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Explaining Scientific Collaboration:
A General Functional Account

Thomas Boyer-Kassem and Cyrille Imbert

Abstract

The quantum of collaborative scientific research has been continually increas-
ing over the past two centuries, a fact for which philosophers and historians of
science have proposed various explanations.We offer a novel functional explana-
tion of this increase in collaboration, grounded in a sequential model of scientific
research where the priority rule applies. Robust patterns concerning the differ-
ential successfulness of collaborative groups with respect to their competitors are
derived, and it is argued that these success patterns feed the development of collab-
oration. This mechanism, as it increasingly comes to operate on a global scale, may
trigger an ‘arms race’, and is compatible with a certain amount of decrease in the
productivity of collaborative groups as well as some over-collaboration. The pro-
posed explanation succeeds in integrating various factors usually associated with
the rise of collaboration.
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1 Introduction

The past two centuries have seen a continual rise in the quantum of scientific collab-
oration, a trend which has accelerated especially since the 1950s, but which has been
inhomogeneous across fields. Various epistemic and non-epistemic explanations of this
collaborative trend have been proposed, turning on factors such as professionalization,
scientific specialization, the desire to cross-fertilize research, changing patterns of fund-
ing, better research reliability, enhanced efficiency, or the increasing need to access re-
sources. As noted by Katz et al. ([1997], p. 4), this list of possible explanatory factors,
which are often conceived of as distinct and exclusive, is potentially endless.

By contrast, we present a general explanatory scheme that encompasses many such
factors and handles them in a complementary way. This scheme is functional: it explains
a feature by the function it serves, namely the beneficialness of one of its effects (in
a technical sense to be presented). More specifically, we claim that the increase in
scientists’ collaborative behavior can be functionally explained by the relative increase
in collaborative scientists’ individual successfulness with respect to their competitors.
That is, scientists collaborate because, in suitable contexts, they are more successful
when collaborating (or, rather, collaborating to a sufficient degree) than otherwise.

Wray ([2002]) has already offered a functional explanation of collaboration. The
novelty of our thesis lies in the social and epistemic mechanisms that ground the ben-
eficialness of collaboration and feed the functional explanation. We investigate these
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mechanisms through a model of scientific research introduced by Boyer-Kassem and
Imbert ([2015]) that highlights the potentially significant beneficialness of collabora-
tion in suitable contexts. Scientific inquiries are pictured as multi-step processes, which
require solving sequences of intermediate problems that have communicable results.
Even minor differences in the step-efficiency of collaborative groups are shown to make
them more successful in competitive contexts. We then derive robust patterns concern-
ing the differential successfulness of collaborative groups with respect to competitors
in suitable contexts, and argue that it is these patterns that feed the development of col-
laboration in science. Because of the priority rule, these mechanisms are compatible
with a decrease in the productivity of collaborative groups in some cases, as well as
some over-collaboration. All the factors that increase the step-efficiency of groups can
be integrated into this general explanatory scheme.

The paper is organized as follows. We first review the literature about collaboration
and discuss the application of functional explanations in the present case (sections 2-
3). We then introduce and investigate our model, arguing that it can offer a functional
explanation of collaboration in science (sections 4-6). We then go on to discuss the
modeling assumptions, analyze the scope of the explanation thus provided, and finally
highlight some limits of this inquiry (sections 7-9).

2 The Development of Collaboration in Contemporary Science

Collaboration is a complex, multi-faceted phenomenon, and one may reasonably ex-
pect that no simple explanation can cover all of its aspects. We here review various
empirical findings about collaboration, highlighting the ones that are relevant to the
account in the present paper.

Over the last two centuries the co-authoring of papers has become increasingly widespread
in academia (Price [1963], Beaver and Rosen [1978]). This increase in co-authoring is
commonly taken as evidence of the increase in scientific collaboration, although co-
authoring and collaboration are admittedly not synonymous (for example, co-authors
who made minor contributions can be mentioned and genuine contributors overlooked
(Katz [1997]). Notably, the degree of collaboration varies significantly across fields.
Wuchty et al. ([2007]) report that between the mid 1950s and the end of the century, the
percentage of collaborative teams grew from 50% to 80% in science and engineering,
from 17.5% to 51% in the social sciences, but remained stuck at 10% in the humanities.
Mean team size has also steadily grown in the collaborative fields, for example from 1.9
to 3.5 in science.

These general trends supervene on different collaborative behaviors. For example,
experimentalists collaborate more than theoreticians. Women show a higher percentage
of female collaborators (Bozeman and Corley [2004]), a lower probability of repeating
co-authors, and fewer co-authors over their career (Zeng et al. [2016]). Researchers with
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large grants tend to have more collaborators (Bozeman and Corley [2004]). Overall,
most researchers tend to collaborate with others in their immediate environment (Lee
and Bozeman [2005], p. 695). At an individual level, various collaborative profiles
exist, for example ‘taskmasters’, ‘nationalists’, ‘mentors’, or ‘buddies’ (Bozeman and
Corley [2004], p. 612; see also Li et al. [2013]).

Policy-makers and institutions generally assume that collaboration is beneficial and
should be encouraged. Indeed, Nobel prize-winners are known to collaborate more than
the average (Zuckerman [1967]), results produced by large teams are cited more often
(Wuchty et al. [2007]), and the number of collaborators is strongly associated with
the number of publications.However, if one applies a fractional count, the increase in
productivity is not that clear (Lee and Bozeman [2005]). Overall, how much collabora-
tion is globally beneficial remains uncertain, since the costs and benefits are not clearly
understood (Katz [1997]).

How can the development of collaboration be explained? We cannot take for granted
that there will be a purely ‘rational’ explanation of collaboration, based on its sup-
posed epistemic or non-epistemic beneficialness, and such an account would moreover
be potentially unsuitable to account for the heterogeneity of these patterns. Simple ex-
planations based on the beliefs of the agents involved fare no better. When asked why
they collaborate, scientists provide many varied reasons, such as gaining knowledge, ac-
cessing equipment, working necessity, or friendships (Melin [2000]). The development
of ‘big’ science and ‘big’ funding, or changes in the norms of authorship, probably do
play a role, but this differs wildly across fields (Wuchty et al. [2007], pp. 1037–8). Still,
the pervasiveness of the increase in the percentage and size of collaborative means —
with the exception of the humanities — strongly suggests that the conditions favoring
teamwork are similar across subfields (ibid.).

In the remainder of the paper, we develop a general explanatory schema that can
account for the overall rise in the percentage of collaborative works and the size of
collaborative groups. It involves factors that are similar across fields but mostly absent
from the humanities, where collaboration is barely observed.

3 Functional Explanations and Collaboration

We now set out the idea of functional explanations, and indicate how we apply them in
the present case. Functional explanations explain the existence of a feature by reference
to one of its effects, typically its beneficialness. For example, one can suggest that the
State (resp. the practice of golfing) exists because it serves the interest of the ruling class
(resp. enables upper classes to establish networks). Obviously, pointing at a useful effect
of a feature is not enough to explain it functionally — the usefulness of the nose to carry
glasses cannot explain why humans have noses. Nevertheless, if stringent conditions are
met, functional explanations can be satisfactory, typically within biology and the social
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sciences.1

How, then, are we to characterize suitable functional explanations in a way that ex-
cludes the spurious ones? Like Wray ([2002]), we follow Kincaid’s simple and widely
accepted account. For Kincaid ([1996], pp. 110–1; [2006], pp. 214–5), A is functionally
explained by B, or A exists ‘in order to B’ if:

(i) A causes B;

(ii) A persists because of (i), i.e., because it causes B;

(iii) A is causally prior to B.

As Kincaid notes ([2006], p. 214), ‘The first claim is straightforwardly causal. The
second can be construed so as well. [...] A’s causing B causes A’s continued existence.’
Finally, the third condition says that the causal loop is initiated by A but not by B.
For example, initiation rites bring about social solidarity and therefore persist, but the
converse is false.

To provide a functional explanation of scientific collaboration, we consider the credit
which accrues to authors corresponding to the publication of papers divided by the time
spent in finding the results on which these papers are based. This quantity, which Boyer-
Kassem and Imbert ([2015], p. 672) call ‘individual successfulness’, depends both on
the actual production of results by scientists and their ability to publish them before their
competitors, and it may vary across different contexts and for groups of various sizes
(see below for details). This quantity thus corresponds to the publishing productivity of
scientists over their projects, although the literature often uses that term to describe the
sheer number of publications of authors.

Claim. The increase in scientists’ collaborative behavior can be function-
ally explained by the increase in individual successfulness it brings; in other
words, scientists collaborate ‘in order to’ increase their individual success-
fulness.

Endorsing Kincard’s analysis, this claim amounts to the following:

(i-c) in suitable contexts, the increase in scientists’ collaborative behavior causes an
increase in their individual successfulness, up to some point;

(ii-c) scientists’ collaborative behavior persists (and develops) because of (i-c), i.e., be-
cause it gives them a higher individual successfulness;

1Even Elster ([1983]), who favors methodological individualism, considers functional explanations
acceptable in the social sciences.
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(iii-c) the increase in scientists’ collaborative behavior is causally prior to this increased
individual successfulness.

As noted by Kincaid ([1996], p. 115), the satisfaction of the third clause is often
trivial, and our case is no exception (Wray [2002], p. 161). Many scientists have been
successful without collaborating. Also, collaboration is a recent phenomenon while
successfulness is not. Thus, if successfulness were the initial cause of collaboration, one
would need to explain why for such a long period it did not generate collaboration. So,
we consider that (iii-c) is established. Claims (i-c) and (ii-c) are defended in sections 5
and 6. Their respective defenses are distinct issues. The central contribution of this
paper is to provide strong evidence in favor of (i-c) (in section 5), thanks to a model of
scientific collaboration introduced in section 4.

4 The Sequential Competitive Model

In the model introduced by Boyer-Kassem and Imbert ([2015]), n competitors strug-
gle over the completion of a research project composed of l sequential steps, for which
only the last step is publishable. For instance, one of the steps might correspond to the
design of an experiment, another to the running of the experiment, another to the sta-
tistical analysis of the results, and, finally, the paper is written. What constitutes a step
depends on the level of analysis. Here, l is fixed at 10, and each step corresponds to a
task that would take between two weeks and a month.

Time is discrete, and at each time interval agents have independent probabilities p
of passing a step. If p is close to 1, passing steps is easy; if p is close to 0, it is hard.
In the illustrations below, p is set to 0.5,2 which means that completing a project takes
on average between 10 and 20 months for a single scientist. Agents can either stay
on their own or gather into collaborative groups for the whole project. For instance, a
community of 3 agents working on the same research problem can gather in a group
of 3, or in a group of 2 plus one loner, or all stay on their own: these collaboration
configurations are respectively noted (3), (2-1), and (1-1-1).

Importantly, the number n of competitors is not meant to represent the much larger
number of researchers who may belong to a scientific domain, such as in high-energy
physics or social psychology, but stands for the subset of researchers who are working
on the same specific problem and who might collaborate. Further, an agent can be
interpreted as an individual researcher but also as a team. Thus, the model can also
represent how collaboration develops at an institutional level. For example, n = 5 can
stand for 5 individuals or 5 labs comprising 10 researchers, which may or may not
decide to work together.

2Evidence suggests that the main conclusions don’t depend on this choice. See (Boyer-Kassem and
Imbert [2015], p. 674 and p. 684) for more details.
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Is it reasonable to suppose that several individuals (or teams) might compete over
an identical problem? The number of scientific problems is potentially quite large, but
within the framework of paradigms, research programs, or organized research commu-
nities, it is common knowledge which scientific puzzles and questions are significant
and which questions can plausibly be solved (Kuhn [1962], Kitcher [1993]). Overall,
the assumption that several individuals or teams often investigate identical problems
remains plausible.3 One might think that the model is only applicable to cases where
several groups are in a race to gain credit; in fact, though, the case where a collaborative
group of n researchers works alone (‘in a community of n’) on a problem is also covered,
and the model can be used to compare this case with hypothetical situations in which
these n individuals would have worked in smaller groups or solo. So the scope of the
model and our forthcoming explanation is general and covers cases where collaborative
groups do not have competitors.

Because of the priority rule, the first agent or group to reach the final step publishes
the results and wins all the scientific credit, while the others get nothing. So all the col-
laborative groups and loners compete to be the quickest. Within a collaborative group,
the credit for a published paper (fixed to 1 for each race) is split equally among agents.
Thus, an agent’s individual successfulness corresponds to her share of credit, divided by
the time needed to complete the inquiry, and this quantity is assessed by averaging over
millions of replicas.

An important choice here bears on the value of the probability that a group of size k
passes a research step, which is pg(k, p) = 1−(1− p)k. The initial justification by Boyer-
Kassem and Imbert ([2015]) is that this represents a situation in which collaborative
agents have independent probabilities p of passing a step and share information at no
cost: when an agent has passed a step, her collaborators pass it along with her for free
and then they all start trying to pass the next step. This interpretation is useful to grasp
the model but is not endorsed in this paper. Here, the mathematical quantity pg(k, p)
represents an advantage, though a relatively minor one, for collaborative groups. We
discuss this modeling hypothesis at more length in section 7.

Because claims (i-c) and (ii-c) bear on individual successfulness (see section 3), we
now review existing results concerning it. Boyer-Kassem and Imbert ([2015]) have
computed the individual successfulness for all collaboration configurations up to a com-
munity of n = 10 agents. Their main finding is that minor differences in the probability
of passing steps can be much amplified and that, even for not-so-favorable hypotheses,
collaboration can be extremely beneficial for scientists. For example, in a community
of 9 agents organized in the configuration (5-4), i.e., with a collaborative group of 5 and
another of 4, the group of 5 only has a 3% higher probability of passing a step com-

3Recent papers in the field of social epistemology of science make a similar assumption. For example,
Zollman ([2010]) and Frey and Šešelja ([2020]) investigate a community of no more than a dozen distinct
researchers who assess the comparative efficiency of two drugs experimentally.
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pared to the group of 4, but the individual successfulness for an agent in the group of
5 is 25% higher. As another example, in a community of 3 agents in the configuration
(2-1), whereas the difference in the probability of passing a step is 50% higher for the
group of 2, the individual successfulness is 700% higher.

However, these results by themselves do not explain scientific collaboration. First,
the beneficialness of a feature does not by itself explain its existence. Second, these
results merely show that collaborating is beneficial for particular groups in particular
collaborative configurations — for example, a group of 2 is very successful in configu-
ration (2-1-1-1-1) but not in (7-2). Thus, the model merely provides results about what
can be the case in possible configurations. But the explanandum is a general social fea-
ture of contemporary science, not of certain collaborative behavior in some particular
case. Thus, the explanans must also involve general statements about the link between
collaboration and beneficialness. We discuss this link in the next sections.

5 Does Collaboration Cause Successfulness?

In this section, we use the above model to provide strong evidence that the increase
of collaboration causes an increase in individual productivity in suitable contexts (i-c),
in a sense that must be carefully specified. As will be argued, this is not incompatible
with a global decrease in the productivity of the community.

We first provide an analytical result that covers various cases and gives insight into
the model. Then we explore the model via a brute-force method.

A first general result is the following proposition (proof in the appendix):

Proposition.
If m groups, each comprising k agents, merge, the individual successfulness of these
agents increases.

That is, whenever there are several collaborative groups of the same size,they improve
the individual successfulness of their members by merging. A corollary is that single
individuals always have an interest in collaborating rather than staying solo. A result
of this type, however, though already general, merely provides a partial order over the
successfulness of groups of size k across configurations and cannot provide a general
vindication for (i-c). However, its informative value should not be underestimated. It
holds for any size and configuration of the rest of the community. For example, in
configuration (3-2-2-1-1-1), the loners would achieve a larger individual successfulness
if they merged into a group of 2 or of 3, as would the members of the groups of 2 if
they merged into a group of 4. The proposition also implies that individuals in a group
of even size k have no interest in splitting into two groups of k/2. Also, the proof of
the proposition gives an insight into why merging can be beneficial: new larger groups
keep the gains of the subgroups from which they come, and develop in addition new
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gains either by saving time (if one of their subgroups would have finished first anyway,
they are now quicker because they share progress) or by earning new gains (by finishing
before their competitors in new cases because they now proceed quicker).

Another route to investigate the general link between collaboration and success is
to analyze what happens on average over all relevant configurations, which we do in
the remainder of this section. For all 138 possible configurations of up to n = 10
competitors, we compute the average individual successfulness in all groups.4 For each
configuration, the successfulness is computed by running the race between the different
groups many times and assessing how frequently each group wins. These quantities
are computed up to the point where fluctuations become marginal, which takes between
hundreds of thousands and millions of runs. Then, to establish the robustness of the
causal claim, we study the influence of various parameters such as the total number of
competitors, the collaborative group size, and the average level of collaboration in the
community.

5.1 Successfulness and community size

Figure 1 shows the average individual successfulness as a function of community
size n, for agents in collaborative groups of various sizes. A first observation is that the
successfulness of loners quickly collapses with n and is much lower than that of other
groups as soon as n > 2. This shows that loners are outraced, except in very small
communities. Second, for all group sizes, individual successfulness decreases with the
community size, which is expected since the number of competing groups and their
sizes increase. Nevertheless, for each k, the successfulness of a group of size k starts
high and does not decrease much, up to some community size s which is larger than k.
In still larger communities, they are eventually outperformed by larger groups. Note that
for n > 2, the successfulness of groups of size k is in the beginning below that of smaller
groups: collaborating as much as possible is not the best strategy.5 Third, when groups
are larger, this initial plateau of successfulness is longer and flatter, and the subsequent
decrease is less steep. Fourth, when n is much larger than k, the successfulness of
individuals increases with the size of the group they are in. However, this increase

4Technically, we compute the average individual successfulness of an agent in a collaborative group
of k over all possible collaboration configurations meeting some constraint. For example, the average
individual successfulness when in a group of 4 and a community of 7 is computed as the average of indi-
vidual successfulness in configurations (4-1-1-1), (4-2-1), and (4-3). Which weight should be attributed
to each configuration? The number of combinatorial realizations of these configurations is not necessarily
what matters, and the correct weights ultimately depend on the empirical frequency of existing configu-
rations. For lack of information about these frequencies, we privilege simplicity and give equal weights
to all configurations.

5See (Boyer-Kassem and Imbert [2015], pp. 679–80) for an analysis of over-collaboration in large
groups.
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is moderate, and small groups still do reasonably well (this is somewhat unexpected
given the general amplification mechanism, but see Figure 3 below for more refined
analyses). For instance, in a community of 10 researchers, groups of 2 are suboptimal
but remain somewhat viable since their average successfulness remains between 1/3 to
1/2 of that of groups of 3 or 4. Overall, the morale is that not collaborating is, in general,
not a viable strategy. Collaborating moderately (k = 2 or 3) can be very rewarding
when there are few competitors, for instance on ground-breaking questions that are only
tackled by a handful of scientists. However, when communities of competitors become
significantly larger, small groups tend to be outraced. Thus, not collaborating or only
moderately collaborating can be risky when uncertainty prevails about other competing
groups. These findings suggest that large teams are best at developing normal science
(when important research problems are clearly identified within communities), but that
achievements and success by individuals or small groups are still possible on ground-
breaking issues.6 Finally, being in large collaborative groups does not afford a very
high successfulness but is a reasonably safe situation. Overall, these results support the
claim that up to some point, collaborating more causes more successfulness, and more
robustly so.

5.2 Successfulness and group size

Figure 2 shows for various community sizes how individual successfulness changes
with the size of collaborative groups. For n > 2, the successfulness curve has a one-
peaked (discrete) form, which means that there exists an optimal collaborative group
size, different from the community size, over which adding new collaborators decreases
successfulness. Note that a single-peaked preference function is usually assumed in the
literature about coalitions or in social choice theory more generally. Here it emerges
from a micro-model, without an ad hoc mechanism for over-collaboration. This shows
that the model remains reasonable even if the costs of collaboration are idealized away.
In particular, in a given context, groups have no incentive to grow indefinitely larger.

Note also that the decrease after the peak is slower than the increase before it: over-
collaborating is globally less harmful and risky than under-collaborating. For stable
large networks that collaborate a lot, adding or removing some collaborators does not
substantially change their (high) successfulness. So, the successfulness of these groups
is robust. In addition, the position of the maximum grows with the community size,
which suggests that in larger, more international communities, optimal collaborative
groups are larger.

6This is particularly in line with recent findings by Wu et al. ([2019]) that large teams develop science
while small teams disrupt it.
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Figure 1: Variation of individual successful-
ness with community size.
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5.3 Successfulness in more or less collaborative communities

Figure 3 displays how the successfulness of members of collaborative groups of size
k varies with the mean group size in the community, i.e., with the degree of collabora-
tion in the group environment.7 Consider how the various curves stand relative to one
another. Whatever the mean group size of the community, loners are always outstripped
by collaborative groups. Individuals in groups of size 2 attain a much lower success-
fulness (compared to larger groups) as soon as the mean group size is larger than 1.5.
Individuals in groups of size 3 have lower successfulness than those in groups of 4 as
soon as the mean group size is larger than 2 or so. Overall, this shows that success-

7For each collaboration configuration, we compute the mean group size, for instance, 1.75 for collab-
oration configuration (3-2-1-1). Then, for each group size k, we compute the average successfulness over
configurations having a degree of collaboration within intervals [1, 1.5] (represented at coordinate ‘1.25’
on the x-axis), [1.25, 1.75] (represented at coordinate ‘1.5’), [1.5, 2] ... [3.5, 4].
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fulness depends less on the absolute size of the group than on how the relative size of
the group compares to the mean group size of competitors. The main point is that sci-
entists who collaborate more than average are very successful; those who collaborate
as much as their peers do reasonably well; and those who collaborate less than average
are outpaced by a large margin. This general result is not unexpected given previous
results, but the graph highlights that the success for intensively collaborating scien-
tists, as well as the underachievement for under-collaborators, can be very large. This
shows that collaborating does cause more successfulness compared to not collaborating
at all. Moreover, collaborating more than average also causes more successfulness. Re-
sources do not accrue simply to successful scientists, but to more successful ones, and
the reward structure favors the degree of collaboration going upward, creating a sort of
unintentional arms race.

The above patterns have been obtained for competing communities of up to n = 10,
but remember from section 4 that n stands for the number of scientists who compete on
the very same problem (not the whole scientific community) and that agents can further
be interpreted as teams or institutions. Hence, our results cover a large number of actual
cases.

Let us sum up the findings of this section. Within a competing community, when
collaboration is possible it entails successfulness. This relation is robust under changes
in the size of communities or the exact size of groups. Also, those who collaborate more
than average are more successful; collaborating too much is slightly problematic, while
under-collaborating is strongly so, which means that collaborating a lot is a safe working
habit, especially in the absence of information about competitors. All this shows that
claim (i-c) is adequately supported: in suitable contexts, when scientists collaborate,
this causes an increase in their individual successfulness, up to some point.

These results are compatible with the empirical finding that when adopting a frac-
tional count (dividing the number of publications by the number of authors, like here),
the number of collaborators does not clearly significantly boost publishing productivity
(Lee and Bozeman [2005]), even if it increases the number of journal papers of collab-
orating authors. Indeed, we do not claim simpliciter that the productivity of scientists
is positively correlated with the size of their group. Our claim is relative to a given
community: productivity can be higher for groups of size 3 surrounded by groups of
average size 1.5, than for a group of size 4 surrounded by groups of average size 2.5
(see Fig. 3). In brief, if they remain in an ecological niche where collaboration is low,
individuals and small groups can do better than larger groups.
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6 Collaborative Behaviors Develop Because of the Differential Successfulness of
Collaborative Scientists

We now argue that, because of the differential successfulness of collaborative scien-
tists, collaborative habits persist and develop in scientific communities (ii-c). This feed-
back loop can be caused by various well-attested social mechanisms across scientific
contexts, and in this section we review a variety of evidence about these mechanisms.

6.1 Transmission

Knowing when, with whom, and how to collaborate is not straightforward. Like other
know-how skills, it is usually developed by exercising it with people already possessing
it. People that already collaborate may fulfill a role of cultural transmission for col-
leagues (Thagard [2006]), and, above all, for students, as collaborating with them is an
efficient way to train them (Thagard [1997], pp. 248–50). The cultural transmission of
collaborative practice, therefore, does not require any particular effort on top of that.8

The very circumstances that make collaboration possible and beneficial also make its
transmission easier: when a research project can be divided into well-defined tasks, the
solutions of which can be publicly assessed and shared, it is easier to enroll other people
and thereby transmit collaborative skills to them (ibid.). Thus, collaborative habits and
skills can be passed on and need not be reinvented by newcomers.

6.2 Transmission opportunities

We now give evidence that collaborative scientists, because they are more successful,
are more often in a position to transmit their collaborative habits: hence the persistence
and development of collaboration.

Within pure science, where the extension of certified knowledge is the official goal,
successful scientists can be expected to have better chances of getting good positions
and grants, developing research programs, and passing on their collaborative habits. Al-
though scientific institutions are imperfect, it seems that this is often the case. Within
applied science, in which collaboration is also widespread (Wuchty [2007]), research
projects are usually directed at finding profitable and patentable applications. Thus,
fund providers are strongly interested in hiring and providing resources to success-
ful scientists. Note that the link between average success and pragmatic rewards is
needed on average only, and it may be that some epistemically successful scientists get
few resources while some unsuccessful scientists get a lot.

8The fact that students reproduce the practices of their supervisors is a key ingredient of models
analyzing selection mechanisms in science: see, for example, (Smaldino et al., [2016]) or (O’Connor,
[2019]).
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In practice, non-epistemic factors may even tend towards an over-crediting of suc-
cessful scientists, and in particular collaborative ones. First, individual successfulness
has been assessed in the model using a conservative estimate, and an agent’s publication
within a group of size k is often assessed more than just 1/k a single-authored publica-
tion.For instance, a large French research institution in medicine officially weights the
citations of a paper with ‘a factor 1 for first or last author, 0.5 for second or next to
last, and 0.25 for all others’ (Inserm [2005]). Second, a publication within a group of
10 is generally more visible than one single-authored publication, as more people can
promote it. Third, the sociology of science suggests that scientific credit tends to ac-
crue to a subset of scientists who are perceived as highly successful — a phenomenon
known as the Matthew effect (Merton [1968]). Thus, the model shows that collaborating
more than average can be extremely rewarding, and then, given that access to resources
increases with scientific credit, successful collaborative scientists can be expected to
benefit more from this effect.

Other types of mechanisms may contribute to this process, including conscious ones.9

Once winners of the scientific race publish co-authored articles, it becomes easy for oth-
ers to see that successful scientists are highly collaborative. For instance, if agents in
a group of three are 4 times more successful than a single agent, this means that their
group will publish 12 more articles than the singleton. Accordingly, the belief that col-
laborating is beneficial may also be acquired by non-collaborating scientists by look-
ing at journals. Furthermore, resources may accrue to scientific institutions that host
individually successful scientists and so accrue indirectly to these scientists. Agents
in the model may also be reinterpreted as teams or collective entities that decide to
share results or combine their expertise to produce collective articles. Then, these in-
stitutions and their members turn out to be more successful, attract more resources,
and keep on developing and transmitting their working habits.

Overall, there is a wealth of evidence that scientists and scientific institutions that are
successful (in terms of published results) have more opportunities to develop, to school
research students, and to place them in the academic world10. Hence, the causal connec-
tion between the success of collaborative scientists and the persistence and development
of collaborative practices (ii-c) is highly plausible.

7 Discussion: Modeling Assumptions

Our model does not purport to represent faithfully all situations in which collabora-
tion occurs. As we shall argue, however, this does not threaten our general argument.

9Kincaid mentions that ‘complex combinations of intentional action, unintended consequences of
intentional action, and differential survival of social practices might likewise make these conditions [(i)–
(iii) in our section 3] true’ (Kincaid [1996], p. 112).

10This feature is also used in formal models that investigate potential selection mechanisms in science,
see again (Smaldino et al. [2016]) and (O’Connor, [2019]).
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First, the winner-takes-all scheme is not always strictly implemented, as identical or
similar findings may be published in less-renowned venues. For this reason, in section 8
we discuss at length the case of the humanities. However, note that scientists usually get
far less credit for such publications, and major journals explicitly require novel material.
This legitimates investigating what takes place in the idealized situation in which the
priority rule is strictly applied.

Second, the modeling choice concerning the step-efficiency of groups should be taken
with a certain grain of salt. Actual collaboration takes place in various ways. Not all
collaborative mechanisms are equally efficient, rewarding, or beneficial to all types of
members of a group (see, for example, (Abbasi et al., [2011], Li et al. [2013], Parish
et al. [2017])). So it would be preposterous to assume that one single step-efficiency
function can represent all cases adequately. However, this is not what we do here. Since
we are studying how the effects of the priority rule can feed into a functional explanation
of collaboration, it is argumentatively better to assume that the epistemic benefits of
collaboration are low. Accordingly, the step-efficiency of collaborating groups in the
model is chosen on a pessimistic basis, so that if collaboration is efficient in this case,
it should be even more efficient in more realistic ones. In this way, our results highlight
the successfulness and potential development of groups in cases where their differential
advantage is larger than (or equal to) the low key estimate within the model. The fact
that the step-efficiency function is not favorable can be seen in two ways.

Firstly, remember that it can be interpreted as the step-efficiency of a somewhat inef-
ficient group of researchers who work independently and sequentially on identical sub-
tasks, share intermediate results, and do not interact otherwise. Experimental research
in social psychology has shown that collaborative groups are often better at solving
problems than individuals, even if various pitfalls can spoil the epistemic activity of
these groups. For highly intellective tasks which have demonstrably correct solutions, a
group performs better than the best of its individual members (see (Laughlin [2011]) for
a review). Thus, groups are faster at solving a succession of intellective tasks. By con-
trast, in the model, at each step, a group does just as well as its most successful member,
not better. Further, evidence shows that group performance increases with the number
of high-ability members within the group (ibid., chapter 4). In collaborative groups,
specific tasks can be ascribed to experts, i.e., high-ability members. Accordingly, the
probability of passing steps in such groups is higher than that chosen in the model, in
which all agents have the same probability of passing steps. Finally, the model assumes
that research is sequential, whereas in actual groups it can sometimes be made parallel.
All these differences point in the same direction: real collaborative groups tend to com-
plete research projects faster than individuals, and our modeling choice is reasonably
pessimistic (see also Boyer-Kassem and Imbert [2015], p. 672). Therefore, if collabo-
ration is beneficial with these hypotheses in force, it should be even more so with more
realistic ones.
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Secondly, the mathematical features of the step-efficiency function are rather unfa-
vorable, and the beneficialness of groups is not bluntly assumed in the model. Indeed,
pg(k, p) has a decreasing growth rate below 1, is bounded, and converges quickly. Con-
sider these features in turn. First, because the growth rate is below 1, k heads are not k
times more efficient than 1 (as, for example, Thagard 2006, p. 194). Second, because
the game is a race against others, the relative, not absolute, values of pg for groups
of different sizes are what primarily matter. Since the marginal increase in pg(k, p)
vanishes as the size k of the group increases, after a while having more collaborators
makes a tiny difference for larger groups. Third, the boundedness of pg(k, p) means that
the speed of larger teams cannot go beyond one stage per time step, whereas in real
cases adding more people can help in passing thresholds and so complete the task more
quickly. Two persons can push a car, ten can carry it.11 Finally, because the convergence
is quick, the advantage of adding more collaborators shrinks quickly. In any case, our
choice of p(k) is aimed at explaining the development of collaboration in general, not
at making quantitative predictions about the general efficiency of collaborative groups
or of specific types of them having different ages, genders, country-types, collaborative
strategies, etc.

Let us finally discuss the collaboration costs — for instance, those of communicat-
ing intermediate results within the team. By not including them in the model, we do
not claim that collaboration costs are never obstacles to collaboration nor are always
negligible. This would be unreasonable, since potential collaborators may not share a
common scientific culture, may be geographically far apart, or may lack communication
facilities, as used to be the case. In other cases, though, neglecting collaboration costs
in the model is a fairly reasonable assumption, typically for teams of well-connected
scientists whose research problem can be divided into well-defined subproblems with
quickly communicable solutions. Thus, though idealized, the model applies fairly well
to common existing situations. For such cases, the global balance in the model between
modeling assumptions that are favorable to collaboration versus ones that are unfavor-
able is clear: the benefits of collaboration are strongly underestimated, which might
make up for the idealization of some collaboration costs. Moreover, as the model shows
that the benefits of collaborating are, in the end, large, it is safe to conclude that col-
laborating is beneficial. We discuss the issue of collaboration costs further in the next
section.

8 Scope of the Explanation

What is the scope of the explanation we have defended? We first discuss the case
of the humanities, in which collaboration is rarely to be found; next, we turn to the

11The average speed of groups could be made higher than 1 by using an appropriate speed probability
distribution, but this would be more favorable to groups.
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issue of collaborative costs; and finally we discuss to what extent our explanation can
encompass the collaborative mechanisms discussed in the literature.

8.1 Objection: what about the humanities?

As mentioned above, collaboration is widespread in the sciences, less developed in
the social sciences, and almost absent in the humanities. Yet research in the humani-
ties arguably also involves certain successive steps (for example, reading the literature,
developing ideas, drafting a paper), and researchers in these fields also strive for publi-
cation and credit. Do these facts not falsify the proposed explanation?

No, because other crucial hypotheses of the model are not met in this case. First, the
conditions for a general, straightforward, and uncontroversial application of the priority
rule are hardly present. In the humanities, well-posed problems can be hard to single
out, their solutions difficult to assess uncontroversially, and the contributions of co-
authors hard to delineate. Subfields where the priority rule can be applied (to some
extent), like formal or analytic philosophy, are something of an exception. Similarly,
the importance of interpretative methods and the coexistence of incompatible traditions
may prevent a consensus emerging on the nature of significant problems or on what
counts as a solution. For instance, in philosophy, the question of the freedom of human
beings may be approached from a naturalistic philosophy of science viewpoint or from
a phenomenological tradition, and philosophers from one tradition may not accept as
satisfactory the ‘solutions’ advanced by researchers from the other.

Second, the model assumes that research problems should be dividable into subtasks,
and the solutions of these subtasks should be communicable. However, in the human-
ities, where interpretative practices play a prominent role, it is not that easy to com-
municate the results of subtasks, if that notion makes sense at all. In the history of
philosophy, almost every specialist on Hegel has her own interpretation of the master’s
writings. Thus, collaborating Hegelians would not agree on the validity of the interme-
diate results! Similarly, Thagard [1997], p. 249) notes that the humanities do not easily
lend themselves to the division of labor.

Third, the successfulness of scientists needs to be clearly identifiable by institutions
for (ii-c) to hold. Nevertheless, in the humanities, scholars generally do not share
paradigms, methods, or norms concerning what is scientifically sound and significant,
and cultural or linguistic barriers can constrain the emergence of unified communities.

8.2 Communication and collaboration costs

Universally acknowledged publication venues are needed for the priority rule to ap-
ply, and these venues should be easily accessible to the scientists. Arguably, these con-
ditions have progressively been fulfilled by the development of scientific journals and
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more efficient means of transportation and communication over the 19th and 20th cen-
turies, which corresponds to the period in which scientific collaboration began and hence developed.

As mentioned above, the model does not include collaboration costs, in particular
communication ones. The collaboration benefits in the model are significant, which can
make up for the various collaborative costs. Some empirical input is here enlightening.
The burden of collaboration costs can be studied historically by looking at technology
shocks that have lowered transmission costs and reshaped the network structure of scien-
tists and informational exchanges. An example is the development of air transportation
and cheaper flights (Catalini et al. [2016]). Another example, analyzed by Agrawal and
Goldfarb ([2008]), is the introduction of the network Bitnet among American univer-
sities in the 1980s and 1990s, which increased collaboration within engineering com-
munities. Bitnet disproportionately benefited middle-tier universities, especially those
co-located with top-tier institutions, and had democratizing and equalizing effect (Ding
et al. [2010]). Conversely, top-tier universities benefited less from such shocks since
their internal collaborative potential was already exploited. These examples suggest that
the parallel between the decrease in communication costs and the increase in collabo-
ration is not accidental. High collaborative costs can remove much of the interest of
collaborating. Returning to our model, the fact that no collaboration costs are present
should be seen as representing an ideal situation. The closer the actual situation is to
this ideal, the more collaboration is beneficial according to the model, and the more our
functional explanation is supported. These findings are consistent with the historical
material presented above. In brief, our explanatory scheme is not restricted to cases
where transmission costs are negligible, but provides insights into a broader spectrum
of situations. In the context of other inquiries, collaboration costs, spatial constraints,
or factors unfavorable to collaborative activities and their development could easily be
integrated into the model, but we leave this for future work.

8.3 A general, encompassing explanation

As pointed above, scholars studying collaborations have proposed a wealth of ‘expla-
nations of collaboration’. Not all these explanations are compatible, but the coexistence
of a plurality of explanations is not abnormal. Typically, different types of explanations
can be considered depending on the scale at which an explanation is sought, and micro
and macro explanatory schemes can be compatible. Also, different causal processes can
contribute to some target phenomenon (for example, global warming). Further, differ-
ent factors belonging to the same causal process can be correlated with the advent of a
target explanandum. Finally, a factor can be embedded in different ways within distinct
explanatory schemes (for example, functional, causal, rational, unificatory).

To see why our account is compatible with other accounts in the literature, note that,
from a formal point of view, the model shows that the sequential race greatly amplifies
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differences in the step-efficiency pi, whatever the origin of these differences. In other
words, any factor, whether epistemic or not, that causes an increase in pi for group i (for
example, if a collaborator is an expert concerning specific steps, if increased resources
improve the probability of passing steps, etc.) can provide a decisive differential advan-
tage to this group. This grounds the generality of the model: the information-sharing
hypothesis of the initial model (Boyer-Kassem and Imbert [2015]) no longer applies,
and only the step-efficiency differences matter. Therefore, readers may interpret the
model in terms of their favorite accounts of what boosts the step efficiency of groups
(for example, outstanding expertise or access to resources) and get the amplification-
of-differences result with the general robust patterns. Note also that the differences in
collaborative patterns across fields may be rooted in differences concerning the factors
that boost efficiency in these fields. For example, if collaborating helps harvest money
(see (Wray, [2002]) and if money makes a step-efficiency difference in science but not
in the humanities (or if money is a booster but is rare in the humanities), collaboration
will develop in the former but not in the latter.

This is what enables the present explanation to encompass several existing accounts.
Consider first the explanation proposed by Muldoon ([2017]): because acquiring new
skills comes with high costs for scientists, complex problems which require a wide range
of skills are solved more easily by groups gathering scientists with varied specialties.12

This can be framed in the model we consider here: a complex problem involves steps
that can only be solved by specific agents. Thus, a larger group of scientists with differ-
ent types of expertise has a higher probability of passing steps. Then, the above results
concerning how differences in probabilities are amplified by the sequential race favor
the development of these groups. So Muldoon’s explanation of scientific collaboration
is compatible with and encompassed by our own.

Consider next the explanation by Thagard ([1997], p. 251), that ‘peer-similar collab-
orations can improve reliability by virtues of members of a team noticing mistakes that
would get past them working alone’. That is, a larger group has higher chances of pass-
ing the research steps correctly. Since our model assumes that a step is either passed
correctly or is not passed at all, Thagard’s point is just that larger groups have larger
probabilities of passing steps, and this is another possible interpretation of the origin of
the larger speed of larger groups. Thus, his account is compatible with the model we
consider, and our explanation encompasses his.

Wray ([2002]) argues that scientific collaboration’s function is to enable scientific
communities to realize their epistemic goals, in particular by accessing the substantial
resources often required to conduct research efficiently. For example, one can imagine
that, with more resources, collaborative groups may have better instruments, and more

12Explanations of collaboration in terms of specialization have a longer history (see, for example,
(Beaver and Rosen [1978], p. 69)). Muldoon more specifically compares the various costs involved
and discusses the relationships between recent models of the division of cognitive labor in science and
collaboration.
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administrative and teaching assistants, which overall helps researchers to pass steps
more quickly. So, Wray’s explanation, which may apply in fields where big money
can make a difference, can be made to fit in the present explanation, with larger groups
having higher probabilities of passing steps.

Overall, the explanation of collaboration is probably a multi-factorial issue, and the
various authors cited may have identified some part of the truth. The advantage of our
functional explanation is that it can encompass various such factors because it relies on a
formal model in which the origin of the differences in probability of passing steps can be
interpreted in various ways. This makes the present explanation general and unifying.

9 Limits, Morals, and Future work

Some limits of the present model are worth highlighting. The model assumes a gen-
eral step-efficiency function which depends only on the number of agents and makes no
specific assumptions about how collaborative groups work internally. This is a strength
as far as generality and scope are concerned. However, the downside is that it does not
provide fined-grained information that could explain collaborative patterns or yield nor-
mative implications about scientists with particular features such as age, gender, place in
a collaborative network, access to technical resources, or funding. Arguably, this would
require developing fine-grained micro-models representing the various inner workings
of collaborative groups and their epistemic effects. In any case, our results suggest that
participation in collaborative groups is a crucial step in the pathway of individuals to
scientific success. Thus, (proactive) inclusion of (apprentice) scientists in collaborative
groups could be a lever to counter existing social biases.

Let us now discuss whether the above results concerning the development of col-
laboration should be welcomed. It is widely believed that collaboration should be en-
couraged because it bolsters scientific productivity. The picture that emerges from our
results is more nuanced: a global increase in collaboration remains compatible with a
global decrease in the productivity of collaborative groups. Indeed, when the conditions
of the models are met, collaborative groups have a differential advantage, and even mod-
erately efficient groups may thereby develop. However, this advantage vanishes when
the degree of collaboration increases in the field. The advantage can be retained if
groups grow even bigger, which may feed a potentially detrimental arms race. The cul-
prit seems to be the priority rule. As it rewards only the first competitor that reaches
a scientific goal, it may disproportionately favor quicker groups, notwithstanding their
productivity, which may be, in fact, low. Thereby, the priority rule can encourage over-
collaboration, if not indeed research waste. This phenomenon can be further amplified
if funding is tied to apparent indicators such as the sheer number of publications. This
suggests that the historical development of collaboration may be, to some extent, arti-
ficial and counterproductive as a side effect of the priority rule. However, collaborat-

20



ing also brings distinct advantages above and beyond productivity, such as the quicker
completion of scientific inquiries (for example, when investigating medical treatments),
cross-fertilization and the development of novel ideas, the transmission of skills, or the
completion of inquiries that individuals cannot do alone. Overall, our results highlight
the need for further investigation of the pros and cons of scientific collaboration, and
serve as another ‘reminder that scientists and policy-makers need to have something
more than a knee-jerk reaction to the presumed benefits of collaboration’ (Bozeman and
Corley [2004]).

Regarding the priority rule, philosophers of science have highlighted that it could
have unexpected benefits, for example by leading to a better division of cognitive labor
(Strevens [2003]) or providing an incentive system that makes the best of scientists’ non-
epistemic motivations (Zollman [2018]). The present results highlight other important
and potentially detrimental effects of the priority rule (see also (Muldoon and Weisberg
[2011])), which suggest that more systematic investigations are needed.

Finally, the above findings show that the sequentiality of inquiries can be a core in-
gredient of the dynamics of scientific communities. Former research in philosophy of
science, like the pioneering works by Kitcher ([1990]) or Strevens ([2003]), tended to
represent research problems as piecemeal units. The present results extend existing
work by Boyer ([2014]) or Heesen ([2017]) that highlight that sequentiality can be cru-
cial.

10 Conclusion

We have provided a general, functional explanation of the development of collab-
oration. Its core ingredients are the existence of common scientific goals, the com-
petition triggered by the priority rule, and the possibility to divide research projects
into subtasks and to share intermediate results. In this framework, collaborating more
than other competitors provides a differential advantage. Then, to the extent that the
successfulness of researchers gives them more opportunities to transmit their research
habits within scientific subfields, the existence and the development of collaborative
practices in communities are favored, and a kind of unintentional arms race may take
place. This functional scheme is an encompassing one, since any factor that increases
the step-efficiency of groups (including features usually related to the development of
scientific collaboration) can provide such a decisive differential advantage. Finally, this
global mechanism is compatible with a global decrease in the productivity of scientific
groups. In other words, it provides more evidence that the beneficialness of scientific
collaboration cannot be blindly assumed, and requires more scrutiny in the future.
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Appendix: Proof of the Proposition

Proposition (formal version). Consider a community of n agents, including m groups
of k agents in a particular collaborative configuration. Let E(Pk) be the expected indi-
vidual productivity of an agent in a group of size k in this configuration, and E(Pmk) the
expected individual productivity of an agent if these m groups of k agents merge. Then
E(Pk) < E(Pmk).

Proof. The general idea of the proof is that when collaboration occurs, agents win
when they would have won without collaborating and, in addition, can save time. Though
this is not needed for the proof, it is also noted that, by saving time, they can also win
in more races.

By definition, E(P) = Σ(p(r)ρr)/Σ(p(r)τr) = E(ρ)/E(τ), where ρr, τr respectively
denote the reward an agent gets and the time she spends in a particular race r, and p(r)
the probability of this race.

Consider first the simple case when two individual agents, α and β, compete with no
other competitors: n = 2, k = 1, m = 2. To model the passing of step s by agent α in
race r, consider the infinite sequence of independent random binary variables Vα,r

s,i , with
p(Vα,r

s,i = 1) = p and p(Vα,r
s,i = 0) = 1 − p. By definition, the time τα,rs for agent α to pass

step s alone is Min(i|Vα,r
s,i = 1).13 Thus, the time τα,r α would need in race r to complete

the inquiry if β was not competing is Σsτ
α,r
s . When actually competing against agent β in

race r, agent α wins and gets a finite reward Rα,r if Σsτ
α,r
s ≤ Σsτ

β,r
s and gets 0 otherwise.

For a given race, as soon as an agent wins the race, all agents stop the inquiry. Thus, for
any race r, the time τr that α and β actually spend on inquiry r is equal to Min(τα,r, τβ,r).
Thus, both agents have the same expected spent time E(τ{α,β}). Further, by symmetry,
E(ρα,r) = E(ρβ,r) = R/2, where R denotes the reward in each run. Overall, their expected
individual productivity is identical: E(P{α;β}) = R/(2E(τ{α;β})).

Suppose now that α and β collaborate (still without other competitors). The group has
probability 1 of winning the race and the reward is shared between α and β. Thus, their
individual expected reward E(ρα+β) is still R/2. However, they are now faster: when
one agent passes a step, the other one passes it too at the same time, so the time τα+β,r

s

spent to pass step s in race r is min(τα,rs , τ
β,r
s ). Thus, it takes all agents Σs min(τα,rs , τ

β,r
s )

to complete a race r. Since Σs min(τα,rs , τ
β,r
s ) ≤ min(Σsτ

α,r
s ,Σsτ

β,r
s ), this establishes that

E(τ{α+β}) ≤ E(τ{α;β}), and E(P{α;β}) ≤ E(P{α+β}) (inequality (1)).
To establish that the inequality is strict, note that for a particular race Σs min(τα,rs , τ

β,r
s ) =

min(Σsτ
α,r
s ,Σsτ

β,r
s ) exactly if for all s, τα,rs ≤ τ

β,r
s or if for all s, τα,rs ≤ τ

β,r
s (condition A).

For a particular s, p(τα,rs ≤ τ
β,r
s ) = γ with γ finite and strictly inferior to 1 because of

the independence of the random variables describing the attempts by individuals to pass
a step. The two parts of condition A overlap only if for all s, τα,rs = τ

β,r
s , which has

13For instance, in this representation all sequences that start with (0, 0, 0, 1) correspond to the event in
which the agent takes 3 + 1 steps to pass the step, and this event has probability p.(1 − p)3.
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probability ε strictly inferior to 1. Overall, the probability that condition A is not met
and that inequality (1) is strict is 1 − 2 ∗ γk + ε (by the standard rules for calculating the
probability of compound events, here the passing of the various steps), and, therefore, it
is finite. Further, since for all configurations in which condition A is not met, the gain in
time is finite (superior or equal to one time step), eventually on average, the total gain of
time is also finite. Thus, on average, the gain in productivity is finite, which establishes
the strict inequality in (1).

Mutatis mutandis, the same reasoning holds (i) for a number of m individual agents
competing against each other; (ii) for m groups of size k (with no other competitors),
for example by considering that a group of k is equivalent to an agent having probability
1 − (1 − p)k of passing a step; and (iii) when there are other competitors besides the m
groups: a collaborative group of size g.h wins whenever one of its g subgroups would
have won, and in addition E(τ) strictly decreases. QED.

Addendum. Note that in the context of the existence of other competitors, because
collaborative groups work quicker than their subgroups, they win the race in a larger
finite fraction of cases in which other competitors would have won otherwise, thus,
E(ρ{α;β}) < E(ρ{α+β}), which also contributes to the increase in productivity for groups of
equal size that start collaborating.
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