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On a regularization approach for solving the inverse Cauchy Stokes problem

, it is then an interesting challenge to carry out a numerical procedure for approximating their solutions, mostly in the particular case of noisy data. To solve this problem, we propose here a regularizing approach based on a coupled complex boundary method, originally proposed in [8], for solving an inverse source problem. We show the existence of the regularization optimization problem and prove the convergence of subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem. Then we suggest the numerical approximation of this problem using the adjoint gradient technic and the finite elements method of P 1 -bubble/P 1 type. Finally, we provide some numerical results showing the accuracy, the effectiveness and robustness of the proposed approach.

Introduction

This paper reveals a computational method for solving the inverse Cauchy problem for Stokes equation. The Cauchy problem consists in recovering a missing boundary condition, usually contaminated with noise, from partial measurements of Dirichlet and Neumann conditions on an accessible part of the boundary. It is well know that the inverse Cauchy problem is ill-posed in the Hadmard's sense [START_REF] Hadamard | Lectures on cauchy's problem in linear partial differential equations[END_REF]. This means that a small perturbation in given data may result to an arbitrary large errors in solution. This aspect is especially important from a practical point of view, since in the realistic situations, boundary data come from measurements which contain noise. It is then an interesting challenge to carry out stable numerical approaches, mostly in the particular case of noisy data. More precisely, regularization methods should be employed, to obtain regularized stable and accurate numerical solution.

Over the last two decades a large body of literature were dedicated to seek for a stable and efficient methods which deals with the ill-posed behaviors of the Cauchy problem. So many research work have been conducted to propose different regularization approaches, we can not list all of them. The most popular one is Tikhonov's regularization method [START_REF] Calvetti | Tikhonov regularization and the l-curve for large discrete ill-posed problems[END_REF][START_REF] Tikhonov | Solutions of ill-posed problems[END_REF][START_REF] Tuan | A note on a cauchy problem for the laplace equation: regularization and error estimates[END_REF], which transforms the original ill-posed into a well posed problem by minimizing the L 2 -norm of the solution subjected to the constraint equation. Then other methods have been proposed to regularize the Cauchy problem,we can mention for instance the alternating method [START_REF] Berntsson | An accelerated alternating procedure for the cauchy problem for the helmholtz equation[END_REF][START_REF] Kozlov | An iterative method for solving the cauchy problem for elliptic equmions£ 9[END_REF], the universal method [START_REF] Klibanov | Carleman estimates for the regularization of ill-posed cauchy problems[END_REF], the quasi-reversibility method [START_REF] Bourgeois | About stability and regularization of ill-posed elliptic cauchy problems: the case of lipschitz domains[END_REF][START_REF] Clark | Quasireversibility methods for non-well-posed problems[END_REF][START_REF] Lattés | The method of quasi-reversibility: applications to partial differential equations[END_REF], the technic of fundamental solution [START_REF] Fairweather | The method of fundamental solutions for elliptic boundary value problems[END_REF] and improved nonlocal boundary value problem method [START_REF] Zhang | An improved non-local boundary value problem method for a cauchy problem of the laplace equation[END_REF], etc. Nevertheless, the literature devoted to the Cauchy problem for linear elliptic equations is very rich (see for example [START_REF] Alessandrini | The stability for the cauchy problem for elliptic equations[END_REF][START_REF] Boussetila | Spectral regularization methods for an abstract ill-posed elliptic problem[END_REF][START_REF] Chakib | Convergence analysis for finite element approximation to an inverse cauchy problem[END_REF][START_REF] Eldén | A stability estimate for a cauchy problem for an elliptic partial differential equation[END_REF][START_REF] Hào | A non-local boundary value problem method for the cauchy problem for elliptic equations[END_REF][START_REF] Heinz | A mann iterative regularization method for elliptic cauchy problems[END_REF] and the references therein).

In this paper, we deal with a regularization method for solving an inverse Cauchy problem governed by Stokes equation, which consists in determining the unspecified fluid velocity, or one of its components over a part of its boundary, by introducing given measurements on its remaining part. The severe illposedness of this inverse Stokes problem lies in the fact that the solution's behavior hardly changes when there is slight change in the data. To overcome this server instability, we suggest a regularization coupled complex boundary method, originally proposed in [START_REF] Cheng | A novel coupled complex boundary method for solving inverse source problems[END_REF], for solving an inverse source problem. This approach consists to include all data on the boundary, the known and unknown ones, in a complex Robin boundary on the whole boundary. the Cauchy problem is transferred then into a complex Robin boundary problem of finding the unknown data such that the imaginary part of the solution equals zero in the domain. Then an optimization formulation of the problem is proposed and the Tikhonov regularization approach is performed to resulting optimization problem. Some theoretical analysis results on the coupled complex boundary method combined with Tikhonov regularization approach are given. More precisely, we show the existence of the regularization optimization problem, we identify it with respect to the solution of the adjoint state problem and prove the convergence of subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem. Moreover, using the adjoint gradient technic, a simple solver is proposed to compute the regularized solution. Thus, no iteration is needed and the resolution is fast. The finite-element method of P 1Bubble /P 1 type's [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF] is used for the discretization. Numerical results are given to confirm that the proposed approach produces convergent and stable numerical solutions with respect to decreasing the amount of noise added into the input data.

This paper is organized as follows, in the first section, we begin by giving the setting of the inverse Cauchy problem and present its reformulation as an equivalent coupled complex boundary value Cauchy problem of Robin condition, with null imaginary solution. In section 3, we propose an optimization formulation of the coupled complex boundary value problem, then we suggest its regularization using the Tikhonov regularization framework for the Cauchy problem with noisy data. We show the existence of the resulting optimization problem, we identify it with respect to the solution of the adjoint state problem and we prove the convergence of subsequence of optimal solutions of Tikhonov regularization formulations to the solution of the Cauchy problem. In section 4, we present an algorithm for solving the regularized optimal solution of the optimization problem based on adjoint gradient technic, we propose then the approximation of the optimization problem using finite-element method P 1Bubble /P 1 . Finally, we present some numerical results showing the effectiveness and the feasibility of the proposed approach.

Setting and formulation of the problem

Let Ω ⊂ R d (d=2,3) be an open bounded domain with Lipschitz boundary Γ := ∂Ω = Γ 1 ∪ Γ 0 , where Γ 1 ∩ Γ 0 = ∅. Denote by n the unit outward normal to Γ. For given functions µ f defined in Ω and given Cauchy data ψ and κ defined Γ 0 , we consider the following Cauchy problem governed by the Stokes equation, which consists in finding (ϕ, ζ) defined on Γ 1 , solution of

         -2µ div(D(u)) + ∇p = f in Ω div(u) = 0 on Ω σ(u)n = ψ, u = κ on Γ 0 σ(u)n = ϕ, u = ζ on Γ 1 (1) 
where D(u) is the deformation tensor given by

D(u) = 1 2 (∇u + ∇ t u)
and σ(u) is the Cauchy tensor given by σ(u) = 2µD(u) -p I, I is the identity matrix,

The vector u represents the velocity field of the fluid, the scalar function p designates the associated pressure, f being the force field acting on the system and µ > 0 is the kinematic viscosity coefficient. We note that the part of boundary Γ 0 is over-determined, since two boundary conditions of Dirichlet and Neumann type are imposed on it, while Γ 1 is the non-accessible part of the boundary, on which a missing boundary condition must be recovered. To do that, let us first give some useful notations and definitions. We denote by Θ := L 2 (Ω) d ,

Θ 0 = {v ∈ L 2 (Ω) / Ω v(x) dx = 0}, Θ Γ 0 := L 2 (Γ 0 ) d and Θ Γ 1 := L 2 (Γ 1 ) d .
H m (Ω) d (for m ∈ N) will denote the Sobolev complex space equipped with the inner product ((•, •)) m,Ω,d and the norm ||| • ||| m,Ω defined respectively as follows:

∀u, v ∈ H m (Ω) d ((u, v)) m,Ω,d = d j=1 (u j , vj ) m,Ω |||v||| m,Ω,d = ((v, v)) m,Ω,d .
We denote in particular by V = H 1 (Ω) d and we will use the following assumption

f ∈ Θ, ψ ∈ Θ Γ 0 and κ ∈ Θ Γ 0 .
In the following, we will denote by c a generic positif constant, which may have a different value at a different place.

In the sequel, we will propose a regularization method allowing us to obtain a stable approximate solution of the ill-posed Stokes inverse problem [START_REF] Alessandrini | The stability for the cauchy problem for elliptic equations[END_REF]. This is based on a coupled complex boundary method, originally proposed in [START_REF] Cheng | A novel coupled complex boundary method for solving inverse source problems[END_REF], for solving an inverse source problem. For this, we will reformulate our inverse problem into a complex Cauchy problem.

A complex formulation of the Cauchy problem

The proposed formulation consists in combining the two given boundary conditions on Γ 0 , to obtain a complex one of Robin type. We can then consider the complex boundary value problem: find (ϕ, ζ)

defined on Γ 1 , solution of          -2µ div(D(u)) + ∇p = f in Ω div(u) = 0 on Ω σ(u)n + iu = ψ + iκ on Γ 0 σ(u)n + iu = ϕ + iζ on Γ 1 , (2) 
where i is the imaginary number.

It is clear that if (ϕ, ζ) is solution of (1) then it is solution of 2. Conversely, let (ϕ, ζ) be a solution of 2, then the associate solution (u, p) can be written u = u 1 + iu 2 and p = p 1 + ip 2 , where (u 1 , p 1 ) and (u 2 , p 2 ) are respectively the real and imaginary parts of (u, p), which are respectively solution of

         -2µ div(D(u 1 )) + ∇p 1 = f in Ω div(u 1 ) = 0 on Ω σ(u 1 )n -u 2 = ψ on Γ 0 σ(u 1 )n -u 2 = ϕ on Γ 1 (3) 
         -2µ div(D(u 2 )) + ∇p 2 = 0 in Ω div(u 2 ) = 0 on Ω σ(u 2 )n + u 1 = κ on Γ 0 σ(u 2 )n + u 1 = ζ on Γ 1 (4) 
So if u 2 = 0 and p 2 = 0 in Ω, then u 2 = 0 and σ(u 2 )n = 0 on Γ. Thus from the boundary value problems (3)-( 4), we get that (ϕ, ζ) is solution of (1) associated to (u 1 , p 1 ). We can then reformulate the Cauchy problem (1) as follows : find (ϕ, ζ) defined on Γ 1 such that

u 2 = 0, p 2 = 0 in Ω where (u 2 , p 2 )
is the imaginary part of (u, p) the solution of the boundary value problem ( 2),

where the weak formulation of ( 2) is given by

     find (u, p) ∈ V × Θ 0 a(u, v) + b(v, p) = F (ϕ, ζ, v) ∀v ∈ V b(u, q) = 0 ∀q ∈ Θ 0 (6) 
and the forms a, b and F are defined respectively as follows

a(u, v) = 2µ Ω D(u) : D(v)dx + i Ω uvds ∀u, v ∈ V, b(u, q) = - Ω q div(u)dx ∀(u, q) ∈ V × Θ 0 and F (ϕ, ζ, v) = Ω f vdx + Γ 0 (ψ + iκ)vds + Γ 1 (ϕ + iζ)vds ∀v ∈ V
In order to solve the problem (5), we will use a minimization formulation based on the Tikhonov regularization. This requires to show the well posedness of the variational formulation (6) of the boundary value problem ( 2), for all given couple (ϕ, ζ). This result is stated in the following proposition. 6) admits a unique solution (u, p) ∈ V × Θ 0 ) which depends continuously on data. There exists then two constant α > 0 and β > 0, such that

Proposition 1. For given f ∈ Θ, (ψ, κ) ∈ Θ Γ 0 × Θ Γ 0 and (ϕ, ζ) ∈ Θ Γ 1 × Θ Γ 1 , the problem (
|||u||| 1,Ω ≤ c α (|||f ||| 0,Ω + |||ψ||| 0,Γ 0 + |||κ||| 0,Γ 0 + |||ϕ||| 0,Γ 1 + |||ζ||| 0,Γ 0 ) ( 7 
)
and ||p|| 0,Ω ≤ c β (|||f ||| 0,Ω + |||ψ||| 0,Γ 0 + |||κ||| 0,Γ 0 + |||ϕ||| 0,Γ 1 + |||ζ||| 0,Γ 0 ) ( 8 
)
where c designates the generic constant.

Proof. The proof of the existence and uniqueness of the solution of ( 6), follows from the continuity of a on V × V , its coercivity on V , the continuity of F on V and the inf-sup condition on b (see for example [START_REF] Gatica | A simple introduction to the mixed finite element method[END_REF]). Indeed For any u, v ∈ V, by using the Hölder inequality and the continuity of the trace operator from V to Θ Γ 0 and Θ Γ 1 , we get the continuity of a(•, •) and

F (ϕ, ζ, •): |a(u, v)| ≤ c|||u||| 1,Ω |||v||| 1,Ω (9) 
|F (ϕ, ζ, v)| ≤ c(|||f ||| 0,Ω + |||ψ||| 0,Γ 0 + |||κ||| 0,Γ 0 + |||ϕ||| 0,Γ 1 + |||ζ||| 0,Γ 1 )|||v||| 1,Ω (10) 
Moreover, the coercivity of a is obtained due to the Korn's inequality, there exists then α > 0, such that:

Re(a(u, u)) = 2µ|||D(u)||| 2 0,Ω ≥ c|||u||| 2 1,Ω , ∀u ∈ V (11) 
To conclude, using the same technics as in [START_REF] Gatica | A simple introduction to the mixed finite element method[END_REF], we prove the inf-sup condition on b, which means that there exists a constant

β > 0 inf q∈Θ,q =0 sup v∈V,v =0 b(v, q) |||v||| 1,Ω q L 2 (Ω) ≥ β (12) 
Therefore, the problem (6) admits a unique solution (u, p) ∈ V × Θ 0 .

The estimations ( 7) and ( 8) follow then directly from the use of the inequalities ( 10),( 11) and ( 12).

Tikhonov regularization approach and theoretical analysis

In this section, we will present a minimization approach based on Tikhonov regularization for solving the problem [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. Then we show the existence of the optimal solution and prove the convergence of subsequence of optimal solution of Tikhonov regularization formulation to the solution of the Cauchy problem (1).

Tikhonov regularization approach of the problem

Using the proposed formulation (5) of the Cauchy inverse problem (1), we can suggest a Tikhonov regularization approach for the Cauchy problem with noisy Cauchy data. So let us consider the Cauchy data (ψ, κ) containing the random noise with a known level δ, denoted as (ψ δ , κ δ ), such that

|||ψ δ -ψ||| 0,Γ 0 ≤ δ, |||κ δ -κ||| 0,Γ 0 ≤ δ
Then the boundary value problem (2) associated to noisy Cauchy data can be read

         -2µ div(D(u δ )) + ∇p δ = f in Ω div(u δ ) = 0 on Ω σ(u δ )n + iu δ = ψ δ + iκ δ on Γ 0 σ(u δ )n + iu δ = ϕ + iζ on Γ 1 (13) 
and its weak formulation can be written

     find(u δ , p δ ) ∈ V × Θ 0 a(u δ , v) + b(v, p δ ) = F δ (ϕ, ζ, v) ∀v ∈ V b(u δ , q) = 0 ∀q ∈ Θ 0 (14) 
where

F δ (ϕ, ζ, v) = Ω f vdx + Γ 0 (ψ δ + iκ δ )vds + Γ 1 (ϕ + iζ)vds ∀v ∈ V (15) 
It is clear that the well-posedness of the problem ( 14) follows from proposition 2, indeed, we have the following result 14) has a unique solution (u δ , p δ ) ∈ V × Θ 0 which depends continuously on data. Moreover

Proposition 2. For given f ∈ Θ, (ψ δ , κ δ ) ∈ Θ Γ 0 × Θ Γ 0 and (ϕ, ζ) ∈ Θ Γ 1 × Θ Γ 1 , the problem (
|||u δ ||| 1,Ω ≤ c α (|||f ||| 0,Ω + |||ψ δ ||| 0,Γ 0 + |||κ δ ||| 0,Γ 0 + |||ϕ||| 0,Γ 1 + |||ζ||| 0,Γ 0 ) ( 16 
)
||p δ || 0,Ω ≤ c β (|||f ||| 0,Ω + |||ψ δ ||| 0,Γ 0 + |||κ δ ||| 0,Γ 0 + |||ϕ||| 0,Γ 1 + |||ζ||| 0,Γ 0 ) (17) 
The error estimations between the solutions of ( 6) and ( 14) with respect to δ is given by Lemma 1. Let u and u δ be the respective solution of ( 6) and ( 14), then we have

|||u δ -u||| 1,Ω ≤ cδ ( 18 
)
and p δ -p 0,Ω ≤ cδ (19) 
Proof. By subtracting the weak formulations ( 6) and ( 14), and putting v = u δ -u, from the coercivity of a, the inf-sup condition and the continuity of F, we get

α|||u δ -u||| 2 1,Ω + β|||u δ -u||| 1,Ω p δ -p 0,Ω ≤ (|||ψ δ -ψ||| 0,Γ 0 + |||κ δ -κ||| 0,Γ 0 )|||u δ -u||| 1,Ω , (20) 
which end the proof. Now, for any (ϕ, ζ) ∈ Θ Γ 1 × Θ Γ 1 , we can write the solution u δ (ϕ, ζ) ∈ V of ( 14), as follows

u δ (ϕ, ζ) = u δ 1 (ϕ, ζ) + i u δ 2 (ϕ, ζ)
Define then the coast functional

J δ ε (ϕ, ζ) = 1 2 |||u δ 2 (ϕ, ζ)||| 2 0,Ω + 1 2 p δ 2 (ϕ, ζ) 2 0,Ω + ε 2 |||ϕ||| 2 0,Γ 1 + ε 2 |||ζ||| 2 0,Γ 1 (21) 
and introduce the following Tikhonov regularization approach for solving the problem ( 5)

   find (ϕ δ ε , ζ δ ε ) ∈ Θ Γ 1 × Θ Γ 1 such that J δ ε (ϕ δ ε , ζ δ ε ) = inf (η,s)∈Θ Γ 1 ×Θ Γ 1 J δ ε (η, s) (22) 

Existence and convergence results

In this section, we show first the existence of the optimal solution of ( 22) and we identify it with respect to the solution of the adjoint state problem. Then we prove the convergence of subsequence of optimal solution of Tikhonov regularization formulation [START_REF] Tuan | A note on a cauchy problem for the laplace equation: regularization and error estimates[END_REF] to the solution of the Cauchy problem [START_REF] Alessandrini | The stability for the cauchy problem for elliptic equations[END_REF]. For this, we will need the following lemmas. In the first lemma, we show the existence of the optimal solution of ( 22).

Lemma 2. The problem ( 22) admits a unique solution

Proof. Let (ϕ n , ζ n ) n ∈ Θ Γ 1 × Θ Γ 1 be a minimizing sequence of J δ ε in Θ Γ 1 × Θ Γ 1 , i.e. lim n→+∞ J δ ε (ϕ n , ζ n ) = inf (η,s)∈Θ Γ 1 ×Θ Γ 1 J δ ε (η, s) (23) 
Since J δ ε is coercive, which means that lim

|||(ϕ,ζ)||| Θ Γ 1 ×Θ Γ 1 →+∞ J δ ε (ϕ, ζ) = +∞. Thus ((ϕ n , ζ n )) n is bounded in Θ Γ 1 × Θ Γ 1 .
We can then extract a subsequence denoted again ((

ϕ n , ζ n )) n which converges weakly in Θ Γ 1 × Θ Γ 1 to an element ( φ, ζ) (ϕ n , ζ n ) -→ n→+∞ ( φ, ζ) in Θ Γ 1 × Θ Γ 1 (24) 
According to proposition 2, (u

n , p n ) = (u(ϕ n , ζ n ), p(ϕ n , ζ n ))
the solution of the weak formulation (6) associated to (ϕ n , ζ n ) exist and satisfy

|||u n ||| 1,Ω ≤ c α (|||f ||| 0,Ω + |||ψ||| 0,Γ 0 + |||κ||| 0,Γ 0 + |||ϕ n ||| 0,Γ 1 + |||ζ n ||| 0,Γ 0 ) (25) and p n 0,Ω ≤ c β (|||f ||| 0,Ω + |||ψ||| 0,Γ 0 + |||κ||| 0,Γ 0 + |||ϕ n ||| 0,Γ 1 + |||ζ n ||| 0,Γ 0 ) ( 26 
)
which implies that the sequence (u n ) n (respectively (p n ) n is bounded in V (respectively in Θ). We can then extract a subsequence denoted again respectively (u n ) n and (p n ) n which converges weakly respectively in V and Θ. So, we have

u n -→ n→+∞ ũ in V (27) 
and

p n -→ n→+∞ p in Θ (28)
It is then easy to verify that (ũ, p) = u( φ, ζ), p( φ, ζ) the solution of (6) associated to ( φ, ζ). Indeed, since (u

n , p n ) ∈ V × Θ 0 is solution of a(u n , v) + b(v, p n ) = F ((ϕ n , ζ n ), v) ∀v ∈ V b(u n , q) = 0 ∀q ∈ Θ 0 ( 29 
)
by passing to the limit in (29) as n → ∞ and using the convergence ( 27) ,( 28) and ( 24), we get

a(ũ, v) + b(v, p n ) = F (( φ, ζ), v) ∀v ∈ V b(ũ, q) = 0 ∀q ∈ Θ 0 (30) 
i.e. (ũ, p) is the unique solution of ( 6) associated ( φ, ζ). Thus we have the following weak convergence

u n 2 = u 2 (ϕ n , ζ n ) -→ n→+∞ ũ2 (ϕ, ζ) in Θ (31) p n 2 = p 2 (ϕ n , ζ n ) -→ n→+∞ p2 (ϕ, ζ) in Θ (32)
Then according to the lower semi-continuity of the norms in L 2 , we obtain inf

(η,s)∈Θ Γ 1 ×Θ Γ 1 J δ ε (η, s) = lim inf n→+∞ J δ ε (ϕ n , ζ n ) ≥ J δ ε ( φ, ζ) (33) 
Therefore, the problem ( 22) admits at least one solution solution. Then it is easy to see that J δ ε is strictly convex, which permits to conclude that the solution of the problem ( 22) is unique.

The gradient formula of J δ ε is given in the following result.

Lemma 3. Let (ϕ, ζ) ∈ Θ Γ 1 × Θ Γ 1 , then for all (η, s) ∈ Θ Γ 1 × Θ Γ 1 the gradient of J δ ε is given by ∇J δ ε (ϕ, ζ)(η, s) = (u δ 2 (ϕ, ζ), u δ 2 (η, s)-u δ 2 (0, 0)) 0,Ω +(p δ 2 (ϕ, ζ), p δ 2 (η, s)-p δ 2 (0, 0)) 0,Ω +ε(ϕ, η) 0,Γ 1 +ε(ζ, s) 0,Γ 1 Proof. Let (ϕ, ζ) and (η, s) in Θ Γ 1 × Θ Γ 1
, and let τ be a real which it will tend to 0. We consider

u δ 2 (ϕ + τ η, ζ + τ s), p δ 2 (ϕ + τ η, ζ + τ s) the solution of          -2µ div(D(u δ 2 )) + ∇p δ 2 = 0 in Ω div(u δ 2 ) = 0 on Ω σ(u δ 2 )n + u δ 1 = κ δ on Γ 0 σ(u δ 2 )n + u δ 1 = ζ + τ s on Γ 1 ( 34 
)
where

u δ 1 (ϕ + τ η, ζ + τ s), p δ 1 (ϕ + τ η, ζ + τ s) is the solution of          -2µ div(D(u δ 1 )) + ∇p δ 1 = f in Ω div(u δ 1 ) = 0 on Ω σ(u δ 1 )n -u δ 2 = ψ δ on Γ 0 σ(u δ 1 )n -u δ 2 = ϕ + τ η on Γ 1 (35) 
It is then easy to see that

u δ 2 (ϕ + τ η, ζ + τ s) = u δ 2 (ϕ, ζ) + τ u δ 2 (η, s) -u δ 2 (0, 0) (36) and p δ 2 (ϕ + τ η, ζ + τ s) = p δ 2 (ϕ, ζ) + τ p δ 2 (η, s) -p δ 2 (0, 0) (37) 
By using the equation ( 36) and (37), we get

u δ 2 (ϕ + τ η, ζ + τ s), u δ 2 (ϕ + τ η, ζ + τ s) 0,Ω -u δ 2 (ϕ, ζ), u δ 2 (ϕ, ζ) 0,Ω = (u δ 2 (ϕ, ζ), u δ 2 (η, s) -u δ 2 (0, 0)) 0,Ω (38) 
and

p δ 2 (ϕ + τ η, ζ + τ s), p δ 2 (ϕ + τ η, ζ + τ s) 0,Ω -p δ 2 (ϕ, ζ), p δ 2 (ϕ, ζ) 0,Ω = (p δ 2 (ϕ, ζ), p δ 2 (η, s) -p δ 2 (0, 0)) 0,Ω (39 
) Thus the formula of the gradient of J δ ε follows from the equations ( 38) and (39).

We can then state the following existence result.

Proposition 3. For any ε > 0, the unique solution 22) is given by

(ϕ δ ε , ζ δ ε ) ∈ Θ Γ 1 × Θ Γ 1 of the problem (
ϕ δ ε = - 1 ε w δ 2|Γ 1 ζ δ ε = - 1 ε w δ 1|Γ 1 , (40) 
where

w δ 1 = w δ 1 (ϕ δ ε , ζ δ ε ) and w δ 2 = w δ 2 (ϕ δ ε , ζ δ ε )
are the real and imaginary parts of the solution w δ of the adjoint state boundary value problem:

     -2µ div(D(w δ )) + ∇p δ = u δ 2 in Ω div(w δ ) = -p δ 2 on Ω σ(w δ )n + iw δ = 0 on Γ (41) and u δ 2 = u δ 2 (ϕ δ ε , ζ δ ε ), p δ 2 = p δ 2 (ϕ δ ε , ζ δ ε )
are the imaginary parts of the solution (u δ , p δ ) of the problem 14, with (ϕ, ζ) being replaced by (ϕ δ ε , ζ δ ε ).

Proof. For any ε > 0, the solution (ϕ δ ε , ζ δ ε ) is characterized by

∇J δ ε (ϕ δ ε , ζ δ ε )(η, s) = 0 (42)
In other side, let ũ = u δ (η, s) -u δ (0, 0) and q = p δ (η, s) -p δ (0, 0), so that (ũ, q) is the solution of

         -2µ div(D(ũ)) + ∇q = 0 on Ω div(ũ) = 0 on Ω σ(ũ)n = 0, ũ = 0 on Γ 0 σ(ũ)n = η, ũ = s on Γ 1 ( 43 
)
which can be written with Robin boundary conditions as

         -2µ div(D(ũ)) + ∇q = 0 in Ω div(ũ) = 0 on Ω σ(ũ)n + iũ = 0 on Γ 0 σ(ũ)n + iũ = η + is on Γ 1 (44)
By multiplying the adjoint equation by (ũ, q) and integrating on Ω, we have

-2µ Ω div(D(w δ ))ũdx + Ω ∇p δ ũdx = Ω u δ 2 ũdx Ω divw δ qdx = - Ω p δ 2 qdx.
Using then the Green formulas, we obtain 2µ

Ω D(w δ ) : D(ũ)dx -2µ Γ D(w δ )nũds + Γ pnũds - Ω pδ div(ũ)dx = Ω u δ 2 ũdx - Ω ∇qw δ dx + Γ w δ qn ds = - Ω p δ 2 qdx Then -2µ Ω div(D(ũ))w δ dx + 2µ Ω D(ũ)nw δ dx -2µ Γ D(w δ )nũdx + Γ pδ nũds - Ω pδ div(ũ)dx = Ω u δ 2 ũdx (45) and - Ω ∇qw δ dx + Γ w δ q n ds = - Ω p δ 2 qdx (46) 
by subtracting ( 45) and ( 46), we obtain

-2µ Ω div(D(ũ))w δ dx + Ω ∇qw δ dx + Γ σ(ũ)nw δ ds - Γ σ(w δ )nũds - Ω pδ div(ũ)dx = Ω u δ 2 ũdx + Ω p δ 2 q dx Thus Γ σ(ũ)nw δ ds - Γ σ(w δ )nũds = Ω u δ 2 ũdx + Ω p δ 2 q dx therefore Γ 1 (η + is)w δ ds = Ω u δ 2 ũdx + Ω p δ 2 q dx
By replacing the last expression in the gradient formula, we obtain

(η + is, w δ ) 0,Γ 1 + ε(ϕ, η) 0,Γ 1 + ε(ζ, s) 0,Γ 1 = 0 Then, (η, w δ 2 + εϕ) 0,Γ 1 + (s, w δ 1 + εζ) 0,Γ 1 = 0.
By taking η = w δ 2 + εϕ and s = w δ 1 + εζ, we get the formula (40).

Now, let us study the behavior of (ϕ δ ε , ζ δ ε ) as δ → 0 and ε → 0. To do that, we assume that the Cauchy data (ψ, κ) are compatible. Then according to [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF][START_REF] Isakov | Inverse problems for partial differential equations[END_REF], the problem (1) admits a unique solution

(ϕ * , ζ * ) ∈ H -1 2 (Γ 1 ) × H 1 2 (Γ 1 )
. For a sequence of noise levels {δ n } n≥1 which converges to 0 in R as n → ∞, let ε n = ε(δ n ) be chosen satisfying ε n → 0 and δ 2 n εn → 0, as n → ∞. Denote by (ϕ δn εn , ζ δn εn ) ∈ Θ Γ 1 × Θ Γ 1 the solution of (22) associated to (ψ δ , κ δ ) and ε replaced by (ψ δn , κ δn ) and ε n respectively, and moreover assume that ϕ * belongs to Θ Γ 1 . We have then the following result: Proposition 4. There exists a subsequence of solution of [START_REF] Tuan | A note on a cauchy problem for the laplace equation: regularization and error estimates[END_REF] 

denoted again {(ϕ δn εn , ζ δn εn )} n which con- verges to (ϕ * , ζ * ) in Θ Γ 1 × Θ Γ 1 as n → ∞.
Proof. For simplicity, let us denote by ψ n = ψ δn , κ n = κ δn , ϕ n = ϕ δn εn , ζ n = ζ δn εn and by

u n = u n 1 + i u n 2 = u δ n (ϕ n , ζ n ) ∈ V the solution of (14) associated to (ϕ n , ζ n ). It is clear that (ϕ * , ζ * )
, the unique solution of (1), is also the unique solution of (2), due to the equivalence of the two problems, and thus

u 2 (ϕ * , ζ * ) = 0 in Ω, p 2 (ϕ * , ζ * ) = 0 in Ω, where (u 2 (ϕ * , ζ * ), p 2 (ϕ * , ζ * ))
is the imaginary part of the solution of the problem (6) associated to (ϕ, ζ) replaced by (ϕ * , ζ * ). Therefore, using the fact that (ϕ n , ζ n ) is solution of ( 22) and the inequalities ( 18) and ( 19), we get

J δn εn (ϕ n , ζ n ) ≤ J δn εn (ϕ * , ζ * ) = 1 2 |||u δn 2 (ϕ * , ζ * )||| 2 0,Ω + 1 2 p δn 2 (ϕ * , ζ * ) 2 0,Ω + ε n 2 |||ϕ * ||| 2 0,Γ 1 + ε n 2 |||ζ * ||| 2 0,Γ 1 = 1 2 |||u δn 2 (ϕ * , ζ * ) -u 2 (ϕ * , ζ * )||| 2 0,Ω + 1 2 p δn 2 (ϕ * , ζ * ) -p 2 (ϕ * , ζ * )||| 2 0,Ω + ε n 2 |||ϕ * ||| 2 0,Γ 1 + ε n 2 |||ζ * ||| 2 0,Γ 1 ≤ cδ 2 n + ε n 2 |||ϕ * ||| 2 0,Γ 1 + ε n 2 |||ζ * ||| 2 0,Γ 1 . (47) Then |||ϕ n ||| 2 0,Γ 1 + |||ζ n ||| 2 0,Γ 1 ≤ c δ 2 n ε n + |||ϕ * ||| 2 0,Γ 1 + |||ζ * ||| 2 0,Γ 1 . (48) 
Moreover, from ( 16) and ( 17), we get

|||u n ||| 1,Ω ≤ c α (|||f ||| 0,Ω + |||ψ n ||| 0,Γ 0 + |||κ n ||| 0,Γ 0 + |||ϕ n ||| 0,Γ 1 + |||ζ n ||| 0,Γ 1 ) ≤ c α (|||f ||| 0,Ω + 2δ n + |||ψ||| 0,Γ 0 + |||κ||| 0,Γ 0 + |||ϕ n ||| 0,Γ 1 + |||ζ n ||| 0,Γ 1 ) (49) 
and

p n 0,Ω ≤ c β (|||f ||| 0,Ω + 2δ n + |||ψ||| 0,Γ 0 + |||κ||| 0,Γ 0 + |||ϕ n ||| 0,Γ 1 + |||ζ n ||| 0,Γ 1 ) . (50) 
Therefore, by combining (48), ( 49) and (50), for n large enough, the sequence

{(ϕ n , ζ n , u n , p n )} n is uniformly bounded in Θ Γ 1 × Θ Γ 1 × V × Θ,
with respect to n. We can then extract a subsequence denoted again {(ϕ n , ζ n , u n , p n )} n which converges weakly to some elements φ, ζ

∈ Θ Γ 1 ×Θ Γ 1 , ũ ∈ V and p ∈ Θ 0 such that as n → ∞ {(ϕ n , ζ n )} n → φ, ζ in Θ Γ 1 × Θ Γ 1 u n → ũ in V, u n → ũ in Θ, u n → ũ in Θ Γ p n → p in Θ. ( 51 
)
Using the same technics as in lemma 2, it is then easy to verify that (ũ, p) = u( φ, ζ), p( φ, ζ) the solution of ( 6) associated ( φ, ζ). On the other hand, according the the lower semi-continuity of the norms in L 2 , and using the fact that ε n → 0 as n → ∞, we obtain

lim inf n→∞ J δn εn (ϕ n , ζ n ) = lim inf n→∞ 1 2 |||u n 2 ||| 2 0,Ω + 1 2 p n 2 2 0,Ω + ε n 2 |||ϕ * ||| 2 0,Γ 1 + ε n 2 |||ζ * ||| 2 0,Γ 1 ≥ 1 2 |||ũ 2 ||| 2 0,Ω + 1 2 p2 2 0,Ω (52) 
From 47, we have

0 ≤ J δn εn (ϕ n , ζ n ) ≤ J δn εn (ϕ * , ζ * ) ≤ cδ 2 n + ε n 2 |||ϕ * ||| 2 0,Γ 1 + ε n 2 |||ζ * ||| 2 0,Γ 1 (53) 
This implies that lim

n→∞ J δn εn (ϕ n , ζ n ) = 0. ( 54 
)
Then from ( 52) and (54) we get ũ2 = 0 p2 = 0 in Ω, which shows that ( φ, ζ) ∈ Θ Γ 1 ×Θ Γ 1 is a solution of the problem [START_REF] Tuan | A note on a cauchy problem for the laplace equation: regularization and error estimates[END_REF]. Since (ϕ * , ζ * ) is the unique solution of the problem [START_REF] Tuan | A note on a cauchy problem for the laplace equation: regularization and error estimates[END_REF], we conclude that ( φ, ζ) = (ϕ * , ζ * ). Moreover the sequence

{(ϕ n , ζ n )} n converges to (ϕ * , ζ * ) in Θ Γ 1 × Θ Γ 1 as n → ∞.
Indeed, by using (48) and the weak convergence (51), we have

|||ϕ n -ϕ * ||| 2 0,Γ 1 + |||ζ n -ζ * ||| 2 0,Γ 1 = |||ϕ n ||| 2 0,Γ 1 + |||ζ n ||| 2 0,Γ 1 + |||ϕ * ||| 2 0,Γ 1 + |||ζ * ||| 2 0,Γ 1 -2(ϕ n , ϕ * ) 0,Γ 1 -2(ζ n , ζ * ) 0,Γ 1 ≤ c δ 2 n ε n + 2|||ϕ * ||| 2 0,Γ 1 + 2|||ζ * ||| 2 0,Γ 1 -2(ϕ n , ϕ * ) 0,Γ 1 -2(ζ n , ζ * ) 0,Γ 1
Then we get the strong convergence

lim n→ |||ϕ n -ϕ * ||| 2 0,Γ 1 + |||ζ n -ζ * ||| 2 0,Γ 1 = 0. (55) 
Which achieves the proof.

Approximation of the regularized optimal problem

In this section, we propose the approximation of the optimal solution of the regularization problem via finite elements method of type P 1Bubble /P 1 [START_REF] Brezzi | Mixed and hybrid finite element methods[END_REF]. For this, we try first to generate a non-iterative algorithm for solving the regularized optimal problem. In fact, the solution of the optimization problem 22 is obtained by solving some linear systems. Indeed, from the proposition 3, we can construct the following algorithm:

We substitute (40) into ( 14), to get

a(u δ , v) + b(v, p δ ) + 1 ε (w δ 2 , v) 0,Γ 1 + i 1 ε (w δ 1 , v) 0,Γ 1 = (f, v) + (ψ δ + iκ δ , v) 0,Γ 0 ∀v ∈ V b(u δ , q) = 0 ∀q ∈ Θ 0 (56) 
Also the weak formulation of (44) can be written:

a(w δ , v) + b(v, pδ ) = (u δ 2 , v) 0,Ω ∀v ∈ V b(w δ , q) = 0 ∀q ∈ Θ 0 (57) 
Then by combining (40), ( 56) and (57), we can summarized the following solver of the optimization problem [START_REF] Tuan | A note on a cauchy problem for the laplace equation: regularization and error estimates[END_REF]:

We solve first the following problem

• The boundary of Ω is defined by ∂Ω := Γ 0 ∪ Γ 1 . Where Γ 1 = {(x, y) ∈ R 2 , /x 2 + y 2 = r 2 } is the internal boundary which is inaccessible and Γ 0 = {(x, y) ∈ R 2 , /x 2 + y 2 = R 2 } is the external boundary.

• Dirichlet data κ for the velocity field over Γ 0 :

κ 1 = ch(x) sh(y) κ 2 = -ch(y) sh(x) (63) 
• The flux ψ over Γ 0 ψ 1 = µ (x sh(x) sh(y) + y ch(x) ch(y)) -x pe ψ 2 = µ (-x ch(x) ch(y) -y sh(y) sh(x)) -y pe (64)

• The second member

f 1 = -2µ ch(x)sh(y) + ysh(x) f 2 = 2µ ch(y)sh(x) + ch(x) (65) 
• We try to reconstruct (ϕ h ε , ζ h ε ) the approximation of velocity ϕ * and the pressure ζ * and the flux on Γ 1 , by considering the following exact solution of the problem (1) associated to the above data

     ue1 = ch(x)sh(y) ue2 = -ch(y)sh(x) pe = ych(x)- sh (1) 2 (66) 
First, we study the influence of the parameter of regularisation of Tikhonov ε on the approximate solution (ϕ h ε , ζ h ε ). In the figures 1 and 2, we present the behavior of the solutions (ϕ h ε , ζ h ε ) for some decreasing values of ε. As we can see for ε ∈ [10 -4 , 10 -6 ] we obtain a good approximations. For ε = 10 -6 , the To better evaluate the solution accuracy, we define the L 2 -norm relative errors corresponding to solutions ϕ h ε , ζ h ε , and (u h 1 , p h 1 ) as follows: Finally, in order to verify the stability of the reconstruction model explored here, a uniformly distributed noise with a noise level δ = 1%, 2%, 3%, 4% and 5%, respectively, is added to (ψ, κ) to get (ψ δ , κ δ ) : where rand(x) returns a pseudo-random value drawn from a uniform distribution on [0, 1]. The experiments are repeated on the same mesh for ε = 10 -6 . In Figure 4 (resp Figure 5), we present the stability behavior of the solution ζ 1 (resp ζ 2 ). In Figure 6 (resp Figure 7) we present the stability behavior of the solution ϕ 1 (resp ϕ 2 ). We conclude from theses figures that, despite the problem is known with its sever instability, the proposed approach produces a convergent and stable numerical solutions with respect to small added noise into the input data.

Err ϕ = |||ϕ h ε -ϕ * ||| 0,Γ 1 ϕ * Err ζ = |||ζ h ε -ζ * ||| 0,
ψ δ 1 = [1 + δ • (2 rand(x) -1)]ψ 1

Conclusion

In this paper, an approach base on a coupled complex boundary method combined with Tikhonov regularization framework is presented for solving the Cauchy problem governed by Stokes equation. In this method all boundary conditions are used as parts of a Robin boundary condition. The resulting inverse Cauchy problem is reformulated as minimizing one and performed using Tikhonov regularization approach. Moreover, using the adjoint gradient technic, a simple solver is proposed to compute the regularized solution. Thus, no iteration is needed and the resolution is fast. The obtained theoretical and numerical results show that the proposed approach is feasible, effective and stable.
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 1 Figure 1: The solution ζ h ε for different values of ε
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 2 Figure 2: The solution ϕ h ε for different values of ε
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 3 Figure 3: The approximate and exact value of the velocity and pressure on Γ 1

ψ δ 2 =

 2 [1 + δ • (2 rand(x) -1)]ψ 2 κ δ 1 = [1 + δ • (2 rand(x) -1)]κ 1 ; κ δ 2 = [1 + δ • (2 rand(x) -1)]κ 2 ;
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 4 Figure 4: the stability behavior of the solution ζ 1
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 5 Figure 5: the stability behavior of the solution ζ 2
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 6 Figure 6: the stability behavior of the solution ϕ 1
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 7 Figure 7: the stability behavior of the solution ϕ 2

Table 1 :

 1 Γ 1 ζ * Err u = |||u h 1 -u * ||| 0,Γ 1 u * , p * ),is the exact solution of 1 associated to (ϕ * , ζ * ). In table 1, we examine the numerical convergence of the approximate solution (ϕ h ε , ζ h ε ) to the exact one (ϕ ε , ζ ε ) for decreasing value of h (for ε = 10 -6 ). We conclude from Table 1 that the used approximation method have a good convergence to the solution (ϕ, ζ) when h tends to 0. Err t 0.058 0.035 0.019 0.018 Err u 0.059 0.034 0.018 0.017 Err p 0.017 0.0058 0.053 0.0015 Err ϕ 0.06 0.019 0.009 0.0023 The variation of the errors with respect to h

	Err p =	p h 1 -p * u	0,Γ 1

*

where (u *

(58) Then we compute

In the sequel, for solving numerically this optimization problem, the standard conforming linear finite element methods for mixed formulations are applied to solve 58, we use for example P 1Bubble /P 1 . More precisely, let {T h } h be a regular family of finite element partitions of Ω. We designate by λ (T ) i ,1 ≤ i ≤ 3 the barycentric coordinates with respect to the vertices of T . The "Bubble" function b (T ) associated to the triangle T is defined by

The function b is in fact a polynomial function of degree 3 which vanishes on the edges of T. We define the space associated with the bubble function by

We define next the functional spaces

Then the finite element discretization of (58) reads:

) and the approximate value of the solution of ( 59) is written

Then we set V h = V h + iV h , and define

Thus it is easy to verify, using the same argument as in the continuous case, that

Numerical results

This section deals with the numerical realization of the proposed approach for solving a Stokes inverse Cauchy problem. In order to confirm the accurate of the coupled complex boundary problem based on Tikhononv regularization, were going to consider a Stokes inverse Cauchy problem defined by some data which allow us to gets the analytic solution. For this, we consider the following data:

• let Ω ⊂ R 2 be a ring defined by

where r is the inner radius and R is the external radius.