An expanded CAG repeat sequence in spinocerebellar ataxia type 7.
Résumé
Expanded CAG repeat sequences have been identified in the coding region of genes mutated in several neurodegenerative disorders, including spinocerebellar ataxia type 1 and Machado-Joseph disease. In all disorders described to date the CAG expansion codes for an elongated polyglutamine chain. An increased polyglutamine chain size leads to a more severe disease, thus correlating with the genetic anticipation seen in repeat expansion disorders. Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant spinocerebellar ataxia with anticipation and a progressive degeneration of the cerebellar cortex. Using repeat expansion detection (RED), a method in which a thermostable ligase is used to detect repeat expansions directly from genomic DNA, we have analyzed 8 SCA7 families for the presence of CAG repeat expansions. RED products of 150-240 bp were found in all affected individuals and found to cosegregate with the disease (P < 0.000001, n = 66), indicating strongly that a CAG expansion is the cause of SCA7. On the basis of a previously established correlation between RED product sizes and actual repeat sizes in Machado-Joseph disease, we were able to estimate the average expansion size in SCA7 to be 64 CAG copies.