(θ) ∈ RP×(P−K) is a basis of ker
(
∂fθr (θ)

∂θT

)
and

dλ ∈ RP−K . Therefore, conditionally to θr, a locally
unbiased estimate of θ is now required to be locally unbiased
only on Cθr , what means that LCs (10) must be satisfied only

2If only an integral form of p (y;θ) (7b) is available, the estimation
problem at hand is so-called a ”non-standard” estimation problem [2].

when dθ = U
θr

(θ) dλ where ‖dλ‖ → 0, which yields the
LCs

Ey|θr;θ

[
(θ̂ − θ)

(
UT

θr
(θ)

∂ ln p (x|θr;θ)

∂θ

)T]
= U

θr
(θ) .

(11)
Additionally, another desirable property is that

Ey|θr+dθr;θ

[
θ̂
]

= θ + o (‖dθr‖) , ∀θ ∈ Cθr , (12a)

which means that, up to the first order and in the neighborhood
of θr, θ̂ remains an unbiased estimator of θ ∈ Cθr indepen-
dently of a small variation of the parameter vector θr. Once
again, (12a) can be rewritten in terms of the following LCs

Ey|θr;θ

[
(θ̂ − θ)

∂ ln p (y|θr;θ)

∂θTr

]
= 0. (12b)

Finally, conditionally to θr, a constrained CR-like bound fitted
to the problem at hand is the lower bound associated with the
LCs Ey|θr;θ

[
(θ̂ − θ)

(
UT

θr
(θ) ∂ ln p(x|θr;θ)

∂θ

)T]
= U

θr
(θ) ,

Ey|θr;θ

[
(θ̂ − θ)∂ ln p(y|θr;θ)

∂θTr

]
= 0,

(13)
that is, according to (4),

C̃CRBθr (θ) = (14a)

U
θr

(θ)
(
UT

θr
(θ) CRB−1

θr
(θ) U

θr
(θ)
)−1

UT
θr

(θ) ,

CRBθr (θ) = (14b)(
Fθr (θ)− FTθr (θr,θ) Fθr (θr)

−1
Fθr (θr,θ)

)−1

,

Fθr (θ) = Ex|θr;θ

[
∂ ln p(y|θr;θ)

∂θ
∂ ln p(y|θr;θ)

∂θT

]
,

Fθr (θr) = Ey|θr;θ

[
∂ ln p(y|θr;θ)

∂θr

∂ ln p(y|θr;θ)

∂θTr

]
,

Fθr (θr,θ) = Ey|θr;θ

[
∂ ln p(y|θr;θ)

∂θr

∂ ln p(y|θr;θ)

∂θT

]
.

Finally, if θ̂ , θ̂ (y) is, conditionally to θr, a locally unbiased
estimate belonging to a subset Cθr of the parameter space
defined by K non redundant equality constraints depending
on a random parameter vector θr, then, according to (8),
its MSE matrix is lower bounded by the following randomly
constrained CRB (RCCRB)

Ey|θ

[
(θ̂ − θ)(θ̂ − θ)

T
]
≥ RCCRB (θ) ,

RCCRB (θ) = Eθr;θ

[
C̃CRBθr (θ)

]
. (15)

D. Further considerations

First, if no random constraints are taken into account,
then U

θr
(θ) = I and C̃CRBθr (θ) = CRBθr (θ) which

coincides with the tighter Non-Standard CRB (NSCRB (θ))
[2, (54)]. Moreover, the LCs (13) becomes equivalent to

Ey|θr+dθr;θ+dθ

[
θ̂
]

= θ + dθ + o(‖(dθ; dθr)‖),

which is the definition of a locally strict-sense unbiased
estimator. This is reasonable since, as shown in [2, §IV],
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Non-Standard CRB are LBs on the “non-standard” MLEs
(NSMLEs) defined as

(θ̂r, θ̂) = arg max
θ∈Θd,θr∈Θr

{p (y|θr;θ)} , (16)

where θ̂ is, w.r.t. p (y|θr;θ) and under reasonably general
conditions, asymptotically uniformly strict-sense unbiased,
Gaussian distributed and efficient when the number of in-
dependent observations tends to infinity. Therefore, it seems
likely that the method of scoring with parameter constraints
[19] applied to random equality constraints (9) where θr is
replaced with its NSMLE θ̂r, leads to a constrained NSMLE
asymptotically efficient with respect to C̃CRBθr (θ) and
hence to RCCRB (θ) — a conjecture left for future research.

Second, in general,

C̃CRBθr (θ)

> U
θr

(θ)
(
UT

θr
(θ) Fθr (θ) U

θr
(θ)
)−1

UT
θr

(θ) ,

which means that the RCCRB proposed (15) is tighter than
the expectation of the standard CCRB parameterized by
θr (see (17)). However, in the case where p (y,θr;θ) =
p (y;θ) p (θr;θ), then

p (y|θr;θ) = p (y;θ)⇒ CRB−1
θr

(θ) = Fθr (θ) = F (θ) ,

where F (θ) is the standard FIM (5b), leading to

RCCRB (θ) =

Eθr;θ

[
U

θr
(θ)
(
UT

θr
(θ) F (θ) U

θr
(θ)
)−1

UT
θr

(θ)

]
, (17)

which reduces to the standard CCRB

CCRB (θ) = U (θ)
(
UT (θ) F (θ) U (θ)

)−1
UT (θ) ,

if the K equality constraints (9) are non random.

III. CONSTRAINED CRAMÉR-RAO BOUNDS FOR COUPLED
LL1 MODELS

A. Basic observation model

We consider two tensors Y1 ∈ RI1×J1×K1 and Y2 ∈
RI2×J2×K2 . The dimension in the third mode of Y2 is lower
than that of Y1 (K2 � K1), while its dimensions in the first
and second mode are higher (I2 > I1, J2 > J1). For the sake
of simplicity, in the remainder of this paper we will adopt the
following notations: I = I2, J = J2, K = K1.

The observations Y1 and Y2 can be viewed as two degraded
versions of the same tensor Y ∈ RI×J×K with high dimen-
sions in all modes. In this setting, we adopt the following
tensor degradation model that can be compactly written as
mode product of Y with some degradation matrices P, Q, R:{

Y1 = Y •1 P •2 Q + E1,

Y2 = Y •3 R + E2,
(18)

where P ∈ RI1×I , Q ∈ RJ1×J , and R ∈ RK2×K have full
row rank. The entries of the noise terms E1 ∼ N (0,Σ1),
E2 ∼ N (0,Σ2) are independent and identically distributed

(i.i.d.) real Gaussian tensors with zero mean and variances
Σ1 = σ2

1I and Σ2 = σ2
2I, respectively.

Model (18) represents an ill-posed inverse problem, whose
goal is to recover the tensor Y from the observations Y1

and Y2. It was used in the literature to address several
reconstruction problems. For instance, in remote sensing [30],
P and Q are blurring and downsampling matrices, while R
contains the spectral response of the sensor used to acquire
Y2, which refers to a multispectral observation. In medical
imaging [54] and spectrum cartography [55] applications, the
degradation matrices select fibers of the underlying tensor Y in
a given mode so that the observations represent downsampled
versions of an observation cube.

As in [40], [41], [55], the degradation model (18) is refor-
mulated as a coupled LL1-BTD as

Y1 =
R∑
r=1

(
(A1)r(B1)Tr

)
⊗ (c1)r + E1,

Y2 =
R∑
r=1

(
(A2)r(B2)Tr

)
⊗ (c2)r + E2,

(19)

where A1 = PA2,B1 = QB2,C2 = RC1. (20)

The LL1 factors of the model are such that A1 ∈ RI1×LR,
B1 ∈ RJ1×LR, C1 ∈ RK×R and A2 ∈ RI×LR, B ∈ RJ×LR,
C2 ∈ RK2×R. Since the factors are coupled in all the modes,
(19)–(20) is referred to as a fully-coupled model.

Under these notations, the underlying tensor Y of interest
admits an LL1-BTD as

Y =

R∑
r=1

(
(A2)r(B2)Tr

)
⊗ (c1)r. (21)

B. Model parameters

We consider two model parameters ω̃ ∈ R((I+J)L+K)R and
φ ∈ R((I1+J1)L+K2)R that describe (19)–(20) such that

ω̃T =
[
vec{A2}T vec{B2}T vec{C1}T

]
, (22)

φT =
[
vec{A1}T vec{B1}T vec{C2}T

]
. (23)

While ω̃ represents the LL1 factors underlying Y , φ contains
the entries of the factors obtained by degradation in (20). The
two parameters in (22)–(23) can be stacked together into a
single parameter θ̃ defined as

θ̃
T

=
[
ω̃T φT

]
. (24)

In tensor reconstruction applications, we are mostly in-
terested in the LL1 factors underlying Y , contained in the
parameter ω̃. In this scenario, the fully-coupled model can be
statistically identifiable even if the trivial ambiguities in φ are
neglected, see [33] for more details. The remaining ambigui-
ties in ω̃ are solved by setting (C1)1,: = 1 and (A2)1:L,: =
[IL . . . IL] as discussed in Section I-C. As a result, we must
define the reduced parameter ω ∈ R((I+J−L)L+(K−1))R such
that

ωT =
[
vec{(A2)L+1:I,:}T vec{B2}T vec{(C1)2:K,:}T

]
,

(25)
that only contains the unknown entries of ω̃. The full and
reduced parameters can be linked through the relationship
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ω = Mω̃. The matrix M is a selection matrix constructed
from I((I+J)L+K)R by removing the (L2 + 1)R rows cor-
responding to the known entries of ω̃. Therefore, the global
model parameter θ̃ can be reduced to θ defined as

θT =
[
ωT φT

]
. (26)

C. Fisher information matrix for coupled LL1 models

In this subsection, we derive a closed-form expression for
the Fisher information matrix (FIM) related to model (19).
We consider the random real Gaussian distributed dataset x ∼
N (µ(θ̃),Σ), where

xT =
[
vec{Y1}T vec{Y2}T

]
, Σ = Diag{Σ1,Σ2},

and µ(θ̃) =

[
µ1(θ̃)

µ2(θ̃).

]
(27)

In (27), the mean µ(θ̃) is a block matrix and for i = 1, 2,
its subblocks are such that

µi(θ̃) = vec

{
R∑
r=1

(
(Ai)r(Bi)

T
r

)
⊗ (ci)r

}
. (28)

The derivatives of µi(θ̃) with respect to θ̃ can be obtained
using relationships between tensor unfoldings as

µi(θ̃) = [(Ci �p Bi)� I] vec{Ai}, (29)

= Π
(2,1)
i [(Ci �p Ai)� I] vec{Bi}, (30)

= Π
(3,1)
i ([. . . , ((Ai)r � (Bi)r) 1L, . . .]� I) vec{Ci}.

(31)

The matrices Π
(2,1)
i and Π

(3,1)
i are non-singular permutation

matrices that link the entries of vec{Y(2)
i } (resp. vec{Y(3)

i })
to those of vec{Yi} (i = 1, 2).

The Fisher information matrix for θ̃ is obtained by using
the Slepian-Bangs formula below [39]:

F(θ̃) =

[
∂µ(θ̃)

∂θ̃T

]T
Σ−1

[
∂µ(θ̃)

∂θ̃T

]
, (32)

and the FIM for the parameter θ of interest is obtained from
(32) by removing the indices corresponding to known entries
of θ̃ as

F(θ) = Diag{MT , I}F(θ̃) Diag{M, I}. (33)

Its closed-form expression can be found in Appendix A.

D. Standard constrained Cramér-Rao bound

The deterministic constraints (20) between the LL1 factors
can be expressed in terms of model parameters as

g(θ) = φ−

I�P 0 0
0 I�Q 0
0 0 I�R

MT

︸ ︷︷ ︸
G

ω, (34)

where g is a non-redundant deterministic vector function,
differentiable for all ω.

Thus a basis for ker
{
∂g(θ)

∂θT

}
is the matrix U such that

UT (θ) =
[
I GT

]
, (35)

and the standard CCRB for the parameter θ [20] is:

CCRB(θ) = U(θ)
(
UT (θ)F(θ)U(θ)

)−1
UT (θ). (36)

Similarly to the FIM, CCRB(θ) is a block-matrix; the closed-
form expressions for its subblocks are derived in Appendix A.

E. Performance bounds for tensor reconstruction

Additionally to the model parameters in (22)–(23), we also
define y = vec{Y} ∈ RIJK , which represents the vectorized
tensor Y that we wish to approximate. The parameter y can
be linked to ω by means of a non-redundant vector function
h, differentiable for all ω as

y = h(ω). (37)

The expression of h(ω) is obtained similarly to (29)–(31):

y = [(C1 �p B2)� I]︸ ︷︷ ︸
S(1)

vec{A2},

= Π(2,1) [(C1 �p A2)� I]︸ ︷︷ ︸
S(2)

vec{B2},

= Π(3,1) ([. . . , ((A2)r � (B2)r) 1L, . . .]� I)︸ ︷︷ ︸
S(3)

vec{C1}.

As a result, we have

h(ω) =
[
S(1) S(2) S(3)

]
MTω.

Hence we can obtain the CCRB for the parameter y using
the following formula:

CCRB(y) =

[
∂h(ω)

∂ωT

]
CCRB(ω)

[
∂h(ω)

∂ωT

]T
, (38)

where CCRB(ω) is the left upmost diagonal block of
CCRB(θ) and

[
∂h(ω)
∂ωT

]
=
[
S(1) S(2) S(3)

]
MT .

IV. PERFORMANCE ANALYSIS IN THE CASE OF
DETERMINISTIC CONSTRAINTS

A. Estimation

We now conduct performance analysis for a state-of-the-art
algorithm in the case of deterministic constraints. According
to the fully-coupled model (19)–(20), and since the entries of
the noise terms E1 and E2 are i.i.d., the observations Y1 and
Y2 are distributed according to

fY1;θ =
(
2πσ2

1

)−I1J1K
2

e

(
− 1

2σ21
‖Y1−

R∑
r=1

(P(A2)r(Q(B2)r)T )⊗(c1)r‖2F
)
,

fY2;θ =
(
2πσ2

2

)−IJK2
2

e

(
− 1

2σ22
‖Y2−

R∑
r=1

((A2)r(B2)Tr )⊗R(c1)r‖2F
)
.

(39)

Estimation of the LL1 factors in this setting is performed by
a coupled alternating least squares (ALS) algorithm inspired
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by [39], [57], that we further refer to as LL1-ALS. This algo-
rithm was used in [41] in a remote sensing context for solving
the hyperspectral super-resolution problem. It minimizes the
following global criterion:

min
A2,B2,C1

‖Y1 −
R∑
r=1

(
P(A2)r(Q(B2)r)

T
)
⊗ (c1)r‖2F

+ λ‖Y2 −
R∑
r=1

(
(A2)r(B2)Tr

)
⊗R(c1)r‖2F . (40)

Under the assumption of Gaussian noise and residuals, and
assuming that λ =

σ2
1

σ2
2

, (40) corresponds to the maximum
likelihood (ML) criterion for coupled Y1 and Y2 distributed
as in (39).

B. Experimental setup
We consider the dimensions I1 = J1 = 6, I = J = 24,

K = 30 and K2 = 6. The LL1 ranks are L = 2 and R = 2.
The entries of the true factors A2, B2, C1 were generated once
as i.i.d. real standard Gaussian variables, for which scaling and
matrix ambiguities were corrected as in Section I-C by fixing
some entries of C1 and A2 to known values. The true factors
A1, B1, C2 were constructed according to the deterministic
constraints (20).

The degradation matrices P and Q are Gaussian blurring
and downsampling matrices, generated following Wald’s pro-
tocol [38] with a Gaussian filter of length q and a down-
sampling ratio d. For the sake of simplicity but without loss
of generality, we also assume that P = Q. The degradation
matrix R is a selection and averaging matrix constructed from
the Sentinel-2 spectral response function3. Please refer to Ap-
pendix B for more details on the construction of these matrices
This specific degradation scenario was used in e.g., [30], [56]
to describe the hyperspectral super-resolution problem [29].

We simulate the performance of the coupled model under
additive Gaussian noise. The SNR (in dB) is defined as
SNRi = 10 log10

(
‖Yi‖2F /‖Ei‖2F

)
, (i = 1, 2). We fix SNR2

to 20dB while SNR1 is a vector with values in {5, 60} dB. In
our simulations, we consider performance analysis for various
values of SNR1 and fixed SNR2.

The model parameters are retrieved using the ML estimator
LL1-ALS with random initialization; for each realization, the
best out of 10 trials is picked. We evaluate the total MSE on the
estimated parameters θ̂ and ŷ by averaging the squared errors
over 500 noise realizations. The permutation ambiguities in
the estimated factors are corrected by searching for the best
column permutation of C2 with fixed C1 and applying that
same permutation to A2 and B2. This step is performed by
merely maximizing the correlation between the estimated and
true LL1 factors; but it could be performed optimally using
the Hungarian algorithm [53].

C. Numerical results
We compute the standard CCRB for the parameters θ and

y. In our experiments, we consider the uniform MSE (UMSE)

3Available for download at https://earth.esa.int/web/sentinel/user-guides/
sentinel-2-msi/document-library.

and uniform CCRB (UCCRB) based on the matrix traces4, as
widely studied, e.g., in [60]–[62]. Indeed, it is easy to see
that if a locally unbiased estimator is uniformly efficient (i.e.,
the UMSE reaches the corresponding uniform bound), then it
is also efficient for each entry of the parameters, which is a
strong result. In Figure 1, we show on a semi-log scale the
UCCRB and UMSE given by LL1-ALS for the parameters θ
and y, respectively.

10 20 30 40 50 60
10

-4

10
-2

10
0

M
S

E
 T

ra
c
e

10 20 30 40 50 60
10

-2

10
-1

10
0

10
1

10
2

M
S

E
 T

ra
c
e

Fig. 1. UCCRB and UMSE for estimation of θ (left) and y (right).

For both parameters θ and y, the UMSE reaches the
UCCRB, showing that LL1-ALS is asymptotically efficient for
LL1 factors estimation and tensor reconstruction in the pres-
ence of non-random constraints. However, this performance
analysis only holds in the absence of uncertainties. Indeed,
from (40), we can see that the current framework for LL1-
ALS does not allow to take uncertainties into account. In the
following section, we will consider a more general degradation
model accounting for a random variability phenomenon.

V. DEGRADATION MODEL ACCOUNTING FOR
UNCERTAINTIES

A. A more flexible model

The tensor degradation model (18) does not account for
any uncertainties. However in practice, since Y1 and Y2 are
acquired by different sensors, they are usually obtained at
different time instants. For instance, in remote sensing, the
acquisition time difference can result in e.g., variations in
atmospheric, seasonal or illumination conditions [52], [56],
[58]. More generally, proper calibration of the sensor is
crucial in order to account for the sensor specificities such
as degradation of sensitivity over time [45], normalization of
each channel response, or variations in observational geometry
[46]. This step is usually performed before launching the
sensor [49]. However, its specificities may change due to
e.g., outgassing, aging of components, or misalignment, thus
resulting in miscalibration. These uncertainties motivate the
need for more flexible models. As a result, in the remaining
of this paper, we will consider an observation model that is
different from (18).

As in [56], [59], we now consider that Y1 and Y2 are
degraded versions of two distinct tensors Y ∈ RI×J×K and
Ỹ ∈ RI×J×K , respectively. While (18) assumed that Ỹ = Y ,
this new model allows Ỹ and Y to be different. The tensor Ỹ

4In fact, the bounds expressions proposed in this paper allow for calculation
of the uniform CCRB and uniform RCCRB due to their synthetic form.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library
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also admits an LL1-BTD with the same factors A2 and B2 as
Y , but with a different factor C̃1 ∈ RK×R:

Ỹ =

R∑
r=1

(
(A2)r(B2)Tr

)
⊗ (c̃1)r. (41)

This allows for the addition of uncertainties between the two
tensors, depicted through the LL1 factor C̃1 6= C1.

We can model these uncertainties using the following mul-
tiplicative model:

C̃1 = C1 �Ψ, (42)

where Ψ ∈ RK×R is a matrix of scaling factors. This leads
to the following model:{

Y1 = Y •1 P •2 Q + E1,

Y2 = Ỹ •3 R + E2,
(43)

that newly considers uncertainties in the acquisition condi-
tions. Given (43), the coupled LL1 model accounting for
uncertainties can be expressed as:

Y1 =
R∑
r=1

(
(A1)r(B1)Tr

)
⊗ (c1)r + E1,

Y2 =
R∑
r=1

(
(A2)r(B2)Tr

)
⊗ (c2)r + E2,

(44)

where A1 = PA2,B1 = QB2,C2 = R(C1 �Ψ). (45)

Different from (20), the constraints (45) on the LL1 factors
involve a random matrix Ψ.

B. A clairvoyant algorithm

Considering model (44)–(45), we would like to assess the
performance of the fully-coupled LL1-ALS algorithm in the
presence of uncertainties. In the following set of experiments,
we will consider the following cost function, that is a modified
version of (40):

min
A2,B2,C1

‖Y1 −
R∑
r=1

(
P(A2)r(Q(B2)r)

T
)
⊗ (c1)r‖2F

+ λ‖Y2 −
R∑
r=1

(
(A2)r(B2)Tr

)
⊗R ((c1)r �Ψr) ‖2F ,

(46)

where Ψr is the r-th column of Ψ. In fact, (46) corresponds
to a clairvoyant criterion in which the value of the random
parameter is supposed to be known. In this setting, the algo-
rithm minimizing (46) will be further referred to as clairvoyant
LL1-ALS.

C. Standard conditional CCRB and its limitations

Let us define the random parameter vector θr = vec{Ψ} ∈
RKR that characterizes uncertainties. The entries of θr are
i.i.d. Gaussian entries with unit mean and variance σ2

r such
that θr ∼N (1, σ2

rI), thus C1 = lim
σ2
r→0

C̃1.

The random equality constraints (45) involve the random
parameter vector θr and can be expressed as

gθr (θ) = φ−

I�P 0 0
0 I�Q 0
0 0 (I�R) diag{θr}

MT

︸ ︷︷ ︸
Gθr

ω.

(47)

Hence we can compute the CCRB conditional to θr as

CCRBθr (θ) = Uθr (θ)
(
UT
θr (θ)F(θ)Uθr (θ)

)−1
UT
θr (θ),

(48)

where UT
θr

(θ) =
[
I GT

θr

]
.

In this subsection, we compare the performance of the
clairvoyant algorithm to the standard CCRB conditional to the
value of the random parameter. We drew two realizations of
the random parameter vector with variance σ2

r = 0.2, namely
θ(1)
r and θ(2)

r . For each realization, the entries of the true LL1
factors A1, B1, C2 were generated according to (45) with the
same dimensions as in Section IV-B. We compute the standard
UCCRB conditionally to the value of the random parameter,
namely UCCRB(i) (i = 1, 2).

In Figure 2, we plot on a semi-log scale the conditional
UCCRB and UMSE for parameters ω and y. We can see that
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Fig. 2. Standard UCCRB(i) (i = 1, 2) and UMSE for θ (left) and y
(right).

the two UCCRB curves are almost equal for SNR1 ≤ SNR2.
For such SNR1, the UMSE provided by LL1-ALS reaches the
bounds. However, for SNR1 > SNR2, the discrepancy between
the two UCCRB curves increases, and the UMSE can be found
in-between the two bounds. In particular, Figure 2 shows that
the performance of LL1-ALS can be lower than the condi-
tional UCCRB, meaning that the standard tool becomes non-
informative in the presence of random equality constraints.

Therefore we must consider a new constrained CR-type
lower bound fitted to this context that is able to characterize
the best achievable performance of our model, hence the
introduction of the RCCRB in Section II. The relevance of
this bound will be illustrated in the next subsection.

D. Usefulness of the RCCRB for the coupled LL1 model with
uncertainties

1) Relevance of the RCCRB: In a preliminary version of
this work [42], it is shown that the RCCRB is a lower bound on
constrained parameter estimation when the constraints involve
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a random vector parameter; hence it is suited for our problem.
In this subsection, we illustrate the usefulness of the RCCRB
for conducting performance analysis of the model (44)–(45).

The RCCRB is evaluated as in (17) by averaging the con-
ditional CCRB over 500 realizations of the random parameter
vector θr with variance σ2

r = 0.2. We compare the RCCRB
matrix trace to the performance of the clairvoyant estimator.
In Figure 3, we plot on a semi-log scale the URCCRB and
UMSE trace for θ and y.

10 20 30 40 50 60
10

-4

10
-3

10
-2

10
-1

10
0

M
S

E
 T

ra
c
e

10 20 30 40 50 60
10

-2

10
-1

10
0

10
1

10
2

M
S

E
 T

ra
c
e

Fig. 3. URCCRB and UMSE for θ (left) and y (right).

Contrary to the standard CCRB in Figure 2, the UMSE
reaches the URCCRB for all considered values of SNR1 and
both parameters. Two conclusions can be drawn from Figure 2:
first, that the RCCRB is indeed the right bound for assessing
the performance of our model, and second, that the clairvoyant
algorithm is asymptotically efficient in the presence of a
random parameter vector impinging on the constraints, since
it reaches the uniform RCCRB.

2) Performance loss in case of constraints mismatch:
In this subsection, we investigate the performance of the
clairvoyant algorithm in the case of constraints mismatch.

In the coupled model with uncertainties, A2, B2, C1 are
generated as in Section IV while A1, B1, C2 are generated
according to (45) with θr ∼N (1, σ2

r) and variance σ2
r = 0.2.

We additionally draw two specific realizations of the random
parameter vector with variance σ2

r = 0.2, namely θ(1)
r and

θ(2)
r . We run the clairvoyant LL1-ALS with a constraints

mismatch, that is for i = 1, 2, (46) accounts for an incorrect
estimation of θr.

We compare the UMSE obtained in this scenario, to the
URCCRB and UMSE obtained by incorporating the correct
θr in (46). The uniform bounds and UMSE curves are shown
in Figure 4.

We can see that, in the case of a constraints mismatch, the
UMSE provided by LL1-ALS is higher than the URCCRB.
This behaviour is particularly visible for high SNR. This
means that an incorrect knowledge of the constraints leads
to a loss in performance.

Thus, there are two main limitations to the use of such a
clairvoyant algorithm. First, in practice, the variability phe-
nomenon is difficult to estimate5; therefore, it seems to be
intractable to incorporate it into the cost function (46). Then,
the previous experiments showed that a wrong estimation of

5In fact, [56, Theorem I.5] further indicates that it is only possible to recover
a degraded version of the variability factor.
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Fig. 4. URCCRB and UMSE from LL1-ALS in the case of constraints
mismatch.

the random parameter can severely degrade the performance
of the algorithm. Nevertheless, the clairvoyant LL1-ALS es-
timator and associated RCCRB remain important theoretical
tools to assess the best achievable performance of the coupled
model (44)–(45).

In the next subsection, we will introduce a more realistic
estimator that is able to account for random uncertainties.

E. A blind algorithm accounting for random uncertainties

1) Blind LL1 model: Since the uncertainty phenomenon is
unknown in practice, it is reasonable to consider a partially-
coupled LL1 model, that we will further refer to as blind.
This model considers the random part of the constraints to be
unknown. It is also motivated by [56, Theorem I.5], which
indicates that knowledge of the degradation between the C1

and C̃1 factors is not needed to guarantee unique recovery of
the target tensor Y in the noiseless case.

Hence we propose to use a different model than (44)–(45),
that supposes that only the degradation matrices P and Q are
known while the matrix R is unknown:

Y1 =
R∑
r=1

(
(A1)r(B1)Tr

)
⊗ (c1)r + E1,

Y2 =
R∑
r=1

(
(A2)r(B2)Tr

)
⊗ (c2)r + E2,

(49)

where A1 = PA2,B1 = QB2. (50)

In (49)–(50), the (c2)r are degraded versions of (c1)r by
unknown degradation and corrupted by random uncertainties.

2) A blind ALS algorithm for solving (49)–(50): From
[56, Theorem I.5], it is only possible to recover the (c2)r
vectors from (49)–(50). Thus the design of a blind algorithm
that ignores the degradation and uncertainties relationships
between C1 and C2 can be envisioned. Such an algorithm was
introduced in [56] in a remote sensing image fusion frame-
work. This algorithm, denoted Block Term Decomposition -
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accounting for Variability (BTD-Var), minimizes the following
cost function:

min
A2,B2,
C1,C2

‖Y1 −
R∑
r=1

(
P(A2)r(Q(B2)r)

T
)
⊗ (c1)r‖2F

+ λ‖Y2 −
R∑
r=1

(
(A2)r(B2)Tr

)
⊗ (c2)r‖2F , (51)

which is the ML criterion for the blind (49)–(50) problem if
λ =

σ2
1

σ2
2

.
Since R and the random uncertainties are supposed to be

unknown, the criterion (51) is partially-constrained; indeed it
ignores any coupling constraint between C1 and C2. To be
more precise, the LL1 factor C2 is still subject to some uncer-
tainties in the blind problem, but it is considered unknown in
(51). A general framework for BTD-Var is available in [56].

3) Performance bounds for the blind model: According to
(49)–(50), the blind constraints on the models parameters are
such that

g̃(θ) = φ−
[
I�P 0

0 I�Q

]
MT︸ ︷︷ ︸

G̃

ω, (52)

which is a specific form for (47) in the case where R and
Ψ are unknown. Nevertheless, a lower bound on parameter
estimation for the blind problem still implicitly depends on
unknown uncertainties.

Indeed, we can define the Blind-CCRB for the parameter
θ, conditionally on the random parameter vector:

Blind-CCRBθr (θ)

= Ũ(θ)
(
ŨT (θ)Fθr (θ)Ũ(θ)

)−1

ŨT (θ), (53)

where ŨT (θ) =
[
I G̃T

]
.

In (53), the uncertainties are solely contained in Fθr (θ) 6=
F(θ), hence the randomly-constrained bound must be consid-
ered as well to properly evaluate the performance of the blind
algorithm. As a result, we define the so-called Blind-RCCRB
as

Blind-RCCRB(θ) = Eθr;θ [Blind-CCRBθr (θ)] . (54)

VI. RELATIVE EFFICIENCY OF THE BLIND ALGORITHM
USING THE RCCRB

We are now ready to assess the relative efficiency of the
blind algorithm BTD-Var using the appropriate randomly-
constrained CRB.

A. Experiments setup

We consider the same dimensions as in Section IV. The
random parameter vector θr is drawn from a Gaussian
distribution with unit mean and variance σ2

r = 0.2. The
factors A2, B2, C1 are generated as in Section IV while
A1, B1, C2 are generated according to (45).

We consider different estimation scenarios and correspond-
ing performance bounds. First, we consider the deterministic

LL1-ALS algorithm, that minimizes the cost function (40).
This algorithm incorrectly assumes that there is no variability
phenomenon, hence it considers a false model. We compare
the performance of this first algorithm to the standard CCRB.

Second, we consider the clairvoyant algorithm minimizing
the cost function (46). We compare its performance to the
fully-coupled RCCRB considered in Section V-D. This bound
corresponds to the best performance achievable by the cou-
pled model with uncertainties. However, since it requires the
knowledge of the uncertainty phenomenon, it corresponds to
a clairvoyant scenario.

Finally, we assess the performance of the blind algorithm
BTD-Var, that considers the criterion (51). We compare the
MSE obtained from BTD-Var to the Blind-RCCRB (54).

B. Results

In Figure 5, we plot on a semi-log scale the total bounds
and UMSE for the parameter y. For SNR1 ≤ SNR2, uniform
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Fig. 5. Standard UCCRB, URCCRB and Blind-URCCRB, and UMSE for the
parameter y; close-ups for SNR1 ≤ SNR2 (down, left) and SNR1 > SNR2

(down, right).

bounds and MSE traces are almost all equal to each other, and
the MSE traces seem to reach the corresponding bounds.

For SNR1 > SNR2, different conclusions can be drawn.
First, the deterministic LL1-ALS algorithm reaches the stan-
dard UCCRB. However, because this algorithm does not
account for the variability phenomenon, it had the worst
performance of the three estimators. In particular, some es-
timators even outperform the standard UCCRB, highlighting
the limitations of the standard tool.

Second, the clairvoyant LL1-ALS algorithm reaches the
URCCRB, thus it is uniformly asymptotically efficient for
tensor reconstruction. However, it corresponds to a scenario
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in which we would be able to estimate the variability phe-
nomenon, which is often impossible in practice.

Finally, the Blind-URCCRB and UMSE obtained from
BTD-Var yield slightly worse performance than in the fully-
coupled case: this is reasonable since only a portion of the
constraints is considered. However, the performance of BTD-
Var is still better than that of the deterministic algorithm, and
reaches the Blind-URCCRB. Additionally, performance anal-
ysis for BTD-Var allows to measure the loss of information
induced by ignoring a portion of the constraints. Since the dis-
crepancy between the URCCRB and Blind-URCCRB is small,
it can be concluded from this experiment that considering R
and the variability to be unknown is not critical, since it does
not heavily degrade the performance.

C. Conclusion and perspectives

In this paper, we considered a coupled LL1 model account-
ing for uncertainties. We showed that, for such a model, it is
reasonable to consider a blind (i.e. partially-coupled) estimator
that implicitly accounts for the variability phenomenon at
hand. Using the RCCRB, we demonstrated the efficiency of
this new estimator, and showed that it yielded better per-
formance than less flexible algorithms ignoring uncertainties,
without the need for knowing the variability phenomenon or
attached degradation. Moreover, this new algorithm only has
slightly lower performance compared to the fully-coupled al-
gorithm; therefore it is robust to the knowledge of degradation
in the third mode.

Our performance analysis also indicates that it is possible to
seek for an efficient estimator, similar to the clairvoyant one;
to achieve the best performance, this algorithm must be able
to estimate the variability phenomenon. This perspective is of
great interest and is likely to be explored in future works.

APPENDIX A
LL1-BASED STANDARD FIM AND CCRB

In (32), the Fisher information matrix for θ̃ can be viewed
as a symmetric block-matrix of the form

F(θ̃) =

[
Dω̃,ω̃ Dω̃,φ

DT
ω̃,φ Dφ,φ

]
. (55)

Given (29)–(31), the subblocks in (55) are such as

Dω̃,ω̃ =


1
σ2
2
STA2

SA2

1
σ2
2
STA2

SB2
0

1
σ2
2
STB2

SA2

1
σ2
2
STB2

SB2 0

0 0 1
σ2
1
STC1

SC1

 , (56)

Dω̃,φ =

 0 0 1
σ2
2
STA2

SC2

0 0 1
σ2
2
STB2

SC2

1
σ2
1
STC1

SA1

1
σ2
1
STC1

SB1
0

 , (57)

Dφ,φ =


1
σ2
1
STA1

SA1

1
σ2
1
STA1

SB1 0
1
σ2
1
STB1

SA1

1
σ2
1
STB1

SB1
0

0 0 1
σ2
2
STC2

SC2

 . (58)

Finally, the FIM for the reduced parameter θ can be
obtained as in (33).

Similarly, the standard CCRB in (36) is a block-matrix of
the form

CCRB(θ) =

[
CCRBω̃,ω̃ CCRBω̃,φ
CCRBT

ω̃,φ CCRBφ,φ

]
. (59)

Denote CCRB(ω) and CCRB(φ) the diagonal blocks in
(59). Developing (36) using (55) yields

CCRB(ω) =
(
U(θ)TF(θ)U(θ)

)−1
, (60)

CCRB(φ) = G
(
U(θ)TF(θ)U(θ)

)−1
GT , (61)

where

U(θ)TF(θ)U(θ) = MTDω̃,ω̃M + GTDT
ω̃,φM

+ MTDω̃,φG + GTDφ,φG. (62)

APPENDIX B
DEGRADATION MATRICES

Here, we explain in details how the degradation matrices are
constructed. As in [30], P is constructed as P = S1T1, where
T1 is a blurring Toeplitz matrix and S1 is a downsampling
matrix.

The blurring matrix is constructed from a Gaussian blurring

kernel φ ∈ Rq×1 with a standard deviation σ =
q
√

2 log(2)

4 . For
m ∈ {1, . . . , q} and m′ = m−

⌈
q
2

⌉
, we have

φ(m) = exp

(
−m′2

2σ2

)
.

Thus, T1 ∈ RI×I can be seen as

T1 =



φ(d q2e) ... φ(q) 0 ... 0

...
. . . . . . . . .

...

φ(1)
. . . . . . 0

0
. . . . . . φ(q)

...
. . . . . . . . .

...
0 ... 0 φ(1) ... φ(d q2e)


.

The downsampling matrix S1 ∈ RIH×I , with downsampling
ratio d, is made of IH independent rows such that for i ∈
{1, . . . , IH}, (S1)i,2+(i−1)d = 1 and the other coefficients are
zeros.

The degradation matrix R is computed from the Sentinel-2
spectral response functions. In a remote sensing framework,
this matrix selects the common spectral bands of the tensors
Y and Y2. To be more precise, we select a non-zero por-
tion of the 3rd to 8th spectral channels, that correspond to
the wavelengths 543–577nm, 650–680nm, 698–712nm, 733–
747nm, 773–793nm and 785–900nm.
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