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Abstract

This article is dedicated to the long time behavior of a finite volume approximation of
general symmetrizable linear hyperbolic system on a bounded domain. In the continuous case,
this problem is very difficult, and the ω–limit set (namely the set of all the possible long time
limits) may be large and complicated to depict if no dissipation is introduced. In this article,
we prove that in general, with a stable finite volume scheme, the discrete solution converges
to a steady state when the time goes to infinity. This property is a direct consequence of
the numerical dissipation mechanisms used for stabilizing the discretization. We apply this
result for determining the long time limit for several stabilizations of the wave system, and
perform a formal link with the low Mach number problem of the nonlinear Euler system.
Numerical experiments with the wave system are performed for confirming the theoretical
results obtained.

1 Introduction
In this article, we are interested in the long time behavior of symmetrizable linear systems on a
bounded domain. In the continuous case, when the system is not dissipative, this problem may
be very complicated: for example, if the wave system is considered on the domain r0, 1s with
wall boundary conditions in 0 and 1, an initial condition will travel and reflect forever without
dissipating, leading to a large and complicated ω–limit set. The aim of this article is to investigate
this problem, but at the discrete case, with a stable finite volume discretization.

The long time asymptotic behavior of finite volume approximations has been investigated in
several contexts, such as coagulation-fragmentation model [12], drift-diffusion equation [7], non-
linear diffusion equation [9], convection-diffusion equations [8, 5], see also [6] for a review. All
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these studies rely on the entropy method [2], more precisely, all the continuous systems that have
been studied in these articles have an entropy that is dissipated, and the numerical schemes are
proven to dissipate also these entropies, leading to an exponential decay of the relative entropy. In
our case, the situation is slightly different: we are considering symmetrizable first order systems,
which means that they have an entropy, but the continuous system does not have any dissipation
mechanism of this entropy. Surprisingly, it is however possible to prove the existence of a long
time limit for the numerical scheme thanks to the numerical dissipation.

This article is organized as follows: in Section 2, some tight sufficient conditions are given for
ensuring a long time limit for the finite volume discretization of a general first order symmetrizable
hyperbolic system. Then in Section 3, we prove that these existence conditions can be applied to
the different known discretizations of the wave system. Last, in Section 4, numerical results on
the long time behavior of the wave system are reported. The article finishes with a conclusion
including a formal link between the low Mach number problem and the long time limit problem of
the wave system.

2 Discrete long time behaviour for a linear first order hyper-
bolic system

In this section, we are interested in the long time behavior of the finite volume discretization of
the following symmetrizable system

BτU`
d
ř

k“1

AkBxkU “ 0, (1)

where d is the dimension, U is a vector of dimension nvar, and the Ak are d matrices of dimension
nvar ˆ nvar. For any vector n of Rd, we define

Apnq :“
d
ř

k“1

Aknk.

We suppose that (1) is symmetrizable: a positive definite matrix S exists such that for all n, SApnq
is symmetric. In Section 2.1, the finite volume discretization of (1) is described.

Once discretized in space, the semi-discrete (discrete in space, continuous in time) numerical
scheme can be formally written as

U 1pτq “ B ´AU , (2)
where A is the matrix of space discretization and B depends on the boundary conditions. The
long time limit problem for this linear, finite-dimensional system is known, and depends on the
spectral structure of A. The different cases are summarized for example in [14], and we recall it in
Section 2.2. Last in Section 2.3, sufficient conditions on the discretization described in Section 2.1
are derived for ensuring existence of the long time limit described in Section 2.2.

2.1 Finite volume space-discretization of hyperbolic linear systems
The domain Ω is supposed to be bounded, and Th denotes a mesh of this domain, on which a
cell-centered finite volume discretization is applied. For a given cell i of Th, we denote by |Ωi| its
measure, by Vpiq all the neighboring sides of the cell i, Vintpiq the set of the neighbors of the cell
i. We suppose that we have two types of boundary conditions on BΩ:

• Wall boundary conditions, in which no external value is imposed, and in which the boundary
flux depends only on the internal value. The sides of the cell i on which such boundary
conditions are imposed are denoted by Vwallpiq.

• Steger-Warming boundary conditions, in which a full state Ub is weakly imposed. The sides
of the cell i on which such boundary conditions are imposed are denoted by VSWpiq.

We denote by Γij the side j of the cell i, and by |Γij | its measure. We consider the following finite
volume numerical scheme of (1)

BτUi `
1

|Ωi|

ř

jPVintpiq

|Γij |F pUi,Uj ,nijq

`
1

|Ωi|

ř

jPVwallpiq

|Γij |F
wallpUi,nijq

`
1

|Ωi|

ř

jPVSWpiq

|Γij |F
SWpUi,Ub,nijq “ 0,

(3a)
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where the numerical flux F pUi,Uj ,nijq reads

F pUi,Uj ,nijq “ Apnijq ttU uuij ´Dpnijq pUj ´Uiq ,

where nij is the unit vector going from i to j, and where the symbol tt ¨ uuij denotes the average of
the left and right values

ttU uuij “
Ui `Uj

2
.

Conservativity is ensured provided Dpnijq “ Dpnjiq. We now detail the two types of boundary
conditions that are used in (3a).

Steger-Warming boundary conditions. In this case, we wish to impose weakly a state Ub.
The matrix Apnq can be diagonalized in R

DQ P GLnvar pRq Apnq “ Q´1pnqΛpnqQpnq,

where Λpnq is a diagonal matrix. Denoting by Λ`pnq (resp. Λ´pnq) the diagonal matrix such that
Λ`i,ipnq “ maxpΛi,ipnq, 0q (resp. Λ´i,ipnq “ minpΛi,ipnq, 0q), we define

A`pnq :“ Q´1pnqΛ`pnqQpnq A´pnq :“ Q´1pnqΛ´pnqQpnq.

Given a boundary state Ub, and n the outgoing normal, the Steger-Warming boundary flux is
defined as

F SWpUi,Ub,nq “ A`pnqUi `A
´pnqUb.

This boundary condition can be reformulated as

F SWpUi,Ub,nq“ApnqUb `A
`pnqpUi ´Ubq

“Apnq
Ui `Ub

2
´

1

2
pA`pnq ´A´pnqq pUb ´Uiq .

(3b)

Wall boundary conditions. In this case, the boundary flux depends only on the interior value,
but we require some dissipation in some sense. The boundary flux is

FwallpUi,nq “ Apnq
Ui ` Ũi

2
´

1

2
pA`pnq ´A´pnqq

´

Ũi ´Ui

¯

where Ũi is obtained from a transformation of Ui: Ũi “ pIn ´ PwallpnqqUi where Pwallpnq is
positive semi-definite. The flux can be rewritten as

FwallpUi,nq “ Apnq
Ui

2
`

1

2

`

Apnq ´ 2A´pnqPwallpnq
˘

Ui. (3c)

2.2 Reminder on the long time behavior of linear differential systems
2.2.1 Continuous differential system

In this subsection, we are interested in the long time behavior of (2). We denote by N the size of
the system. The solution of this system reads

Upτq “ expp´τAqU0 `

ż τ

0

expp´pτ ´ tqAqB dt.

We are first interested in the long time limit of the homogeneous problem,

Upτq “ exp p´τAq U0. (4)

CN can be decomposed as the sum of generalized eigenspace of A. The operator A restricted to a
given generalized eigenspace Eλ associated with the eigenvalue λ is equal to λId `Nλ, where Nλ
is a nilpotent matrix. Denoting by l the nilpotent index of Nλ, the exponential of the operator on
Eλ can be written as the following finite sum

exp p´τAq|Eλ “ expp´λτq
l´1
ř

k“0

p´1qkτk

k!
Nk
λ .

Then (4) is bounded for τ ą 0 if and only if either Repλq ą 0, or Repλq “ 0 and Nλ “ 0. It
has a finite limit if and only if the only eigenvalue such that Repλq “ 0 is 0, i.e. A has no purely
imaginary eigenvalue. Noting that N0 “ 0 is equivalent to rangeA X kerA “ t0u, we define the
following set of hypothesis

3



Hypothesis 1. Suppose that A follows the following conditions

1 rangeAX kerA “ t0u.

2 All the eigenvalues λ of A are such that Repλq ě 0.

3 0 is the only eigenvalue of A such that Repλq “ 0.

We can then prove that

Proposition 1 (Long time limit of (2)). Suppose that Hypothesis 1 hold. Then

• A given solution of (2) is bounded for τ ě 0, if and only if B P rangeA.

• Denoting by U8 the unique vector of rangeA such that B “ AU8, (2) with initial data U0

converges towards U8 ` PpU0q, where P is the projection on kerA along rangeA.

• The ω-limit set of the whole space is an affine space, equal to U8 ` kerA.

Proof. Under Hypothesis 1, any vector B can be decomposed into B1`B2, with B1 P rangeA and
B2 P kerA. Then

ż τ

0

expp´pτ ´ tqAqB dt“

ż τ

0

expp´pτ ´ tqAqB1 dt`

ż τ

0

expp´pτ ´ tqAqB2 dt

“

ż τ

0

expp´pτ ´ tqAqB1 dt` τ B2.

A|rangeA has eigenvalues with strictly positive real part, so that
ż τ

0

expp´pτ´tqAqB1 dtÑ 0 when

τ Ñ 8, whereas ‖τ B2‖ Ñ 8 when τ Ñ 8, except if B2 “ 0. We conclude that (2) has a long
time limit if and only if Hypothesis 1 holds and B P rangeA. We remark that

expp´τAqU0 Ñ PpU0q.

Moreover, if B P rangeA, we denote by B11 an element such that B “ AB11. Then
ż τ

0

expp´pτ ´ tqAqAB11 dt“
“

expp´pτ ´ tqAqB11
‰τ

0

“B11 ´ expp´τAqB11

which converges towards B11 ´ PpB11q “ U8. We conclude that Upτq Ñ U8 ` PpU0q. The last
point of Proposition 1 is straightforward.

2.2.2 Time discretized system

From a practical point of view, the system (2) will be discretized in time. The aim of this subsection
is to study the long time behaviour of the fully discrete dynamical system obtained with a forward
or backward Euler time discretization. This behaviour is summarized in the following proposition

Proposition 2 (Long time behaviour of the time-discretized system). We suppose that Hypothe-
sis 1 hold, and take the same notations as Proposition 1. For a given U0 and if B P rangeA, we
consider (2) discretized with either the forward or the backward Euler method, with the time step
δt. We denote by Un the serie obtained after time discretization. Then

• with the forward Euler method, Un converges towards U8`PpU0q in infinite time under the
CFL (for Courant Friedrichs Lewy) condition

@λ P SppAq, λ ‰ 0 δt ă
1

|λ|
.

• with the backward Euler method, Un converges towards U8 ` PpU0q in infinite time uncon-
ditionally.
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Proof. We first consider the discrete system with the forward Euler method
"

Un`1
“ δtB ` pId ´ δtAqUn

U0
“U0

We define Vn as
Vn :“ Un

´ pU8 ` PpU0qq .

Vn is then such that PpV0
q “ 0 and

Vn`1
“ pId ´ δtAqVn,

so that
Vn

“ pId ´ δtAqnV0.

Any eigenspace Eλ of A associated with the eigenvalue λ is stable by pId ´ δtAqn. On this gener-
alized eigenspace, A is equal to λId`Nλ, where Nλ is a nilpotent matrix of index l. Then, on Eλ,
we have

pId ´ δtAqn “ pId ´ δt pλId `Nλqq
n
“

l
ř

k“0

npn´ 1q . . . pn´ k ` 1q

k!
p1´ δtλqn´kp´δtNλq

k.

if λ ‰ 0, the above matrices all converge to 0 under the CFL condition. For λ “ 0, Nλ “ 0, and
pId ´ δtAqn is the identity matrix. However, as PpV0q “ 0, we conclude that Vn

Ñ 0 when nÑ8.
We now consider the backward Euler method. Then the same Vn follows

Vn
“ pId ` δtAq´nV0.

Note that the above invert makes sense because the eigenvalues of A have positive real part. Each
generalized eigenspace is stable for A, but also for pId ` δtAq´1 and so for pId ` δtAq´n. On the
generalized eigenspace Eλ, A is equal to λId `Nλ, so that

pId ` δtAq´n “ pp1` λδtq Id ` δtNλq
´n
“

l
ř

k“0

pn` k ´ 1qpn` k ´ 2q . . . n

k!
p1` λδtq´n´kp´δtqkNk

λ

In each term of this sum, the leading term for λ ‰ 0 is p1 ` λδtq´n, which is going exponentially
to 0. For λ “ 0, the matrix is the identity matrix, but as seen before, PpV0q “ 0. We conclude
that Vn

Ñ 0 when nÑ8, which ends the proof for the backward Euler scheme.

Remark 1. For the forward Euler method, the convergence is exponential, driven by nlmin´1 p1´ δtλminq
n

where λmin is the eigenvalue with the smallest nonzero real part, and lmin the matching nilpotent
index . For the backward Euler scheme, the convergence is exponential, and the slowest component
is behaving like nlmin´1p1` λminδtq

´n.

2.3 Long time limit of finite volume schemes for symmetrizable hyper-
bolic systems

Now, we are interested in applying Proposition 1 to the finite volume discretization (3) of (1). In
this case, the size N of the matrix A and of the vectors U and B is equal to N “ nvar ˆ NCell,
where NCell is the number of cells of the mesh Th. We denote by Fint the set of the interior faces,
by Fwall the set of the boundary faces on which a wall boundary condition is imposed, and by FSW
the set of the boundary faces on which a Steger-Warming boundary condition is imposed.

We denote by S the block-diagonal matrix where each block is |Ωi|S where S is the symmetrizer
of the continuous system. In a more general manner, we will denote by bold capital letters (e.g.
X) the vectors of size nvar, and by typewriter font (e.g. X ) the vectors of size N .

For a real matrixM , we denote by S rM s its symmetric part and by A rM s its skew-symmetric
part

S rM s “
M `MT

2
, A rM s “

M ´MT

2

so that M “ pS `A qrM s.

Proposition 3. If the scheme defined by (3) is

• conservative: Dpnq “ Dp´nq,
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• dissipative :
@U P Rnvar , UTSDpnqU ě 0,

• dissipative at the wall boundary condition :

@U P Rnvar , UTS
`

Apnq ´ 2A´pnqPwallpnq
˘

U ě 0,

• dissipative at the Steger-Warming boundary condition :

@U P Rnvar , UTS
`

A`pnq ´A´pnq
˘

U ě 0,

then points 1 and 2 of Hypothesis 1 hold. Moreover, kerA and rangeA are S-orthogonal.
Proof. The scheme (3) can be put in the form (2) with

pAUqi :“
1

|Ωi|

ř

jPVintpiq

|Γij |
´

Apnijq ttU uuij ´ Dpnijq pUj ´Uiq

¯

`
1

|Ωi|

ř

jPVwallpiq

|Γij |

ˆ

Apnijq
Ui

2
`

1

2
pApnijq ´ 2A´pnijqPwallpnijqqUi

˙

`
1

|Ωi|

ř

jPVSWpiq

|Γij |

ˆ

Apnijq
Ui

2
`

1

2
pA`pnijq ´A

´pnijqqUi

˙

.

As
ř

jPVpiq
|Γij |nij “ 0, we have also

ř

jPVintpiq

|Γij |
ApnijqUi

2
`

ř

jPVwallpiq

|Γij |
ApnijqUi

2
`

ř

jPVSWpiq

|Γij |
ApnijqUi

2
“ 0.

Thus,

pAUqi“
1

|Ωi|

ř

jPVintpiq

|Γij |

ˆ

Apnijq
Uj

2
´Dpnijq pUj ´Uiq

˙

`
1

|Ωi|

ř

jPVwallpiq

|Γij |
1

2
pApnijq ´ 2A´pnijqPwallpnijqqUi

`
1

|Ωi|

ř

jPVSWpiq

|Γij |
1

2
pA`pnijq ´A

´pnijqqUi.

And now we can calculate for X and Y in CN

YTSAX “
ř

iPM

#

ř

jPVintpiq

|Γij |

ˆ

1

2
Y
T

i SApnijqXj ´Y
T

i SDpnijq pXj ´Xiq

˙

`
ř

jPVwallpiq

|Γij |
1

2
Y
T

i S pApnijq ´ 2A´pnijqPwallpnijqqXi

`
ř

jPVSWpiq

|Γij |
1

2
Y
T

i SpA
`pnijq ´A

´pnijqqXi

+

.

We switch to a sum on all the faces of the mesh

YTSAX “
ř

fPFint

|Γf |

ˆ

1

2
Y
T

LSApnf qXR ´Y
T

LSDpnf q pXR ´XLq

`
1

2
Y
T

RSAp´nf qXL ´Y
T

RSDp´nf q pXL ´XRq

˙

`
ř

fPFwall

|Γf |
1

2
Y
T

LS pApnf q ´ 2A´pnf qPwallpnf qqXL

`
ř

fPFSW

|Γf |
1

2
Y
T

LSpA
`pnf q ´A

´pnf qqXL,

where XL and XR are the left and right values relative to the a given face f . As Ap´nq “ ´Apnq,
and as Dpnq “ Dp´nq, it can be rewritten as

YTSAX “
ř

fPFint

|Γf |

ˆ

1

2

´

Y
T

LSApnf qXR ´Y
T

RSApnf qXL

¯

`pYR ´YLq
T
SDpnf q pXR ´XLq

˙

`
ř

fPFwall

|Γf |
1

2
Y
T

LS pApnf q ´ 2A´pnf qPwallpnf qqXL

`
ř

fPFSW

|Γf |
1

2
Y
T

LSpA
`pnf q ´A

´pnf qqXL.

(5)
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We can now prove that 1 and 2 of Hypothesis 1 hold.
Point 1 of Hypothesis 1. Suppose that V P kerA X rangeA. Then, it exists U P RN such
that V “ AU . We are going to prove that VTSAU “ ´UTSAV so that

VTS V “ VTSAU “ ´UTSAV “ 0

and then V “ 0. Using (5) and writting matrices SDpnf q, S pApnf q ´ 2A´pnf qPwallpnf qq and
SpA`pnf q ´A

´pnf qq as the sum of their symmetric part and skew-symmetric part, we have

VTSAU “
ř

fPFint

|Γf |

ˆ

1

2

`

VT
LSApnf qUR ´VT

RSApnf qUL

˘

`pVR ´VLq
T
pS `A q rSDpnf qs pUR ´ULq

˙

`
ř

fPFwall

|Γf |
1

2
VT
L pS `A q rS pApnf q ´ 2A´pnf qPwallpnf qqsUL

`
ř

fPFSW

|Γf |
1

2
VT
L pS `A q rSpA`pnf q ´A´pnf qqsUL

(6)

where VT
LSApnf qUR ´VT

RSApnf qUL “ ´
`

UT
LSApnf qVR ´UT

RSApnf qVL

˘

because SApnf q is
symmetric. Moreover, for any matrix M, any vector U P ker S rM s and any V P RN , we have
S rM sU “ 0 “ UTS rM s so that

UTM V“UT pS `A q rM sV “ UTA rM sV “ ´VTA rM sU
“´

`

VTS rM sU`VTA rM sU
˘

“´VTM U.

Then, to get that VTSAU “ ´UTSAV with (6), it is sufficient to prove that the symmetric part
of (6) vanishes. However, since V P kerA, we have

0 “ VTSAV “
ř

fPFint

|Γf |

ˆ

1

2

`

VT
LSApnf qVR ´VT

RSApnf qVL

˘

`pVR ´VLq
T S rSDpnf qs pVR ´VLq

˙

`
ř

fPFwall

|Γf |
1

2
VT
LS rS pApnf q ´ 2A´pnf qPwallpnf qqsVL

`
ř

fPFSW

|Γf |
1

2
VT
LS rSpA`pnf q ´A

´pnf qqsVL

where UT
LSApnf qVR ´VT

RSApnf qUL “ 0 because SApnf q is a symmetric matrix. As SDpnf q,
SpApnf q ´ 2A´pnf qPwallpnf qq, and SpA`pnf q ´ A´pnf qq are positive semi-definite real matrix,
their symmetric part are positive semi-definite and the right hand side is positive, so that all terms
in the right hand side are null. We recall that for a symmetric, positive semi-definite matrix, the
isotropic cone is equal to its kernel. Then, we have on all interior faces,

VR ´VL P ker S rSDpnf qs ,

on all neighboring cells of a wall,

VL P ker S
“

S
`

Apnf q ´ 2A´pnf qPwallpnf q
˘‰

,

and on all neighboring cells of a Steger-Warming boundary condition,

VL P ker S
“

SpA´pnf q ´A
`pnf qq

‰

.

Then, using (6) we directly get that VTSAU “ ´UTSAV so that VTS V “ 0 and V “ 0. We
conclude that

kerAX rangeA “ t0u .

Point 2 of Hypothesis 1. We denote by λ an eigenvalue of A, and by X P CN an eigenvector
associated with λ. Then

X TSAX “ λX TSX .
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As SApnf q is symmetric and real, X
T

LSApnf qXR´X
T

RSApnf qXL “ 2i ImpX
T

LSApnf qXRq. Adding
(5) evaluated with Y “ X , with its transconjugate gives

RepλqX TSX “RepλX TSX q “ RepX TSAX q

“
ř

fPFint

|Γf |

ˆ

pXR ´XLq
T
S rSDpnf qs pXR ´XLq

˙

`
ř

fPFwall

|Γf |
1

2
X
T

LS rS pApnf q ´ 2A´pnf qPwallpnf qqsXL

`
ř

fPFSW

|Γf |
1

2
X
T

LS rSpA`pnf q ´A
´pnf qqsXL,

(7)

because S is a symmetric and real matrix. As S rSDpnf qs , S rS pApnf q ´ 2A´pnf qPwallpnf qqs ,
and S rSpA`pnf q ´A

´pnf qqs are positive semi-definite real matrix, the right hand side is positive
semi-definite, so that RepλqX TSX ě 0. Since X ‰ 0, X TSX ą 0, then Repλq ě 0, and point
2 of Hypothesis 1 holds.

Proposition 4. If the scheme defined by (3) satisfies the hypothesis of Proposition 3 and if

• for all X P CN such that
$

&

%

@f P Fint, XR ´XL P ker S rSDpnf qs
@f P Fwall, XL P ker S rS pApnf q ´ 2A´pnf qPwallpnf qqs
@f P FSW, XL P ker S rSpA´pnf q ´A

`pnf qqs
(8)

we have
@f P Fint, Im

´

X
T

LSApnf qXR

¯

“ 0

• the kernel of S rM s is A rM s-orthogonal, for the following matrices M
$

&

%

SDpnq
S pApnq ´ 2A´pnqPwallpnqq
SpA`pnq ´A´pnqq

then point 3 of Hypothesis 1 holds.

Proof. We assume that λ is an eigenvalue of A such that Repλq “ 0 and we want prove that
λ “ 0. We denote by X an eigenvector associated with λ. Since for all real matrix M and all
vector X P CN , X T

S rM sX is real, using (5) with Y “ X and taking the imaginary part (as we
take the real part in (7)) gives

i ImpλqX TSX “ i ImpλX TSX q
“

ř

fPFint

|Γf |
´

i Im
´

X
T

LSApnf qXR

¯

` pXR ´XLq
T
A rSDpnf qs pXR ´XLq

˙

`
ř

fPFwall

|Γf |
1

2
X
T

LA rS pApnf q ´ 2A´pnf qPwallpnf qqsXL

`
ř

fPFSW

|Γf |
1

2
X
T

LA rSpA`pnf q ´A
´pnf qqsXL.

Since Repλq “ 0, (7) gives that X satisfies all the conditions (8) and so are their real and imaginary
parts. Then, using the hypothesis of Proposition 4, we get

ImpλqX TSX “
ř

fPFint

Im
´

X
T

LSApnf qXR

¯

“ 0

where X ‰ 0, so that Impλq “ 0 and the only eigenvalue that has a zero real part is 0.

Note that the first item of Proposition 4 holds under the stronger following hypothesis

XR ´XL P ker S rSDpnf qs ùñ Im
´

X
T

LSApnf qXR

¯

“ 0. (9)
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Remark 2. The convergence rate to the long time limit is driven by the spectral gap of the fi-
nite volume discretization (3). We point out that in our case, only the numerical dissipation is
responsible for the existence of the long time limit. We therefore cannot rely on any property of
the continuous system for having an estimate of the spectral gap.

Evaluating numerically the spectral gap is also a difficult problem as the matrix of the discretiza-
tion of (3) is not symmetric.

In this section, general hypothesis were derived for ensuring the existence of a discrete long
time limit for a first order linear hyperbolic system. Next section is dedicated to the application
of these propositions to the first order wave system.

3 Discrete long time behaviour for the wave system
The aim of this section is to prove that the results of the previous section can be applied in different
numerical schemes for the first order wave system

$

&

%

Bτp`
1

ρ0
divxu “ 0,

Bτu` κ0∇p “ 0,
(10)

where κ0 and ρ0 are two strictly positive real numbers. Of course, the system (10) is hyperbolic,
and its symmetrizer is

S “

ˆ

ρ0κ0 0
0 Id

˙

.

The wave velocity c0 of (10) is defined as

c0 “

c

κ0
ρ0
.

The scheme (3) is applied to (10). The matrix Pwallpnq of (3c) is

Pwallpnq “

ˆ

0 0
0 2nnT

˙

. (11)

Moreover, we will consider the following stabilization matrices Dpnq for the numerical scheme (3a)
of the wave system

• The Rusanov flux
Dpnq “

c0
2

Id, (12a)

• The Godunov flux
Dpnq “

c0
2

ˆ

1 0
0 nnT

˙

, (12b)

• The Godunov flux with a centered discretization of the pressure gradient

Dpnq “
c0
2

ˆ

1 0
0 0

˙

, (12c)

• The fix of [4] (that we will call LMAAP, for Low Mach Acoustic Accuracy Preserving) which
can be seen as an extension of [1] on unstructured meshes

Dpnq “

¨

˝

c0
ε

2ρ0
CT

21

´
εκ0
2

C21 0

˛

‚, (12d)

where ε “ ˘1, C21 “
1
?
d
1d and 1d “ p1, . . . , 1q

T .

We first prove that hypothesis of Proposition 3 and Proposition 4 hold for the numerical scheme
in Section 3.1. Then we check that all the hypothesis of Proposition 1 hold in Section 3.2.
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3.1 Verification of hypothesis of Proposition 3 and Proposition 4 for the
boundary conditions and some stabilizations

In this whole section, for being consistent with the notations of (10), we will denote by pp,uq the
components of a vector U. Hypothesis of Proposition 3 and Proposition 4 will be checked for each
of the boundary conditions and stabilizations of (12).

3.1.1 Steger-Warming boundary condition

We first prove that the matrix S pA`pnq ´A´pnqq is positive semi-definite. We denote by S1{2 a
symmetric positive definite square root of the symmetrizer S (which exists because S is symmetric,
positive definite ). As SApnq is symmetric, so is S1{2ApnqS´1{2 “ S´1{2SApnqS´1{2. Therefore,
an orthogonal matrix Q exists such that

S1{2ApnqS´1{2 “ QTΛQ

where Λ is a diagonal matrix. This can be rewritten as

Apnq “ pQS1{2q´1ΛQS1{2

so that A` and A´ can be written

A` “ pQS1{2q´1Λ`QS1{2 A´ “ pQS1{2q´1Λ´QS1{2.

And we have

UTSpA`pnq ´A´pnqqU “ UTS1{2QT pΛ` ´ Λ´qQS1{2 U

“ pQS1{2 UqT pΛ` ´ Λ´qQS1{2 U (13)
ě 0

then the matrix is positive semi-definite.
As a consequence of (13), SpA`pnq´A´pnqq is a symmetric matrix and A rSpA`pnq ´A´pnqqs “

0. Then, the kernel of S rSpA`pnq ´A´pnqqs is A rSpA`pnq ´A´pnqqs-orthogonal.

3.1.2 Wall boundary conditions

We first prove that the matrix S pApnq ´ 2A´pnqPwallpnqq is positive semi-definite. For the wave
system, we have

A´pnq “

¨

˝

´
c0
2

1

2ρ0
nT

κ0
2

n ´
c0
2
nnT

˛

‚ A`pnq “

¨

˝

c0
2

1

2ρ0
nT

κ0
2

n
c0
2
nnT

˛

‚

and Pwall was given in (11). This gives

A´pnqPwallpnq “

¨

˝

0
1

ρ0
nT

0 ´c0nn
T

˛

‚,

so that
S
`

Apnq ´ 2A´pnqPwallpnq
˘

“

ˆ

0 ´κ0n
T

κ0n 2c0nn
T

˙

.

Then for U “ pp,uqT P Rnvar

UTS
`

Apnq ´ 2A´pnqPwallpnq
˘

U “ 2c0pu
Tnq2 ě 0

so that the matrix is positive semi-definite.
We denote by M the matrix S pApnq ´ 2A´pnqPwallpnqq. Its symmetric and skew-symmetric

parts are

S rM s “

ˆ

0 0
0 2c0nn

T

˙

A rM s “

ˆ

0 ´κ0n
T

κ0n 0

˙

.

The kernel of S rM s is the set such that uTn “ 0. If U1, U2 P ker S rM s, with U1 “ pp1,u1q
T P

Rnvar and U2 “ pp2,u2q
T P Rnvar , we have

UT
1 A rM sU2 “ ´κ0p1u

T
2 n` κ0p2u

T
1 n “ 0

because uT1 n “ uT2 n “ 0. Then, the kernel of S rM s is A rM s-orthogonal.
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3.1.3 Rusanov scheme

With the Rusanov flux (12a), the matrix

M “ SDpnq “
c0
2
S,

is symmetric, positive definite and satisfies Dp´nq “ Dpnq then the hypothesis of Proposition 3
hold. Its symmetric and skew-symmetric parts are

S rM s “M “
1

2

ˆ

κ0ρ0c0 0
0 c0Id

˙

A rM s “ 0.

Then, the kernel of S rM s is A rM s-orthogonal. Moreover, the kernel of S rM s is the set such that
p “ 0, and u “ 0.

For XL “ ppL,uLq
T and XR “ ppR,uRq

T in Cnvar such that XR ´XL P ker S rM s, we have
pL “ pR and uL “ uR, and so

X
T

L SApnf qXR“κ0 ppLuR ¨ n` pRuL ¨ nq “ κ0 ppLuL ¨ n` pLuL ¨ nq
“κ0

`

pLuL ¨ n` pLuL ¨ n
˘

P R

so that (9) holds, and thus hypothesis of Proposition 4 hold.

3.1.4 Godunov scheme

The Godunov flux (12b) for the wave system is deduced from the more general expression of the
Godunov flux

F pUL,UR,nq “ A`pnqUL `A
´pnqUR.

As for the Steger-Warming boundary condition, for the Godunov scheme we are interested in the
following matrix

M “ S Dpnq “
1

2
SpA`pnq ´A´pnqq.

Then, the hypothesis of Proposition 3 hold and the kernel of S rM s is A rM s-orthogonal (see
Section 3.1.1). Moreover, in the case of the wave system (12b), we have

M “ SDpnq “
1

2

ˆ

ρ0κ0 0
0 Id

˙ˆ

c0 0
0 c0nn

T

˙

“
1

2

ˆ

κ0ρ0c0 0
0 c0nn

T

˙

so that the kernel of S rM s is the set such that p “ 0, and uTn “ 0.
For XL “ ppL,uLq

T and XR “ ppR,uRq
T in Cnvar such that XR ´XL P ker S rM s, we have

pL “ pR and uTLn “ uTRn, and so

X
T

L SApnf qXR“κ0 ppLuR ¨ n` pRuL ¨ nq “ κ0 ppLuL ¨ n` pLuL ¨ nq
“κ0

`

pLuL ¨ n` pLuL ¨ n
˘

P R

so that (9) holds, and thus hypothesis of Proposition 4 hold.

3.1.5 Godunov scheme with a centered discretization of the pressure gradient

For the stabilization (12c), we have

M “ SDpnq “
1

2

ˆ

ρ0κ0 0
0 Id

˙ˆ

c0 0
0 0

˙

“
1

2

ˆ

κ0ρ0c0 0
0 0

˙

which is positive semi-definite. Then, the hypothesis of Proposition 3 hold.
The symmetric and skew-symmetric parts of M are

S rM s “
1

2

ˆ

κ0ρ0c0 0
0 0

˙

A rM s “ 0

so that the kernel of S rM s is A rM s-orthogonal. Moreover, the kernel of S rM s is the set such
that p “ 0.
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For this flux, (9) does not hold, and thus we have to prove that the first item of Proposition 4
holds. For XL “ ppL,uLq

T and XR “ ppR,uRq
T in Cnvar such that XR ´ XL P ker S rM s, we

have pL “ pR and so

X
T

L SApnf qXR“κ0 ppLuR ¨ n` pRuL ¨ nq “ κ0 ppLuR ¨ n` pLuL ¨ nq
“κ0

`

pLuR ¨ n` pLuR ¨ n
˘

` κ0pL puL ´ uRq ¨ n

The kernel of S rM s is the set such that p “ 0. It means that for all interior faces pL “ pR.
Moreover, since ker S rSpA`pnq ´A´pnqqs is the set such that p “ 0 and uTn “ 0, we have for
all neighboring cells to a Steger-Warming boundary condition pL “ 0. Then, by propagation, we
have for all cells pL “ 0. Then,

X
T

L SApnf qXR“κ0 ppLuR ¨ n` pRuL ¨ nq “ 0 P R

and the hypothesis of Proposition 4 hold.

3.1.6 Scheme with the LMAAP stabilization of [4]

For the stabilization (12d), we are interested in the following matrix

M “ SDpnq “

¨

˝

ρ0κ0c0
εκ0
2

CT
21

´
εκ0
2

C21 0

˛

‚.

Then, for U “ pp,uqT P Rnvar ,
UTM U “ ρ0κ0c0p

2 ě 0

and the hypothesis of Proposition 3 hold.
The symmetric and skew-symmetric parts of M are

S rM s “

ˆ

ρ0κ0c0 0
0 0

˙

A rM s “

¨

˝

0
εκ0
2

CT
21

´
εκ0
2

C21 0

˛

‚

and the kernel of S rM s is the set such that p “ 0. If U1, U2 P ker S rM s with U1 “ pp1,u1q
T

and U2 “ pp2,u2q
T in Rnvar , we have

UT
1 A rM sU2 “

εκ0
2

`

p1C
T
21u2 ´ p2u

T
1 C21

˘

“ 0

because p1 “ p2 “ 0. Then ker S rM s is A rM s-orthogonal.
The proof that the imaginary part of X

T

LSApnf qXR is null is the same as in Section 3.1.5.

3.2 Verification of hypothesis of Proposition 1
For ensuring that hypothesis of Proposition 1 hold, it remains to check that B P rangeA. The
right hand side is obtained by evaluating (3) with U “ 0

pBqi “ ´
1

|Ωi|

ř

jPVSWpiq

|Γij |

ˆ

Apnq
Ub

2
´

1

2
pA`pnq ´A´pnqqUb

˙

.

For any U , we find

UTS B “ ´ř
i

ř

jPVSWpiq

|Γij |

ˆ

UT
i SApnq

Ub

2
´

1

2
UT
i SpA

`pnq ´A´pnqqUb

˙

.

Suppose that U P kerA. Then, as seen in the proof of Proposition 3, all theUi having a neighboring
Steger-Warming boundary condition follow

UT
i S pA

`pnq ´A´pnqqUi “ UT
i S

“

SpA`pnq ´A´pnqq
‰

Ui “ 0.

As a consequence, Ui is in the kernel of SpA`pnq ´ A´pnqq, but also in the kernel of SpA`pnq `
A´pnqq “ Apnq (which are the same). Therefore, UT

i SApnq “ 0, and UT
i SpA

`pnq ´ A´pnqq “ 0.
This leads to UTSB “ 0 for any U P kerA, so that B is in the S–orthogonal of kerA, which was
previously proved to match with rangeA.
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3.3 Long time limit of the discrete wave system
In this section, we proved that for very different discretization of the wave system (10), the long
time limit of (3) exists if the system has Steger-Warming and wall boundary conditions.

We have proved in Section 3.1 that all the hypothesis of Proposition 3 and Proposition 4 hold
for the finite volume scheme (3) obtained with the Rusanov flux (12a), the Godunov flux (12b),
the Godunov flux with a centered discretization of the pressure gradient (12c) or the LMAAP flux
(12d). Then, points 1 , 2 and 3 of Hypothesis 1 hold. Moreover, in Section 3.2 we proved that
B P rangeA, then by applying Proposition 1, we get that all these numerical schemes (3) converge
when τ tends to infinity to

U8 ` PpU0q

where U8 the unique vector of rangeA such that B “ AU8 and PpU0q is the projection on kerA
of the initial condition U0.

The state U8 can of course change depending on the numerical flux used.

3.4 Pressure of the long time limit
In this section, we wish to go further and check whether the long time limit of (3) shares some
properties with the long time limit of (10) when it exists.

More precisely, we are interested in the behavior of the long time limit of the pressure. If (10)
has a long time limit, and if Ub is such that pb “ 0 along all the boundary sides on which a state
is imposed, then the long time pressure is uniformly equal to 0. This property is known to also
hold at the discrete level with the Godunov scheme on triangular meshes, this is a useful result in
the low Mach number context, see [17, 13, 11]. On general meshes, using the result of Section 3.3,
we can prove the following

Proposition 5. We denote by D12pnq the coefficients p1, 2q to p1, d` 1q of Dpnq. For a given ub,
we define Kub the set

Kub “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

u P pThqd , @i

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ř

jPVintpiq

|Γij |

ˆ

ttu uuij ¨ nij

2ρ0
´D12pnijq ¨ puj ´ uiq

˙

`
ř

jPVSWpiq

|Γij |
pui ` ubq ¨ nij

2ρ0
“ 0

ř

jPVwallpiq

|Γij |ui ¨ nij “ 0

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

. (14)

Then for the Godunov flux with a centered discretization of the pressure gradient (12c) and for
the LMAAP flux (12d), the set Kub is nonempty if and only if the long time limit of (3) with
Ub “ p0,ubq applied to the system (10) has a uniform pressure, equal to 0.

Proof. If the long time limit of (3) with Ub “ p0,ubq applied to the system (10) has a uniform
pressure, equal to 0, then its limit is an element of Kub , and thus, this set is nonempty.

We suppose now that Kub is not empty. We denote by p8 “ 0, and by U8i the vector pp8,u8i q,
where u8i is an element of Kub . Then

ř

jPVintpiq

|Γij |
´

Apnijq ttU
8 uuij ´Dpnijq

`

U8j ´U8i
˘

¯

`
ř

jPVwallpiq

|Γij |

ˆ

Apnijq
U8i

2
`

1

2
pApnijq ´ 2A´pnijqPwallpnijqqU

8
i

˙

`
ř

jPVSWpiq

|Γij |

ˆ

Apnijq
U8i `Ub

2
´

1

2
pA`pnijq ´A

´pnijqq pUb ´U8i q

˙

“ 0,

and we recall that the finite volume scheme for Ui is

|Ωi| BτUi `
ř

jPVintpiq

|Γij |
´

Apnijq ttU uuij ´Dpnijq pUj ´Uiq

¯

`
ř

jPVwallpiq

|Γij |

ˆ

Apnijq
Ui

2
`

1

2
pApnijq ´ 2A´pnijqPwallpnijqqUi

˙

`
ř

jPVSWpiq

|Γij |

ˆ

Apnijq
Ui `Ub

2
´

1

2
pA`pnijq ´A

´pnijqq pUb ´Uiq

˙

“ 0.

13



This leads to the following equation on the difference

|Ωi| Bτ pUi ´U8i q `
ř

jPVintpiq

|Γij |
´

Apnijq ttU´U8 uuij ´Dpnijq
`

Uj ´U8j ´Ui `U8i
˘

¯

`
ř

jPVwallpiq

|Γij |

ˆ

Apnijq
Ui ´U8i

2
`

1

2
pApnijq ´ 2A´pnijqPwallpnijqq pUi ´U8i q

˙

`
ř

jPVSWpiq

|Γij |

ˆ

Apnijq
Ui ´U8i

2
´

1

2
pA`pnijq ´A

´pnijqq pU
8
i ´Uiq

˙

“ 0.

As in the proof of Proposition 3, we use the following identity

ř

jPVintpiq

|Γij |
Apnijq pUi ´U8i q

2
`

ř

jPVwallpiq

|Γij |
Apnijq pUi ´U8i q

2
`

ř

jPVSWpiq

|Γij |
Apnijq pUi ´U8i q

2
“ 0,

for simplifying the equation on the difference as follows

|Ωi| Bτ pUi ´U8i q `
ř

jPVintpiq

|Γij |

ˆ

Apnijq
Uj ´U8j

2
´Dpnijq

`

Uj ´U8j ´Ui `U8i
˘

˙

`
ř

jPVwallpiq

|Γij |

ˆ

1

2
pApnijq ´ 2A´pnijqPwallpnijqq pUi ´U8i q

˙

`
ř

jPVSWpiq

|Γij |

ˆ

´
1

2
pA`pnijq ´A

´pnijqq pU
8
i ´Uiq

˙

“ 0.

Now, we multiply on the left by pUi ´U8i q
T
S, and sum on i for finding the following equation

on the evolution of the volumic integral of the relative entropy

ř

i

|Ωi| Bτ

˜

pUi ´U8i q
T
S pUi ´U8i q

2

¸

`
ř

i

ř

jPVintpiq

|Γij | pUi ´U8i q
T
S

ˆ

Apnijq
Uj ´U8j

2
´Dpnijq

`

Uj ´U8j ´Ui `U8i
˘

˙

`
1

2

ř

i

ř

jPVwallpiq

|Γij | pUi ´U8i q
T
S pApnijq ´ 2A´pnijqPwallpnijqq pUi ´U8i q

`
1

2

ř

i

ř

jPVSWpiq

|Γij | pUi ´U8i q
T
SpA`pnijq ´A

´pnijqq pUi ´U8i q “ 0.

We now switch the sum over i and Vintpiq into a sum on the interior faces, and use the fact
that Apnijq “ ´Ap´nijq, and that Dpnijq “ Dp´nijq, which gives the following equation on the
evolution of the volumic integral of the relative entropy

ř

i

|Ωi| Bτ

˜

pUi ´U8i q
T
S pUi ´U8i q

2

¸

`
ř

fPFint

|Γf | pUL ´U8L ´UR `U8R q
T
SDpnf q pUL ´U8L ´UR `U8R q

`
1

2

ř

i

ř

jPVwallpiq

|Γij | pUi ´U8i q
T
S pApnijq ´ 2A´pnijqPwallpnijqq pUi ´U8i q

`
1

2

ř

i

ř

jPVSWpiq

|Γij | pUi ´U8i q
T
SpA`pnijq ´A

´pnijqq pUi ´U8i q “ 0.

Taking the limit when τ Ñ 8, the time derivative vanishes, and there remain a sum of positive
terms that are 0. The first term leads to uniform pressure for stabilizations (12c) and (12d)
because their symmetric part contains only the top left diagonal term. Using the equation on the
Steger-Warming boundary condition gives p “ p8 “ 0.

Remark 3. As the set Kub depends on the numerical flux, we denote it more precisely as K(12c)
ub for

the Godunov scheme with centered pressure. We now give a hint on how Proposition 5 can be used
for proving uniformity of the pressure. Suppose that we deal with a triangular mesh. Then a known
result states that with the Godunov scheme (12b), the long time limit has a uniform zero pressure
see e.g. [17, 13, 11]. Moreover, this limit is such that the jump of u ¨ n is also zero at the interior
faces of the mesh and at the wall boundaries, and equal to ub ¨ n at the Steger-Warming boundary
faces. This means that this limit lies also in K(12c)

ub , which is then nonempty. Using Proposition 5,
the long time pressure for the Godunov scheme with centered pressure (12c) is uniformly zero.

14



4 Numerical experiments on the long time behavior of the
wave system

The aim of this section is to perform numerical tests on the long time limit of (10) for the wave
system with the different stabilizations that were described in (12) on triangular and quadrangular
meshes. For this, we consider the problem of the scattering of the wave system by a cylinder of
radius r0. The domain Ω is an annulus rr0, r1s ˆ r0, 2πr. Here, we use r0 “ 0.5 and r1 “ 5.5.
We consider a wall boundary condition on the internal circle of radius r0 and a Steger-Warming
boundary condition (with Ub “ ppb,ubq

T ) on the external circle of radius r1. The boundary
conditions are such that

pb “ 0, ub “ p1, 0q
T

and the initial data are uniform and set equal to

p0 “ 0, u0 “ p0, 0q
T .

All simulations were run with ρ0 “ 1, κ0 “ 1 and an Euler explicit time stepping.
This numerical test is useful because the exact steady solution can be computed. It satisfies

∇p “ 0, divxu “ 0 and curlxu “ 0. Indeed, we have Bτ pcurlxuq “ 0, then if at initial time
curlxu “ 0, it is the case at any time. Using that u ¨ n “ 0 on the internal circle of radius r0 and
that u ¨ n “ ub ¨ n “ p1, 0q

T ¨ n on the external circle of radius r1, the exact steady state can be
proven to follow

$

’

’

’

&

’

’

’

%

pexactpr, θq “ 0,

uexactpr, θq “
r21

r21 ´ r
2
0

¨

˚

˝

1´
r20
r2

cosp2θq

´
r20
r2

sinp2θq

˛

‹

‚

.
(15)

We first aim at illustrating the convergence towards a steady state. As we saw in Proposition 1,
Proposition 2 and Section 3, all the presented schemes have a long time limit.

This test is performed on triangular and quadrangular mesh. The quadrangular mesh is ob-
tained by discretizing the annulus rr0, r1s ˆ r0, 2πr with a resolution of nr “ 50 in the radial
direction and nθ “ 160 in the orthoradial direction. This mesh contains 8 000 quadrangular cells.
The triangular mesh is obtained from a quadrangular mesh produced with nr “ 25 and nθ “ 80
by dividing each quadrangle into two triangles. This mesh contains 4 000 triangular cells. On
Figure 1, the pressure residual

max
i

ˇ

ˇ

ˇ

ˇ

|Ωi|
pn`1
i ´ pni
δt

ˇ

ˇ

ˇ

ˇ

and the velocities residuals are plotted as a function of the time. Even if the time required is very
different for the different stabilizations, all these schemes allow to reach a steady state with an
exponential convergence rate with respect to the time, which is in agreement with the theoretical
results of Section 2.2 and Section 3. On Figure 2, the influence of the CFL number on the
convergence rate is studied. The residuals obtained with respect to the number of time iterations
are plotted for the Godunov scheme on quadrangular mesh for various CFL number. The results
are in agreement with Remark 1, the convergence rate is proportional to the time step δt.

On Figure 3, the influence of the space discretization is studied. The residuals obtained with
respect to the number of time iterations are plotted for the Godunov scheme on different quad-
rangular meshes for a fixed time step δt “ 0.002. Quadrangular meshes are obtained using a
resolution nr in the radial direction and nθ in the orthoradial direction of pnr, nθq “ p6, 20q,
pnr, nθq “ p13, 40q, pnr, nθq “ p25, 80q, pnr, nθq “ p50, 160q and pnr, nθq “ p100, 320q and contain
respectively 120, 520, 2 000, 8 000 and 32 000 cells. The space step h is respectively equal to 1.14,
0.57, 0.29, 0.15 and 0.07. The numerical diffusion of the scheme allows to prove the long time
limit of the numerical solution (see Section 3). We observe that the finer the mesh is (i.e. the less
diffusive the scheme is), the longer the convergence to the long time limit is.

Similar results can be obtained with triangular mesh and the different stabilizations of (12).
In the remainder of the paper, all the simulations were performed with a CFL number of 0.4.

We want now to study the convergence towards the exact solution (15). This is assessed
in two steps: first, the variables of U8 are shown for the different numerical schemes on the
previous meshes. The pressure obtained is shown in Figure 4 for quadrangles, in Figure 5 for
triangles, whereas the velocity norm obtained is shown in Figure 6 for quadrangles and in Figure 7
for triangles. At the top left of each figure the minimum and maximum value of the field on the
domain are displayed. The second step for assessing the convergence towards the analytical solution
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Figure 1: Residual obtained with a CFL number of 0.4 with quadrangular and triangular mesh on
the pressure p and the velocities ux and uy as a function of the time.
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Figure 2: Residual obtained for different CFL numbers with quadrangular mesh on the pressure p
and the velocities ux and uy as a function of the number of time iterations.
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Figure 3: Residual obtained for different quadranguler meshes at fixed time step δt “ 0.002 on the
pressure p and the velocities ux and uy as a function of the number of time iterations.

consists in performing a mesh convergence study. In the triangular and quadrangular cases, five
different meshes are used. Quadrangular meshes are the same as on Figure 3. Triangular meshes are
obtained from the quadrangular meshes by dividing each quadrangle into two triangles and contain
respectively 240, 1 040, 4 000, 16 000 and 64 000 cells. The final computational time depends on
the mesh and the scheme. It is fixed such that all the residuals are converged. Results are shown
in Figure 8.

From the results of Figures 4, 5, 6, 7 and 8, we remark that the stabilizations of the wave
system of (12) can be divided into two families

• The ones for which the long time limit of the discrete scheme has a uniform pressure equal
to 0, namely the pressure centered stabilization (12c), the LMAAP stabilization (12d), and
also the Godunov scheme (12b) on triangles. These schemes are such that the velocity of
the long time limit converges towards (15). For these schemes, the pressure of the long time
limit observed in Figure 4, Figure 5 and Figure 8 is uniform and equal to 0. Moreover, the
velocity shown in Figure 6 and Figure 7 is close of the exact solution. Figure 8 shows that
the velocity is converging towards the exact solution with a rate of 1 for the pressure centered
stabilization and the Godunov scheme on triangles, and 1{2 for the LMAAP stabilization.

• The ones for which the long time limit does not have a uniform pressure, namely on one hand
the Rusanov scheme and on the other hand the Godunov scheme on quadrangular meshes.
For these schemes, the pressure of the long time limit found in Figure 4 and Figure 5 is not
0, but in Figure 8 a convergence rate of 1 of the pressure towards 0 is observed. Figure 6
and Figure 7 show that the velocity is far from the exact solution, and Figure 8 shows that
the velocity does not converge towards the exact solution.

5 Conclusion
In this article, the long time limit of finite volume discretizations of hyperbolic systems was ad-
dressed. We proved in Section 2 that provided the numerical flux is sufficiently dissipative, the
long time limit always exist. We proved also that in general, the ω–limit set of the whole space,
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Figure 4: Pressure field of the long time limit state obtained with the different stabilizations on
quadrangular mesh. Twenty equally reparted contours between ´0.017 and 0.017 are plotted.
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Figure 5: Pressure field of the long time limit state obtained with the different stabilizations on
triangular mesh. Twenty equally reparted contours between ´0.021 and 0.021 are plotted.
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Figure 6: Velocity norm of the long time limit state obtained with the different stabilizations on
quadrangular mesh. Twenty equally reparted contours between 0.1 and 1.14 are plotted.
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Figure 7: Velocity norm of the long time limit state obtained with the different stabilizations on
triangular mesh. Twenty equally reparted contours between 0.1 and 1.14 are plotted.
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Figure 8: L2 norm of the error between the exact solution and the long time limit state obtained
with the different stabilizations. Results are shown for the pressure p (top) and the velocities ux
(middle) and uy (bottom) on quadrangular (left) and triangular meshes (right). Five different
meshes are used in both cases.
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namely the set of all the possible long time limit for all the possible initial conditions, is an affine
space.

Then the results of Section 2 were applied to the wave system in Section 3, and numerically
tested in Section 4. In these two sections, the uniformity of the pressure of the long time limit was
discussed.

Last, we would like to point out an interesting link between the behavior of the numerical fluxes
at low Mach number and the long time limit of the matching stabilization of the wave system.
In [4, Proposition 2.3], the double scale asymptotic expansion of classical numerical flux and low
Mach number fixes was performed, leading to a stabilization of the wave system. It is worth noting
the exact matching between the low Mach number fluxes that are low Mach number accurate and
the uniformity of the pressure of the long time limit for the matching stabilization of the wave
system:

• The numerical fluxes that are low Mach number accurate match with a discretization of
the wave system for which the long time limit ensures a uniform pressure. In this case,
the velocity of long time limit converges towards the analytical solution, namely a harmonic
velocity.

• The numerical fluxes that are not low Mach accurate match with a discretization of the wave
system for which the long time limit does not ensure a uniform pressure. In case, the velocity
of long time limit does not converge towards the analytical solution.

Especially, a lot of recently proposed low Mach fixes [3, 10, 16, 15] match with the stabilization
(12c) of the wave system when the double time scale asymptotic expansion is performed. Remark 3
proves that for all these schemes, the long time limit pressure of the matching wave stabilization
on triangular meshes is uniform. A more thorough study of the set Kub defined in (14) is necessary
for concluding on the other low Mach number fixes.
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