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Abstract5

Despite the increasing importance of multiple priors in various domains of economics6

and the significant theoretical advances concerning them, choice-based incentive-compatible7

multiple-prior elicitation largely remains an open problem. This paper develops a solution,8

comprising a preference-based identification of a subject’s probability interval for an event,9

and two procedures for eliciting it. The method does not rely on specific assumptions about10

subjects’ ambiguity attitudes or probabilistic sophistication. To demonstrate its feasibility,11

we implement it in two incentivized experiments to elicit the multiple-prior equivalent of sub-12

jects’ cumulative distribution functions over continuous-valued sources of uncertainty. We13

find a predominance of non-degenerate probability intervals among subjects for all explored14

sources, with intervals being wider for less familiar sources. Finally, we use our method to15

undertake the first elicitation of the mixture coefficient in the Hurwicz α-maxmin EU model16

that fully controls for beliefs.17
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1. Introduction65

The standard Bayesian model of decision under uncertainty in economics stipulates that a de-66

cision maker’s beliefs are fully captured by a single probability measure over the states of the67

world (Savage, 1954; Anscombe and Aumann, 1963). However, in the face of contrary empirical68

evidence, starting with Ellsberg (1961)’s famous examples, more general theories have weakened69

the standard assumption of probabilistic beliefs. One of the most popular models involves as a70

‘belief component’ a set of priors over the states of the world (Gilboa and Schmeidler, 1989).71

Multiple prior models have found a growing number of applications in macroeconomics (Ilut and72

Schneider, 2014), finance (Garlappi et al., 2007; Epstein and Schneider, 2010), mechanism de-73

sign (Bose and Renou, 2014), econometrics (Manski, 2003, 2013), health economics (Giustinelli74

et al., 2021), but also beyond economics, in climate science (Kriegler et al., 2009), risk analy-75

sis (Cox, 2012) and uncertainty communication (Dieckmann et al., 2010), including by central76

banks (Carney et al., 2019). Despite obvious theoretical appeal, empirical applications of multi-77

ple prior models still have to operate in the absence of appropriate choice-based procedures for78

eliciting their ‘belief component’. To date, almost all attempts to operationalize multiple prior79

elicitation have focused on subjects’ stated probability intervals for individual events (Giustinelli80

et al., 2021; Kriegler et al., 2009), and hence involve procedures that are neither choice based81

nor incentive compatible. This paper proposes a choice-based incentive-compatible elicitation82

method for probability intervals, and implements it in two laboratory experiments.83

Our proposal is inspired by the matching probability (MP) method for determining the84

subjective probability of an uncertain event (Borel, 1939; Anscombe and Aumann, 1963). Under85

Subjective Expected Utility (SEU), the subjective probability of a target event E coincides with86

its MP, which can be inferred from preferences between a bet on E and bets on events generated87

by extraneous random devices with known probability, e.g. the colour of a randomly drawn ball88

from an urn of known composition. Specifically, for urns containing only red or blue balls, the89

MP is given by the proportion r of red balls such that the subject is indifferent between the90

gamble that pays out a monetary prize z if E occurs, and nothing otherwise, and the gamble91

on the urn with proportion r of red balls that pays z if the next ball drawn from the urn is red92

(Abdellaoui et al., 2005; Dimmock et al., 2015).93

Our insight for eliciting probability intervals is to use extraneous random devices with94

interval-valued rather than precise probabilities. To illustrate, consider an urn containing only95

red and blue balls, where all that is known is that at least proportion r of the balls in the urn96

are red, and at least proportion b are blue (with r+b ≤ 1). Here, the probabilities of getting red97

or blue on the next draw from the urn are summarized by the intervals [r, 1 − b] and [b, 1 − r],98

respectively. Under the popular Hurwicz α-maxmin expected utility model, a single indifference99

between the gamble on the target event E and bets on such urns does not suffice to identify the100

subject’s probability interval for E. However, we show that the latter can be identified from101

a pair of correctly-chosen indifferences involving bets concerning E and such ‘interval-valued’102
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urns. As explained in detail in Section 2.4, we thus propose a preference-based association of103

an ‘interval-valued’ urn to each event, which coincides with the subject’s probability interval104

for the event under Hurwicz α-maxmin expected utility. This matching probability interval no-105

tion resolves the problem of choice-based incentive-compatible probability-interval elicitation in106

theory.107

Our elicitation approach is theoretically robust, as can be seen in the weakness of the assump-108

tions underlying it. On the one hand, it operates under Hurwicz α-maxmin expected utility, and109

hence under a range of ambiguity attitudes. In particular, this model is consistent with recent110

experimental evidence suggesting that people may exhibit ambiguity aversion in some choices111

and be ambiguity seeking in others (Kocher et al., 2018). On the other hand, our approach does112

not require that subjects’ preferences—or sets of priors—are generated by precise probabilistic113

beliefs, i.e. that they are probabilistically sophisticated (Machina and Schmeidler, 1992; Chew114

and Sagi, 2006). Multiple priors clearly come to the fore in situations where assumptions of115

this sort are unwarranted. Elicitation under Hurwicz α-maxmin expected utility in the absence116

of probabilistic sophistication faces well-known theoretical difficulties with the identification of117

this model (e.g. Ghirardato et al., 2004; Eichberger et al., 2011), and one contribution of our118

approach is to provide a new resolution of them (Section 5). Hill (2021) develops the axiomatic119

underpinnings of an extension of the approach taken here, in a more general setup.120

We then operationalise elicitation of matching probability intervals in a laboratory setting.121

Since probability intervals are two-dimensional, standard techniques for eliciting MPs, which are122

one-dimensional, cannot be used. We develop two methods for eliciting matching probability123

intervals: a two-dimensional extension of well-known (one-dimensional) choice lists, and an124

adaptive binary-choice procedure, which can be thought of as an interval analogue of the bisection125

or staircase method for eliciting matching probabilities. We implement these methods in tandem,126

following the hybrid elicitation approach adopted by Abdellaoui et al. (2021). Many elicitation127

applications in economics and beyond require subjects’ probability distributions or cumulative128

distribution functions (CDFs) over a continuous variable of interest (e.g. US inflation in 2023,129

Eurozone GDP in 2022, average global temperature in 2030). Motivated by this observation,130

we implement our methods on two pairs of sources of uncertainty of the latter sort, to elicit the131

interval-valued CDFs generated by subjects’ multiple priors. Interval-valued CDFs are commonly132

used in applications to go beyond the assumption of precise subjective probabilities (Karanki133

et al., 2009); our elicitation of CDFs provides a test of our approach, showing that it can operate134

in such contexts.135

Our central findings attest to the feasibility of the approach. Our method yields generally136

consistent results, eliciting, for the vast majority of subjects, non-degenerate interval-valued137

CDFs. Our elicitation suggests that imprecise beliefs—i.e. non-singleton intervals for some138

events—are widespread, with only a handful of subjects having fully precise probabilities for139

all elicited events. This finding, which is consistent with elicitations using stated probability140

intervals (Giustinelli et al., 2021), attests to the relevance of multiple-prior belief elicitation.141
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Moreover, by eliciting subjects’ beliefs for two similar sources which intuitively differ in famil-142

iarity or predictability (e.g. the temperature in Paris and in Sydney for subjects in Paris),143

our elicitations provide insight into the relationship between intuitive familiarity or predictabil-144

ity and probability intervals. Specifically, we observe that the width of subjective probability145

intervals is typically larger for intuitively less familiar or less predictable sources. Again, the146

reasonableness of this correlation corroborates the solidity of our method.147

Finally, we connect our elicited beliefs with the Hurwicz α-maxmin EU model, and perform148

what to our knowledge is the first elicitation of the mixture coefficient α in that model that fully149

controls for beliefs without making particular assumptions about their form, such as probabilistic150

sophistication.151

The paper is structured as follows. Section 2 sets out the theoretical background and152

presents the central planks of our methods (the ‘matching probability interval’ notion, the two-153

dimensional choice lists and the binary-choice procedure), with the relevant theoretical results.154

Section 3 sets out our experimental implementations, in the form of two studies. Section 4155

contains our results and supporting analyses, whereas in Section 5 we discuss connected is-156

sues, related literature and future directions. Proofs, data analyses and experimental details are157

contained in the Appendices.158

2. Theoretical Background159

In this section, we first set out the general setup, the objects of elicitation and the underlying160

decision model (Sections 2.1–2.3). Then we present in turn the elements of our method. First,161

we propose an analogue of MPs for probability intervals, and show that they are sufficient to162

yield the subject’s probability interval for an event, in theory (Section 2.4). Then we turn to im-163

plementation, presenting an extended notion of choice list for probability intervals (Section 2.5)164

and a binary-choice procedure, reminiscent of the bisection procedure for matching probabilities165

(Section 2.6).166

2.1. Preliminaries167

We consider decision making situations where the objects of choice are two-outcome prospects168

that pay a fixed monetary outcome z if an event occurs, and nothing otherwise. Prospects169

with general winning event E and winning amount z are denoted (z, E, 0) and called bets. The170

complementary bet, which pays out when the event E does not occur, is denoted (0, E, z).171

As mentioned previously, we use extraneous interval-valued random devices realised by urns172

containing red and blue balls with partial information about the composition. For instance,173

consider the urn where subjects are only told that at least a proportion r of its balls are red,174

at least a proportion b are blue (with r + b ≤ 1) but receive no information about the colour175

composition of the remaining balls (except that each is either red or blue). For such an urn,176

the information only allows assignment of the interval [r, 1 − b] for the probability of the next177
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ball drawn from the urn being red; similarly, there is the interval [b, 1 − r] for the next ball178

being blue. Using these probability intervals for parametrization, we denote the urn with at179

least proportion r of red balls and at least proportion b of blue balls by [r, 1− b]. We denote the180

set of such interval-valued urns by I.1181

Each urn [r, 1− b] in I can be related to two (sorts of) prospects. One is the prospect which182

pays z if the next ball drawn from the urn is red, and nothing otherwise. For such a prospect,183

the probability of winning is characterized by the interval [r, 1− b]; we denote this prospect by184

(z, [r, 1 − b], 0). The other prospect involves the complementary bet on this urn—that is, the185

bet on the next ball drawn from it being blue. We denote this prospect by (0, [r, 1− b], z). Note186

that the probability of losing here is characterised by the interval [r, 1− b], so the probability of187

winning is given by [b, 1− r]; this prospect is thus essentially equivalent to (z, [b, 1− r], 0). Since188

these prospects all involve objectively given information about the probability of winning, albeit189

in interval rather than precise probability form, we call them interval lotteries (IL).2 Standard190

lotteries correspond to the special case where the composition of the urn is fully known—i.e.191

r = 1− b. So, for instance, the matching probability (MP) of an event E can be defined in this192

setup as the r such that (z, [r, r], 0) ∼ (z, E, 0).193

The set I of interval-valued urns can be visually represented by the black-edged triangle in194

Figure 1. Each point (x, y) represents the urn [x, y]—i.e. with at least proportion x of red balls195

and at least proportion 1− y of blue ones. As such, it represents two interval lotteries: the bet196

on red, (z, [x, y], 0), where all that is known is that the winning probability is in the interval197

[x, y], and the bet on blue (0, [x, y], z), where all that is known is that the losing probability is198

in this interval. Standard lotteries and urns with fully known composition correspond to the199

points on the diagonal (x = y).200

2.2. Upper and lower probabilities and CDFs201

The sources of uncertainty considered here are real-valued variables, e.g. the daily minimum202

temperature in Paris between November and March. In the precise probability case, elicitation203

aims at revealing the subjective probability over the variable, which can be represented as a204

subjective cumulative distribution function (CDF). One common way of doing so is by eliciting205

subjective probabilities of events corresponding to the variable lying below certain fixed values.206

For a variable taking values in a real interval T , the events considered are of the form Et =207

{t′ ∈ T : t′ ≤ t}. For future reference, we call these cumulative events. We now set out the aim208

of the corresponding exercise for multiple priors.209

Multiple prior belief representations involve a convex, closed set C of probability mea-210

1Formally: I = {[x, y] : (x, y) ∈ R2, 0 ≤ x ≤ y ≤ 1}.
2Our notion of interval lottery is distinct from that used by Gul and Pesendorfer (2014). They use ‘interval

lottery’ to denote (precise) probability measures over the set of intervals of (monetary) prizes; here, ‘interval

lottery’ denotes assignments of probability intervals to (fully determined, precise) outcomes. In particular, the

interval lotteries (z, [r, 1− b], 0) used here clearly do not belong to the concept used by Gul and Pesendorfer (zero

probability is assigned to each outcome in the interior of the interval [0, z]).
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sures: measures over the values of variable of interest, in our case.3 For each event Et, the211

set of priors generates a probability interval {p(Et) : p ∈ C} = [p(Et), p(Et)], where p(Et) =212

min {p(Et) : p ∈ C} and p(Et) = max {p(Et) : p ∈ C} are the lower and upper probabilities for213

Et respectively. As is well-known, a set of priors contains more information than the collection of214

upper and lower probabilities for all events generated from it, but the latter (or sometimes less) is215

often sufficient for applications, and sometimes preferable insofar as it is easier to communicate.216

For continuous-valued variables, CDFs are often used. Recall that for a probability measure217

p ∈ ∆(T ), the CDF is defined as Fp(t) = p({t′ ∈ T : t′ ≤ t}) = p(Et); when the probability218

measure is a subjective probability, this is the corresponding subjective CDF. In this context,219

a set of priors C generates the interval-valued CDF FC(t) = {p(Et) : p ∈ C}, which takes the220

probability interval corresponding to Et as value, for each t. This can be visually represented221

in terms of two (real-valued) functions: the lower CDF, FC(t) = min {p(Et) : p ∈ C} = p(Et),222

and the upper CDF, FC(t) = max {p(Et) : p ∈ C} = p(Et). Although, like upper and lower223

probabilities, they involve an information loss as compared to sets of priors, these are widely224

used for representing, communicating and studying sets of priors over continuous variables, where225

they often go under the name of distribution bands or p-boxes (Berger et al., 2000; Karanki et al.,226

2009). In the implementation of our elicitation procedure conducted here, our aim is to elicit227

subjective upper and lower CDFs for the variables considered.228

2.3. Decision model229

For the purposes of presentation, we will focus on one of the most popular and general models230

of decision under uncertainty involving sets of priors, the Hurwicz α-maxmin EU model. (In231

Section 5 and Appendix A.3, we discuss how our proposals extend to generalisations.) Under232

the α-maxmin model, a bet (z, E, 0) is evaluated according to:233

αp(E).u(z) + (1− α)p(E).u(z) (1)

where p(E) and p(E) are the upper and lower probabilities of E generated by the subjects’ set of234

priors, as defined above, and u is a utility function normalized so that u(0) = 0. The coefficient235

α is often taken to reflect ambiguity attitude in this model, with α > 1
2 associated with typical236

ambiguity aversion and α < 1
2 with typical ambiguity seeking. For illustration, the standard237

behavior in the Ellsberg two-urn example can be accommodated by α > 1
2 but not by α < 1

2 .238

This model coincides with the Gilboa-Schmeidler maxmin-EU model when α = 1; whenever239

α 6= 1, the model does not satisfy the Gilboa-Schmeidler uncertainty aversion axiom—which240

can be thought of as characterizing universal ambiguity aversion. Hence, it can accommodate241

ambiguity seeking behavior in certain choices (even for 1 > α > 1
2). Since typical findings242

suggest some ambiguity seeking behavior, but not in situations that give reason to believe that243

α < 1
2 , we take α >

1
2 to be typical and assume that preferences are represented according to (1)244

with α > 1
2 in the sequel (except where specified). As discussed in Section A.3, the full strength245

3Technically, C ⊆ ∆(T ), the set of probability measures over T .
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[1, 1][0, 1]

[0, 0]

(0, [x, y], z) � (0, E, z)
(z, [x, y], 0) � (z, E, 0)

(z, [x, y], 0) ∼ (z, E, 0)
(0, [x, y], z) ∼ (0, E, z)

MPI

r

1− b

Figure 1: Matching Probability Interval in space I of interval-valued urns, for an event E.

of this assumption is not required for the central elements of the elicitation method. Our aim is246

to elicit p(E) and p(E) for selected events.247

We also assume the same representation for interval lotteries: i.e. preferences concerning248

them are represented by an evaluation of (z, [r, 1− b], 0) by:249

αru(z) + (1− α)(1− b)u(z) (2)

2.4. Theory: Matching Probability Intervals250

Our approach is based on the following notion. The matching probability interval (MPI) of an

event E is an [r, 1− b] ∈ I such that:

(z, [r, 1− b], 0) ∼(z, E, 0) (3)

(0, [r, 1− b], z) ∼(0, E, z) (4)

Plugging these indifferences into (1) and (2) yields the following equations:251

αr + (1− α)(1− b) = αp(E) + (1− α)p(E),

α(1− (1− b)) + (1− α)(1− r) = α(1− p(E)) + (1− α)(1− p(E)).
(5)

Clearly, these equations are satisfied by r = p(E), 1− b = p(E). Moreover, whenever there252

is a unique pair r, 1 − b satisfying them, then there is a unique matching probability interval,253

which indicates precisely the subjective probability interval for E: i.e. [p(E), p(E)] = [r, 1− b].254

Under the α-maxmin EU model with α 6= 1
2 , the MPI is unique (Proposition 3, Appendix A.1).255

So to elicit the subjects’ probability interval for the event E, it suffices to find the MPI of E.256

The MPI can be illustrated in Figure 1. The red hatched area represents the upper contour257

set of the bet (z, E, 0) in the space of interval lotteries corresponding to bets on red: that is, the258

9



set of (x, y) such that (z, [x, y], 0) � (z, E, 0). The blue hatched area is the upper contour set of259

the complementary bet (0, E, z) in the space of complementary ILs (corresponding to bets on260

blue): that, it is the set of (x, y) such that (0, [x, y], z) � (0, E, z). The boundaries of these sets261

(the diagonal red and blue lines respectively) represent the indifference curves of (z, E, 0) (resp.262

(0, E, z)), in the space of ‘red’ (resp. ‘blue’) ILs. The matching probability interval corresponds263

to the black point at the intersection of these two lines.264

This Figure also brings out the contribution of ILs as compared to standard lotteries and the265

long-standing identification problem for the α-maxmin EU model (Section 5). The MP of the266

bet (z, E, 0) is given by the point where the red indifference curve meets the diagonal; clearly267

eliciting it is insufficient to pin down the subject’s probability interval for E. Similarly, the MP268

of the complementary bet (0, E, z) is given by the point where the blue indifference curve meets269

the diagonal. Eliciting both of these MPs is sufficient to pin down the subject’s probability270

interval (as the intersection of the indifference curves) only if the slope of the indifference curves271

is known: but this is determined by the mixture coefficient α in (1), which also needs to be272

elicited. The use of ILs, and the notion of MPI built upon it, allows elicitation of the subjective273

probability interval without requiring elicitation of the mixture coefficient α. Indeed, we shall274

use our probability interval elicitation in tandem with MPs to estimate subjects’ α (Section 4.5).275

The notion of MPI resolves the challenge of incentive-compatible probability-interval elici-276

tation in theory. Under SEU, eliciting preferences between the bet on E and each of a range277

of lotteries suffices to find the MP, which corresponds to the subject’s subjective probability.278

Similarly here, obtaining the subject’s preferences between each pair consisting of a bet (for or279

against E) and an IL provides the MPI—and hence the subject’s probability interval for E—as280

the point satisfying (3) and (4). It is well known that there are fully incentive-compatible mech-281

anisms for eliciting such preferences. For instance: the subject states her preference between282

each pair consisting of a bet (for or against E) and an IL; a random bet (for or against E)283

and IL are then chosen and she is remunerated according to the prospect which she stated as284

more preferred between the two. By the standard argument, it is in the subject’s best interest285

to report her preferences truthfully, for if not there is a chance of receiving her less preferred286

prospect in the choice that is ‘played for real’. These elicited preferences provide, inter alia, the287

MPI and hence the subject’s probability interval for E.288

Of course, implementation typically requires a method involving fewer preference questions.289

This is especially challenging for probability intervals, since the target is a point in a two-290

dimensional space, whereas elicitation of the precise probability of an event only needs to search291

a one-dimensional space. To operationalise our approach, we develop two more parsimonious292

methods for eliciting MPIs, whilst making no claim to have exhausted all possibilities.293
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2.5. Implementation 1: 2D Choice lists294

Consider any MPI [r, 1− b] of an event E, so that the indifference (3) is satisfied. Since α > 0

in the representation (1), it follows that:

(z, [q, 1− b], 0) �(z, E, 0) for all q > r (6)

(z, [q, 1− b], 0) ≺(z, E, 0) for all q < r

On Figure 1, this determines the preferences on the ‘red’ ILs corresponding to the bold red295

(horizontal) line. To the left of the MPI, the bet on E is preferred to the IL corresponding to296

the bet on red from the urn [q, 1− b] (i.e. with probability [q, 1− b] of winning); to the right of297

the MPI, the IL is preferred to the bet; and at the MPI, the two are indifferent.298

Similar reasoning applies to complementary bets. By the indifference (4) and the fact that

α > 0, for an MPI [r, 1− b] of E, it follows that:

(0, [r, q], z) ≺(0, E, z) for all q > 1− b (7)

(0, [r, q], z) �(0, E, z) for all q < 1− b

On Figure 1, this determines the preferences on the (complementary) ‘blue’ ILs corresponding299

to the bold blue (vertical) line. Above the MPI, the bet against E is preferred to the IL300

corresponding to the bet on blue from urn [r, q] (i.e. with probability [r, q] of losing); below the301

MPI, the IL is preferred to the bet; and at the MPI, the two are indifferent.302

It follows that the only points supporting the specified preference patterns on the corre-303

sponding horizontal and vertical lines are MPIs.304

Proposition 1. For any event E, let [r, 1− b] ∈ I be such that:

(z, [q, 1− b], 0) �(z, E, 0) for all q > r

(z, [q, 1− b], 0) ≺(z, E, 0) for all q < r

(0, [r, q], z) ≺(0, E, z) for all q > 1− b
(0, [r, q], z) �(0, E, z) for all q < 1− b

Then [r, 1− b] is a matching probability interval of E.305

The red (horizontal) and blue (vertical) bold lines can thus be thought of as a pair of choice306

lists, and the MPI is the switching point on each of them. We henceforth refer to the combination307

of the two as a 2D choice list. Inspired by this observation, consider the following mechanism308

for eliciting a subject’s MPI for an event E. A subject reports an interval-valued urn [r, 1 − b]309

for E. She is then remunerated as follows. First, an urn [x, y] is chosen at random from the 2D310

choice list.4 Then she ‘receives’ or ‘plays’ a bet or IL according to the following scheme:311

• if y = 1− b, x < r, then she gets (z, E, 0) (i.e. she ‘plays’ the bet on E)312

4I.e. the interval is chosen at random from {[x, y] : (x, y) ∈ I, y = 1 − b} ∪ {[x, y] : (x, y) ∈ I, x = r}, the
union of the horizontal and vertical lines going through (r, 1− b) in Figure 1.

11



• if y = 1− b, x ≥ r, then she gets (z, [x, y], 0) (i.e. she ‘plays’ this IL)313

• if x = r, y < 1− b, then she gets (0, [x, y], z) (i.e. she ‘plays’ this IL)314

• if x = r, y ≥ 1− b, then she gets (0, E, z) (i.e. she ‘plays’ the bet against E)315

It follows from the previous Proposition that this mechanism is incentive compatible in the316

following sense: on each choice list, reporting the urn reflecting one’s true upper or lower prob-317

ability is in one’s best interest—it weakly dominates any other report in the respective choice318

list. Hence asking a subject for an urn [r, 1 − b] such that, in each of the branches on the 2D319

choice list, she prefers the option she would receive under the mechanism incentivises reporting320

a MPI. Since precise probabilities (and SEU) are a special case of multiple priors (respectively,321

α-maxmin EU), this mechanism functions equally for Bayesian decision makers, who are incen-322

tivised to report their precise probabilities.323

Note that despite the higher complexity involved in eliciting probability intervals as opposed324

to precise probability values, this incentive mechanism is as parsimonious as standard choice325

lists for MPs. In the latter, MPs are determined by the switching point, i.e. the maximum326

probability for which the subject prefers the bet over the lottery with that probability. Similarly,327

the proposed probability-interval incentive mechanism only asks for a single point, which is the328

switching point on each branch of the 2D choice list. In standard MP choice lists, the switching329

point determines the preferences in the rest of the choice list by stochastic dominance. Similarly330

here, the elicited point determines the other preferences in the 2D choice list according to331

following property, which can be thought of as a probability-interval analogue of stochastic332

dominance.333

Definition 1 (Lower Stochastic Dominance). For all urns [r, 1−b] and [r′, 1−b], (z, [r, 1−b], 0) ≺334

(z, [r′, 1− b], 0) whenever r < r′.335

This says that, between ILs (z, [r, 1−b], 0) and (z, [r′, 1−b], 0) corresponding to bets on red from336

urns with the same minimum proportion of blue balls, the decision maker prefers the prospect337

where the minimum proportion of red balls is higher. It is straightforward to check that this is338

the property behind preference patterns (6) and (7).339

340

2.6. Implementation 2: Binary-choice procedure341

Our second elicitation technique, which we implement in tandem with 2D choice lists (Section342

3.4), is a ‘bisection-style’ binary-choice procedure for identifying the MPI. Here we set out its343

general principles; full details are provided in Appendix A.2. The logic can again be illustrated344

on Figure 1. The space of interval-valued urns is divided into four preference-defined areas,345

summarised in Table 1. The procedure is based on the following observation.346

Proposition 2. Suppose preferences are represented according to (1) with α > 1
2 , and let E be347

an event.348
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Name Preferences Colour (in Figure 1)

R-B
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
Red & Blue

W
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
White (neither Red nor Blue)

R
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
Red

B
(z, [x, y], 0) � (z, E, 0)

(0, [x, y], z) � (0, E, z)
Blue

Table 1: Preference-based division of I

a. For any point [x, y] in the R-B region (i.e. such that the corresponding preferences in Table349

1 hold, for E), p(E) ≤ x and p(E) ≥ y. Moreover, for any point [x, y] in the W region,350

p(E) ≥ x and p(E) ≤ y.351

b. For any point [x, y] in the R region (i.e. such that the corresponding preferences in Table352

1 hold, for E), every [x′, y′] with x′ ≥ x and y′ ≥ y is also in R. Moreover, for any point353

[x, y] in the B region, every [x′, y′] with x′ ≤ x and y′ ≤ y is also in B.354

It follows from part a. that if the experimenter has found a point (interval-valued urn)355

[xRB, yRB] in the R-B region (i.e. such that there is the preference pattern in Table 1, row 1),356

and a point [xW , yW ] in the W region, then the MPI is contained in the ‘box generated’ by these357

points, i.e. it is in the set {[x, y] : xW ≤ x ≤ xRB, yRB ≤ y ≤ yW }. The procedure works by358

searching the smallest such generated box for further points in R-B or W, in order to ‘reduce’359

the size of the boxes and hence ‘home into’ the MPI. In this sense, it is analogous to the bisection360

procedure for MPs, where preferences indicate that the MP is in a particular interval, and the361

procedure searches to reduce the width of that interval.362

Note that a similar result to Proposition 2 a. for the R and B regions does not hold.5363

However, by part b. it can be concluded, for any point (interval-valued urn) [x, y] in R, that364

every point North-East of [x, y] is also in R, and similarly for a point in B. So, if the experimenter365

has just discovered a point in R (i.e. the elicited preferences for the relevant urn are as set out366

in Table 1), then, to seek a point in R-B or W, she needs to look South-West of this point; and367

analogously for points in B. The procedure works, when at a point in R and B, by performing368

a bisection along one-dimensional cuts of the space I guided by this observation, until a point369

in R-B or W is found. Then the procedure between the closest R-B and W points re-applies, in370

an attempt to generate a ‘smaller’ box. Details are available in Appendix A.2.371

One final important property of the procedure used is an in-built ‘precision bias’. Whenever372

5This can be seen by considering the horizontal and vertical bold lines in Figure 1 to define four quadrants,

and by noting that there are both red and blue areas in the upper left-hand and lower right-hand quadrants.
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Type of Source of

uncertainty
Treatments # Events Elicited # subjects

EXP 1 Minimum winter

temperature (°C)

Where: Paris;

Sydney
4 MPIs, MPs (Paris) 80

EXP 2 Entrance exam

grade ( /20)

Exam: Maths,

Contraction
5 MPIs 52

Table 2: Summary of studies

no point in the areas R-B or W has been found, and hence at a stage when it is searching for373

points in these areas, the procedure deliberately moves closer to the space of precise urns (the 45◦374

line in Figure 1); again, see Appendix A.2 for details. In this way, if there is any misclassification375

of subjects, the tendency would be for the procedure to represent them as more precise than376

they actually are.377

3. Experimental Methods378

We carried out two experiments in which we used our method to elicit upper and lower CDFs for379

various sources of uncertainty. Both experiments involved two comparable yet different sources380

of uncertainty (Table 2). EXP 1 implemented a faster elicitation, eliciting probability intervals381

for fewer points per source. This left time for standard matching probability elicitation for the382

same events, which yields insights into the α-maxmin EU model (see Section 4.5). By contrast,383

EXP 2 implemented a slower upper and lower CDF elicitation, eliciting more points per source.384

It also involved an omnibus confirmation screen, allowing subjects to confirm or revise all choices385

concerning events in a source, after elicitation. In EXP 2, no MPs were elicited.386

3.1. Subjects387

132 subjects (undergraduate students) were recruited from two French academic institutions: 80388

from university of Paris 1 for EXP 1 and 52 from HEC Paris Business School for EXP 2 (Table 2).389

Subjects’ choices were collected through computer-based individual interviews that lasted about390

one hour in each of the two studies. Each individual interview started with a video presentation391

of the experimental instructions, followed by comprehension questions and one training MPI392

elicitation task (on an event not involved in the ensuing experiment).6 Appendix C reports393

the typical screenshots faced by subjects for the tasks. In both experiments, subjects were told394

that there were no right or wrong answers, and that they could ask any question regarding the395

experiment. Differences in experimental instructions between the experiments are explained in396

the sequel.397

6The video presentations are available upon request.
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3.2. Sources of uncertainty398

Each experiment involved two comparable sources of uncertainty, with one treatment for each399

source (Table 2). The type of source in EXP 1 was the minimum daily temperature over the400

previous November–March period; the sources differed in the city whose temperature was of401

interest—Paris, where the experiment was carried out, and Sydney. EXP 2 involved marks402

in two of the previous year’s entrance exams for admission at undergraduate level through403

the ‘ECS’ and ‘ECE’ entrance streams to a prominent French business school, HEC Paris.404

The subjects in the experiment—students admitted at this level at the school—had sat the405

exams either the same year or the previous year. The sources differed in the exam considered:406

the probability and statistics exam (officially called ‘Mathématiques II’), which is generally407

considered to be ‘objectively marked’, and the ‘Contraction’ exam—a summary of a philosophical408

or literary text—whose marking is considered more ‘subjective’, ‘random’ and ‘unpredictable’409

among candidates and students. Indeed, the marks in the latter exam have higher variance.7410

Each source of uncertainty involves a variable (temperature in °C, mark out of 20), the411

aim was to elicit subjects’ multiple prior beliefs—in the form of the generated upper and lower412

CDFs (Section 2.2)—over the variable. In each experiment, the subject chose a number at the413

beginning of the experiment8 which identified, according to a spreadsheet to which the subject414

would only have access at the end of the experiment, a random day D between 1 November and415

31 March of the previous Winter (in EXP 1), and a random candidate C for entry to HEC Paris416

in the previous Spring (in EXP 2). We estimated upper and lower CDFs by eliciting subjects’417

upper and lower probabilities for cumulative events, i.e. events Eti of the form: “the minimum418

temperature on day D in Paris (resp. Sydney) was less than or equal to ti”, or “candidate C419

obtained a mark less than or equal to ti in the Maths (resp. Contraction) exam” (Section 2.2),420

for various fixed values of ti given in Table 3.9421

Note that the events used pertained to time periods several months before subjects par-422

ticipated in the experiment (temperature the previous Winter, for subjects taking part in the423

experiment in Spring; exams sat the previous Spring, for subjects taking part in the experiment424

in Autumn). Moreover, there is a natural difference in the familiarity with or predictability of425

the sources involved in each experiment—with Paris’s weather being more familiar to Paris sub-426

jects than Sydney’s, and Maths considered a more predictable exam than Contraction. Finally,427

we had access to the real data for all the sources, which were used for incentivisation (Section428

3.5).10
429

7The variance of marks for Maths is 3.77, where it is 9.92 for Contraction.
8They chose a number between 1 and 150 in EXP1 (the number of days in the period considered), 1 and 456

(the number of candidates) in EXP 2.
9For each source in EXP 1, we chose temperature values close to the 10%, 33%, 66% and 90% percentiles of

the true distribution. For EXP 2, we used the same values for both sources (Maths and Contraction), picked so

they would seem to reasonably scan the range and correspond to comparable points in the true distribution over

Contraction scores, where they were at the 3% 15% 33% 68% and 86% percentiles. They were at the 0%, 0%,

2%, 21% and 60% of the true distribution of Maths scores.
10For the weather, the data source was Météo France (Paris Orly meteofrance.fr) and the Australian Bureau
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Treatment Events Eti = {t′ ∈ T : t′ ≤ t′} for ti:

EXP 1
Paris −2, 2, 5, 8

Sydney 15, 18, 20, 22

EXP 2
Maths 7, 10, 12, 15, 17

Contraction 7, 10, 12, 15, 17

Table 3: Sources of uncertainty and events

3.3. Choice Tasks430

EXP 1431

EXP 1 consisted of three blocks of tasks. Each of the first two blocks concerned a single source432

(Paris or Sydney), and involved the elicitation of the upper and lower probabilities for each of433

the events in the source (Table 3). The order of these two blocks was randomized. In each block,434

the subject first declared, in an non-incentivized manner and using a scrollbar, her estimated435

maximum and minimum values for the minimum temperature on the unidentified day selected.436

This is standard procedure in expert elicitation for unbounded sources, aimed at combatting437

anchoring bias (Morgan, 2014), and played no role in our elicitation. Then the elicitation438

procedure set out in Section 2 and implemented as described in Section 3.4 was applied for439

each event in the source. Within each block, the two extreme events (i.e. lowest and highest440

temperature points) were asked first, in a random order, followed by the other two events, in a441

random order.442

The final block involved the elicitation of MPs for the events in Paris treatment. MPs443

were elicited for each event Eti in this source and its complement Ecti (Table 3). The order of444

elicitations was randomized in this block.445

EXP 2446

EXP 2 consisted of two blocks of tasks, corresponding to the first two blocks of EXP 1. Each447

of the blocks concerned a single source (Maths or Contraction), and involved the elicitation of448

the upper and lower probabilities for each of the events in the source (Table 3). The order of449

the blocks was randomized. In each block, the elicitation procedure set out in Section 2 and450

implemented as described in Section 3.4 was applied for each event in the source. The order of451

events in each block was randomized. Each block ended with an omnibus confirmation screen,452

in which the interval-valued urns elicited for each of the events in the source were displayed and453

graphed, and the subject was given the opportunity to go back and modify any of her responses454

for the events in the source (Section 3.4). This screen, the sources and the larger number of455

of Metereology (Sydney Observatory Hill bom.gov.au); for the marks, they were provided by HEC admission

services.
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events elicited per source were the central differences with respect to EXP 1.456

3.4. Elicitation procedures457

Upper and lower probabilities in EXP 1 and EXP 2458

Our elicitation procedure follows the general hybrid structure adopted by Abdellaoui et al. (2021)459

for MP elicitation, under which a bisection procedure is used to aid subjects to fill in responses460

on a choice list, which they then confirm or modify. For each event Eti (Table 3), we first461

applied the binary-choice procedure set out in Section 2.6 and Appendix A.2. Each step of the462

procedure involved an event Eti and a 100-ball urn with a specified minimum number of blue463

and red balls, where nothing was known about the colour of the remaining balls. At each step,464

two choices were elicited from subjects: their choice in the decision between the bet on the event465

Eti and the bet on the next ball drawn from the urn being red, and their choice in the decision466

between the bet on Ecti (or against Eti) and the bet on the next ball drawn from the same467

urn being blue. (Details on the display are provided in Appendix C.) The urn proposed in the468

next step depended on the preferences elicited in the previous step according to the procedure469

(Section 2.6 and Appendix A.2). The subjective probability interval for Eti elicited at the end of470

the procedure is deduced from the preferences over such bets, as specified in the cited sections.471

The procedure continued until the interval was estimated to a precision of 0.15 if it was not472

degenerate, 0.05 if it was degenerate (i.e. corresponding to a precise probability), or up to 12473

steps, whichever came first.474

At the end of the binary-choice procedure, the ‘confirmation’ 2D-choice list described in475

Section 2.5 was displayed for verification. Although the ‘space of choices’ to be confirmed is the476

two-dimensional ‘cross’ in Figure 1, we implemented it via a one-dimensional scrollbar-based477

display with two cursors (see Appendix C). The cursors specified the minimum number of red478

and blue balls respectively, and hence together determined an interval-valued urn. They were479

initially set at the values determined by the binary-choice procedure. To confirm the whole 2D-480

choice list, the subject had to scan all the associated choices. When moving the red cursor, the481

blue cursor remained fixed at the pre-specified value. This accentuates the separate nature of482

the cursors, which cannot be moved in tandem. By moving the red cursor, the subject scanned483

all the urns with the same minimum number of blue balls but differing minimum numbers of red484

balls, i.e. the choices represented by the bold red horizontal line in Figure 1. During this scan485

the corresponding choices between the bets on the event Eti and the bets on red from the urn486

were displayed, with the ‘chosen bet’, specified as in Section 2.5, being indicated (i.e. the bet on487

the urn when there are more red balls than the provisionally elicited point; the bet on the event488

otherwise). The subject also had to scan the choices associated with moving the blue cursor—489

there, the red cursor (and hence minimum number of red balls) was held fixed. When moving490

the blue cursor, the choices between the bets on Ecti and the bets on blue from the urn were491

displayed (with the corresponding choice, following the logic in Section 2.5). This corresponds492

to scanning the choices represented by the bold blue vertical line in Figure 1. By clicking on the493
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appropriate bet (on the event or the urn) in any of the displayed choices, subjects could revise494

their reported preferences, hence modifying the specified position of the fixed cursors (and the495

associated provisionally elicited point). After such modifications, subjects had to reconfirm all496

of the associated choices, by moving one and then the other cursor, before moving on to the next497

stage of the experiment. The precision of the scrollbar, and hence subject responses, was to the498

nearest 0.01 (to the precise minimum number of red and blue balls out of 100 respectively).499

Omnibus confirmation screen in EXP 2500

In EXP 2, after the procedure described above was completed for all the events in the source,501

the subject was asked to confirm all the elicited values, and given the opportunity to modify502

responses. The confirmation screen displayed the interval-valued urns elicited for the five events503

in the source. Moreover, this information was summarized in a graph displaying the minimum504

number of red and blue balls for each event (see Appendix C). Hovering the mouse over the505

points on the graph caused the associated interval-valued urn to be highlighted. By clicking506

on the point on the graph or the urn, the subject could access the corresponding two-cursor507

scrollbar confirmation screen at the end of the binary-choice procedure for that event, where she508

could change her choices in exactly the same way as set out above.509

Matching probabilities in EXP 1510

The MP of the bet on a given event was elicited through a two-step procedure, from which511

our multiple prior elicitation procedure was inspired. First, a candidate MP was determined512

through a bisection process (Abdellaoui et al., 2008) that consisted in a chained sequence of513

binary choices between the bet on the event and an urn whose composition was fully known.514

Starting with a binary choice between (z, [1
2 ,

1
2 ], 0) and (z, E, 0), it then asks a binary choice with515

the midpoint of the lower (respectively upper) interval [0, 1
2 ] (resp. [1

2 , 1]) whenever the subject516

chooses the former (resp. latter) option, and so on. The displays used were similar to those517

described above. Then the complete confirmation (one-dimensional, single cursor) scrollbar-518

based choice list, filled in according to the prior bisection choices, was displayed for verification.519

The precision of the elicited MP was to the nearest 0.05.520

3.5. Incentivizing subjects521

Participants in all studies received a flat payment of €10. Additionally, a random incentive522

system was implemented, which was entirely analogous to those standardly used to implement523

elicitation of matching probabilities. As noted above, after the presentation of the instructions524

and before the beginning of the experiment, the subject chose a number from a given range,525

which identified an individual case of the variable of interest (the day, if the source was minimum526

temperature; the candidate, if the source was the mark). The exact case identified was specified527

according to a spreadsheet that would only be revealed at the end of the experiment. This is528

in concordance with the approach set out by Johnson et al. (2021), who argue that it reduces529
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hedging motivations, given the well-known fact that ambiguity models are indifferent to ex ante530

hedging. At the end of the experiment, a choice list (a 2D-choice list or MP-choice list in531

EXP 1; a 2D-choice list in EXP 2) and choice on it were chosen at random by the computer.532

The subject was then paid according to the decision she had made on that choice. If she had533

chosen, say, the bet on the event that the minimum temperature in Paris is less than or equal534

to 2°C, then the day which she chose was revealed, as well as daily temperature data for the535

November–March period, and she won if the minimum temperature on that day was indeed 2°C536

or less; if not, she lost. If she had chosen the urn, then she composed the appropriate urn—she537

counted the specified minimum numbers of red and blue balls, with the remaining balls coming538

from pre-constructed Ellsberg urns (of unknown composition). Then a ball was drawn from the539

constructed urn, and she was paid according to whether she bet on the color of that ball or not.540

All bets yielded 20€ if won, and nothing otherwise.541

4. Results542

4.1. Descriptive Statistics and Performance543

Figure 2 plots the median, 25% and 75% quantile upper and lower CDFs for all elicited events and544

both experiments (see Tables 5–6 in Appendix B.1 for basic descriptive statistics). This Figure545

already gives some early indications about our results, and the performance of our elicitation546

method.547

First of all, it reports ‘well-behaved’ upper and lower CDFs with probabilities differing across548

subjects and events—thus suggesting the consistency of the method. The elicited points for both549

upper and lower CDFs were also consistent across the successive steps of the elicitation procedure:550

the binary-choice procedure and the confirmation 2D choice list (Tables 5–8, Appendix B.1).551

Moreover, it suggests that, in the aggregate, upper and lower CDFs are increasing, as they should552

be. Figure 3 plots descriptive statistics of the empirical distribution of individual Kendall τb553

rank correlation coefficients between the size of events and the upper (resp. lower) probabilities554

or MPs elicited for each source (see also Table 10, Appendix B.1). As is clear from the Figure,555

the median Kendall τb is far greater than 0 for all sources, pointing to increasing upper and556

lower CDFs. There is however a notable difference between EXP 1 and EXP 2. In EXP 2,557

where subjects were given the opportunity to confirm all their replies on all the 2D choice lists558

for a source (Section 3.4), CDFs were strictly increasing for the vast majority of subjects. In559

EXP 1, where 2D choice lists were confirmed after consideration of the event and there was560

no opportunity to reconfirm later, there were more violations of monotonicity. Comparison561

of the (cognitively less demanding) MPs with upper and lower CDFs in the Paris treatment,562

whose median Kendall ranks are similar (Figure 3a), suggests that such violations were not563

unique to the elicitation method proposed here. As could have been expected, the frequency of564

monotonicity violations appears to increase with the difficulty of the choice task, with the MP565

task being arguably easier than that for probability-interval elicitation, and the task for Paris,566
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Figure 2: Median, 25% and 75% quantile ranges of upper and lower CDFs

the more familiar source for our subjects, being easier than that for Sydney.567

4.2. Bayesian analysis568

We also adopt a standard Bayesian approach, estimating hyperparameters for upper and lower569

CDFs using a MCMC procedure. We run estimations for each source under the assumption that570

upper and lower CDFs follow a (truncated) normal distribution, and under a Beta distribution571

(Table 14, Appendix B.2). As shown in Table 4, the Beta distribution has the best goodness of572

fit under both the AIC and BIC criteria for the sources in EXP 1, whereas the truncated Normal573

distribution performs better according to both criteria for the sources in EXP 2. Henceforth,574

we present the results under these distributions (the analyses under the other distributions are575

given in Appendix B.2).576

Figure 4 plots 1000 MCMC samples for each of the upper and lower distributions, for each577

source. (Statistics on the distributions of parameters are given in Tables 15–22, Appendix578

B.2.) They suggest that the proposed elicitation technique supports parametric estimation of579

subjective probability intervals in the population, insofar as they chime with expectations given580

the nature of the events. For instance, they suggest that the dispersion of subjective upper and581

lower probabilities is larger for the temperature source (EXP 1) than the grade source (EXP 2),582
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Figure 3: Individual-level Kendall τb for upper and lower CDFs for the

sources for each experiment, and for the MPs in EXP 1, Paris treatment.

In the case of MPs, the Lower MP is calculated using the MPs of the events Et (and

should be increasing in t), whereas the Kendall τb for upper MPs are calculated using one minus

the MPs of complementary events Ect (which should be increasing with t).

Note: The Kendall τb is an indicator of ordinal association: the value 1 indicates that the CDFs or MPs

are strictly increasing; 0 suggests that there is no association between the elicited probability and the

size of the event; −1 indicates a strictly decreasing relationship between the two.

Paris Sydney Mathematics Contraction

AIC
normal 706.65 700.79 411.22 385.52

beta 648.26 684.36 416.18 390.64

BIC
normal 711.42 705.56 415.12 389.42

beta 653.02 689.12 420.08 394.54

Table 4: AIC and BIC under (truncated) normal and Beta specifications for CDFs (Table 14).
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Figure 4: Bayesian estimation of lower and upper CDFs: plots of 1000 samples from MCMC.

(Beta distribution for EXP 1; Truncated Normal distribution for EXP 2)

which could be related to the fact that all subjects in EXP 2 had sat both exams, and were very583

interested in the marking, several months before. Also, within EXP 1, there is more dispersion584

in the estimated distributions for Sydney than for Paris, as would be expected given the less585

familiar nature of the former source for Paris subjects.11
586

4.3. Imprecision587

Both the graphs of raw data (Figure 2) and those emerging from the Bayesian analysis (Figure588

4) suggest that subjects’ beliefs are often imprecise: i.e. there is a gap between their upper589

and lower probabilities. Indeed, two-sided Kolmogorov-Smirnoff tests of the hypothesis that590

the median upper and lower CDFs are drawn from the same distribution reject the hypothesis591

for each source (p < 0.0001 in all cases), suggesting a gap between upper and lower CDFs.592

For further analysis, we define the following index. For an event E from a given source (e.g.593

minimum temperature in Paris), we say that a subject’s imprecision concerning E is p(E)−p(E),594

i.e. the width of her (elicited) probability interval for E. A subject’s Imprecision Index for a595

source is defined to be her average imprecision across all elicited events in the source:596

11More precisely, it is clear from Tables 16 and 18 that the standard deviations of the parameters for the Paris

source are lower than for Sydney.
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Figure 5: Imprecision Index (Eq. (8)) across sources in EXP 1 and EXP 2

II =
1

n

n∑
i=1

(
p(En)− p(En)

)
. (8)

This clearly gives an indication of how imprecise the subject’s beliefs are, on average, for events597

in the source. Naturally, an SEU decision maker will assign precise probabilities to all events,598

and hence have an imprecision index of 0 (for all sources).599

Figure 5 displays the mean, median, 25% and 75% quantile, and max and min Imprecision600

Indices across all sources in both experiments (see also Table 11, Appendix B.1). It clearly601

suggests a tendency towards imprecision, with mean and median Imprecision Indices greater602

than 0.1 for all sources. Two-sided binomial tests reject the hypothesis of equal probability for603

the Imprecision Index to be equal to vs. greater than 0 for each source (p < 0.0001 in all cases),604

with a clear majority of subjects—74 out of 80 in EXP 1, and 49 out of 52 in EXP 2—having605

strictly positive Imprecision Indices.606

The general message of widespread imprecision is confirmed by data on the number of precise607

events—events for which the subject’s elicited upper and lower probabilities coincide (Table 12,608

Appendix B.1). Not more than around 5% of subjects gave precise probabilities for all events in609

a single source. Only 2 subjects (out of the 132 participating in both experiments) gave precise610

probabilities for all events elicited. The data in Table 12 also allows a check on the extent to611

which this imprecision could be driven by the binary-choice procedure, insofar as it gives the612

number of precise events after the binary-choice procedure and before the confirmation 2D choice613

list, as well as after confirmation. The general finding of few fully precise subjects holds both614

before and after the confirmation stage. Moreover, relatively few subjects change to fully precise615

probabilities for all events of the source (at most 3 out of 80, for Sydney in EXP 1), with several616

fully precise subjects introducing imprecision during the confirmation stage, especially in EXP617

2.618

Delving further, we also investigate imprecision at the event level within sources. Figure 6619

plots CDFs of the imprecision for each elicited event in each of the experiments and sources,620
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Figure 6: CDFs of Imprecision across subjects, for each elicited event

across subjects. One-way ANOVAs of the imprecision (dependent variable) against the event621

(factor) reject the null hypothesis of identical imprecision across all events for the sources in EXP622

2 (p < 0.001 for Maths; p = 0.003 for Contraction), whilst failing to reject it for the sources in623

EXP 1 (Table 13, Appendix B.1.1). This suggests not only that imprecision is widespread, but624

that imprecision may be event dependent within sources, as one would expect if some events625

are intuitively more uncertain than others. For instance, the least imprecise event in EXP 2626

involves, for both sources, the lowest grade, where many subjects are presumably more sure of627

their judgements.628

In summary, the development of a method for eliciting multiple priors does not emerge from629

this analysis as devoid of relevance: rather, it reveals that, when given the possibility to ‘express’630

the imprecision implied by non-degenerate probability intervals, many subjects do, at least for631

the events considered here. Moreover, at least within some sources, the extent of imprecision632

may depend on the event.633
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Figure 7: CDFs of Imprecision Index (Eq. (8))

4.4. Imprecision and familiarity634

One reasonable hypothesis is that ceteris paribus subjects’ beliefs are more imprecise concerning635

events with which they are less familiar, or about which they feel as if they have less knowledge.636

In terms of multiple priors models, this corresponds to the probability intervals for the events637

being wider. Since, as explained in Section 3, each of our experiments features two sources638

with which our subjects will typically have different levels of familiarity, or which they naturally639

consider as having different levels of predictability, a natural conjecture would be that imprecision640

would be larger for Sydney than Paris, and for the Contraction grade than the Maths one. After641

all, Paris subjects are less familiar with the weather in Sydney than that in Paris; and the642

Contraction exam is generally considered to be ‘less predictable’ than the Maths one (Section643

3.2).644

Figure 7 plots the CDFs of the Imprecision Index defined above (Eq. (8)) across subjects, for645

the pair of sources in each experiment. A two-sided paired t-test barely fails to reject the null646

hypothesis of identical Imprecision Indices across the sources in EXP 1 (p = 0.0895), whilst it647

rejects it for EXP 2 (p = 0.0016). A two-sided Binomial test with null hypothesis that an equal648

number of subjects have larger Imprecision Index under one source than the other fails to reject649

the null hypothesis for EXP 1 (p = 0.576), but rejects it for EXP 2 (p = 0.017). Rerunning the650

latter test using the results of the Bayesian analysis—i.e. for each experiment and source, using651

the posterior distribution over parameters obtained from the Bayesian estimation to sample 1000652

tuples of parameters determining the upper and lower distributions, and computing, for each653

tuple, the Imprecision Index as defined in Eq. (8)—yields a rejection of the null hypothesis654

across the sources for both EXP 1 and EXP 2 (p < 0.001 in both cases). These findings confirm655

the expected relationship between imprecision and predictability in EXP 2: indeed, in Figure656

7, the CDF for Contraction—known as the less predictable exam—is entirely to the right of657

that for Math, indicating a larger Imprecision Index. They also point to a similar relationship658
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between imprecision and familiarity in EXP 1: again, with Figure 7 suggesting that CDFs for659

Paris are generally more precise.660

That the expected relationship between imprecision and familiarity or predictability emerges661

can also be seen as providing further indirect evidence as to the solidity of the proposed elicitation662

method.663

4.5. Matching probabilities and the α-maxmin EU mixture coefficient664

Recall that EXP 1 contained a supplementary treatment in which the MPs were elicited for the665

Paris events Eti and Ecti for which probability intervals had been elicited (Table 2). Henceforth,666

we denote the MP of an event E by MP (E). Under SEU, MP (Eti) = 1 −MP (Ecti) = p(Eti),667

the subjective probability of Eti , for all Eti . So, as is well-known, comparing MP (Eti) and668

1−MP (Ecti) provides an indication into the violation of SEU. Under the α-maxmin EU model669

(1), we have the following equations:670

MP (Eti) = αp(Eti) + (1− α)p(Eti) (9)

1−MP (Ecti) = αp(Eti) + (1− α)p(Eti) (10)

Drawing on the elicited MPs and our elicitations of upper and lower probabilities, the equations671

(9) and (10) can be used to elicit the mixture coefficient α in the Hurwicz α-maxmin EU model.672

Under analysis using the raw data, the median α across subjects is 0.80 (Table 24, Appendix673

B.3). We also perform a Bayesian estimation of the α in tandem with the lower and upper CDFs,674

combining equations (9) and (10) and the MP data with our upper and lower CDF elicitations675

(see Appendix B.2, Tables 15 and 16). Figure 8 plots the distribution over α resulting from this676

estimation. The Bayesian mean for α is at 0.81, which is broadly consistent with the finding677

from the raw data. As discussed at more length in Section 5, this is, to our knowledge, the first678

direct choice-based elicitation of the α in the α-maxmin EU model that fully controls for the679

set of priors by eliciting the relevant information about them without making any assumption680

about their shape.681

682

5. Discussion683

The proposed method elicits non-degenerate and reasonable upper and lower CDFs. Our elicita-684

tions also show that imprecision—a gap between upper and lower probabilities—is widespread,685

with few subjects having precise probabilities for all events. Moreover, they bring out some686

determinants of imprecision. For some sources, the width of probability intervals may vary687

according to the event elicited; moreover, average imprecision decreases with the familiarity of688

the source of uncertainty, as one might expect. Finally, we draw on our probability interval689

26



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Alpha

0

2

4

6

8

10

D
en

si
ty

Figure 8: PDF of α from the Bayesian estimation (EXP 1, Paris treatment)

elicitation to elicit the mixture coefficient in the Hurwicz α-maxmin EU model—the first such690

elicitation, to our knowledge, to fully control for beliefs.691

We now discuss the robustness of our procedure, some related literature, and some directions692

for future development.693

Robustness Our approach has been presented in terms of the popular Hurwicz α-maxmin EU694

decision model (Section 2), which is doubtless one of the most general decision models in which695

the ‘belief component’ of the representation is just a set of priors. However, many of the central696

elements of the approach generalise to other models, including extensions building on sets of697

priors but weakening the linearity of the Hurwicz function form (1) to account for probability698

weighting, for instance (see Appendix A.3 for details). First of all, the notion of MPI remains699

well-defined for all such extensions, and the decision maker’s subjective probability interval is700

always a MPI. Though MPIs are not guaranteed to be unique for every conceivable extension701

of this sort, they are essentially unique for a family of reasonable extensions (Appendix A.3).702

Second, the 2D choice list incentivization mechanism only relies on the weak Lower Stochastic703

Dominance property of preferences (Definition 1, Section 2.5). Apart from the maxmax-EU704

model (i.e. (1) with α = 0), which is very rarely found in subjects, this property is satisfied by705

any reasonable decision model generalising α-maxmin EU to allow for nonlinear dependence of706

preferences on upper and lower probabilities (Appendix A.3). In this sense, the 2D choice list707

incentivization mechanism is widely valid. Finally, whilst the binary-choice procedure relies on708

the strongest assumption made in Section 2—that α > 1
2—there is independent evidence that709

this holds for most of our subjects (Appendix A.3). As noted in Section 3.4, it is the 2D choice710

list confirmation task that counts for incentivizing subjects’ choices, the binary-choice procedure711

playing the role of an aid to completing it.712

The 2D choice list mechanism is incentive compatible whenever subjects treat the branches in713

the choice list in isolation from each other (Section 2.5); if this isolation assumption is violated,714

strategic choice may occur. Our implementation was designed to favour such isolation, notably715
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via the realisation of 2D choice lists by a single scrollbar with two cursors (Section 3.4 and716

Appendix C). Visually very different from Figure 1, this presentation promotes considering717

each branch in isolation and is less suggestive of strategic opportunities of changing the choice718

lists by ‘moving around the 2D space’. Notwithstanding this, the extent to which isolation719

holds in our experiments is ultimately an empirical question, and we treat it as such. On this720

front, the proposed elicitation method has the advantage that strategic reasoning leads to easily721

recognizable choice patterns. As discussed in Appendix A.3.2, for a subject represented by (1)722

with α ∈ (0, 1) (and any set of priors), her optimal response to the 2D choice list task when723

reasoning strategically is one of the points [0, 0], [0, 1], [1, 1]: i.e., one of the vertices of the space724

of interval-valued urns in Figure 1. Examining the concentration of responses at the vertices thus725

provides insight into the extent of strategic reasoning in our subject pool. Our data suggests that726

it is very limited: in EXP 1, only one subject (out of 80) reported vertex points for more than727

half of the elicited events,12 whereas for no subject in EXP 2 were more than half of the elicited728

points among the vertices (Table 9, Appendix B.1; see Appendix A.3.2 for further details).729

Related literature Our elicitation method relates to existing experimental and theoretical730

literature on multiple prior models, and the α-maxmin EU model in particular. Part of this731

literature is concerned with testing such models, or comparing them to others (e.g. Hey et al.,732

2010; Baillon and Bleichrodt, 2015); by contrast, the aim here is to elicit probability intervals733

in the context of a fairly general multiple prior model. Similarly, there is a literature studying734

willingness to bet on objectively-given probability intervals based on interval-valued urns (e.g.735

Baillon et al. (2012); Chew et al. (2017)) using matching probabilities or certainty equivalents.736

The present paper, by contrast, uses such urns in the context of the different task of eliciting737

subjective probability intervals.738

On the theory side, the challenge of incentive-compatible elicitation of multiple prior beliefs739

under α-maxmin EU is related to identification issues with this model, arising from the fact that740

different pairs of mixture coefficient α and sets of priors can represent the same preferences over741

(Savage or Anscombe-Aumann) acts. Proposed approaches to this challenge include pinning742

down the set of priors using ‘unambiguous preferences’ (Ghirardato et al., 2004), though this743

has problems in finite state spaces (Eichberger et al., 2011), or enrichening the state space to744

include an infinite product structure and invoking symmetry axioms (Klibanoff et al., 2021). An-745

other line of attack concentrates on special cases of the α-maxmin EU model, notably involving746

some form of probabilistic sophistication, i.e. the assumption that there are precise probabilis-747

tic beliefs which completely determine the contributions of events to preferences (Machina and748

Schmeidler, 1992; Chew and Sagi, 2006). Working with a rich state space à la Savage, Gul and749

Pesendorfer (2014, 2015) obtain a unique identification of α and the set of priors whenever the750

latter is generated as the set of extensions of a precise probability measure on a subalgebra of751

events. (Grant et al. (2019) have extended this approach beyond the assumption of linearity752

12He / she reported 3 points out of 4 as [0, 1], for both sources.
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in upper and lower probabilities built into α-maxmin EU; see Appendix A.) Chateauneuf et al.753

(2007) obtain a unique identification of α and the set of priors whenever the latter is gener-754

ated from a precise probability measure via ε-contamination, i.e. mixture with the set of all755

probability measures. As stated in the Introduction, we specifically avoid the sort of proba-756

bilistic sophistication assumption behind these approaches, motivated by the observation that757

such assumptions are inadmissible precisely in those situations where multiple prior beliefs are758

most relevant. Indeed, our procedure takes a different approach, based on interval lotteries,759

with no need for specific richness assumptions on the state space, probabilistic sophistication,760

or any other (non-standard) assumptions on the set of priors. Hill (2021) provides an axiomatic761

foundation for α-maxmin EU and extensions by generalising the elicitation principle used in the762

present paper.763

On the experimental front, there is a small literature dealing with incentive-compatible764

elicitation of multiple priors. One family of approaches purport to elicit multiple priors as the765

support of second-order beliefs, represented as a measure over the space of probability measures.766

Beyond the assumption of second-order beliefs, which is foreign to the original multiple prior767

models (Gilboa and Schmeidler, 1989; Bewley, 2002; Ghirardato et al., 2004), these often make768

further assumptions about the role of these second-order beliefs in choice. For instance, Qiu and769

Weitzel (2016) elicit subjects’ distributions over the matching probabilities of other participants770

in the experiment, and purport to deduce subjects’ own second-order beliefs from these, relying771

on the assumption that a subject’s opinions about others’ matching probabilities coincides with772

the uncertainty surrounding her own assessment. In a theoretical paper, Karni (2020) develops773

an ingenious incentive-compatible mechanism for eliciting second-order beliefs and the associated774

set of priors (as the support), relying on a three-period setup. The mechanism assumes that the775

subject’s second-order beliefs coincide with her beliefs about what she will believe in the interim776

period. As made clear above, our method relies on no assumptions beyond the α-maxmin EU777

model (or appropriate weakenings thereof), and in particular there is no role for second-order778

beliefs or assumptions on how they relate to other beliefs.779

Another family of approaches draws on the theoretical literature discussed above, and in780

particular on the probabilistically sophisticated special case studied by Chateauneuf et al. (2007),781

where the subject’s set of priors is generated as the ε-contamination of a single probability782

measure with the space of all priors.13 Dimmock et al. (2015); Baillon et al. (2018b,a) use783

elicitation of standard MPs (in the case of the last paper, certainty equivalents) to estimate784

‘ambiguity indices’, from which one can back out the mixture coefficient α and the parameters785

of the ε-contaminated set of priors. As noted previously, multiple prior decision models come786

to the fore in situations where preferences cannot be reasonably assumed to be generated from787

precise probabilities, and our elicitation technique was specifically designed to be independent788

of the assumption of probabilistic sophistication for this reason. Moreover, our data provides789

13Formally, the assumption is that the set of priors C = {(1− ε)p+ ε∆}, where ∆ is the space of all probability

measures, p is an element of ∆ and ε ∈ [0, 1].
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empirical insight into the aforementioned probabilistic sophistication assumption. In particular,790

this assumption implies that the imprecision (in the sense of Section 4.3) is the same for all791

events.14 As noted in Section 4.3 (see also Table 13, Appendix B.1.1), our observations reject792

this equality for the sources in EXP 2, though not for the sources in EXP 1. This suggests that793

there are sources for which their method’s underlying assumption does not hold. That said, it794

may be viable on some sources; indeed, our data indicate that the Paris source in EXP 1 may be795

one such source. And in fact, we can estimate the ambiguity indices used in the aforementioned796

papers on the basis of the data from our study (EXP 1, Paris treatment) under their assumption797

about the set of priors,15 and find, for instance, that they yield the value 0.82 for the mixture798

coefficient α—which, reassuringly, is close to the Bayesian and raw estimates reported in Section799

4.5. So not only is our elicitation method more robust, insofar as it applies in situations where800

the assumptions underlying their approach do not hold, it can evaluate precisely in which cases801

they do hold; in those cases, their approach, implemented on our data, gives the same result as802

our ‘direct’ elicitation.803

Going beyond the lab, there is a large and growing literature on elicitation of multiple priors804

or imprecise probabilities in a range of disciplines, from economics to climate science. All such805

elicitation exercises of which we are aware use stated probability intervals, and as such are not in-806

centive compatible. For instance, Giustinelli et al. (2021) elicit beliefs on dementia and long-term807

care decisions in a large-scale representative survey (over 1000 subjects), allowing stated prob-808

abilities to be interval-valued. Consistently with our results (Section 4.3), they find widespread809

imprecision. They argue forcefully for the importance of probability-interval elicitation for re-810

ducing survey bias and understanding attitudes to and behavior in the face of high-uncertainty811

events, such as whether one will develop dementia and whether one should insure against it. In812

another approach, in another domain, Kriegler et al. (2009) elicit beliefs of selected scientists813

(around 50 subjects) concerning climate tipping points, allowing participants to state probability814

intervals for these (notoriously uncertain) events. Such expert elicitations, which involve often815

time-consuming and individualised sessions with selected experts, have emerged as a central816

tool for managing complex uncertainties (Morgan, 2014). Though they have traditionally aimed817

at eliciting precise probabilities, Kriegler et al. (2009) shows that imprecision is widespread for818

some events, and hence once again argue for the relevance of probability-interval elicitation.819

14If the set of priors is as defined in footnote 13, then, for any E, (1 − ε)p(E) ∈ [0, 1 − ε], so the probability

interval for event E is [(1− ε)p(E), (1− ε)p(E) + ε], and hence the event has imprecision ε.
15Specifically, Baillon et al. (2018b) propose the average of 1 −MP (E) −MP (Ec) over a selection of events

as their measure of the ‘ambiguity aversion index’ b. The average for the events elicited here can be deduced

directly from Table 25 (Appendix B.4), as around 0.16. On the other hand, under (1) with the specified form

for the set of priors (see footnote 13), their ‘a-insensitivity index’ a = ε. Under such sets of priors, as noted in

footnote 14, every E has imprecision ε. The average imprecision, as measured by the Imprecision Index (Table

11), thus gives an estimate of their a: it is around 0.25. The mixture coefficient α is related to these indices by

α = 1
2

(
b
a

+ 1
)
(Baillon et al., 2018b,a), yielding the value in the text.
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Future Directions Two leitmotivs emerge from the literature review. On the one hand, our820

results are consistent with existing studies suggesting that imprecision is widespread for some821

events. However, based as they are on an incentive-compatible, choice-based and theoretically822

robust elicitation method, our results are less open to criticisms of existing studies pointing to823

a lack of incentive compatibility or the reliance on a specific model. On the other hand, as824

we saw on the ε-contamination example, our method can be used to evaluate the assumptions825

behind—and hence the effectiveness of—existing methods.826

The latter point suggests one direction for future research. As noted, stated probability827

intervals are typically used in large-scale surveys (such as Giustinelli et al. 2021), but how close, or828

far, are subjects’ stated probability intervals from their actual multiple prior beliefs? Our method829

can be used to provide insight into this question, for instance by eliciting probability intervals830

with both the proposed method and stated procedures for the same subjects and on the same831

set of events, and comparing the results. Although the ‘test’ events should involve uncertainty832

that resolves in a reasonable timescale for payment of the incentives—so the method can be833

applied in an incentivised fashion—the conclusions of such a comparison may be extrapolated to834

situations where incentive payement is infeasible, for instance if the events of interest are too far835

in the future (e.g. number of global pandemics before 2100) or counterfactual (e.g. how many836

pandemics would there be if 60% of original wild habitats had been protected). As such, our837

method can be used to corroborate, refine, correct and chose between existing stated approaches.838

Moreover, although our method was developed with the aim of demonstrating the possibility839

of choice-based incentive-compatible probability-interval elicitation, future research could op-840

erationalise simpler, parametrised versions, with fewer choice questions, which would be more841

implementable in field studies. Large-scale surveys often use choice tasks without necessar-842

ily incentivising them (e.g. Falk et al., 2018), and questions formulated in terms of bets may843

trigger different cognitive mechanisms to those formulated in terms of judged probabilities.844

Our method could thus lay the foundations of a bet-based approach to add to the arsenal of845

probability-interval elicitation procedures used in practice.846

Finally, analogous possibilities exist for expert elicitation exercises, of the sort cited above.847

Compared to survey studies, these typically involve fewer subjects, with each spending more848

time; the flip side is that more precision is desired of the elicitation at the individual level. EXP849

2 suggests that our method may provide the appropriate individual-level probability-interval850

elicitation, whilst having theoretically well-founded incentive-compatibility properties. Proba-851

bility elicitation exercises in decision analysis often use bet-based choice tasks without necessarily852

incentivising them (e.g. Clemen and Reilly, 2013); again, our method, applied in this context,853

complements existing stated approaches to eliciting probability intervals.854

6. Conclusion855

This paper proposes and implements a solution to the open problem of choice-based incentive-856

compatible elicitation of multiple prior beliefs. It comprises a new preference-based notion—857
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Matching Probability Intervals—and probability-interval analogues of standard choice lists and858

bisection elicitation procedures. Theoretically, it operates in the context of the Hurwicz α-859

maxmin EU model and in the absence of strong assumptions about subjects’ sets of priors, most860

notably any form of probabilistic sophistication.861

Our implementation of the elicitation method, in two experiments to elicit subjective upper862

and lower CDFs over continuous-valued sources of uncertainty, testifies to its feasibility. It863

finds a predominance of imprecision—a gap between upper and lower probabilities—across our864

subjects, for all explored sources, showing it to be related to familiarity or predictability. It also865

allows us to perform what, to our knowledge, is the first elicitation of the mixture coefficient in866

the α-maxmin EU model that fully controls for beliefs.867
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A. Theoretical Appendix868

In order to bring out the robustness of our proposal, and the assumptions underlying it, we shall869

at times work with a more general decision model than Hurwicz α-maxmin EU (1). Consider870

the representation where a bet (z, E, 0) is evaluated according to:871

W (p(E), p(E)).u(z) (11)

where p(E), p(E) and u are as in Section 2.3, and W is an ‘aggregation function’, which is872

continuous in both coordinates and normalised—W (x, x) = x for all x. α-maxmin EU is the873

special case where W is linear: W (x, y) = αx + (1 − α)y. See Grant et al. (2019) for an874

axiomatisation of a special case of (11) where the set of priors is generated by a probability875

measure on a subalgebra, and a thorough discussion of its potential. As in Section 2, we assume876

the same representation for imprecise risky prospects.877

Note that, unlike α-maxmin EU, the general form (11) can accommodate non-linear, Prospect-878

Theory-style weighting of the lower and upper probabilities, for instance taking W (x, y) =879

αw(x) + (1− α)w(y), where w is a Prospect-Theory-style weighting function.880

A.1. Proofs881

We prove Proposition 1 under representation (11). As noted above, the α-maxmin EU model is882

a special case.883

Proof of Proposition 1. Under (11), it follows from the first preference pattern in Proposition 1884

that W (q, 1− b) > W (p(E), p(E)) for all q > r, and similarly for the others. By the continuity885

of W , it thus follows from the first two preferences that W (r, 1 − b) = W (p(E), p(E)), and886

from the second pair of preferences that W (b, 1 − r) = W (1 − p(E), 1 − p(E)). It thus follows887

that (z, [r, 1 − b], 0) ∼ (z, E, 0) and (0, [r, 1 − b], z) ∼ (0, E, z), so [r, 1 − b] is a MPI for E, as888

required.889

Note that the converse of Proposition 1 holds—i.e. for any MPI, the preference pattern in890

the Proposition holds—whenever W is strictly increasing in the first coordinate; this is the case891

for α-maxmin EU model with α > 0.892

Proof of Proposition 2. Part a. Plugging in the representations (1) and (2), any [x, y] in the893

R-B region satisfies:894

αx+ (1− α)y ≥ αp(E) + (1− α)p(E)

α(1− y) + (1− α)(1− x) ≥ α(1− p(E)) + (1− α)(1− p(E))

By basic algebra (add α times the first inequality to (1 − α) times the second), one obtains895

(α2− (1−α)2)x ≥ (α2− (1−α)2)p(E), whence it follows, since α > 1
2 , that x ≥ p(E). Similarly,896
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one obtains ((1− α)2 − α2)y ≥ ((1− α)2 − α2)p(E), whence, since α > 1
2 , y ≤ p(E). A similar897

argument establishes the result for points in W.898

Part b. follows directly from the fact that, under 2, whenever x ≤ x′ and y ≤ y′, then899

(z, [x, y], 0) � (z, [x′, y′], 0) and (0, [x, y], z) � (0, [x′, y′], z).900

We state for completeness the result on the uniqueness of the MPI.901

Proposition 3. For any decision maker represented according to (1) with α 6= 1
2 , and for any902

event E, there is a unique MPI for E.903

Proof. Existence is immediate from Eqs. (3) and (4). Uniqueness is immediate from the linearity904

of the indifference curves in I-space (see Figure 1).905

A.2. Binary-choice procedure906

A.2.1. Introduction and setup907

Our binary-choice procedure is fully described in Figures 10–13. Figure 10 sets out the general908

structure (and stopping rules). At each step of the procedure, preferences are elicited for a single909

probability interval [p
i
, pi]: i.e. preferences between the bet on the event and the IL (z, [p

i
, pi], 0),910

and between the bet on the complement event and the complementary IL (0, [p
i
, pi], z). The911

heart of the procedure, detailed in Figures 11–13, involves specification of the next probability912

interval proposed for elicitation on the basis of the preferences concerning the previous intervals.913

We first set out the notation used in the presentation of these parts of the procedure, before914

explaining informally its main steps. Throughout, we adopt the Euclidean topology on I ⊆ R2,915

and let d(•, •) be the Euclidean distance.916

The procedure draws on two formal elements. The first is the assignment of interval-valued917

urns—or equivalently probability intervals—to preference-defined regions, discussed in Section918

2.6. Recall from Section 2.1 that an interval-valued urn [p, q], i.e. with a minimum proportion p919

of red balls and a minimum proportion 1− q of blue balls, corresponds to a probability interval;920

we shall present the procedure in terms of the latter here. For every event Ei and urn [p, q],921

the preferences in the choices between the bet on Ei and that on a red ball being drawn from922

the urn, and between the bet on Eci and that on blue from the urn suffice to situate [p, q] in923

one of the four regions, R−B,W,R,B defined in Table 1 (Section 2.6). For instance, in Figure924

9, which we shall use to illustrate the procedure, the probability intervals already elicited are925

the dots coloured white, red, blue and red-blue according to the (preference-based) region they926

belong to.927

The second element is a ‘polar’-style coordinate system for the set of probability intervals928

I, under which, informally, (m,α) ∈ [0, 0.5] × [0, 1] is the probability interval that is α along929

the piecewise-linear line that goes through the probability intervals [0, 0], [1, 1], and [m, 1−m]930

(corresponding to the urn with at least proportion m of red balls and at least proportion m of931

blue balls). The thick grey line in Figure 9 is one such line. Formally, σ : I → [0, 0.5]× [0, 1] is932

defined by:933
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σ([p, q]) =



( p
p+q ,

p+q
2 ) p ≤ 1− q, p+ q ∈ (0, 2)

( 1−q
2−p−q ,

p+q
2 ) p > 1− q, p+ q ∈ (0, 2)

(0, 0) p = q = 0

(0, 1) p = q = 1

(12)

It is straightforward to check that σ is a well-defined function on I. Every point except for934

[0, 0], [1, 1] corresponds to a unique line (parametrised by m) and ‘distance’ along that line935

(parametrised by α). [0, 0] (respectively [1, 1]) corresponds to a single α, namely 0 (resp. 1),936

though it lies on all such lines; we set the corresponding m = 0 by convention. For information,937

the inverse map is given by:938

σ−1(m,α) =


[2αm, 2α(1−m)] α ≤ 1

2

[(2− 2α)m+ (2α− 1), (2− 2α)(1−m) + (2α− 1)] α > 1
2

(13)

We write σ1([p, q]) (respectively σ2([p, q])) for the first (resp. second coordinate) of σ([p, q]).939

Since this is a simple change of coordinates, we shall write (m,α) ∈ B as short for σ−1(m,α) ∈ B,940

and similarly for other cases.941

A.2.2. Presentation of main steps942

As discussed in Section 2.6 (Proposition 2), elicited points in the R-B and W regions determine943

an area in I ‘between the R-B and the W points’ to which the MPI must belong. The general aim944

of the procedure is thus to find progressively ‘closer’ points in R-B and W, hence reducing the945

size of this area. This motivates the two main steps in the determination of the next probability946

interval to be presented for elicitation, [pi+1, qi+1], on the basis of the previously elicited point947

[pi, qi].948

On the one hand, if [pi, qi] is in the R-B region (respectively, the W region), then by Propo-949

sition 2 a. (Section 2.6), the MPI will be North-West of [pi, qi] (resp. South-East of [pi, qi]) in950

Figure 1—i.e. p ≤ pi and p ≥ qi (resp. p ≥ pi and p ≤ qi), where the MPI is [p, p]. In such cases,951

the procedure proposes a [pi+1, qi+1] North-West (resp. South-East) of [pi, pi]. This exemplified952

by the [pi+1, qi+1] proposed for point X in Figure 9. The precise proposal for [pi+1, qi+1] depends953

on whether there is a point in W (resp. R-B); technicalities aside, this is the general strategy954

of the cases in lines 20-23 and 36-39 of the procedure (Figures 12-13). If the point [pi+1, qi+1]955

turns out to be in R-B or W, this will further restrict the area where the MPI can lie.956

On the other hand, if [pi, qi] is in the R or B regions, then Proposition 2 a. does not apply;957

as discussed in Section 2.6, the aim in such cases is to find a point in the R-B or W regions, to958

continue reducing the area containing the MPI. The procedure draws on two observations. First,959

as mentioned above, any point [pi, qi] can be equivalently written in another coordinate system,960

specifying the line it sits on—parametrised by m = σ1([pi, qi])—and how ‘far’ along the line it961
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[pi+1, qi+1] when [pi, qi] = Y

[pi+1, qi+1] when [pi, qi] = X

m = const;
α ∈ [0, 1]

X

Y

r

1− b

[1, 1][0, 1]

[0, 0]

[0.5, 0.5]

Figure 9: Binary Choice Procedure.

is—parametrised by α = σ2([pi, qi]). Second, for [pi, qi] in R (respectively B), by Proposition962

2 b., all points North-East (resp. South-West) of [pi, qi] are also in R (resp. B). So the only963

points in R-B and W on the line m = σ1([pi, qi]) corresponding to the point [pi, qi] must be964

South-West of [pi, qi], i.e. with lower α (resp. North-East, i.e. with higher α). Accordingly, the965

procedure proposes a point [pi+1, qi+1] on the line m = σ1([pi, qi]) but shifted in the appropriate966

direction, as illustrated by the [pi+1, qi+1] proposed for point Y (lying in the R region) in Figure967

9. Technicalities aside, this is general strategy for Case 1 (lines 1-17) and the cases in lines 24-34968

and lines 40-44 of the procedure (Figures 11–13). Among these cases, all retain the same m969

(grey line in Figure 9) except those considered in lines 12-17. These treat cases where no point970

in R-B or W has yet been found; the procedure in these cases increases m during the search,971

hence looking closer to the 45° line (ie. the line of [p, q] with p = q). We used a procedure with972

this in-built precision bias to favour Bayesian replies (i.e. precise probabilities); in the light of973

it, our finding of widespread imprecision (Section 4.3) is all the more remarkable.974

A.2.3. Convergence975

Except for extreme cases, the procedure tends to the MPI.976

Proposition 4. Suppose preferences are represented according to (1) with 1 > α > 1
2 , let E977

be an event, and let [p
n
, pn] be the result of the procedure in Figures 11–13 (with initial values978

set as in Figure 10) applied for n steps. Then [p
n
, pn] → [p(E), p(E)] as n → ∞. Moreover,979

the procedure also converges in this sense when preferences are represented according to (1) with980

α = 1, p(E) 6= 0 and p(E) 6= 1.981

Proof. We provide the main steps of the proof here; they rely on technical Lemmas 1–4, which are982
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detailed in Appendix D. We adopt the notation and initial values from Figure 10; in particular,983

let Eln be the set of elicited points after n steps. As discussed in Section 2.4, the MPI is984

[p(E), p(E)]. Moreover, by Proposition 2, at stage n, the MPI is contained in985

Φn =

[p, q] ∈ I :
max {p′ : [p′, q′] ∈ Eln ∩W} ≤ p ≤ min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,

max {q′′ : [p′′, q′′] ∈ Eln ∩R−B} ≤ q ≤ min {q′ : [p′, q′] ∈ Eln ∩W}

 (14)

where the maximum of an empty set is taken to be 0 and the minimum 1.986

We reason referring to the cases in the procedure (Figures 11–13). At the beginning of the987

procedure, it is in Case 1 (El0 ∩W = El0 ∩R−B = ∅). By lines 13-16, if no point in W or R-B988

is found, the points elicited by the procedure will reach the space of precise probabilities (i.e.989

points [p, q] with p = q), where it will follow a standard bisection procedure. All such points990

have σ1-value of 0.5. It follows from Lemma 1 that if the MPI is not precise, then a point will be991

found in R-B, so the procedure moves to Case 2. On the other hand, if the MPI is precise, then,992

by Lemma 1 and the bisection character of the procedure on the space of precise probabilities,993

the points elicited in the procedure will converge to it as required.994

Now consider cases where the procedure arrives to Case 2 or 3, i.e. it finds a point in R-B995

or W. By Lemma 3, σ1([pn, qn])→ σ1([p(E),p(E)]) as n→∞. We distinguish three cases.996

• σ1([p(E),p(E)]) > 0 and σ1([pn, qn]) 6= σ1([p(E),p(E)]) for all n. By Proposition 2 and997

the definition of σ (and in particular the slopes of the lines σ1([p, q]) = m for m > 0),998

it follows straightforwardly that min[p,q]∈Eln d([p(E), p(E)], [p, q]) → 0 as n → 0, whence999

[p
n
, pn]→ [p(E), p(E)] as required.1000

• σ1([p(E),p(E)]) > 0 and σ1([pi, qi]) = σ1([p(E),p(E)]) for some i. By Lemma 1 and Case1001

2 (lines 24-33) and Case 3 (lines 40-43), the procedure will, from i onwards, only pass1002

through points with same σ1-value σ1([p(E),p(E)]), where it will only find points in R and1003

B. Moreover, it follows a bisection-style procedure on the line σ1([p, q]) = σ1([p(E),p(E)]).1004

It follows from standard arguments, Lemma 1 and representation (1) that this procedure1005

converges to [p(E), p(E)] as required.1006

• σ1([p(E),p(E)]) = 0 and α < 1 in the representation (1). Suppose p(E) = 0; the other1007

case (p(E) 6= 0 and so p(E) = 1) is treated similarly. By Lemma 1, [pn, qn] contains a1008

subsequence of points in R-B, with σ1-value tending to 0. Since α < 1, by representation1009

(1), for every q < p(E), there exists p > 0 such that (z, [p, q], 0) ≺ (z, E, 0), and hence such1010

that [p, q] is not in R-B. Moreover, by the representation and Lower Stochastic Dominance,1011

for every q > p(E) and p, (0, [p, q], z) ≺ (0,
[
p(E), p(E)

]
, z) ∼ (0, E, z), so such [p, q] are1012

not in R-B. It follows that the subsequence of [pn, qn] consisting of points in R-B converges1013

to
[
p(E), p(E)

]
, so [pn, qn]→

[
p(E), p(E)

]
as required.1014

1015
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Figure 10: Binary choice procedure: structure
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‌

Figure 11: Determination of Next Binary Choice: Part 1

Notation: σ defined in (12) and (13).
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Figure 12: Determination of Next Binary Choice: Part 2
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Figure 13: Determination of Next Binary Choice: Part 341



A.3. Robustness of the elicitation method1016

As stated in Section 2, the proposed elicitation method has three novel elements. The first is1017

the notion of MPI, and the observation that they yield the probability intervals generated by1018

the subjects’ set of priors. The second is the incentivisation mechanism, based on the 2D choice1019

list set out in Section 2.5. As for elicitation of subjective probabilities (e.g. choice-list methods1020

for eliciting MPs), this is already sufficient to provide an elicitation mechanism for subjects’ sets1021

of priors. However, the proposal also includes a chained binary-choice procedure, in the style1022

of the ‘bisection’ or ‘staircase’ method for MPs or certainty equivalents, to aid the subject find1023

the MPI (Section 3.4). We now discuss to what extent the proposed elements apply beyond1024

the typical α-maxmin EU representation with α > 1
2 on which we have focused in Section 2.1025

Whilst we concentrate below on extensions to models of the more general form (11), note that1026

the method also applies under other multiple-prior decision models, most notably multiple-prior1027

minimax (expected) regret.16 We also further analyse the incentive compatibility properties of1028

the 2D choice list incentivisation mechanism.1029

A.3.1. Matching Probability Intervals1030

Under the general preferences of the form (11), the equations (5) for the MPI can be rewritten1031

in the obvious way.17 Clearly, the notion of MPI is well defined, and the subjective probability1032

interval is an MPI. The form ofW can however affect the uniqueness of the MPI. More precisely,1033

it is guaranteed to be unique whenever there is a unique solution to the equations, and this1034

only occurs if W satisfies the following ‘single-crossing property’: every pair of red-and-blue1035

indifference curves in Figure 1 cross at most once.18 Whether this is the case, and how often1036

it is not, will depend on the functional form of W . We thus consider what form of uniqueness1037

holds for reasonable W .1038

For instance, the MPI is clearly unique when W is linear and non-symmetric19—and hence1039

for α-maxmin EU whenever α 6= 1
2 . A more general interesting case is when W incorporates1040

probability weighting, e.g. is of the form W (x, y) = αw(x) + (1 − α)w(y) for a weighting1041

16This model evaluates the choice of act f from a menu M according to

−maxp∈C Ep (maxg∈M u(g(s))− u(f(s))), where Ep is the expectation with respect to probability measure

p and C is the set of priors (e.g. Berger, 1985; Stoye, 2011). It is straightforward to show that for the choices

used by our method—namely binary choices between bets on independent events, in the sense that the joint

(multi-prior) distribution over the pair of relevant events is a ‘type-1 product’ (Walley, 1991, Sect. 9.3.5) of the

multiple priors beliefs about each—preferences under this rule correspond to preferences under maxmin-EU (i.e.

(1) with α = 1) with the same set of priors.
17Explicitly:

W (p, p) =W (p(E), p(E)) (15)

W (1− p, 1− p) =W (1− p(E), 1− p(E)) (16)

18Technically, for every A,B ∈ R, |{[x, y] ∈ I : W (x, y) = A,W (1− y, 1− x) = B}| ≤ 1.
19I.e. it is not the case that W (x, y) = W (y, x) for all x, y.
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Figure 14: Indifference curves in probability interval space I under (11) with W (x, y) =

αw(x) + (1− α)w(y).

Red lines: indifference curves for IL (z, [p, q], 0): i.e. curves of the form αw(x) + (1− α)w(y) = C.

Blue lines: indifference curves for IL (0, [p, q], z): i.e. curves of the form αw(1−y)+(1−α)w(1−x) = D.

Parametrisation: Prelec weighting function w(x) =
(
e−(−ln(x))

α)
)β

with α = 0.54 and β = 0.85 (Abdel-

laoui et al., 2011); α = 0.8.

function w. Note that this form can incorporate findings on probability weighting for (two-1042

outcome) lotteries, via w. For such W , if w takes the quasi-linear form often used in literature1043

(Chateauneuf et al., 2007; Wakker, 2010), then MPIs can be shown to remain unique (by a1044

similar reasoning to that for the non-weighted case). Moreover, even for non-linear weighting1045

functions, calculation of relevant cases suggests that MPIs are typically unique. As an example,1046

Figure 14 plots red and blue indifference curves for the specified form of W with w being the1047

popular Prelec weighting function with the parameters found by Abdellaoui et al. (2011) for a1048

Paris temperature source—i.e. one that is similar to the source we used in EXP 1—and an α1049

of 0.8—i.e. close to the value we found for α (Section 4.5). Clearly, red and blue indifference1050

curves typically only cross (at most) once, as required for uniqueness of MPI. Even in the cases1051

where there are multiple MPIs, there will be at most two, with one close to the horizontal or1052

vertical boundary.1053

In summary, even for reasonable extensions beyond α-maxmin EU, MPIs are well-defined,1054

and the subject’s probability interval is always a MPI. Moreover, there is reason to believe that1055

uniqueness continues to hold largely, and where it does not, there is at most one other possible1056

candidate MPI. Note that even in cases of non-uniqueness, the analysis of the 2D choice list1057

incentivisation mechanism is unaffected, and every MPI remains a weakly dominant strategy.1058

So it will yield a candidate probability interval.1059
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A.3.2. 2D Choice List1060

The 2D choice list set out in Section 2.5 is incentive compatible under the α-maxmin EU model1061

(1) whenever subjects treat the two branches of the choice list in isolation from each other.1062

We first consider the consequences of violation of this isolation assumption, before turning to1063

robustness to generalisation of the decision model.1064

Robustness to violations of isolation Suppose that the isolation assumption discussed in1065

Section 5 does not hold, and the subject reasons strategically across the two branches of the 2D1066

choice list. Then the choice of MPI is conceptualised as the choice of a (second-order) lottery1067

assigning a probability to playing a bet for or against E or to playing specific ILs according to1068

the mechanism. Assuming the α-maximin EU model (1) at both levels, the subject evaluates1069

each such second-order lottery using the expectation over the values of the bets and ILs. Let1070

[p(E), p(E)] = [p, p]. For any reported point [q, q] in this task, by the incentive mechanism1071

defined in Section 2.5:1072

• the probability of receiving the bet on E is q

q+1−q1073

• the probability of receiving the IL on red is q−q
q+1−q1074

• the probability of receiving the bet on Ec is 1−q
q+1−q1075

• the probability of receiving the IL on red is q−q
q+1−q1076

Using these and the evaluations of the bets and the ILs according to (1) and (2) (with [p, p]),1077

one obtains the following form for the utility of reporting [q, q] when the true beliefs are [p, p]:1078

(1− q)
(
α (1− p)− (α− 1)

(
1− p

))
q − q + 1

+

(
q − q

)( q

2 + α (1−q)
2 − (α−1) (1−q)

2 − 1
2

)
q − q + 1

+
q
(
αp− p (α− 1)

)
q − q + 1

+

(
q − q

) ( q
2 +

α q

2 −
q (α−1)

2

)
q − q + 1

Finding the optimum numerically for a grid of values of p, p, α ∈ [0, 1] using Matlab, we find that,1079

for every (p, p, α) (with p ≥ p) except for p = 0, p = 1, α = 0, and those with p = 0.5, α = 11080

or p = 0.5, α = 1, the maximum is attained at one or several of the ‘vertices’ of the triangle in1081

Figure 1, i.e. [0, 0], [0, 1], [1, 1]. For p = 0, p = 1, α = 0 and p = 0.5 , α = 1 or p = 0.5 , α = 11082

with p 6= p, the maximum is attained at all points on one of the boundaries of the triangle, i.e.1083

{[0, y] : y ∈ [0, 1]} , {[x, 1] : x ∈ [0, 1]} , {[x, y] : x ∈ [0, 1], y = x}. When p = 0.5, p = 0.5, α = 1,1084

the utility above is constant, so all points maximise it.1085

It follows that, for any subject with α ∈ (0, 1) who violates the isolation assumption and1086

responds to the choice list strategically, every response will be at a vertex of the space I. Our1087

elicitation of α suggests that the vast majority of subjects have α in this range. Even for subjects1088
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with α = 0 or 1 reasoning strategically, they will have more than one response in the interior1089

of I if α = 1 and they assign precise probability of 0.5 to several elicited events—which, in1090

our experiment involving nested events, would correspond to a peculiar (bimodal) distribution1091

across the variable of interest (temperature, marks). As is clear from Table 9 (Appendix B.1),1092

no subjects give vertex responses for all elicited events, with only one subject (across both1093

experiments) giving vertex responses for over half of the elicited events. Moreover, the vast1094

majority of subjects (73 out of 80 in EXP 1; 51 out of 52 in EXP 2) gave more than one1095

response in the interior of I. The data thus clearly suggests that strategic reasoning is very1096

limited in our sample.1097

Robustness to generalizations of the decision model As suggested in Section 2.5, the1098

incentivization mechanism implemented by the 2D choice list relies solely on the weak Lower1099

Stochastic Dominance property (Definition 1). Formulated in terms of Eq. (11), this is just1100

the assumption that W is strictly increasing in the first coordinate—or, in terms of preferences,1101

decision makers are sensitive to the lower winning probability. The only reasonable model in1102

the family of form (11) violating this property is the maxmax EU—α-maxmin EU with α = 0.1103

Since there is basically no evidence for a significant number of subjects with such preferences,1104

the incentive compatibility of the 2D choice list discussed in Section 2.5 generalizes widely.1105

A.3.3. Binary-choice procedure1106

The binary-choice procedure (Section 2.6 and Appendix A.2) is based on the division of I into1107

regions, displayed in Table 1, and Proposition 2, in particular part a. dictating ‘where’ the1108

MPI is relative to points in two of the regions (the W and R-B regions). For decision makers1109

represented according to the α-maxmin EU model (1), Proposition 2 a. only holds if α > 1
2 .

20
1110

When α < 1
2 , the opposite of the statement in the Proposition holds: the MPI is North-West1111

of the elicited point (on Figure 1) not when the latter is in R-B, but when it is in W (and1112

similarly for South-East). So the algorithm applied to such decision makers would ‘move’ in1113

the wrong direction: instead of looking South-East for the MPI after finding a point in R-B, it1114

would look North-West, for instance. Note that, even if the algorithm does not work properly1115

for such decision makers, the 2D choice list incentivisation mechanism is still valid, and hence1116

they would, in principle, correct any issues at the 2D choice list confirmation stage. To gain1117

some insight into the extent of procedure misfunction due to α < 1
2 , we can look at the evidence1118

on the value of α for our subjects, as well as some statistics on the functioning of the procedure.1119

We find little evidence for widespread α < 1
2 among our subjects. First of all, the elicitation1120

of α reported in Section 4.5 finds median and 25 percentile values significantly above 1
2 (Table1121

24), indicating that less than 25% of subjects have α < 1
2 . Moreover, under the α-maxmin EU1122

model, the sum of the MP of an event and that of its complement is less than (respectively,1123

greater than) one precisely when α > 1
2 (resp. α < 1

2 ; see Appendix B.4), indicating that we1124

20It also holds under the probability weighting specification of (11) mentioned in Section A.3.1 when α > 1
2
.
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can use our matching probability data to check for the sign of α− 1
2 . Table 25 (Appendix B.4)1125

displays the descriptive statistics on this sum for the Paris treatment where MPs were elicited,1126

confirming again that α > 1
2 for over 75% of subjects.1127

As concerns its functioning, since the procedure ‘moves’ in the wrong direction for subjects1128

with α < 1
2 , no such subjects will pass through both points in W and points in R-B during1129

the procedure. However, 383 applications of the procedure out of 704 in EXP 1 passed through1130

points in W and R-B (300 out of 606 in EXP 2). Whilst there were nevertheless applications1131

of the procedure which passed through points in R-B but not W (152 in EXP 1, 77 in EXP 2)1132

and in W but not R-B (114 in EXP 1, 105 in EXP 2), these would be expected if the procedure1133

functioned correctly and the probability intervals were large (respectively small). The evidence1134

thus does not support a hypothesis involving misfunctioning of the procedure over explanations,1135

such as this, relating to proper functioning and the character of the elicited intervals.1136

1137

B. Supplementary Statistics1138

B.1. Descriptive Statistics1139

Tables 5–8 report the basic descriptive statistics on the upper and lower elicited probabilities1140

after the ‘confirmation’ 2D choice list, and before the confirmation screen but after the binary-1141

choice procedure, respectively.1142

Elicited points on a vertex Table 9 reports counts of the number of subjects with a given1143

number of elicited points at the vertex of the space I of partially known urns (and corresponding1144

probability intervals) in Figure 1.1145

Monotonicity Tables 10a and 10b report the descriptive statistics for the individuallevel1146

Kendall τb, calculated over the events in each source.1147

B.1.1. Imprecision1148

Table 11 presents the descriptive statistics for the Imprecision Index, whereas Table 12 displays1149

counts of the number of subjects with various numbers of precise elicited points, as well as1150

differences before the 2D choice list confirmation stage of the experiment as opposed to after.1151

Table 13 presents the results of ANOVAs of the imprecision concerning an event against the1152

event, for each source, where the null hypothesis is that imprecision is invariant across events.1153

1154
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Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.29 0.17 -0.01 0.15 0.29 0.40 0.7

2 80.0 0.38 0.22 0.00 0.20 0.35 0.50 1.0

5 80.0 0.48 0.23 0.00 0.35 0.46 0.66 1.0

8 80.0 0.57 0.24 0.05 0.42 0.59 0.75 1.0

(a) Lower probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.55 0.21 0.09 0.40 0.55 0.67 1.0

2 80.0 0.65 0.19 0.23 0.51 0.65 0.80 1.0

5 80.0 0.74 0.17 0.25 0.62 0.76 0.88 1.0

8 80.0 0.82 0.14 0.50 0.75 0.85 0.94 1.0

(b) Upper probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.31 0.22 0.00 0.14 0.26 0.45 0.95

18 80.0 0.35 0.26 0.00 0.14 0.32 0.47 1.00

20 80.0 0.41 0.27 -0.01 0.20 0.40 0.61 1.00

22 80.0 0.43 0.26 -0.01 0.20 0.39 0.61 1.00

(c) Lower probabilities Sydney

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.58 0.27 0.01 0.37 0.56 0.84 0.99

18 80.0 0.66 0.24 0.03 0.50 0.69 0.88 1.00

20 80.0 0.71 0.23 0.01 0.60 0.76 0.89 1.00

22 80.0 0.73 0.23 0.00 0.58 0.80 0.92 1.00

(d) Upper probabilities Sydney

Table 5: Descriptive Statistics: Elicited lower and upper probabilities after 2D choice list, EXP

1
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Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.05 0.07 -0.01 0.00 0.04 0.08 0.35

10 52.0 0.15 0.12 0.00 0.06 0.12 0.19 0.50

12 52.0 0.24 0.15 0.00 0.14 0.20 0.31 0.63

15 52.0 0.40 0.19 0.08 0.26 0.38 0.55 0.73

17 52.0 0.60 0.16 0.18 0.54 0.64 0.71 0.86

(a) Lower probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.12 0.14 0.00 0.02 0.08 0.16 0.60

10 52.0 0.23 0.17 0.00 0.10 0.20 0.30 0.65

12 52.0 0.35 0.18 0.04 0.22 0.32 0.48 0.72

15 52.0 0.54 0.20 0.08 0.40 0.52 0.70 0.87

17 52.0 0.75 0.15 0.22 0.65 0.78 0.86 1.01

(b) Upper probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.12 0.08 0.01 0.06 0.11 0.17 0.36

10 52.0 0.22 0.12 0.02 0.14 0.20 0.29 0.50

12 52.0 0.33 0.13 0.14 0.22 0.32 0.40 0.60

15 52.0 0.54 0.14 0.19 0.46 0.56 0.65 0.83

17 52.0 0.71 0.13 0.25 0.65 0.74 0.83 0.90

(c) Lower probabilities Contraction

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.22 0.14 0.02 0.11 0.20 0.31 0.56

10 52.0 0.37 0.14 0.06 0.30 0.34 0.46 0.65

12 52.0 0.51 0.14 0.20 0.40 0.50 0.64 0.74

15 52.0 0.74 0.11 0.40 0.67 0.77 0.82 0.90

17 52.0 0.86 0.07 0.60 0.82 0.86 0.91 1.00

(d) Upper probabilities Contraction

Table 6: Descriptive Statistics: Elicited lower and upper probabilities after 2D choice list, EXP

2
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Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.28 0.15 0.0 0.15 0.30 0.39 0.64

2 80.0 0.36 0.21 0.0 0.20. 0.33 0.45 1.00

5 80.0 0.48 0.23 0.0 0.35 0.46 0.67 1.00

8 80.0 0.54 0.25 0.05 0.35 0.55 0.74 1.00

(a) Lower probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

-2 80.0 0.55 0.21 0.0 0.39 0.56 0.68 0.99

2 80.0 0.64 0.18 0.23 0.52 0.67 0.78 1.00

5 80.0 0.75 0.17 0.25 0.61 0.79 0.89 1.00

8 80.0 0.81 0.14 0.50 0.73 0.85 0.92 1.00

(b) Upper probabilities Paris

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.28 0.21 0.0 0.12 0.26 0.38 0.95

18 80.0 0.33 0.27 0.0 0.11 0.30 0.45 1.00

20 80.0 0.43 0.28 0.0 0.19 0.42 0.61 1.00

22 80.0 0.42 0.26 0.0 0.21 0.35 0.61 1.00

(c) Lower probabilities Sydney

Event Et for t = count mean std min 25% 50% 75% max

15 80.0 0.60 0.27 0.00 0.42 0.61 0.83 0.99

18 80.0 0.67 0.25 0.03 0.50 0.66 0.89 1.00

20 80.0 0.73 0.23 0.00 0.60 0.79 0.89 1.00

22 80.0 0.74 0.22 0.00 0.62 0.80 0.91 1.00

(d) Upper probabilities Sydney

Table 7: Descriptive Statistics: Elicited lower and upper probabilities after binary-choice proce-

dure and before 2D choice list, EXP 1
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Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.11 0.16 0.00 0.01 0.06 0.14 1.00

10 52.0 0.18 0.14 0.00 0.08 0.14 0.30 0.50

12 52.0 0.25 0.15 0.00 0.15 0.22 0.32 0.60

15 52.0 0.38 0.22 0.04 0.19 0.33 0.53 1.00

17 52.0 0.54 0.18 0.07 0.43 0.60 0.66 0.86

(a) Lower probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.18 0.23 0.00 0.03 0.08 0.28 1.00

10 52.0 0.27 0.22 0.00 0.10 0.23 0.44 0.70

12 52.0 0.40 0.23 0.00 0.22 0.38 0.61 0.78

15 52.0 0.56 0.21 0.08 0.39 0.58 0.71 1.00

17 52.0 0.73 0.16 0.22 0.62 0.76 0.85 0.99

(b) Upper probabilities Maths

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.15 0.09 0.01 0.08 0.15 0.20 0.40

10 52.0 0.26 0.12 0.00 0.18 0.23 0.35 0.48

12 52.0 0.32 0.16 0.04 0.21 0.30 0.40 0.71

15 52.0 0.53 0.19 0.16 0.40 0.55 0.66 1.00

17 52.0 0.67 0.20 0.07 0.62 0.68 0.83 1.00

(c) Lower probabilities Contraction

Event Et for t = count mean std min 25% 50% 75% max

7 52.0 0.30 0.23 0.03 0.12 0.24 0.41 0.85

10 52.0 0.41 0.18 0.00 0.31 0.35 0.56 0.86

12 52.0 0.54 0.16 0.20 0.44 0.55 0.65 0.87

15 52.0 0.74 0.14 0.37 0.66 0.74 0.84 1.00

17 52.0 0.85 0.09 0.50 0.82 0.86 0.91 1.00

(d) Upper probabilities Contraction

Table 8: Descriptive Statistics: Elicited lower and upper probabilities after binary-choice proce-

dure and before 2D choice list, EXP 2
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Paris Sydney

Point # subjects # subjects

0 1 2 3 4 0 1 2 3 4

[0, 0] 80 0 0 0 0 80 0 0 0 0

[0, 1] 80 0 0 0 0 80 0 0 0 0

[1, 1] 79 0 0 1 0 78 1 0 1 0

[0, 0], [0, 1] or [1, 1] 79 0 0 1 0 78 1 0 1 0

(a) EXP 1

Maths Contraction

Point # subjects # subjects

0 1 2 3 4 5 0 1 2 3 4 5

[0, 0] 46 5 1 0 0 0 52 0 0 0 0 0

[0, 1] 52 0 0 0 0 0 52 0 0 0 0 0

[1, 1] 52 0 0 0 0 0 52 0 0 0 0 0

[0, 0], [0, 1] or [1, 1] 46 5 1 0 0 0 52 0 0 0 0 0

(b) EXP 2

Table 9: For each type of point, the table indicates the number of subjects with the specified

number of elicited points being of this type.
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MP Lower MP Upper Paris Lower Paris Upper Sydney Lower Sydney Upper

count 74 78 79 78 78 78

mean 0.62 0.66 0.56 0.56 0.27 0.41

std 0.46 0.38 0.45 0.47 0.59 0.50

min -0.91 -0.91 -0.91 -0.91 -1.00 -1.00

25% 0.55 0.55 0.33 0.33 -0.14 0.00

50% 0.71 0.69 0.67 0.67 0.33 0.55

75% 0.91 0.91 1.00 1.00 0.67 0.91

max 1.00 1.00 1.00 1.00 1.00 1.00

(a) EXP 1

Contraction Lower Contraction Upper Maths Lower Maths Upper

count 52 52 52 52

mean 0.99 0.99 0.98 1.00

std 0.02 0.03 0.07 0.01

min 0.95 0.80 0.53 0.95

25% 1.00 1.00 1.00 1.00

50% 1.00 1.00 1.00 1.00

75% 1.00 1.00 1.00 1.00

max 1.00 1.00 1.00 1.00

(b) EXP 2

Table 10: Individual-level Kendall τb descriptive statistics

Note τb is not defined for some subjects in EXP 1 (because of too many ties), and they were dropped.
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EXP 1 EXP 2

Paris Sydney Maths Contraction

count 80 80 52 52

mean 0.25 0.29 0.13 0.19

std 0.17 0.20 0.09 0.11

min 0 0 0 0.01

25% 0.10 0.10 0.06 0.11

50% 0.23 0.28 0.11 0.17

75% 0.35 0.43 0.19 0.23

max 0.82 0.75 0.45 0.53

Table 11: Imprecision Index (Eq. (8)) descriptive statistics; EXP 1 and EXP 2.

EXP 1 EXP 2

# Precise

events
Paris Sydney Maths Contraction

2D C.L. B-C Proc 2D C.L. B-C Proc 2D C.L. B-C Proc 2D C.L. B-C Proc

0 51 48 48 44 20 12 31 19

1 14 14 18 23 14 14 12 20

2 7 11 8 8 12 10 5 3

3 6 0 2 4 3 10 3 4

4 2 1 4 1 0 2 1 7

5 - - - - 3 4 0 2

Total 80 80 80 80 52 52 52 52

Table 12: Number of subjects with given number of precise events, per source. Data given after

the 2D choice list confirmation screen (2D C.L.) and after the binary-choice procedure but before

the confirmation screen (B-C Proc).
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Source F p-value

EXP 1
Paris 0.1048 0.957

Sydney 0.4769 0.698

EXP 2
Contraction 4.0352 0.003

Maths 5.863 0.00015

Table 13: One-sided ANOVAs of the imprecision related to an event (dependent variable) on the

event (factor), for each source. (H0: the imprecision is identical across all events in the source.)

B.2. Bayesian estimation1155

B.2.1. Statistical approach1156

Estimation of upper and lower CDFs in EXP 1 and EXP 2 Recall that T denotes the1157

space of possible values of the variables of interest (minimum temperatures in EXP 1, grades in1158

EXP 2). For each source, we estimate general models of the form:1159 
p(E) = f(E) + ε

p(E) = f(E) + ε

(17)

where p(E) (resp. p(E)) are the elicited lower (resp. upper) probabilities of the cumulative1160

event E (Section 2.2), f and f are CDFs over T from specified two-parameter families, with1161

parameters a, b (resp. a, b), and ε and ε are zero-mean normal distributions with variance σ2
1162

and σ2 respectively.1163

For each equation, the parameter space is Θ ⊆ R3, with a typical point (a, b, σ) (resp.1164

(a, b, σ)) specifying an f (resp. f) and the variance of the relevant error term. We specify1165

the following priors over the hyperparameters : a, b, σ are realisations from A ∼ N(µa, σ
2
a),1166

B ∼ N(µb, σ
2
b ) and Σ = σσ | Y | with Y ∼ N(0, 1).1167

We use a MCMC-like approach to estimate the posterior distributions of these distributions1168

through the use of the Python package PyMC3, and more specifically, the No-U-Turn Sampler1169

algorithm (NUTS) (Hoffman and Gelman, 2014).1170

The likelihood of observations x1, ..., xn pertaining to t1, . . . , tn (e.g. elicited lower probabil-1171

ities for cumulative events Eti = {t ∈ T : t ≤ ti}) given the point (a, b, σ) ∈ Θ is:1172

L(a, b, σ|x1, . . . , xn) =
∏

i∈{1,...,n}

ϕ

(
xi − f(a,b)({t ≤ ti})

σ

)

where f(a,b) is the CDF with parameters a, b and ϕ is the density of the normal distribution.1173
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Temperature (EXP 1) Grade (EXP 2)

Family 1 Truncated Normal N (a, b) Truncated Normal N (a, b)

Family 2 Beta B(a, b) Beta B(a, b)

Support
[min of min stated

temperature, max of max

stated temperature]

[0,20]

Table 14: Families of distributions over T (temperature; mark)

Note the minima and maxima in the first column are taken across all subjects’ responses (Section 3.3).

Hence the likelihood of hyperparameters µa, σ2
a, µb, σ

2
b , µσ, σ

2
σ given observations x1 . . . xn is :1174

L(µa, σ
2
a, µb, σ

2
b , µσ, σ

2
σ|x1, . . . , xn)

=
∫

(a,b,σ)∈Θ L(a, b, σ|x1, . . . , xn)dp(a, b, σ|µa, σ2
a, µb, σ

2
b , µσ, σ

2
σ)

L(µa, σ
2
a, µb, σ

2
b , µσ, σ

2
σ|x1, . . . , xn) and L(µa, σ

2
a, µb, σ

2
b
, µσ, σ

2
σ|x1, . . . , xn) are used by the NUTS1175

algorithm to estimate the posterior distributions of A, B and Σ, where x1, . . . , xn, x1, . . . , xn are1176

the elicited lower and upper probabilities respectively, under the parametric families for f given1177

in Table 14.1178

Likelihood estimation of α in EXP 1 (Paris treatment) For the Bayesian estimation1179

of the mixture coefficient α in the α-maxmin EU model, we supplement the general model (17)1180

with the following equations1181 
MP (E) = αp(E) + (1− α)p(E) + εα

1−MP (Ec) = αp(E) + (1− α)p(E) + εα

(18)

which are discussed in Section 4.5. We assume that α follows a beta distribution B(aα, bα), and1182

the εα and εα are zero-mean normal distributions, with the hyperparameters independent and1183

normally distributed, as above, with variances σ2
α and σ2

α.1184

The MPs have been elicited for the Paris treatment in EXP 1. The hyperparameters con-1185

cerning the upper and lower CDFs discussed above and those for α were estimated under the1186

model composed of (17) and (18) using the NUTS algorithm, with the procedure set out above.1187

B.2.2. Analysis1188

Figure 15 displays the upper and lower distributions under the parametric families not shown in1189

Figure 4. Tables 15-22 give statistics on the distribution over parameters under the estimated1190

hyperparameters.1191

1192
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(b) EXP 2

Figure 15: Bayesian estimation of lower and upper CDFs: plots of 1000 samples from MCMC

(Truncated Normal distribution for EXP 1; Beta distribution for EXP 2)
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 5.25 0.31 0.01 4.65 5.87 1009.11 1.0

a -2.57 0.37 0.01 -3.27 -1.87 542.99 1.0

aα 3.42 1.62 0.06 0.53 6.38 630.90 1.0

bα 1.80 1.04 0.05 0.10 3.80 429.61 1.0

b 11.35 0.75 0.02 9.71 12.66 1214.33 1.0

b 11.00 0.64 0.03 9.78 12.17 614.95 1.0

σ 0.22 0.01 0.00 0.20 0.23 1043.67 1.0

σ 0.18 0.01 0.00 0.17 0.19 1055.83 1.0

σα 0.21 0.01 0.00 0.20 0.23 930.43 1.0

σα 0.19 0.01 0.00 0.17 0.20 909.78 1.0

α 0.81 0.04 0.00 0.74 0.88 754.54 1.0

Table 15: Statistics for parameters under Bayesian estimation; Paris (EXP 1); Normal paramet-

risation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 1.43 0.23 0.01 1.04 1.91 569.30 1.0

b 1.64 0.29 0.01 1.13 2.24 571.99 1.0

a 1.07 0.16 0.01 0.73 1.39 541.73 1.0

b 2.46 0.35 0.01 1.76 3.17 522.49 1.0

aα 4.32 1.76 0.06 1.06 7.87 812.98 1.0

bα 1.90 1.08 0.04 0.18 3.92 606.36 1.0

σ 0.22 0.01 0.00 0.20 0.23 1163.74 1.0

σ 0.18 0.01 0.00 0.17 0.19 1239.11 1.0

σα 0.21 0.01 0.00 0.20 0.23 1134.15 1.0

σα 0.19 0.01 0.00 0.17 0.20 1409.46 1.0

α 0.81 0.04 0.00 0.74 0.88 1079.99 1.0

Table 16: Statistics for parameters under Bayesian estimation; Paris (EXP 1); Beta paramet-

risation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 22.03 0.45 0.01 21.11 22.80 1130.92 1.0

a 14.66 0.46 0.01 13.78 15.48 876.71 1.0

b 9.62 0.95 0.03 7.88 11.67 1018.57 1.0

b 9.04 0.85 0.02 7.42 10.78 882.98 1.0

σ 0.26 0.01 0.00 0.23 0.28 933.24 1.0

σ 0.25 0.01 0.00 0.23 0.27 831.75 1.0

Table 17: Statistics for parameters under Bayesian estimation; Sydney (EXP 1); Normal para-

metrisation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 1.12 0.55 0.04 0.31 2.21 1.91 1.57

a 0.14 0.32 0.03 -0.27 0.67 1.07 4.19

b 1.32 0.48 0.02 0.49 2.24 320.38 1.00

b 0.94 0.24 0.01 0.50 1.37 321.66 1.00

σ 0.25 0.01 0.00 0.23 0.27 522.03 1.00

σ 0.24 0.01 0.00 0.22 0.26 671.56 1.00

Table 18: Statistics for parameters under Bayesian estimation; Sydney (EXP 1); Beta paramet-

risation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 15.88 0.17 0.01 15.57 16.22 788.64 1.0

a 5.40 0.28 0.01 4.86 5.95 955.04 1.0

b 13.97 0.17 0.00 13.65 14.33 1218.24 1.0

b 5.03 0.25 0.01 4.58 5.53 928.02 1.0

σ 0.14 0.01 0.00 0.13 0.16 1158.52 1.0

σ 0.17 0.01 0.00 0.16 0.19 958.54 1.0

Table 19: Statistics for parameters under Bayesian estimation; Maths (EXP 2); Normal para-

metrisation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 3.76 0.09 0.0 3.58 3.93 978.44 1.0

a 1.46 0.05 0.0 1.36 1.55 900.67 1.0

b 2.27 0.09 0.0 2.10 2.43 1049.31 1.0

b 1.22 0.05 0.0 1.12 1.32 1031.36 1.0

σ 0.16 0.01 0.0 0.14 0.17 1311.22 1.0

σ 0.19 0.01 0.0 0.17 0.20 1247.27 1.0

Table 20: Statistics for parameters under Bayesian estimation; Maths (EXP 2); Beta paramet-

risation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

1193

1194

1195

B.3. Matching Probability data and analysis of α1196

Table 23 provides descriptive statistics on the elicited MPs. Table 24 provide descriptive statis-1197

tics on the α estimated from the raw data (from equations (9) and (10)). These equations cannot1198

be applied to estimate α whenever the upper and lower probabilities of an event coincide, i.e.1199

p(E) = p(E); Table 24 performs the estimates using all events for which the equations can be1200

applied—and hence only removes the two subjects for which the upper and lower probabilities1201

coincide for all events (Table 12).1202

B.4. Elicitation-free check of α > 1
2

1203

Under the α-maxmin EU model (1), it follows from Eqs. 9 and 10 that1204

MP (E) +MP (Ec) = 1 + (p(E)− p(E)).(1− 2α)

Since p(E) − p(E) ≥ 0 by definition, it follows that, whenever there is imprecision, MP (E) +1205

MP (Ec) < 1 if and only if α > 1
2 .1206

Table 25 displays the descriptive statistics for the sum MP (E) + MP (Ec) for the Paris1207

source in EXP1. It is clear that the vast majority of subjects have a sum of MPs less than 11208

indicating an α greater than 0.5. Indeed, over 80% of subjects have sum of MPs less than or1209

equal to 1.1210
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mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 14.17 0.13 0.00 13.93 14.42 1090.28 1.0

a 5.32 0.22 0.01 4.90 5.78 1068.01 1.0

b 11.61 0.13 0.00 11.37 11.87 1167.95 1.0

b 5.39 0.21 0.01 4.99 5.78 1209.38 1.0

σ 0.12 0.01 0.00 0.11 0.13 1501.55 1.0

σ 0.12 0.01 0.00 0.11 0.13 1144.85 1.0

Table 21: Statistics for parameters under Bayesian estimation; Contraction (EXP 2); Normal

parametrisation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.

mean sd mc_error hpd_2.5 hpd_97.5 n_eff Rhat

a 3.06 0.09 0.0 2.90 3.23 888.13 1.00

a 1.57 0.05 0.0 1.48 1.67 937.24 1.00

b 1.96 0.07 0.0 1.82 2.11 478.84 1.01

b 1.56 0.06 0.0 1.45 1.66 460.19 1.00

σ 0.14 0.01 0.0 0.13 0.15 966.76 1.00

σ 0.13 0.01 0.0 0.12 0.15 894.44 1.00

Table 22: Statistics for parameters under Bayesian estimation; Contraction (EXP 2); Beta

parametrisation

Note mc_error: Monte Carlo procedure standard error; hdp_2.5 / hdp_97.5: Highest posterior density

2.5 and 97.5 percentiles; n_eff : count of iteration in the MCMC procedure.
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MP (Et) count mean std min 25% 50% 75% max

Event t =

-2 80 0.35 0.21 0.02 0.17 0.37 0.47 1.00

2 80 0.44 0.20 0.02 0.27 0.47 0.57 0.97

5 80 0.54 0.23 0.02 0.37 0.55 0.68 0.97

8 80 0.60 0.21 0.17 0.47 0.57 0.76 0.97

1−MP (Ect ) count mean std min 25% 50% 75% max

Event t =

-2 80 0.50 0.19 0.03 0.38 0.48 0.63 0.98

2 80 0.59 0.19 0.23 0.48 0.57 0.74 0.98

5 80 0.71 0.20 0.23 0.53 0.73 0.92 0.98

8 80 0.77 0.17 0.43 0.63 0.80 0.93 0.98

Table 23: Descriptive statistics for MP (Ei) and 1−MP (Eci ) in Paris treatment, EXP 1

α

count 78

mean 0.97

std 0.66

min -0.32

25% 0.62

50% 0.80

75% 1.17

max 3.84

Table 24: Descriptive statistics for α, estimated from raw data according to Eqns (9) and (10).

Estimation conducted across all subjects such that, for any least one event E, p(E) 6= p(E).
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MP (Et) +

MP (Ect )

count mean std min 25% 50% 75% max

Event t =

-2 80 0.84 0.20 0.29 0.71 0.89 0.98 1.31

2 80 0.85 0.20 0.29 0.73 0.89 0.99 1.34

5 80 0.83 0.22 0.24 0.69 0.89 0.99 1.29

8 80 0.83 0.18 0.39 0.69 0.89 0.99 1.26

Table 25: Empirical distribution of average MP (E) +MP (Ec) across all events for which MPs

were elicited (those concerning Paris temperature in EXP1).

C. Experimental design and displays1211

C.1. Probability interval elicitation: displays1212

Figure 16 shows the display in a typical step of the binary-choice procedure. Specifically, the1213

two figures show the two choice questions making up the step, involving bets on complementary1214

events (temperature below vs above; bet on red vs blue).1215

At the end of the binary choice procedure, the two-cursor scrollbar, realising the 2D-choice1216

list described in Section 2.5, is displayed, and the subject is invited to verify all choices, and1217

correct them if required, prior to confirmation. The top pane of Figure 17 shows a typical1218

confirmation screen that appears at the end of the binary-choice procedure, where the retained1219

values for red and blue balls are 66 and 29 respectively. The red lines below then above the bar1220

indicate that, for an urn with at least 29 blue balls and a minimum number of red balls greater1221

than 66, option B (the bet on red from the urn) is preferred over A (the bet on the temperature1222

being less than -2°C), whereas when there are at least 29 blue urns and the minimum number1223

of red balls is less than 66, option A is preferred over B. Similarly, the blue lines indicate how1224

preferences vary over urns with at least 66 red balls, for different minimum numbers of blue1225

balls.1226

The bottom pane of Figure 17 illustrates a situation where the subject is verifying and1227

correcting preferences as the number of blue balls vary, by moving the blue cursor (which is1228

thus highlighted). The red cursor is kept fixed at its provisional value,21 and, for each position1229

of the blue cursor, the choice between the bet on the event (temperature greater than 2°) and1230

the bet on the urn with the specified minimum number of blue balls and at least 66 red balls1231

is presented, with the chosen option (as per Section 2.5) indicated. In this example, whilst the1232

provisional values imply a preference for the bet on the event over that on the urn when only1233

21If the subject tries to move the red cursor, the blue cursor returns to its provisional value, and remains fixed

there whilst the red cursor is being moved.
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(a) Bet on the complement of the event E−2

(b) Bet on the event E−2

Figure 16: Displays for a step in the binary-choice procedure
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(a) First display

(b) Moving the blue cursor to confirm and correct choices

Figure 17: Two-cursor scrollbar confirmation screen, implementing the 2D choice list
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3 balls are guaranteed to be blue, the subject prefers the urn. She may change her choice by1234

clicking on the urn or on the cursor. The bottom pane of Figure 17 shows the display just after1235

she has corrected her choice: the highlighted preferred option is now the bet on the urn, and the1236

blue lines above and below the scrollbar are modified accordingly. To confirm her response for1237

the event, the subject has to scroll the blue cursor across the entire confirmation line, scanning1238

all the choices, and likewise for the red cursor.1239

In EXP 2, there was a final confirmation screen after the elicitation for all events in a given1240

source, presented in Figure 18. All interval-valued urns corresponding to the choices made and1241

confirmed by the subject for the source are presented on the left. They are graphically depicted1242

on the right: the red line shows the minimum number of red balls for each event (mark, in the1243

case of this source), whereas the blue line plots 100 minus the minimum number of blue balls.1244

To change a choice, a subject can either click on the choice on the right hand plot or on the1245

corresponding urn in the sidebar on the left. By doing so, she returns to the corresponding1246

two-cursor scrollbar confirmation screen, as in Figure 17. She may modify her choices on this1247

screen as described above, and must reconfirm before proceeding.1248

Figure 18: Omnibus confirmation screen

1249

C.2. MP elicitation: displays1250

Figure 19 shows the displays for a typical choice in the MP elicitation (top pane) and the1251

confirmation screen (bottom pane). These are comparable to the displays for probability interval1252

elicitation, with the exception that a standard single-cursor scrollbar is used for confirmation.1253

For the latter, as for the probability interval confirmation screen, the subject may use the cursor1254

to scan choices and may click on the relevant option to modify her choice. She must scan all1255

choices before confirming.1256
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(a) Binary-choice procedure

(b) Confirmation scrollbar

Figure 19: MP displays
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D. Technical Appendix: Lemmas for the proof of Proposition 41257

In the following Lemmas, we suppose that preferences are represented according to (1) with1258

α > 1
2 , with E the event of interest with the subjective probability interval [p(E),p(E)].1259

Lemma 1. For every m ∈ [0, 0.5]:1260

• If σ1

([
p(E),p(E)

])
< m, there exists [p, q] ∈ R−B with σ1([p, q]) = m, but no [p, q] ∈W1261

with σ1([p, q]) = m;1262

• If σ1

([
p(E),p(E)

])
> m, there exists [p, q] ∈W with σ1([p, q]) = m, but no [p, q] ∈ R−B1263

with σ1([p, q]) = m;1264

• If σ1

([
p(E),p(E)

])
= m, each [p, q] with σ1([p, q]) = m and [p, q] 6=

[
p(E),p(E)

]
belongs1265

to either R or B.1266

Proof. Straightforward to check from the representation (1) and the definition of σ (12). (See1267

also Figures 1 and 9.)1268

Lemma 2. If p(E) = p(E) and Case 1 arrives at a point [pi, qi] with pi = qi, then the procedure1269

remains in Case 1, and [p
n
, pn]→ [p(E), p(E)] as n→∞.1270

Proof. Once the procedure reaches the subspace of precise probabilities, it executes a standard1271

bisection procedure (lines 13–16, Figure 11).1272

Lemma 3. Suppose that the procedure reaches a point [pi,qi] in R-B or W. Then the sequence1273

σ1([pn, qn])→ σ1(
[
p(E),p(E)

]
) as n→∞.1274

Proof. Consider a stage i in the procedure where a point has just been found in R-B or W. So

the area containing the MPI is Φi (Eq. (14)). Let

mW
i = minσ1(Φi)

=σ1

(
[max

{
p′ : [p′, q′] ∈ Eln ∩W

}
,min

{
q′ : [p′, q′] ∈ Eln ∩W

}
]
)

mRB
i = maxσ1(Φi)

=


σ1 ([min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}]) Eln ∩R−B 6= ∅

0.5 otherwise

and |Φi| = mR−B
i − mW

i . The latter is the maximum difference in σ1 values across all pairs1275

of points in Φi. In the first two subcases of Case 3 (lines 35-39), the next probability interval1276

elicited is1277

[pi+1, qi+1] =
1

2
[max

{
p′ : [p′, q′] ∈ Eln ∩W

}
,min

{
q′ : [p′, q′] ∈ Eln ∩W

}
]

+
1

2
[min

{
p′′ : [p′′, q′′] ∈ Eln ∩R−B

}
,max

{
q′′ : [p′′, q′′] ∈ Eln ∩R−B

}
]
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In the second subcase of Case 2 (lines 22-23), where a point in W has been found, but no point1278

in R-B, the next probability interval elicited is1279

[pi+1, qi+1] =
1

2

1

2

 min {p′′ : [p′′, q′′] ∈ Eln ∩W}+

max {q′′ : [p′′, q′′] ∈ Eln ∩W}

 ,
1

2

 min {p′′ : [p′′, q′′] ∈ Eln ∩W}+

max {q′′ : [p′′, q′′] ∈ Eln ∩W}


+

1

2

[
min

{
p′′ : [p′′, q′′] ∈ Eln ∩W

}
,max

{
q′′ : [p′′, q′′] ∈ Eln ∩W

}]
where [1

2 (min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}) , 1
2 (min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B})]1280

is the point on the diagonal of precise probabilities (i.e. degenerate probability intervals) that is1281

closest to [min {p′′ : [p′′, q′′] ∈ Eln ∩W} ,max {q′′ : [p′′, q′′] ∈ Eln ∩W}] (it is on the downwards1282

sloping 45° line from [min {p′′ : [p′′, q′′] ∈ Eln ∩W} ,max {q′′ : [p′′, q′′] ∈ Eln ∩W}]). So this1283

point has σ1-value 0.5.1284

In first subcase of Case 2 (lines 20-21), where a point in R-B has been found, but1285

no point in W, the next probability interval elicited, [pi+1, qi+1], is a 1
2 − 1

2 mix of1286

[min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}] with1287



 min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+

max {q′′ : [p′′, q′′] ∈ Eln ∩R−B} − 1

, 1

 min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}

+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}
> 1

0,
min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}+

max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}

 min {p′′ : [p′′, q′′] ∈ Eln ∩R−B}

+ max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}
≤ 1

which is the point on the upper boundary (with either lower bound for the proba-1288

bility interval 0 or upper bound 1) that is on the downwards sloping 45° line from1289

[min {p′′ : [p′′, q′′] ∈ Eln ∩R−B} ,max {q′′ : [p′′, q′′] ∈ Eln ∩R−B}]. This point has σ1-value1290

0.1291

Clearly, in all cases, mW
i < σ1([pi+1, qi+1]) < mRB

i . Moreover, by the rest of the subcases in

Cases 2 & 3, if this point is not in R-B or W, all the subsequent points elicited will have the same

σ1-value as [pi+1, qi+1]. And whenever a point in R-B is found, the next area containing the

MPI, Φi+1, will have the same minimum σ1-value mW
i , but its maximum value will be replaced

by σ1([pi+1, qi+1]). By Lemma 4, it follows that

|Φi|.
mW
i

mRB
i +mW

i

≤ |Φi+1|

≤ |Φi|.
1−mW

i

(1−mRB
i ) + (1−mW

i )

Similarly, whenever a point in W is found, the next area containing the MPI, Φi+1, will have1292

the same maximum σ1 value mRB
i , but its minimum value will be replaced by σ1([pi+1, qi+1]),1293

whence1294
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|Φi|.
1−mRB

i

(1−mRB
i ) + (1−mW

i )
≤ |Φi+1|

≤ |Φi|.
mRB
i

mRB
i +mW

i

Since, for any j > i, mRB
j ≤ mRB

i and mW
j ≥ mW

i , for any such j,
1−mW

j

(1−mRB
j )+(1−mW

j )
≤1295

1−mW
i

(1−mRB
i )+(1−mW

i )
and

mRB
j

mRB
j +mW

j
≤ mRB

i

mRB
i +mW

i
. So, for any j = i + k with k ∈ N, k ≥ 1,1296

|Φj | ≤
(

max
{

1−mW
i

(1−mRB
i )+(1−mW

i )
,

mRB
i

mRB
i +mW

i

})k
.|Φi|. So the sequence [mW

n ,m
RB
n ] is a bisection-1297

like sequence of decreasing intervals (in the sense of containment), each of which contains1298

σ1([p(E),p(E)]). Moreover, by the previous observation, whenever a point [p, q] is found1299

in W with σ1([p, q]) > 0, then the sequence |Φn| = mRB
n − mW

n → 0 as n → ∞, so1300

σ1([pn, qn])→ σ1([p(E),p(E)]) as required. (Recall that 0.5 ≥ mRB
n ≥ mW

n ≥ 0 for all n.)1301

We now separate two cases, according to whether σ1

([
p(E), p(E)

])
= 0 or not. Suppose1302

first that σ1

([
p(E), p(E)

])
= δ > 0 . We show that the procedure will either arrive at a point1303

with σ1-value δ, or a point in W. At a stage i in the procedure where no points in W have1304

been found, but a point in R-B has, mW
i = 0 and 0.5 ≥ mR−B

i > 0. At each subsequent1305

stage, by Lemma 1, either i. no point is found in W or R-B; ii. a point is found in W or1306

R-B, and the next such point is in W; iii. a point is found in W or R-B, and the next such1307

point is in R-B. In case ii., the claim is established; in case i., by Lemma 1, the procedure is1308

examining points with σ1-value δ, and the claim is established. Assume for reductio that at all1309

such stages, the σ1-value of the explored points is not δ, but no point in W is found—i.e. we1310

are always in case iii. Then, by the previous observations, for every j = i+ k with k ∈ N, k ≥ 1,1311

|Φj | ≤
(

1−mW
i

(1−mRB
i )+(1−mW

i )

)k
.|Φi| =

(
1

2−mRB
i

)k
.mRB

i . Hence |Φj | = mRB
j → 0, contradicting the1312

fact that there are no points with σ1-value less that δ in R-B. Hence the procedure eventually1313

finds a point in W . By the previous observation it follows that σ1([pn, qn]) → σ1([p(E),p(E)])1314

as required.1315

Now consider the case where σ1

([
p(E), p(E)

])
= 0. By Lemma 1, whenever the procedure1316

searches for a point on a line σ1([p, q]) = m > 0, it will find a point in R-B. Hence, by the1317

previous argument, it produces a sequence of points [pn, qn] in R-B, defining Φn and associated1318

[mW
n ,m

RB
n ], with mW

n = 0 and mRB
j → 0, as required.1319

1320

Lemma 4. Let [pW , qW ] be a point in W, with σ1([pW , qW ]) = mW and suppose that the line1321

σ1 ([p, q]) = mR−B contains a point in R-B but not in W. Then, for any point [pR−B, qR−B] ∈1322

R−B with σ1 ([pR−B, qR−B]) = m1323

σ1([
pW+pR−B

2
,
qW + qR−B

2
]) ∈

[
2mW .mR−B
mW +mR−B

,
mW (1−mR−B) +mR−B(1−mw)

(1−mR−B) + (1−mw)

]
Moreover, the same holds for a given point [pR−B, qR−B] ∈ R−B and any point [pW , qW ] ∈W1324

on the line σ1 ([p, q]) = mW .1325
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Proof. We first restrict attention to points [p, q] with p < 1− q (or, in the polar-style coordinate1326

system, α < 1
2). For any points [p1, q1] and [p2, q2], written in polar-style coordinate system as1327

(m1, α1) and (m2, α2), by (12) and (13), the midpoint (in Cartesian coordinates), 1
2 [p1, q1] +1328

1
2 [p2, q2] is

(
α1m1+α2m2

α1+α2
, α1+α2

2

)
in the polar system. Written in the polar coordinate system, let1329

[pW , qW ] be (mW , αW ); the points on the line σ1 ([p, q]) = mR−B are (mR−B, α), for varying α.1330

Note that, by Proposition 2, mR−B > mW . It follows from representation 1 that (z, [p′, q′], 0) ≺1331

(z, [p, q], 0) whenever q′ < q and p′ < p, whence, since [pW , qW ] ∈W , we have that (z, [p′, q′], 0) ≺1332

(z, E, 0) for all q′ < qW and p′ < pW , so such points are not in R-B. So any point [p, q] on1333

σ1 ([p, q]) = mR−B which is in R-B is such that p ≥ pW . By a similar argument (using the fact1334

that (0, [p′, q′], z) ≺ (0, E, z) for all q′ > qW and p′ > pW ), any point [p, q] on σ1 ([p, q]) = mR−B1335

which is in R-B is such that q ≥ qW . So any point [p, q] on σ1 ([p, q]) = mR−B which is in1336

R-B has α >
αWm

W
mR−B

(where, by 13, this is in the α of the point on σ1 ([p, q]) = mR−B with1337

p = pW = 2αWmW ); similarly, any such point has α < αW (1−mW )
(1−mRB) . Plugging these bounds into1338

the expression for the midpoint yields the result. Similar calculations yield the same result for the1339

cases of p > 1− q for some or all of the point considered. Finally, analogous arguments establish1340

the conclusion for [pR−B, qR−B] ∈ R−B fixed and [pW , qW ] ∈W on the line σ1 ([p, q]) = mW .1341
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