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LINEAR INSTABILITY OF BREATHERS FOR THE FOCUSING NONLINEAR SCHR ÖDINGER EQUATION

Relying upon tools from the theory of integrable systems, we discuss the linear instability of the Kuznetsov-Ma breathers and the Akhmediev breathers of the focusing nonlinear Schrödinger equation. We use the Darboux transformation to construct simultaneously the breathers and the exact solutions of the Lax system associated with the breathers. We obtain a full description of the Lax spectra for the two breathers, including multiplicities of eigenvalues. Solutions of the linearized NLS equations are then obtained from the eigenfunctions and generalized eigenfunctions of the Lax system. While we do not attempt to prove completeness of eigenfunctions, we aim to determine the entire set of solutions of the linearized NLS equations generated by the Lax system in appropriate function spaces.

Introduction

The focusing nonlinear Schrödinger (NLS) equation in the space of one dimension is a fundamentally important model which brings together nonlinearity and dispersion of modulated waves in many physical systems [START_REF] Fibich | The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse[END_REF][START_REF] Sulem | The Nonlinear Schrödinger Equation[END_REF]. It has been used as the main testbed for rogue waves in fluids and optics [START_REF] Kharif | Rogue Waves in the Ocean[END_REF][START_REF]Nonlinear Guided Wave Optics: A Testbed for Extreme Waves[END_REF], where the rogue waves appear from nowhere and disappear without any trace. One of the important properties of the focusing cubic NLS equation is its integrability, which allows to construct the basic solutions for the rogue waves in a closed analytical form. Although these solutions have been constructed long ago in the works of Akhmediev et al. [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF], Kuznetsov [START_REF] Kuznetsov | Solitons in a parametrically unstable plasma[END_REF], Ma [START_REF] Ma | The perturbed plane-wave solutions of the cubic Schrödinger equation[END_REF], Peregrine [START_REF] Peregrine | Water waves, nonlinear Schrödinger equations and their solutions[END_REF], and Tajiri & Watanabe [START_REF] Tajiri | Breather solutions to the focusing nonlinear Schrödinger equation[END_REF] they have been studied a lot in the past few years in physics literature [START_REF] Copie | The physics of the one-dimensional nonlinear Schrödinger equation in fiber optics: Rogue waves, modulation instability and self-focusing phenomena[END_REF][START_REF] Dudley | Rogue waves and analogies in optics and oceanography[END_REF].

To explain the current state of art in the mathematical studies of these breather solutions, we set up the stage and take the NLS equation in the following dimensionless form:

iψ t + 1 2 ψ xx + |ψ| 2 ψ = 0, (1.1) 
where the unknown ψ is a complex-valued function depending on time t ∈ R and space x ∈ R.

The NLS equation (1.1) is invariant under the scaling transformation if ψ(x, t) is a solution, so is cψ(cx, c 2 t), for every c ∈ R, and under translations in x and t. Up to these symmetries, the NLS equation (1.1) admits the following exact solutions on the background of the constant-amplitude wave ψ(x, t) = e it :

• Akhmediev breather (AB) ψ(x, t) = -1 + 2(1 -λ 2 ) cosh(λkt) + iλk sinh(λkt) cosh(λkt) -λ cos(kx)

e it , (1.2) 
where k = 2 √ 1 -λ 2 , and λ ∈ (0, 1) is the only free parameter.

Date: December 28, 2021. Note that PRW can be obtained in the limit λ → 1 from either AB or KMB. Also note the formal transformation k = iβ between AB and KMB. The main goal of this work is to study the linear instability of AB and KMB. Stability of breathers is a challeging question that has been extensively studied in the mathematics literature. A major difficulty comes from the nontrivial dependence of the breathers on time t. Therefore, many of the analytical methods developed for stability of stationary or traveling waves in nonlinear partial differential equations do not apply to breathers. For instance, spectral methods are out of reach for AB and PRW which are localized in time t. Since KMB is periodic in time t, Floquet theory can be used, at least formally, to compute stable and unstable modes of KMB. This has been done numerically in [START_REF] Cuevas-Maraver | Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves[END_REF] after KMB were truncated on a spatially periodic domain in x. Further studies of KMB in discrete setting of the NLS equation can be found in [START_REF] Sullivan | KuznetsovMa breather-like solutions in the Salerno model[END_REF].

Very recently, the authors of [START_REF] Zweck | The essential spectrum of periodically stationary solutions of the complex Ginzburg-Landau equation[END_REF] set up a basis for a rigorous investigation of stability of breathers which are periodic in time t and localized in space x. Using tools from the theory of semigroups and Fredholm operators, they analyzed properties of the monodromy operator for the linearization of the cubic-quintic complex Ginzburg-Landau equation about such solutions, and computed its essential spectrum. These results being obtained in a dissipative setting do not directly apply to KMB due to the Hamiltonian nature of the NLS equation.

Most of the existing instability results for breathers of the NLS equation strongly rely upon the integrability properties of the NLS equation. Instability of AB was concluded by using the variational characterization of breathers in the energy space in [START_REF] Alejo | The Akhmediev breather is unstable[END_REF]. Perturbations to the AB were considered in the periodic space H s per for s > 1/2. Similar techniques were applied to KMB and PRW in [START_REF] Alejo | Stability and instability of breathers in the U (1) Sasa-Satsuma and nonlinear Schrödinger models[END_REF] (see also the review in [START_REF] Alejo | Review on the stability of the Peregrine and related breathers[END_REF]). It was shown that both KMB and PRW are unstable with respect to perturbations in H s (R) for s > 1/2.

Evolution of KMB and PRW under perturbations was studied in [START_REF] Garnier | Inverse scattering perturbation theory for the nonlinear Schrödinger equation with non-vanishing background[END_REF] and [START_REF] Biondini | Inverse scattering transform for the focusing nonlinear Schröodinger equation with nonzero boundary conditions[END_REF], where inverse scattering transform was applied to the NLS equation in the class of functions decaying to the nonzero boundary conditions. Instability of PRW was visualized numerically in [START_REF] Klein | Numerical study of the stability of the Peregrine breather[END_REF] by using time-dependent simulations of the NLS equation. Linear instability of PRW was also studied numerically in [START_REF] Calini | Linear instability of the Peregrine breather: Numerical and analytical investigations[END_REF]. By using perturbation theory for embedded eigenvalues of the Lax system, it was shown in [START_REF] Klaus | Evans function for Lax operators with algebraically decaying potentials[END_REF] that the perturbed PRW is transformed to either KMB or two counterpropagating breathers, the latter solutions were later constructed explicitly in [START_REF] Zakharov | Nonlinear stage of modulation instability[END_REF].

Our approach to linear instability is closely related to the recent works [START_REF] Bilman | A robust inverse scattering transform for the focusing nonlinear Schrödinger equation[END_REF][START_REF] Calini | Dynamical criteria for rogue waves in nonlinear Schrdinger models[END_REF][START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF], where solutions of the linearized NLS equation are constructed from solutions of the associated Lax system. Eigenfunctions of the Lax system related to the Lax spectrum provide solutions of the linearized NLS equation relevant for the linear instability of breathers. The completeness of the resulting solution set is a particularly challenging question. In the class of spatially localized functions, it was shown in [START_REF] Bilman | A robust inverse scattering transform for the focusing nonlinear Schrödinger equation[END_REF]Section 3.4] how to obtain a complete set of solutions of the linearized NLS equation at PRW. Stability of AB under periodic perturbations of the same period was stated in [START_REF] Calini | Dynamical criteria for rogue waves in nonlinear Schrdinger models[END_REF] without the proof of completeness. It was recently discovered in [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF] that the set of eigenfunctions constructed in [START_REF] Calini | Dynamical criteria for rogue waves in nonlinear Schrdinger models[END_REF] is incomplete and two unstable modes exist for AB. The spatially periodic unstable modes for AB were constructed in [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF] by taking a suitable combination of unbounded solutions of the linearized NLS equation.

The purpose of this paper is twofold. Firstly, we give a full description of the Lax spectra for AB and KMB, including algebraic multiplicities of eigenvalues. Secondly, we obtain all solutions of the linearized NLS equations at AB and KMB generated by eigenfunctions and generalized eigenfunctions of the Lax systems. These solutions are spatially periodic for AB and spatially localized for KMB. The completeness question is outside the scope of this paper and will be the subject of subsequent studies.

Similar to [START_REF] Bilman | A robust inverse scattering transform for the focusing nonlinear Schrödinger equation[END_REF][START_REF] Calini | Dynamical criteria for rogue waves in nonlinear Schrdinger models[END_REF][START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF], we use the Darboux transformation to obtain AB and KMB from the constant-amplitude wave and then to precisely determine the Lax spectra at AB and KMB from the Lax spectrum at the constant-amplitude wave. For AB we focus on solutions of the linearized NLS equation with the first three spatially periodic Fourier modes, whereas for KMB we focus on spatially localized solutions.

Aiming for a presentation accessible to readers who are not expert in integrable systems, we review some properties of the Lax system and the Darboux transformation in Section 2. In Section 3 we consider the constant-amplitude wave. We compute the Lax spectrum and establish the explicit relation between the solutions of the linearized NLS equation obtained by a standard Fourier analysis and the ones generated by the Lax system. We focus on spatially periodic and spatially localized solutions. Then using the Darboux transformation, we determine the Lax spectra and the resulting solutions of the linearized NLS equations for AB in Section 4 and for KMB in Section 5. The paper is concluded at Section 6 with a discussion of further directions.
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Preliminaries

We recall the Lax system for the NLS equation (1.1), its connection with the linearized NLS equation, and the Darboux transformation for the NLS equation and its Lax system.

For our purpose, it is convenient to write ψ(x, t) = u(x, t)e it , where u satisfies the normalized NLS equation

iu t + 1 2 u xx + (|u| 2 -1)u = 0. (2.1)
The constant-amplitude wave ψ(x, t) = e it of the NLS equation (1.1) becomes u(x, t) = 1 and the breathers (1.2), (1.3), and (1.4) provide exact solutions of the normalized equaiton (2.1) without the factor e it in these formulas.

2.1. Lax system. The normalized NLS equation (2.1) for u = u(x, t) is a compatibility condition ϕ xt = ϕ tx for a 2-vector ϕ = ϕ(x, t) satisfying the Lax system

ϕ x = U (u, λ)ϕ, U (u, λ) = λ u -ū -λ (2.2)
and

ϕ t = V (u, λ)ϕ, V (u, λ) = i λ 2 + 1 2 (|u| 2 -1) λu + 1 2 u x -λū + 1 2 ūx -λ 2 -1 2 (|u| 2 -1) , (2.3) 
where λ a complex number. The x-derivative equation (2.2) is the Zakharov-Shabat (ZS) spectral problem, which is a particular case of the AKNS spectral problem; see pioneering works [START_REF] Zakharov | Exact theory of two-dimensional self-focusing and one-dimensional selfmodulation of waves in nonlinear media[END_REF] and [START_REF] Ablowitz | The inverse scattering transform-Fourier analysis for nonlinear problems[END_REF]. The t-derivative equation (2.3) gives the time evolution of the solution ϕ(x, t) of the ZS spectral problem (2.2). Spatially bounded solutions of the Lax system are referred to as eigenfunctions and the corresponding values λ as eigenvalues. The set of eigenvalues λ form the Lax spectrum of the ZS spectral problem (2.2). Rigorously, this terminology corresponds to considering the ZS spectral problem in the space C 0 b (R) of x-dependent functions which are bounded and continuous on R. However, depending on the properties of the solution u = u(x, t) to the NLS equation (2.1) other function spaces may be considered as, for instance, the space of L-periodic functions L 2 per (0, L), or the space of L-antiperiodic functions L 2 antiper (0, L), or the space of localized functions L 2 (R). The choice of the function space affects the nature of the Lax spectrum, as this is usual for spectra of differential operators. For the spaces mentioned above, the Lax spectrum is a purely point spectrum consisting of isolated eigenvalues for L 2 per (0, L), or L 2 antiper (0, L), whereas it is a purely continuous spectrum, up to possibly a finite number of eigenvalues for L 2 (R).

The ZS spectral problem (2.2) can be rewritten as a classical eigenvalue problem

(L -λI) ϕ = 0, L := ∂ x -u -ū -∂ x . (2.4) 
In particular, this allows to define generalized eigenfunctions and algebraic multiplicities of eigenvalues in the usual way by the bounded solutions of (L -λI) k ϕ = 0 for k ∈ N. If λ is a double eigenvalue with the only eigenfunction ϕ satisfying (2.4), then there exists a generalized eigenfunction ϕ g satisfying the nonhomogeneous linear equation (L -λI) ϕ g = ϕ.

(2.5)

In this case, λ has geometric multiplicity one and algebraic multiplicity two.

Remark 1. Solutions of the Lax equations (2.2) and (2.3) satisfy the following symmetry. If ϕ = (p, q) T is a solution for λ, then ϕ = (-q, p) T is a solution for -λ.

Taking a solution u = u(x, t) to the normalized NLS equation (2.1), solutions v = v(x, t) of the corresponding linearized NLS equation

iv t + 1 2 v xx + (2|u| 2 -1)v + u 2 v = 0, (2.6) 
can be constructed from solutions ϕ = ϕ(x, t) of the Lax system (2.2)-(2.3). The following well-known property is a result of a straightforward calculation.

Proposition 1. Assume u is a solution to the normalized NLS equation (2.1). If ϕ = (ϕ 1 , ϕ 2 ) T is a solution to the Lax system (2.2)-(2.3) for some λ, then

v = ϕ 2 1 -φ2 2 , v = -ϕ 2 2 + φ2 1 (2.7) and v = i(ϕ 2 1 + φ2 2 ), v = -i(ϕ 2 2 + φ2 1 )
(2.8) are solutions to the linearized NLS equation (2.6).

Proof. Due to the symmetry in Remark 1 and the linear superposition principle, it is sufficient to confirm the relations (2.7) and (2.8) by using v = ϕ 2 1 and v = -ϕ 2 2 . This is obtained directly:

iv t + 1 2 v xx + (2|u| 2 -1)v + u 2 v = ϕ 1 (2iϕ 1t + ϕ 1xx ) + (ϕ 1x ) 2 + (2|u| 2 -1)ϕ 2 1 -u 2 ϕ 2 2 = ϕ 1 ((1 -|u| 2 )ϕ 1 -2λ 2 ϕ 1 -2λuϕ 2 -u x ϕ 2 + λ(λϕ 1 + uϕ 2 ) + u x ϕ 2 + u(-ūϕ 1 -λϕ 2 )) + (λϕ 1 + uϕ 2 ) 2 + (2|u| 2 -1)ϕ 2 1 -u 2 ϕ 2 2 = 0.
Extending the solution by using (2.7) and (2.8) ensures that v is a complex conjugate of v. The result in Proposition 1 can be extended by taking two linearly independent solutions ϕ = (ϕ 1 , ϕ 2 ) T and φ = (φ 1 , φ 2 ) T to the Lax system (2.2)-(2.3) for the same value of λ. Then from these two solutions we can construct the three pairs of solutions of the linearized NLS equation (2.6) given in Table 1. The symmetry of the Lax system in Remark 1 implies that the solutions of the Lax system for -λ lead, up to sign, to the same solutions of the linearized NLS equation (2.6). Proposition 2. Assume that u = u 0 (x, t) is a solution to the normalized NLS equation (2.1) and pick λ 0 ∈ C. If ϕ = (p 0 , q 0 ) T is a particular solution of the Lax system (2.2)-(2.3) with u = u 0 and λ = λ 0 , then

Pair I Pair II Pair III v = ϕ 2 1 -φ2 2 v = ϕ 1 φ 1 -φ2 φ2 v = φ 2 1 -φ2 2 v = iϕ 2 1 + i φ2 2 v = iϕ 1 φ 1 + i φ2 φ2 v = iφ 2 1 + i φ2 2 Table 1.
û0 = u 0 + 2(λ 0 + λ0 )p 0 q0 |p 0 | 2 + |q 0 | 2 (2.10)
is a solution to the normalized NLS equation (2.1) and ϕ = (p 0 , q0 ) T with

p0 q0 = λ 0 + λ0 |p 0 | 2 + |q 0 | 2 -q 0 p0 (2.11)
is a particular solution of the Lax system (2.2)-(2.3) with u = û0 and λ = λ 0 . Furthermore, the following identity holds:

|û 0 | 2 = |u 0 | 2 + ∂ 2 ∂x 2 log(|p 0 | 2 + |q 0 | 2 ).
(2.12)

Remark 4. By the symmetry in Remark 1, ϕ = (-q 0 , p0 ) T is a solution of the Lax system (2.2)-(2.3) with u = u 0 and λ = -λ0 , whereas ϕ = (-q0 , p0 ) T is a solution of the Lax system for u = û0 and λ = -λ0 .

Remark 5. The result in Proposition 2 provides new solutions to the normalized NLS equation (2.1), and to the associated Lax system (2.2)-(2.3), when λ 0 + λ0 = 0, i.e., when λ 0 is not purely imaginary. When λ 0 + λ0 = 0, it gives the same solution û0 = u 0 to the normalized NLS equation (2.1) and the trivial solution ϕ = (0, 0) T to the Lax system (2.2)-(2.3). Breathers are found by taking u 0 = 1 and positive values λ 0 : λ 0 ∈ (0, 1) for AB, λ 0 ∈ (1, ∞) for KMB, and λ 0 = 1 for PRW.

In addition to the Darboux transformation u 0 → û0 in Proposition 2, we have a Darboux transformation Φ(λ) → Φ(λ) between solutions of the Lax system (2.2)-(2.3). More precisely, assuming that Φ(λ) is a 2 × 2 matrix solution to the Lax system with u = u 0 , then

Φ(λ) = D(λ)Φ(λ) (2.13)
is a 2 × 2 matrix solution to the Lax system with u = û0 if λ = {λ 0 , -λ0 }, where the Darboux matrix D(λ) is given by

D(λ) := I + 1 λ -λ 0 p0 q0 [-q 0 p 0 ] (2.14)
and I stands for the 2 × 2 identity matrix. Since det D(λ) = λ + λ0 λ -λ 0 , the matrix D(λ) is invertible, and the correspondence between the 2 × 2 matrix solutions Φ(λ) and Φ(λ) is one-to-one, when λ = {λ 0 , -λ0 }.

Constant-amplitude background

Here we discuss the simple case of the constant solution u = 1. We determine the Lax spectrum and compare the set of solutions of the linearized NLS equation

iv t + 1 2 v xx + v + v = 0 (3.1)
obtained using standard tools of Fourier analysis with the one given by the solutions of the Lax system (2.2)- (2.3). This comparison will be useful in the study of linear instability of AB and KMB in Sections 4 and 5 respectively. 

ϕ =   λ -i 2 k(λ) -λ + i 2 k(λ)   e -1 2 ik(λ)(x+iλt) , φ =   λ + i 2 k(λ) -λ -i 2 k(λ)   e + 1 2 ik(λ)(x+iλt) , (3.2) 
where k(λ) := 2 √ 1 -λ 2 . These solutions are bounded for λ ∈ (0, 1] and are linearly independent for λ = 1, that is, for k(λ) = 0. For λ = 1, two linearly independent solutions are given by

λ = 1 : ϕ = 1 -1 , φ = x + it + 1 -x -it . (3.3) 
Solutions for λ ∈ R -, and in particular, for λ ∈ [-1, 0), are found from the symmetry property of the Lax equations in Remark 1. This implies that any λ ∈ (-1, 0) ∪ (0, 1) is a geometrically double eigenvalue, whereas λ = ±1 are geometrically simple. For λ = iγ with γ ∈ R, two solutions to the Lax equations (2.2)-(2.3) are given by:

ϕ =   1 2 k(γ) -γ -i 1 2 k(γ) + γ   e -1 2 ik(γ)(x-γt) , φ =   1 2 k(γ) + γ i 1 2 k(γ) -γ   e + 1 2 ik(γ)(x-γt) , (3.4) 
where k(γ) := 2 1 + γ 2 . These solutions are bounded and linearly independent for every γ ∈ R + . Solutions for γ ∈ R -are found from the symmetry property of the Lax equations in Remark 1. Consequently, any λ = iγ with γ ∈ R\{0} is a geometrically double eigenvalue. For λ = 0 (γ = 0), there are two linearly independent solutions,

λ = 0 : ϕ = 1 -i e -ix , φ = 1 i e +ix , (3.5) 
implying that λ = 0 is a geometrically double eigenvalue. In contrast to the eigenvalues above, the eigenvalue λ = 0 has algebraic multiplicity four because the bounded solutions of L 2 ϕ = 0 are spanned by (3.5) and two additional solutions

λ = 0 : ϕ g = t -1 -it e -ix , φ g = -t -1 -it e +ix . (3.6) 
These computations are summarized in the following lemma, where we have also checked algebraic multiplicities of all eigenvalues.

Lemma 1. The Lax spectrum of the spectral problem (2.2) with u = 1 in the space C 0 b (R) of bounded continuous functions is the set

Σ 0 = iR ∪ [-1, 1], (3.7) 
and the following properties hold:

(1) λ = ±1 are algebraically simple eigenvalues;

(2) each λ ∈ Σ 0 \{0, ±1} is a geometrically and algebraically double eigenvalue;

(3) λ = 0 is an eigenvalue with geometric multiplicity two and algebraic multiplicity four.

Proof. Geometric multiplicity of all eigenvalues has been checked with direct computations resulting in (3.2), (3.3), (3.4), and (3.5). In order to check the algebraic multiplicity of eigenvalues, we note that for each eigenvalue λ, the bounded eigenfunctions ϕ and φ in C 0 b (R) are periodic in x with some spatial period L. For the algebraic multiplicity of λ, we need to solve (L-λI)ϕ g = ϕ and (L -λI)φ g = φ in the space of periodic functions with the same period L. Consequently, we can check the Fredholm condition in L 2 (0, L) equipped with the standard inner product •, • .

Let ϕ = (ϕ 1 , ϕ 2 ) be the bounded eigenfunction of the eigenvalue problem (L -λI)ϕ = 0. By the symmetry, the adjoint problem L * -λI ϕ * = 0 admits the eigenfunction ϕ * = ( φ2 , φ1 ) T . If λ ∈ Σ 0 \{+1, -1}, there exists another linearly independent eigenfunction φ = (φ 1 , φ 2 ) T , for which we have similarly φ * = ( φ2 , φ1 ) T . Since ψ * , ϕ = ϕ * , φ = 0, the generalized eigenfunctions ϕ g and φ g exist if and only if ϕ * , ϕ = 0 and φ * , φ = 0.

For λ ∈ (0, 1), we obtain

ϕ * , ϕ = -2λLe λk(λ)t , φ * , φ = -2λLe -λk(λ)t ,
which are both nonzero for λ = 0. For λ = 1, only one linearly independent eigenfunction ϕ in (3.3) exists and we check that ϕ * , ϕ = -2L = 0. For λ = iγ with γ ∈ R, we obtain

ϕ * , ϕ = -2iγLe iγk(γ)t , φ * , φ = -2iγLe -iγk(γ)t ,
which are both nonzero for γ = 0. Hence, the algebraic multiplicity of all nonzero eigenvalues is equal to their geometric multiplicity.

For the eigenvalue λ = 0 with the eigenfunctions (3.5), we obtain ϕ * , ϕ = φ * , φ = 0, in agreement with the existence of the generalized eigenfunctions (3.6). On the other hand, we also have

ϕ * , ϕ g = -L, φ * , φ = -L,
which implies that no new generalized eigenfunctions satisfying L 3 ϕ = 0 exist. Hence, the zero eigenvalue has algebraic multiplicity equal to four.

Replacing the space C 0 b (R) by L 2 (R) in Lemma 1 the Lax spectrum does not change, the difference being that Σ 0 becomes a purely continuous spectrum in L 2 (R). In the space L 2 per (0, L) of L-periodic functions, the Lax spectrum only contains the eigenvalues λ ∈ Σ 0 with L-periodic associated eigenfunctions, hence the purely point spectrum is located at

Σ (P ) 0 = {±λ (P ) m , m ∈ {0, N even }}, λ (P ) m := 1 - π 2 L 2 m 2 . (3.8)
Similarly, in the space L 2 antiper (0, L) of L-antiperiodic functions, the Lax spectrum only contains the eigenvalues λ ∈ Σ 0 with L-antiperiodic associated eigenfunctions, hence the purely point spectrum is located at

Σ (A) 0 = {±λ (A) m , m ∈ N odd }, λ (A) m := 1 - π 2 L 2 m 2 .
(3.9)

The algebraic and geometric multiplicities of these eigenvalues remain the same, as given by Lemma 1. Notice that λ = 0 is an eigenvalue only for particular periods L ∈ πN. Proposition 3. For every

v 0 ∈ L 2 (R), there exists a unique solution v ∈ C 0 (R, L 2 (R)) to the linearized NLS equation (3.1) satisfying v(x, 0) = v 0 (x) in the form of a linear superposition v(x, t) = ∞ 0 c + k v + k (t) + c - k v - k (t) cos(kx)dk + ∞ 0 d + k v + k (t) + d - k v - k (t) sin(kx)dk, (3.10) 
where coefficients c ± k and d ± k are uniquely found from v 0 ∈ L 2 (R), and the functions v ± k (t) for k ≥ 0 are given as follows:

k = 0 : v + 0 (t) = 2i, v - 0 (t) = 1 + 2it, (3.11) k ∈ (0, 2) : v + k (t) = (2iλ + k)e kλt , v - k (t) = (2iλ -k)e -kλt , λ = λ(k) = 1 2 √ 4 -k 2 , (3.12) k = 2 : v + 2 (t) = 2, v - 2 (t) = i + 2t, (3.13) k ∈ (2, ∞) : v + k (t) = k cos(kγt) -2iγ sin(kγt), v - k (t) = 2iγ cos(kγt) + k sin(kγt), γ = γ(k) = 1 2 √ k 2 -4. (3.14)
Proof. The proof is based on separation of variables and straightforward computations. Indeed, substituting v(t, x) = v k (t)e ikx into (3.1) yields the linear differential equation

i d dt v k + 1 - k 2 2 v k + v k = 0,
with two linearly independent solutions v + k (t) and v - k (t) given by (3.11), (3.12), (3.13), and (3.14) for different values of k ≥ 0. Completeness of the basis of bounded functions in L 2 (R) is given by the Fourier theory. Remark 6. Since the points k = 0 and k = 2 are of measure zero in the integral (3.10) we actually do not need the solutions for k = 0 and k = 2. However these solutions play a role when the space L 2 (R) is replaced by the space L 2 per (0, L) of L-periodic functions. Remark 7. From the Fourier decomposition (3.10) we can determine the spectrum of the linear operator from the linearized NLS equation (3.1), when acting in the space L 2 (R). We find that the purely continuous spectrum is located at {±kλ(k)

; k ≥ 0} = iR ∪ [-1, 1]
. This implies the spectral instability of u = 1 in the linearized NLS equation (3.1).

It follows from Proposition 1 that solutions of the linearized NLS equation (3.1) can be constructed from solutions of the Lax equations (2.2)-(2.3) with u = 1 and λ ∈ C. We show below how to recover the Fourier basis in the decomposition (3.10) from the eigenfunctions associated to the Lax spectrum in Lemma 1. We use the three pairs of solutions given in Table 1.

Pair II of Table 1. Using ϕ and φ in either (3.2) or (3.4), we obtain the same constant solutions v = 0, v + 0 (t) = 2i, (3.15) where v + 0 is the same as in (3.11). Using ϕ and φ from (3.3), we find the solutions

v - 0 (t) = 1 + 2it, v(x) = i(2x + 1), (3.16) 
where v - 0 is the same as in (3.11). The two bounded solutions in the Fourier decomposition (3.10) with k = 0 are recovered.

Pairs I and III of Table 1. Using the eigenfunction ϕ from (3.3) associated to the simple eigenvalue λ = 1 we obtain the solutions from (3.15), again. By the symmetry of the Lax system in Remark 1, the solutions obtained for λ = -1 are, up to sign, the same.

Next, using ϕ and φ in (3.2) for λ ∈ (0, 1), we find the following four linearly independent bounded solutions:

v + λ (x, t) = -(2iλ + k)e λkt sin(kx), v + -λ (x, t) = (2iλ + k)e λkt cos(kx), (3.17) and v - λ (x, t) = (2iλ -k)e -λkt sin(kx), v - -λ (x, t) = (2iλ -k)e -λkt cos(kx), (3.18) 
in which k = k(λ) ∈ (0, 2). These are, up to sign, equal to the four solutions in the Fourier decomposition (3.10) given by (3.12) so that we have a one-to-one correspondence between the solutions provided by the Lax system with λ ∈ (0, 1) and the solutions in (3.10) with k ∈ (0, 2) through the equalities k = k(λ) and λ = λ(k). By the symmetry of the Lax system in Remark 1, the solutions obtained for λ = (-1, 0) are, up to sign, the same.

Using ϕ and φ in (3.4) for λ = iγ with γ ∈ R + , we only find two linearly independent solutions (3.19) in which k = k(γ) ∈ (2, ∞). However, using ϕ and φ in (3.4) with -γ instead of γ, we obtain other two linearly independent solutions, Finally, using ϕ and φ in (3.5) for λ = 0, we obtain two linearly independent solutions

v + λ (x, t) = k cos(kx -kγt) + 2iγ sin(kx -kγt), v + -λ (x, t) = -2iγ cos(kx -kγt) + k sin(kx -kγt),
v - λ (x, t) = k cos(kx + kγt) -2iγ sin(kx + kγt), v - -λ (x, t) = 2iγ cos(kx + kγt) + k sin(kx + kγt).
v + 0 (x, t) = -2 sin(2x), v + -0 (x, t) = 2 cos(2x). (3.21)
These recover the two solutions with k = 2 in the Fourier decomposition (3.10) corresponding to v + 2 in (3.13). In order to recover the two solutions given by v - 2 in (3.13), we use (2.9) with the eigenfunctions (3.5) and the generalized eigenfunctions (3.6) to obtain

v - 0 (x, t) = 2(i + 2t) cos(2x) -2 sin(2x), v - -0 (x, t) = 2(i + 2t) sin(2x) + 2 cos(2x). (3.22) 
Using (2.9) with φ and φ g produces the same solutions as 

v(x, t) = ∞ 0 c + k v + λ(k) (x, t) + c - k v - λ(k) (x, t) + c + -k v + -λ(k) (x, t) + c - -k v - -λ(k) (x, t) dk, (3.23) 
where coefficients c ± ±k are uniquely defined from the initial condition v(•, 0) = v 0 ∈ L 2 (R), and v ± ±λ(k) (x, t) are given by (3.17 Remark 8. Since the solutions for k = 0 and k = 2 are not used in the expansion (3.23), the solutions found from Pair II of Table 1 and from the eigenvalues λ = 0 and λ = ±1 play no role in the dynamics of localized perturbations on the background of u = 1. In particular, linearly growing in t solutions play no role in this dynamics. All relevant solutions are obtained using the eigenfunctions of the Lax system for λ ∈ Σ 0 \ {0, ±1} in Pairs I and III of Table 1. 

k m := 2πm L , m ∈ N 0 := {0, N}. (3.24) 
This leads to a decomposition in Fourier series

v(x, t) = m∈N 0 c + km v + km (t) + c - km v - km (t) cos(k m x) + m∈N d + km v + km (t) + d - km v - km (t) sin(k m x), (3.25) 
where coefficients c ± km and d ± km are uniquely found from the initial condition v(•, 0) = v 0 ∈ L 2 per (0, L), and the functions v ± km (t) are given by (3.11)- (3.14). We obtain an equivalent decomposition using the eigenfunctions of the Lax system. For the Lax system we have to consider both L-periodic and L-antiperiodic solutions, because the solutions of the linearized NLS equation (3.1) are constructed using squares of solutions of the Lax system.

The Lax spectra Σ

(P ) 0 in L 2 per (0, L) and Σ (A) 0
in L 2 antiper (0, L) are given in (3.8) and (3.9), respectively. For notational simplicity we set λ(k m ) = λ As a consequence, an arbitrary solution of the linearized NLS equation (3.1) in L 2 per (0, L) can be written in the series form:

(P ) m , if m is even, and λ(k m ) = λ (A) m , if m is odd, so that Σ (P ) 0 ∪ Σ (A) 0 = {±λ(k m ), m ∈ N 0 }.
v(x, t) = c + 0 v + 0 (t) + c - 0 v - 0 (t) + m∈N c + m v + λ(km) (x, t) + c - m v - λ(km) (x, t) + c + -m v + -λ(km) (x, t) + c - -m v - -λ(km) (x, t) , (3.26) 
where coefficients c ± ±m are uniquely defined from the initial condition v(•, 0) = v 0 ∈ L 2 per (0, L), and v ± ±λ(km) (x, t) are given by (3.17 

Akhmediev breather (AB)

By using the Darboux transformation in Proposition 2, we obtain AB from the constant solution u = 1. We describe the associate Lax spectrum in Section 4.1 and construct periodic solutions of the linearized NLS equation in Section 4.2.

Let λ 0 ∈ (0, 1) and define the particular solution ϕ = (p 0 , q 0 ) T of the Lax system (2.2)-(2.3) with u = 1 and λ = λ 0 :

       p 0 (x, t) = λ 0 - i 2 k 0 e 1 2 (-ik 0 x+σ 0 t) -λ 0 + i 2 k 0 e 1 2 (ik 0 x-σ 0 t) , q 0 (x, t) = -λ 0 + i 2 k 0 e 1 2 (-ik 0 x+σ 0 t) + λ 0 - i 2 k 0 e 1 2 (ik 0 x-σ 0 t) , (4.1) 
where k 0 = 2 1 -λ 2 0 ∈ (0, 2) and σ 0 = λ 0 k 0 . Elementary computations give

|p 0 | 2 + |q 0 | 2 = 4 [cosh(σ 0 t) -λ 0 cos(k 0 x)] , |p 0 | 2 -|q 0 | 2 = 2k 0 sin(k 0 x), p 0 q0 = 2 cos(k 0 x) -2λ 0 cosh(σ 0 t) + ik 0 sinh(σ 0 t).
and the one-fold Darboux transformation (2.10) yields the formula for AB:

û0 (x, t) = -1 + 2(1 -λ 2 0 ) cosh(σ 0 t) + iσ 0 sinh(σ 0 t) cosh(σ 0 t) -λ 0 cos(k 0 x) . (4.2)
The AB solution û0 is L-periodic in x with L = 2π/k 0 > π and

lim t→±∞ û0 (x, t) = 1 -2λ 2 0 ± ik 0 λ 0 = 1 -λ 2 0 ± iλ 0 2 ,
from which it follows that lim t→±∞ |û 0 (x, t)| = 1. The complementary transformation (2.12) gives

|û 0 (x, t)| 2 = 1 + λ 0 k 2 0 cosh(σ 0 t) cos(k 0 x) -λ 0 [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 ,
which is consistent with the exact solution (4.2). 4.1. Lax spectrum at AB. For the Lax system (2.2)-(2.3), we consider both L-periodic and L-antiperiodic eigenfunctions ϕ = ϕ(x, t) in x. We use the Darboux transformation (2.13) and the result of Lemma 1 to determine the Lax spectrum for AB, which is illustrated in Figure 2. In the space of L-antiperiodic functions, we show that Lax spectrum of AB consists of the same eigenvalues (3.9) as for the constant-amplitude solution u = 1. The only difference between the two spectra is that the eigenvalues {+λ 0 , -λ 0 } are geometrically double for u = 1, while they are geometrically simple and algebraically double for u = û0 . Lemma 2. Consider AB given by (4.2) and assume L / ∈ πN odd . The spectrum of the ZS spectral problem (2.2) with u = û0 in L 2 antiper (0, L) consists of isolated eigenvalues

Σ (A) AB = {±λ (A) m , m ∈ N odd }, λ (A) m := 1 - π 2 L 2 m 2 ,
with the following properties:

(1) For each m ∈ N odd , m = 1, the eigenvalues ±λ

(A)
m are geometrically and algebraically double.

(2) The eigenvalues λ

(A) 1 = λ 0 and -λ (A) 1
= -λ 0 are geometrically simple and algebraically double with associated eigenfunctions ϕ = (p 0 , q0 ) T and ϕ = (-q0 , p0 ) T and generalized eigenfunctions ϕ g = (ϕ 1,1 , ϕ 1,2 ) T and ϕ g = (-φ1,2 , φ1,1 ) T , where ϕ 0 = (p 0 , q0 ) T and ϕ 1 = (ϕ 1,1 , ϕ 1,2 ) T are given by (A.7) and (A.10) in Appendix A.

Proof. The Darboux matrix D(λ) given by (2.14) is L-periodic in x and invertible for every λ = ±λ 0 . It follows from the relation (2.13) that there is one-to-one correspondence between the L-antiperiodic solutions of the Lax systems with u = 1 and u = û0 when λ = ±λ 0 . Consequently, with the exception of m = 1, the L-antiperiodic Lax spectrum for u = û0 is the same as the L-antiperiodic Lax spectrum for u = 1 in (3.9) and the property (1) holds. The linearly independent eigenfunctions for the eigenvalues λ = ±λ 

:= ϕ + 1 λ -λ 0 p0 q0 [-q 0 p 0 ] ϕ, φ := φ + 1 λ -λ 0 p0 q0 [-q 0 p 0 ] φ, (4.3) 
where the two linearly independent eigenfunctions ϕ and φ are given by (3.2) if 0 < L < πm and by (3.4) if L > πm. The marginal case L = πm is excluded by the assumption. For λ = λ 0 , transformation (2.11) gives the eigenfunction ϕ 0 = (p 0 , q0 ) T of the Lax system with u = û0 and it is easy to check that ϕ 0 is L-antiperiodic in x. For λ = -λ 0 we have the eigenfunction ϕ = (-q0 , p0 ) T due to the symmetry in Remark 1. Hence {+λ 0 , -λ 0 } belong to the L-antiperiodic Lax spectrum for u = û0 . It remains to show that λ 0 is geometrically simple and algebraically double, the result for -λ 0 following then by the symmetry of the Lax system.

For this part of the proof, we rely on the explicit computation of the expansion into Laurent series of the 2×2 matrix solution Φ(λ) to the Lax system with u = û0 given in Appendix A. The vector φ 0 given by (A.11) is a second linearly independent solution to the Lax system (2.2)-(2.3) for u = û0 and λ = λ 0 . Since it is not L-antiperiodic in x, we deduce that λ 0 is geometrically simple. Next, ϕ 1 given by (A.10) is L-antiperiodic and satifies (L -λ 0 I)ϕ 1 = ϕ 0 , whereas ϕ 2 given by (A.13) satisfies (L -λ 0 I)ϕ 2 = ϕ 1 , but it is not L-antiperiodic. This implies that λ 0 is algebraically double and completes the proof.

Remark 10. For an alternative proof that λ 0 is algebraically double, we can check the Fredholm condition for the eigenfunction ϕ 0 and the first generalized eigenfunction ϕ 1 . Taking the eigenfunction ϕ * 0 = ( q0 , p0 ) T of the adjoint problem (L * -λ 0 I) ϕ * 0 = 0 and the inner product •, • in L 2 (0, L), we find that

ϕ * 0 , ϕ 0 = λ 2 0 L 0 cosh(σ 0 t -ik 0 x) -λ 0 (cosh(σ 0 t) -λ 0 cos(k 0 x)) 2 dx = 0 and ϕ * 0 , ϕ 1 = λ 0 2 L 0 cos(k 0 x) cosh(σ 0 t) -λ 0 cos(k 0 x) dx + 2λ 2 0 k 2 0 L 0 (cosh(σ 0 t + ik 0 x) -λ 0 )(cosh(σ 0 t -ik 0 x) -λ 0 ) (cosh(σ 0 t) -λ 0 cos(k 0 x)) 2 dx = 2λ 2 0 k 2 0 L 0 cosh 2 (σ 0 t) + λ 2 0 cos 2 (k 0 x) -2λ 2 0 (cosh(σ 0 t) -λ 0 cos(k 0 x)) 2 dx = 2λ 2 0 k 2 0 L = 0.
Since ϕ * 0 , ϕ 0 = 0, there exists the generalized eigenfunction ϕ 1 satisfying (L -

λ 0 I)ϕ 1 = ϕ 0 in L 2
antiper (0, L). Since ϕ * 0 , ϕ 1 = 0, there is no the second generalized eigenfunction ϕ 2 satisfying (L -λ 0 I)ϕ 2 = ϕ 1 in L 2 antiper (0, L). This implies that λ 0 is algebraically double.

For L-periodic solutions, we show that Lax spectrum of AB consists of the same eigenvalues (3.8) as for the constant-amplitude solution u = 1. Moreover, algebraic multiplicitilies of the coincide.

Lemma 3. Consider AB given by (4.2) and assume L / ∈ πN even . The spectrum of the ZS spectral problem (2.2) with u = û0 in L 2 per (0, L) consists of isolated eigenvalues

Σ (P ) AB = {±λ (P ) m , m ∈ {0, N even }}, λ (P ) m := 1 - π 2 L 2 m 2 ,
with the following properties:

(1) For each m ∈ N even , the eigenvalues ±λ = -1 are algebraically simple with associated eigenfunctions ϕ = ( φ1 , φ2 ) T and ϕ = (-φ2 , φ1 ) T respectively, where φ = ( φ1 , φ2 ) T is given by

φ = 1 -1 - p 0 + q 0 1 -λ 0 p0 q0 . ( 4 

.4)

Proof. As in the proof of Lemma 2, the set of eigenvalues and their geometric and algebraic multiplicities are found from the Darboux matrix D(λ) in (2.14) and the transformation (2.13). Since D(λ) is L-periodic in x and invertible for every λ = ±λ

(P )
m , there is one-to-one correspondence between the L-periodic solutions of the Lax systems with u = 1 and u = û0 . Moreover, the explicit expressions (4.3) for eigenfunctions φ and φ hold for every λ = ±λ (P ) m . For the eigenvalue λ = λ (P ) 0 = 1, only one linearly independent eigenfunction ϕ = φ = ( φ1 , φ2 ) T in L 2 per (0, L) exists in the form (4.4). In order to check the algebraic multiplicity of λ = 1, we take eigenfunction ϕ * = ( φ2 , φ1 ) T of the adjoint problem (L * -I)ϕ * = 0 and compute the scalar product

ϕ * , ϕ = -2 L 0 1 + 2λ 0 1 -λ 0 p 0 q0 + p0 q 0 + |p 0 | 2 + |q 0 | 2 |p 0 | 2 + |q 0 | 2 + 4λ 2 0 (1 -λ 0 ) 2 p 0 q 0 (p 0 + q0 ) 2 (|p 0 | 2 + |q 0 | 2 ) 2 dx = -2 1 + λ 0 1 -λ 0 L 0 1 + 2λ 0 cosh(σ 0 t) cos(k 0 x) -λ 0 -iλ 0 sinh(σ 0 t) sin(k 0 x) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 dx = -2 1 + λ 0 1 -λ 0 L.
Since ϕ * , ϕ = 0, there exists no generalized eigenfunction satisfying (L-I) φg = φ in L 2 per (0, L) so that the eigenvalue λ = 1 is algebraically simple. The result for λ = -1 is a consequence of the symmetry of the Lax system in Remark 1.

4.2.

Linearized NLS equation at AB. As in the case of the constant-amplitude solution u = 1, we construct L-periodic solutions of the linearized NLS equation at AB from the Lperiodic and L-antiperiodic solutions of the Lax equations. These solutions are generated by the eigenvalues λ = -λ 0 and -λ (P ) 0 = -1 provide the same solutions up to the sign change. The particular goal is to identify six linearly independent solutions of the linearized NLS equation at AB which correspond to the six linearly independent solutions in the decomposition (3.26) with m = 0 and m = 1 for the solutions of the linearized NLS equation at u = 1. The correspondence is established by showing that the solutions constructed for AB become identical to the ones for u = 1 asymptotically as t → ±∞.

The following theorem presents the main result of these computations.

Theorem 1. Consider AB given by (4.2). Solutions of the Lax system (2.2)-(2.3) with u = û0 for the eigenvalues λ = 1 and λ = λ 0 generate the following six linearly independent L-periodic solutions of the linearized NLS equation (2.6) at AB:

(1) the solutions v 1 in (4.6) and v 2 in (4.7), which are asymptotically equivalent to the solutions v - λ(k 1 ) and v + 0 respectively, in the decomposition (3.26); (2) the solution w 2 in (4.11), which is asymptotically equivalent to the solution v - -λ(k 1 ) in the decomposition (3.26);

(3) the solution v in (4.15), which is asymptotically equivalent to the solution v - 0 in the decomposition (3.26); (4) the solutions v in (4. [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF]) and (4.20), which are asymptotically equivalent to the solutions v + -λ(k 1 ) and v + λ(k 1 ) respectively, in the decomposition (3.26).

The six solutions in this theorem are computed explicitly in the next three subsections.

Remark 11. Due to the two exponentially growing solutions in item (4) of Theorem 1, AB is linearly unstable. This agrees with the main conclusion of [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF] based on symbolic computations. For periods L ∈ (π, 2π) the eigenvalues λ 0 and 1 are the only positive eigenvalues of the Lax system, see Figure 2. For larger periods L > 2π, there are additional positive eigenvalues which lead to exponentially growing solutions for the linearized NLS equation at AB.

4.2.1.

Solutions related to λ = 1. Recall from Lemma 3 that λ = 1 is an algebraically simple eigenvalue in Σ (P )

AB associated with eigenfunction φ given by (4.4). The second linearly independent solution of the Lax system (2.2)-(2.3) for u = û0 and λ = 1 is obtained from the second vector in (3.3) by using the transformation formula (2.13)-(2.14) with λ = 1:

φ = x + it + 1 -x -it - (x + it)(p 0 + q 0 ) + q 0 1 -λ 0 p0 q0 . (4.5)
By using the L-periodic eigenfunction φ in (4.4) in Pair I in Table 1, we obtain the following two L-periodic solutions of the linearized NLS equation (2.6):

v 1 (x, t) = - 2λ 0 (1 + λ 0 ) 1 -λ 0 sin(k 0 x) [k 0 cosh(σ 0 t) + 2iλ 0 sinh(σ 0 t)] [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 . (4.6)
and

v 2 (x, t) = 2i(1 + λ 0 ) 1 -λ 0 ik 0 λ 0 sinh(σ 0 t) cosh(σ 0 t) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 + (1 -2λ 2 0 ) cosh 2 (σ 0 t) -λ 2 0 cos 2 (k 0 x) + 2λ 2 0 [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 . (4.7)
As t → ±∞, the periodic solution v 1 decays to 0, whereas the periodic solution v 2 approaches a nonzero constant. These two solutions are asymptotically equivalent to the solutions v - λ(k 1 ) and v + 0 in the decomposition (3.26). By using both the L-periodic eigenfunction φ in (4.4) and the non-periodic solution φ in (4.5) in Pair II in Table 1, we obtain the following two non-periodic solutions of the linearized NLS equation (2.6):

v 3 (x, t) = xv 1 (x, t) + tv 2 (x, t) + f 1 (x, t), (4.8) v 4 (x, t) = xv 2 (x, t) -tv 1 (x, t) + f 2 (x, t), (4.9) 
where the periodic parts f 1 and f 2 are given by

f 1 (x, t) = 1 + λ 0 1 -λ 0 1 + 4iλ 2 0 k 0 sinh(σ 0 t) λ 0 cosh(σ 0 t) -cos(k 0 x) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 +2λ 2 0 cosh 2 (σ 0 t) -cos 2 (k 0 x) -i sin(k 0 x) sinh(σ 0 t) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 -λ 0 k 0 cosh(σ 0 t) sin(k 0 x) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 . and f 2 (x, t) = i 1 + λ 0 1 -λ 0 1 - k 0 λ 0 1 -λ 2 0 sin(k 0 x) cosh(σ 0 t) -λ 0 cos(k 0 x) + iλ 0 k 0 cosh(σ 0 t) sinh(σ 0 t) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 + 4λ 0 (1 -λ 0 ) cos(k 0 x) cosh(σ 0 t) -λ 0 cos(k 0 x) -λ 2 0 cosh(2σ 0 t) + cos(2k 0 x) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 + λ 0 (1 + λ 0 )(1 -λ 2 0 ) cos(k 0 x) 2 [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 2λ 3 0 cosh(σ 0 t) cos(k 0 x) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 .
Both solutions grow linearly in x and are not L-periodic. As t → ±∞, the non-periodic solution v 3 becomes asymptotically periodic, because v 1 decays to 0, and could represent v - 0 in the decomposition (3.26). However, one needs to cancel the polynomial term in x by using a linear combination with other solutions of the linearized NLS equation (2.6).

Finally, by using the non-periodic solution (4.5) in Pair III in Table 1, we obtain two other non-periodic solutions of the linearized NLS equation (2.6), which are quadratic with respect to x. As is described in the recent symbolic computations in [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF], such quadratic solutions in x play no role in the proof of Theorem 1.

4.2.2.

Solutions related to λ = λ 0 . By Lemma 2, the eigenvalue λ 0 is geometrically simple with L-antiperiodic eigenfunction ϕ 0 = (p 0 , q0 ) T given by (A.7). A second linearly independent solution of the Lax system is the non-periodic solution φ 0 given by (A.11) in Appendix A.

By using Pair I in Table 1 with ϕ 0 , we obtain the following two L-periodic solutions of the linearized NLS equation (2.6):

w 1 = p2 0 -q2 0 = λ 2 0 sin(k 0 x) [k 0 cosh(σ 0 t) + 2iλ 0 sinh(σ 0 t)] 2 [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 = -λ 0 k -2 0 ∂ û0 ∂x (4.10)
and

w 2 = i(p 2 0 + q2 0 ) = λ 2 0 [k 0 sinh(σ 0 t) cos(k 0 x) + 2iλ 0 cosh(σ 0 t) cos(k 0 x) -2i] 2 [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 = -k -2 0 ∂ û0 ∂t . (4.11) 
These are neutral modes generated by the translational symmetries of the NLS equation (2.1) in x and t. Note that w 1 is proportional to the solution v 1 in (4.6),

v 1 = - 4(1 + λ 0 ) λ 0 (1 -λ 0 ) w 1 . (4.12)
As t → ±∞, the two periodic solutions w 1 and w 2 decay to 0. These two solutions are asymptotically equivalent to the solutions v - λ(k 1 ) and v - -λ(k 1 ) in the decomposition (3.26). Next, we record the following algebraic computations:

-q 0 p + (λ 0 ) + p 0 q+ (λ 0 ) = 4i sin(k 0 x), -q 0 p -(λ 0 ) + p 0 q-(λ 0 ) = 0, -q 0 p + (λ 0 ) -p 0 q+ (λ 0 ) = 4λ 0 sinh(σ 0 t) -2ik 0 cosh(σ 0 t), -q 0 p -(λ 0 ) -p 0 q-(λ 0 ) = 4 [λ 0 cosh(σ 0 t) -cos(k 0 x)] -2ik 0 sinh(σ 0 t).
Then, by using Pair II in Table 1 with the L-antiperiodic eigenfunction ϕ 0 in (A.7) and the non-periodic solution φ 0 in (A.11), we obtain the following two non-periodic solutions of the linearized NLS equation (2.6):

w 3 (x, t) = -4λ 0 xw 1 (x, t) + 4(1 -2λ 2 0 )tw 2 (x, t) + g 1 (x, t), (4.13) w 4 (x, t) = -4λ 0 xw 2 (x, t) -4(1 -2λ 2 0 )tw 1 (x, t) + g 2 (x, t), (4.14) 
where the periodic parts g 1 and g 2 are given by

g 1 (x, t) = 4k -1 0 [cosh(σ 0 t) sin(k 0 x)w 1 (x, t) + sinh(σ 0 t) cos(k 0 x)w 2 (x, t)] +λ 0 2λ 0 cosh(σ 0 t) -2 cos(k 0 x) -ik 0 sinh(σ 0 t) cosh(σ 0 t) -λ 0 cos(k 0 x) and g 2 (x, t) = 4k -1 0 [cosh(σ 0 t) sin(k 0 x)w 2 (x, t) -sinh(σ 0 t) cos(k 0 x)w 1 (x, t)] .
Note that the components g 1 and g 2 are bounded in t as t → ±∞. In view of (4.12), the linear combination

v(x, t) = λ 2 0 1 -λ 0 1 + λ 0 v 3 (x, t) -w 3 (x, t) = ts 0 (x, t) + f 0 (x, t), (4.15) 
where s 0 and f 0 are L-periodic in x and bounded as t → ±∞, e.g.

s 0 = 2iλ 2 0 1 -2λ 2 0 + ik 0 λ 0 sinh(σ 0 t) cosh(σ 0 t) -λ 0 cos(k 0 x) +(1 -λ 2 0 ) ik 0 sinh(σ 0 t) cos(k 0 x) + 2(1 -λ 2 0 cos 2 (k 0 x)) [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 .
As t → ±∞, the solution v in (4.15) is asymptotically equivalent to the solution v - 0 in the decomposition (3.26).

Remark 12. Since v 2 and w 2 are not linearly dependent from each other, there is no a linear combination of v 4 and w 4 which would be L-periodic in x.

Finally, by using Pair III in Table 1 with the non-periodic solution φ 0 in (A.11), we obtain two non-periodic solutions which are quadratic in x. Again, such quadratic solutions in x play no role in the proof of Theorem 1.

4.2.3.

Solutions related to the generalized eigenfunction at λ = λ 0 . With the account of v 1 , v 2 , w 1 , w 2 , the relation (4.12), and the linear combination (4.15), it remains to obtain two L-periodic solutions of the linearized NLS equation (2.6) at AB, which would be asymptotically equivalent to the remaining solutions v + λ(k 1 ) and v + -λ(k 1 ) in the decomposition (3.26). These solutions will be constructed from linear combinations of non-periodic solutions that grows linearly in x, just as the solution v in (4.15).

By Lemma 2, the eigenvalue λ 0 is algebraically double with the generalized eigenfunction ϕ 1 given by (A.10) in addition to the eigenfunction ϕ 0 given by (A.7). It is natural to expect additional solutions for the linearized NLS equation to be obtained from the eigenfunction ϕ 0 and the generalized eigenfunction ϕ 1 . It is surprising, however, that this is not the case. As a result, we have to use the eigenfunction ϕ 0 and the generalized eigenfunction ϕ 1 together with the non-periodic solutions φ 0 and φ 1 given by (A.11) and (A. [START_REF] Cuevas-Maraver | Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves[END_REF].

By using the expansion of the 2 × 2 matrix solution Φ(λ) computed in Appendix A, we write

Φ(λ) = [2ik 0 ϕ(λ), φ(λ)] ,
where

ϕ(λ) = ϕ 0 λ -λ 0 + ϕ 1 + ϕ 2 (λ -λ 0 ) + O((λ -λ 0 ) 2 ), (4.16 
)

φ(λ) = φ 0 + φ 1 (λ -λ 0 ) + O((λ -λ 0 ) 2 ). (4.17) 
Here ϕ 0 , ϕ 1 , and ϕ 2 are given by (A.7), (A.10), and (A.13), whereas φ 0 and φ 1 are given by (A.11) and (A.14). Both columns of Φ(λ) being solutions of the Lax system (2.2)-(2.3), the three pairs in Table 1 give solutions v(λ) of the linearized NLS equation (2.6) at AB. Expanding v(λ) at λ = λ 0 generates a set of possible solutions to the linearized NLS equation (2.6) at AB. It turns out that the L-periodic solutions and the linearly growing in x solutions obtained from Pair I in Table 1 are all linear combinations of the previously obtained solutions and that the solutions obtained from Pair III in Table 1 are all at least quadratic in x. As a result, the new suitable solutions to the linearized NLS equation (2.6) must be obtained by using Pair II in Table 1.

Using Pair II in Table 1 with the two columns in the matrix Φ(λ) expanded at λ = λ 0 , we obtain the following expansions

v = (2ik 0 ) w ± λ -λ 0 + v ± + O(λ -λ 0 ) , (4.18) 
where each term of the expansion gives a solution v to the linearized NLS equation (2.6) at AB. It follows that w + = w 3 and w -= w 4 were previously obtained in (4.13) and (4.14) respectively. The next corrections in (4.18) give two new solutions:

v + = ϕ 0,1 φ 1,1 -φ0,2 φ1,2 + ϕ 1,1 φ 0,1 -φ1,2 φ0,2 , v -= iϕ 0,1 φ 1,1 + i φ0,2 φ1,2 + iϕ 1,1 φ 0,1 + i φ1,2 φ0,2 ,
where the first subscript stands for ϕ 0 , ϕ 1 , φ 0 , and φ 1 and the second subscript stands for the first and second components of the 2-vectors. For further computations of v ± we obtain

p 0 p + (λ 0 ) + q0 q+ (λ 0 ) = 2 cos(k 0 x) [2λ 0 sinh(σ 0 t) -ik 0 cosh(σ 0 t)] , p 0 p + (λ 0 ) -q0 q+ (λ 0 ) = -2 sin(k 0 x) [k 0 sinh(σ 0 t) + 2iλ 0 cosh(σ 0 t)] .
After substitution of (A.7), (A.10), (A.11), and (A.14) into v ± , we obtain

v ± (x, t) = xr ± (x, t) + ts ± (x, t) + f ± (x, t),
where the L-periodic parts are computed explicitly:

r + = - 8 k 2 0 (3 -2λ 2 0 )w 1 , r -= - 8 k 2 0 (1 -4λ 2 0 )w 2 + 2λ 2 0 (1 + λ 0 ) 2 v 2 , s + = 4 k 0 (1 -2λ 2 0 )(p 0 p + (λ 0 ) -q0 q+ (λ 0 )) + 16 k 2 0 (1 -2λ 2 0 ) sinh(σ 0 t) sin(k 0 x)w 1 + 8 k 2 0 (1 -2λ 2 0 ) (2 cosh(σ 0 t) cos(k 0 x) -λ 0 ) w 2 -8λ 0 w 2 , s -= 4i k 0 (1 -2λ 2 0 )(p 0 p + (λ 0 ) + q0 q+ (λ 0 )) + 16 k 2 0 (1 -2λ 2 0 ) sinh(σ 0 t) sin(k 0 x)w 2 - 8 k 2 0 (1 -2λ 2 0 ) (2 cosh(σ 0 t) cos(k 0 x) -λ 0 ) w 1 + 8λ 0 w 1 ,
and

f + = 1 2ik 0 (p 0 p + (λ 0 ) + q0 q+ (λ 0 )) + i k 0 (p 0 p + (λ 0 ) -q0 q+ (λ 0 )) + 2 k 2 0 (cosh(σ 0 t) cos(k 0 x) -λ 0 ) (p 0 p0 -q0 q0 ) - 2i k 2 0 sinh(σ 0 t) sin(k 0 x)(p 0 p0 + q0 q0 ) + 2 k 2 0 sinh(σ 0 t) cos(k 0 x)(p 0 p + (λ 0 ) -q0 q+ (λ 0 )) - 2i k 2 0 cosh(σ 0 t) sin(k 0 x)(p 0 p + (λ 0 ) + q0 q+ (λ 0 )) + 4 k 3 0 cosh(2σ 0 t) sin(2k 0 x)w 1 + 4 k 3 0 sinh(2σ 0 t) cos(2k 0 x)w 2 , f -= 1 2k 0 (p 0 p + (λ 0 ) -q0 q+ (λ 0 )) - 1 k 0 (p 0 p + (λ 0 ) + q0 q+ (λ 0 )) + 2i k 2 0 (cosh(σ 0 t) cos(k 0 x) -λ 0 ) (p 0 p0 + q0 q0 ) + 2 k 2 0 sinh(σ 0 t) sin(k 0 x)(p 0 p0 -q0 q0 ) + 2i k 2 0 sinh(σ 0 t) cos(k 0 x)(p 0 p + (λ 0 ) + q0 q+ (λ 0 )) + 2 k 2 0 cosh(σ 0 t) sin(k 0 x)(p 0 p + (λ 0 ) -q0 q+ (λ 0 )) + 4 k 3 0 cosh(2σ 0 t) sin(2k 0 x)w 2 - 4 k 3 0 sinh(2σ 0 t) cos(2k 0 x)w 1 .
The x-growing part of v + is cancelled in the linear combination

v(x, t) = k 2 0 v + (x, t) - 2λ 0 (3 -2λ 2 0 )(1 -λ 0 ) 1 + λ 0 v 3 (x, t) = ts 1 (x, t) + k 2 0 f + (x, t) - 2λ 0 (3 -2λ 2 0 )(1 -λ 0 ) 1 + λ 0 f 1 (x, t), (4.19) 
where

s 1 (x, t) = 4iλ 0 (7 -10λ 2 0 ) (2λ 2 0 -1) cosh(σ 0 t) -iλ 0 k 0 sinh(σ 0 t) -λ 0 cos(k 0 x) cosh(σ 0 t) -λ 0 cos(k 0 x) ,
and f + (x, t), f 1 (x, t) are L-periodic in x. Note that ts 1 (x, t) is irreducible in the sense that there are no other solutions of the linearized NLS equation (2.6) with the same behavior as ts 1 (x, t). On the other hand, s 1 (x, t) and f 1 (x, t) are bounded as t → ±∞, whereas k 2 0 f + (x, t) is unbounded. As t → ±∞, we deduce that the exponentially growing component of v(x, t) is given by

v(x, t) ∼ -4k 2 0 (1 -4λ 2 0 ) cosh(σ 0 t) cos(k 0 x) -8iλ 0 k 0 (3 -4λ 2 0 ) sinh(σ 0 t) cos(k 0 x).
We conclude that the solution v in (4. [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF]) is L-periodic and asymptotically equivalent to the mode v + -λ(k 1 ) in the decomposition (3.26) as t → ±∞.

The x-growing part of v -is cancelled in the linear combination

v(x, t) = k 2 0 v -(x, t) - 2(1 -4λ 2 0 ) λ 0 w 4 (x, t) - 8λ 2 0 (1 -λ 0 ) 1 + λ 0 v 4 (x, t) = ts 2 (x, t) + k 2 0 f -(x, t) - 2(1 -4λ 2 0 ) λ 0 g 2 (x, t) - 8λ 2 0 (1 -λ 0 ) 1 + λ 0 f 2 (x, t), (4.20) 
where

s 2 (x, t) = -λ 0 k 2 0 (2λ 2 0 + 1) sin(k 0 x)[k 0 cosh(σ 0 t) + 2iλ 0 sinh(σ 0 t)] [cosh(σ 0 t) -λ 0 cos(k 0 x)] 2 ,
and f -(x, t), f 2 (x, t), g 2 (x, t) are L-periodic in x. Again, the solution v(x, t) grows exponentially in time as t → ±∞ due to the unbounded component k 2 0 f -(x, t), according to v(x, t) ∼ -4k 2 0 (1 -4λ 2 0 ) sinh(σ 0 t) sin(k 0 x) -8iλ 0 k 0 (3 -4λ 2 0 ) cosh(σ 0 t) sin(k 0 x). We conclude that the solution v in (4.20) is L-periodic and asymptotically equivalent to the mode v + λ(k 1 ) in the decomposition (3.26) as t → ±∞. This completes the proof of the theorem.

4.2.4. Solutions related to other eigenvalues. We conclude this section with some comments on the solutions generated by the remaining eigenvalues in the Lax spectrum. These are the geometrically double eigenvalues {λ

(P )
m } m∈Neven for L-periodic solutions and {λ

(A)
m } m∈N odd \{1} for L-antiperiodic solutions. We exclude the case L ∈ πN when 0 is an eigenvalue of higher algebraic multiplicity and the two eigenfunctions alone were not enough to obtain the decomposition (3.26) for the constant solution u = 1. Then, using Pairs I and III in Table 1, from the associated eigenfunctions we obtain L-periodic solutions of the linearized NLS equation (2.6) at AB which are asymptotically equivalent to the solutions {v ± ±λ(km) } m∈N\{0,1} , in the decomposition (3.26). Pair II in Table 1 generates two L-periodic solutions which are linear combinations of the solutions v 1 , v 2 , and w 2 from Theorem 1. Together with the other three solutions from Theorem 1, the resulting set of solutions is asymptotically equivalent to the one in the decomposition (3.26). While we do not attempt to prove completeness of this set, we refer to [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF]Section 4] for a recent discussion of this question.

Kuznetsov-Ma breather (KMB)

Here we apply the same procedure of Section 4 for KMB. Since KMB is localized in x, we have to consider the Lax spectrum and bounded solutions of the linearized NLS equation in the function space L 2 (R).

Let λ 0 ∈ (1, ∞) and define the particular solution ϕ = (p 0 , q 0 ) T of the Lax system (2.2)-(2.3) with u = 1 and λ = λ 0 :

       p 0 (x, t) = λ 0 + 1 2 β 0 e 1 2 (β 0 x+iα 0 t) -λ 0 - 1 2 β 0 e -1 2 (β 0 x+iα 0 t) , q 0 (x, t) = -λ 0 - 1 2 β 0 e 1 2 (β 0 x+iα 0 t) + λ 0 + 1 2 β 0 e -1 2 (β 0 x+iα 0 t) , (5.1) 
where β 0 = 2 λ 2 0 -1 and α 0 = λ 0 β 0 . Notice that p 0 and q 0 in (5.1) are related symbolically to the ones for AB in (4.1) through the equalities k 0 = iβ 0 and σ 0 = iα 0 . Elementary computations give

|p 0 | 2 + |q 0 | 2 = 4 [λ 0 cosh(β 0 x) -cos(α 0 t)] |p 0 | 2 -|q 0 | 2 = 2β 0 sinh(β 0 x) (5.
2) p 0 q0 = -2 cosh(β 0 x) + 2λ 0 cos(α 0 t) + iβ 0 sin(α 0 t), so that the one-fold Darboux transformation (2.10) yields the formula for KMB: û0 (x, t) = -1 + 2(λ 2 0 -1) cos(α 0 t) + iα 0 sin(α 0 t) λ 0 cosh(β 0 x) -cos(α 0 t) .

(5.

3)

The complementary transformation (2.12) gives a consistent relation 2 , which can also be derived from (5.3). KMB is periodic in t with period T = 2π/α 0 and localized in x with lim x→±∞ û0 (x, t) = -1. 5.1. Lax spectrum at KMB. As for AB, we use the Darboux matrix (2.14) to construct the bounded solutions of the Lax system (2.2)-(2.3) with u = û0 from the bounded solutions of the Lax system with u = 1 and then determine the Lax spectrum at KMB in L 2 (R). The Lax spectrum Σ KMB is shown in Figure 3 where the red dots show isolated eigenvalues {+λ 0 , -λ 0 }. (1) For each λ ∈ iR ∪ (-1, 1), there exist two linearly independent bounded solutions.

|û 0 (x, t)| 2 = 1 + α 0 β 0 λ 0 -cosh(β 0 x) cos(α 0 t) (λ 0 cosh(β 0 x) -cos(α 0 t))
(2) For λ = 1 and λ = -1, there exists only one bounded solution.

(3) The eigenvalues λ = λ 0 and λ = -λ 0 are algebraically simple with associated eigenfunctions ϕ = (p 0 , q0 ) T and ϕ = ( q0 , -p0 ) T respectively.

Proof. The Darboux matrix D(λ) given by (2.14) is invertible for λ = ±λ 0 . Moreover, both D(λ) and its inverse are bounded in x for λ = ±λ 0 . As a result, we have a one-to-one correspondence between the bounded solutions of the Lax systems with u = 1 and u = û0 for λ = ±λ 0 . This implies that, up to the values ±λ 0 , the ZS spectral problems (2.2) with u = 1 and u = û0 have the same continuous spectrum Σ 0 given by (3.7), so that properties (1) and ( 2) hold.

It remains to prove [START_REF] Alejo | The Akhmediev breather is unstable[END_REF]. Due to the symmetry property of the Lax system, it is enough to show the result for λ 0 .

The vector ϕ = (p 0 , q 0 ) T given by (5.1) is a solution of the Lax system (2.2)-(2.3) with u = 1 and λ = λ 0 . The Darboux transformation (2.11) gives the solution ϕ = (p 0 , q0 ) T of the Lax system (2.2)-(2.3) with u = û0 and λ = λ 0 . From the formulas (5.1) and (5.2) we find that p0 (x, t), q0 (x, t) → 0 as |x| → ∞ exponentially fast, hence ϕ = (p 0 , q0 ) T is an eigenfunction in L 2 (R) associated with λ 0 . Furthermore, the Lax system (2.2)-(2.3) having zero-trace, the Wronskian of any two solutions is constant both in x and t. Since one solution is decaying to zero as |x| → ∞, another linearly independent solution is necessarily growing at infinity. Consequently, λ 0 is geometrically simple.

For the algebraic multiplicity, we use the form (L -λ 0 I) ϕ 0 = 0 with the eigenfunction ϕ 0 = (p 0 , q0 ) T ∈ L 2 (R) and show that the linear nonhomogeneous equation

(L -λ 0 I) ψ 0 = ϕ 0 , (5.5) 
does not have the generalized eigenfunction ψ 0 ∈ L 2 (R). The solvability condition for this equation is given by the Fredholm condition ϕ * 0 , ϕ 0 = 0, where •, • is the inner product in L 2 (R) and ϕ * 0 is an eigenfunction of the adjoint problem (L * -λ 0 I) ϕ * 0 = 0. A direct calculation shows that ϕ * 0 = ( q0 , p0 ) T , and then we compute

ϕ * 0 , ϕ 0 = - R 8λ 2 0 p 0 q 0 (|p 0 | 2 + |q 0 | 2 ) 2 dx = λ 2 0 R cosh(β 0 x + iα 0 t) -λ 0 (λ 0 cosh(β 0 x) -cos(α 0 t)) 2 dx = -λ 0 β -1 0 λ 0 sinh(β 0 x) + i sin(α 0 t) λ 0 cosh(β 0 x) -cos(α 0 t) x→+∞ x→-∞ = -2λ 0 β -1 0 .
Consequently, ϕ * 0 , ϕ 0 = 0 so that λ 0 is a simple eigenvalue and property (3) holds.

5.2.

Linearized NLS equation at KMB. As in the case of the constant-amplitude solution u = 1, we construct bounded solutions of the linearized NLS equation (2.6) at KMB from the bounded solutions of the Lax equations for λ ∈ Σ KMB in Lemma 4. Recall that the solutions are unbounded in x when λ / ∈ Σ KMB . Here we focus on solutions generated by the eigenvalue λ 0 , and in particular on those which are decaying to zero as |x| → ∞. The eigenvalue λ = -λ 0 produces the same solutions of the linearized NLS equation, due to the symmetry in Remark 1. The following theorem provides the main result of these computations.

Theorem 2. Consider KMB given by (5.3). The eigenvalue λ 0 of the Lax system generates three linearly independent exponentially decaying solutions of the linearized NLS equation (2.6). These solutions are proportional to the three derivatives of KMB with respect to x, t, and λ 0 .

Remark 13. Besides the three exponentially decaying solutions in Theorem 2, we also find three linearly independent bounded solutions which are asymptotically constant as x → ±∞. These six solutions are the analgue for KMB of the six solutions given in Theorem 1 for AB. 5.2.1. Solutions related to λ = λ 0 . Since λ 0 is a simple eigenvalue in Σ KMB , the eigenfunction ϕ 0 = (p 0 , q0 ) T provides an exponentially decaying solution of the Lax system (2.2)-(2.3) with λ = λ 0 . The second linearly independent solution is exponentially growing in x. According to Remark 17 in Appendix A this second solution is given by:

φ 0 = p 0 q 0 + 4 -λ 0 x + i(1 -2λ 2 0 )t + β -1 0 sinh(β 0 x + iα 0 t) p0 q0 . (5.6) 
By using Pair I in Table 1 with ϕ 0 , we obtain the solutions

w 1 (x, t) = p2 0 -q2 0 = - λ 2 0 sinh(β 0 x)(β 0 cos(α 0 t) + 2iλ 0 sin(α 0 t)) 2(λ 0 cosh(β 0 x) -cos(α 0 t)) 2 (5.7)
and

w 2 (x, t) = ip 2 0 + i q2 0 = iλ 2 0 (2λ 0 cosh(β 0 x) cos(α 0 t) -2 + iβ 0 cosh(β 0 x) sin(α 0 t)) 2(λ 0 cosh(β 0 x) -cos(α 0 t)) 2 , ( 5.8) 
which are periodic in t and exponentially decaying in x. It turns out that these solutions are proportional to the derivatives of û0 with respect to x and t,

w 1 = λ 0 β -2 0 ∂ û0 ∂x , w 2 = β -2 0 ∂ û0 ∂t .
Hence these solutions are generated by the symmetries of the NLS equation (2.1) with respect to translation in x and t. While Pair III in Table 1 with φ 0 gives exponentially growing solutions, Pair II with ϕ 0 and φ 0 gives two bounded solutions:

w 3 (x, t) = -4λ 0 xw 1 (x, t) + 4(1 -2λ 2 0 )tw 2 (x, t) + f 1 (x, t), (5.9 
) w 4 (x, t) = -4λ 0 xw 2 (x, t) -4(1 -2λ 2 0 )tw 1 (x, t) + f 2 (x, t), (5.10) 
where w 1 and w 2 are given by (5.7) and (5.8), respectively, and

f 1 (x, t) = 2λ 0 cos(α 0 t) 2λ 0 cos(α 0 t) -(1 + λ 2 0 ) cosh(β 0 x) [λ 0 cosh(β 0 x) -cos(α 0 t)] 2 +4iλ 0 β -1 0 sin(α 0 t) (2λ 2 0 -1) cos(α 0 t) -λ 3 0 cosh(β 0 x) [λ 0 cosh(β 0 x) -cos(α 0 t)] 2 , f 2 (x, t) = 4iλ 2 0 β -1 0 sinh(β 0 x) λ 0 cosh(β 0 x) -cos(α 0 t) .
Here f 1 is exponentially decreasing as |x| → ∞, whereas f 2 is bounded but not decaying as |x| → ∞, and both f 1 and f 2 are periodic in t. Consequently, w 3 is also exponentially decaying in x, and a direct computation shows that it is proportional to the derivative of û0 with respect to λ 0 ,

dû 0 dλ 0 = xβ -1 0 β 0 (λ 0 ) ∂ û0 ∂x + tα -1 0 α 0 (λ 0 ) ∂ û0 ∂t + ∂ û0 ∂λ 0 = -λ -1 0 v 3 .
In this computation, λ 0 is an arbitrary parameter and we write β 0 = β 0 (λ 0 ) = 2 λ 2 0 -1 and α 0 = α 0 (λ 0 ) = λ 0 β 0 (λ 0 ). The solution w 4 is asymptotically constant, with lim x→±∞ w 4 (x, t) = ±4iλ 0 β -1 0 .

(5.11)

The solutions w 1 , w 2 , and w 3 are the three linearly independent exponentially decaying solutions in Theorem 2.

5.2.2. Solutions related to λ ∈ Σ 0 . First, we consider the solutions of the linearized NLS equation which are asymptotically constant, but not decaying to 0. These solutions are obtained from Pairs I and II in Table 1 for λ = 1 and from Pair II for any λ ∈ Σ 0 . We are looking for a suitably chosen linear combination of these solutions with w 4 which might lead to a fourth exponentially decaying solution of the linearized NLS equation (2.6). We show below that this is not the case. For λ = 1, the Lax system has the bounded solution φ in (4.4) and the unbounded solution φ in (4.5) in which (p 0 , q 0 ) is given by (5.1). Using Pair I of Table 1 with φ we find the solutions

v 1 (x, t) = 2λ 0 (1 + λ 0 ) 1 -λ 0 sinh(β 0 x)(β 0 cos(α 0 t) + 2iλ 0 sin(α 0 t)) [λ 0 cosh(β 0 x) -cos(α 0 t)] 2 (5.12) and v 2 (x, t) = 2i (1 -λ 0 ) 2 -λ 0 cosh(β 0 x) + (2λ 2 0 -1) cos(α 0 t) + 2iλ 0 β 0 sin(α 0 t) λ 0 cosh(β 0 x) -cos(α 0 t) +λ 2 0 β 2 0 sinh 2 (β 0 x) + (-2 cosh(β 0 x) + 2λ 0 cos(α 0 t) + iβ 0 sin(α 0 t)) 2 4 [λ 0 cosh(β 0 x) -cos(α 0 t)] 2 . (5.13) 
The solution v 1 is proportional to w 1 given in (5.7),

v 1 = - 4(1 + λ 0 ) λ 0 (1 -λ 0 ) w 1 ,
whereas the solution v 2 is asymptotically constant with

lim x→±∞ v 2 (x, t) = - 2i(1 + λ 0 ) 1 -λ 0 .
By using Pair II with φ and φ, we find the bounded solution

v 3 (x, t) = x + 1 2 v 1 (x, t) + tv 2 (x, t) + g 1 (x, t), (5.14) 
where

g 1 (x, t) = 1 (1 -λ 0 ) 2 1 + λ 2 0 β 2 0 sinh 2 (β 0 x) + (-2 cosh(β 0 x) + 2λ 0 cos(α 0 t) + iβ 0 sin(α 0 t)) 2 4 [λ 0 cosh(β 0 x) -cos(α 0 t)] 2 ,
and a solution v 4 (x, t) which is unbounded in x. The solution v 3 grows linearly in t and

lim x→±∞ v 3 (x, t) = -t 2i(1 + λ 0 ) 1 -λ 0 + λ 2 0 (1 -λ 0 ) 2 .
Pair III gives two unbounded solutions. The three bounded, but not decaying to 0, solutions v 2 , v 3 , and w 4 are linearly independent. Comparing their limits at x = ±∞ we conclude that there is no linear combination of these solutions which could lead to a localized solution.

Using Pair II in Table 1 with the two linearly independent solutions of the Lax system for λ ∈ iR ∪ (-1, 1) we do not find any new solutions. After some computations, we obtain that all these solutions are linear combinations of the exponentially decaying solutions w 1 , w 2 , obtained from the eigenvalue λ = λ 0 , and the asymptotically constant solution v 2 obtained from λ = 1.

The remaining solutions of the linearized NLS equation (2.6) are obtained using Pairs I and III in Table 1 for λ ∈ iR ∪ (-1, 1). Since the Darboux matrix D(λ) in (2.14) is invertible with constant limits as x → ±∞, these solutions are asymptotically the linear combinations of the solutions found for u = 1. For λ ∈ iR ∪ (-1, 1) the latter solutions are asymptotically periodic in x with wavenumber k = k(λ) = 2 √ 1 -λ 2 > 0. By analogy with the case u = 1, we denote by v± ±λ(k) (x, t) the four solutions of the linearized NLS equation at KMB for k ∈ (0, ∞)\{2}. Although only two linearly independent solutions are obtained for k = 2, the point k = 2 is of measure zero in the continuous spectrum Σ KMB . 5.2.3. Localized solutions. Based on these explicit computations, we expect that a solution v ∈ C 0 (R, L 2 (R)) of the linearized NLS equation (2.6) at KMB can be uniquely expressed in the linear superposition form v(x, t) = c 1 v 1 (x, t) + c 2 v 2 (x, t) + c 3 v 3 (x, t)

+ ∞ 0 ĉ+ k v+ λ(k) (x, t) + ĉ- k v- λ(k) (x, t) + ĉ+ -k v+ -λ(k) (x, t) + ĉ- -k v- -λ(k) (x, t) dk, (5.15) 
where the coefficients c 1 , c 2 , c 3 , and ĉ± ±k are uniquely determined by the coefficients by the initial condition v(•, 0) = v 0 ∈ L 2 (R). A rigorous justification of this formula requires an additional completeness proof which is outside the scope of this paper.

Remark 14. The decomposition (5.15) precisely shows how many linearly independent solutions of the linearized NLS equation (2.6) at KMB correspond to the point and continuous parts of the Lax spectrum Σ KMB . Interestingly, this decomposition is different from the complete set of solutions of the linearized NLS equation at the NLS soliton [START_REF] Kaup | A perturbation expansion for the Zakharov-Shabat inverse scattering transform[END_REF][START_REF] Kaup | Closure of the squared Zakharov-Shabat eigenstates[END_REF] where perturbations to a single NLS soliton are decomposed over four exponentially decaying solutions which correspond to translations of the NLS soliton over four parameters and the four continuous families of eigenfunctions of the continuous spectrum. Here, we only found three exponentially decaying solutions.

Remark 15. It follows from (5.15) that the linear instability of KMB is related to the continuous spectrum Σ 0 in Σ KMB with exactly the same growth rate as the one of the constant-amplitude background u = 1. This is in agreement with the numerical computation of unstable modes for KMB in [START_REF] Cuevas-Maraver | Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves[END_REF], where KMB was truncated on a spatially periodic domain [-L, L]. According to Figs. 1,2, and 3 in [START_REF] Cuevas-Maraver | Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves[END_REF], the number of unstable modes of KMB depends on the period T for every fixed L. In the limit T → 0 (λ 0 → ∞), the number of unstable modes corresponds to those of the constant-amplitude background u = 1. However, for each fixed L, the number of unstable modes decreases as T decreases. Our analysis corresponds to the case L = ∞, when the unstable modes form a continuous spectrum which is independent of period T . Indeed, the results in [START_REF] Cuevas-Maraver | Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves[END_REF] showed that the number of unstable modes increases when L increases.

Conclusion

We have classified solutions of the linearized NLS equation (2.6) at two breather solutions of the NLS equation (2.1) given by AB and KMB. In the case of AB, our results agree with the symbolic computations in [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF] where exponentially growing in time and spatially periodic solutions of the linearized NLS equation were discovered. In the case of KMB, we provide the set of solutions for characterizing the linear instability of breathers which was not achieved in the previous work [START_REF] Zweck | The essential spectrum of periodically stationary solutions of the complex Ginzburg-Landau equation[END_REF] due to lack of spectral mapping properties. In both cases, the question of completeness was left opened and is the future open problem of highest priority.

Among further directions, it is worth mentioning that AB and KMB are particular solutions of the third-order Lax-Novikov equation u + 6|u| 2 u + 2ic(u + 2|u| 2 u) + 4bu + 8iau = 0, (

for a = c = 0. More general solutions of the third-order Lax-Novikov equation with a = c = 0 are represented by the double-periodic solutions which are periodic both in x and t [START_REF] Akhmediev | Exact first-order solutions of the nonlinear Schrödinger equation[END_REF][START_REF] Chen | Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation[END_REF]. Linear instabilities of the double-periodic solutions were recently explored in [START_REF] Pelinovsky | Instability of double-periodic solutions in the nonlinear Schrodinger equation[END_REF] by utilizying the Floquet theory both in x and t. The linear unstable bands of the double-periodic solutions should correspond to the linear unstable modes of AB and KMB in the case of degeneration of the double-periodic solutions, this limiting procedure is still to be studied in future.

Overall, characterizing instability of breathers on the constant-amplitude background is a more difficult problem compared to characterizing of the modulation instability of travelling periodic waves in the NLS equation [START_REF] Chen | Periodic standing waves in the focusing nonlinear Schrodinger equation: Rogue waves and modulation instability[END_REF][START_REF] Deconinck | The stability spectrum for elliptic solutions to the focusing NLS equation[END_REF]. Further understanding of the linear and nonlinear instability of breathers will provide better clarity of the formation of complex rogue wave patterns and integrable turbulence in the framework of the NLS equation (1.1).

(2.2)-(2.3) with u = û0 and λ = λ 0 for KMB from (A.7) and (A.11). The first one is the solution ϕ 0 = (p 0 , q0 ) T in Lemma 4 and the second one is the solution φ 0 given by (5.6).

Remark 18. Derivatives of the matrix solution Φ(λ) in λ at λ = ±λ 0 were computed in the recent work [START_REF] Grinevich | The linear and nonlinear instability of the Akhmediev breather[END_REF] without discussing geometric and algebraic multiplicities of the eigenvalue λ 0 .

Figure 1

 1 illustrates these results. The left panel shows the purely continuous spectrum of Σ 0 in L 2 (R) given by (3.7). The right panel shows the union Σ point spectra in L 2 per (0, L) and L 2 antiper (0, L) given by (3.8) and (3.9), respectively.
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 132 Figure 1. Left: The Lax spectrum Σ 0 in L 2 (R). Right: The union Σ (P ) 0 ∪ Σ (A) 0
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 320 Solutions(3.19) and(3.20) are linear combinations of the four solutions in the Fourier decomposition (3.10) with k ∈ (2, ∞) given by (3.14), and we have a one-to-one correspondence between these solutions through the equalities k = k(γ) and γ = γ(k).

  (3.22) up to the change of signs. Solutions(3.21) and(3.22) for λ = 0 recover the four solutions in the Fourier decomposition(3.10) given by (3.13) for k = 2.Summarizing, the set of eigenfunctions of the Lax equations (2.2)-(2.3) with u = 1 and λ ∈ Σ 0 allows us to recover the Fourier basis in the decomposition (3.10), except for the two functions v - 2 (t) cos(2x) and v - 2 (t) sin(2x) with k = 2. The entire basis is recovered when also using the generalized eigenfunctions (3.6) associated to the eigenvalue λ = 0. This leads to an alternative expansion for solutions v ∈ C 0 (R, L 2 (R)) to the linearized NLS equation (3.1),

  )-(3.18) if k ∈ (0, 2) and by (3.19)-(3.20) if k ∈ (2, ∞). Since the points k = 0 and k = 2 are of measure zero in the integral (3.23) we do not need solutions (3.15), (3.16), (3.21), and (3.22).
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 3 Periodic solutions. Solutions of the linearized NLS equation (3.1) in the space L 2 per (0, L) of periodic functions with the fundamental period L > 0 are found by restricting the continuous Fourier decomposition (3.10) to the discrete values

  The arguments above show that all functions in the Fourier series(3.25) are recovered from the eigenfunctions of the Lax system associated to the eigenvalues λ ∈ Σ , for m = 0 we have the eigenvalues ±λ(0) = ±1 ∈ Σ (P ) 0 leading to the solutions v + 0 and v - 0 given by (3.15) and (3.16), respectively, which are constant in x. If 0 < πm < L, then λ(k m ) ∈ (0, 1), and we have the four linearly independent solutions in (3.17)-(3.18) with λ = λ(k m ). If πm > L, then λ(k m ) = iγ(k m ) is purely imaginary, and we have the four linearly independent solutions in (3.19)-(3.20) with γ = γ(k m ). In the particular case L = πm, for some m ∈ N, we have λ(k m ) = 0 and four linearly independent solutions are given in (3.21) and (3.22).

  )-(3.18) if 0 < πm < L, by (3.21)-(3.22) if πm = L, and by (3.19)-(3.20) if πm > L. Remark 9. When L /∈ πN, the functions v ± ±λ(km) (x, t) in the decomposition (3.26) are all obtained from the eigenfunctions associated to nonzero eigenvalues ±λ(k m ). When L = πm, the eigenvalues ±λ(k m ) vanish and the associated eigenfunctions only provide the two linearly independent solutions(3.21). The generalized eigenfunctions associated to the eigenvalue λ(k m ) = 0 must be used in this case to obtain the other two solutions in(3.22).
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 2 Figure 2. The union Σ (P ) AB ∪Σ (A) AB of the Lax spectra in L 2 per (0, L) and L 2 antiper (0, L) for AB. The red dots represent the eigenvalues {+λ 0 , -λ 0 }.
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  are given in the form φ

m

  in Lemmas 2 and 3, respectively. We focus on the solutions related to the positive eigenvalues λ the symmetry of the Lax system, the negative eigenvalues -λ (A) 1
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 3 Figure 3. The Lax spectrum Σ KMB in L 2 (R) for KMB.The following lemma gives precisely the spectrum Σ KMB . Lemma 4. Consider KMB given by (5.3). The spectrum of the ZS spectral problem (2.2) with u = û0 in L 2 (R) is the setΣ KMB = iR ∪ [-1, 1] ∪ {λ 0 , -λ 0 }, (5.4) with the following properties:(1) For each λ ∈ iR ∪ (-1, 1), there exist two linearly independent bounded solutions.(2) For λ = 1 and λ = -1, there exists only one bounded solution.(3) The eigenvalues λ = λ 0 and λ = -λ 0 are algebraically simple with associated eigenfunctions ϕ = (p 0 , q0 ) T and ϕ = ( q0 , -p0 ) T respectively.

Table of

 of Darboux transformation. For the construction of breathers, we use the following version of the one-fold Darboux transformation from [12, Propositions 2.2 and 3.1].

	2.2.	
	possible solutions of the linearized NLS equation (2.6) gen-	
	erated from two solutions ϕ = (ϕ 1 , ϕ 2 ) T and φ = (φ 1 , φ 2 ) T to the Lax system	
	(2.2)-(2.3) for the same value of λ.	
	Remark 3. If λ is a double eigenvalue with the only eigenfunction ϕ = (ϕ 1 , ϕ 2 ) T satisfying
	(2.4) and the generalized eigenfunction ϕ g = (ϕ g1 , ϕ g2 ) T satisfying (2.5), then the linearized
	NLS equation (2.6) admits the solutions	
	v = 2ϕ 1 ϕ g1 -2 φ2 φg2 , v = 2iϕ 1 ϕ g1 + 2i φ2 φg2 ,	(2.9)
	in addition to the two solutions in Pair I of Table 1.	

Appendix A. Computation of Φ(λ) near λ = λ 0 Let u = û0 be AB given by (4.2) and consider the 2 × 2 matrix solution Φ(λ) to the Lax system (2.2)-(2.3) with u = 1 in the form:

where

Remark 16. The solution (4.1) used for the construction of û0 corresponds to the second column of Φ(λ) evaluated at λ = λ 0 , so that p 0 = p -(λ 0 ) and q 0 = q -(λ 0 ).

The 2 × 2 matrix solution Φ(λ) of the Lax system (2.2)-(2.3) with u = û0 is given by the transformation (2.13) and (2.14), or explicitly by

Expanding Φ(λ) into Laurent series near the simple pole at λ = λ 0 , we write

where

Further expanding the eigenvalue problem

into Laurent series near the simple pole at λ = λ 0 , we find successively at orders O((λ -

We use these equalities to identify the eigenfunctions and the generalized eigenfunctions of the Lax system for λ = λ 0 from the columns of Φ-1 , Φ0 , and Φ1 . We record the following algebraic computations:

-q 0 p + (λ 0 ) + p 0 q + (λ 0 ) = 2ik 0 , -q 0 p -(λ 0 ) + p 0 q -(λ 0 ) = 0, -q 0 p + (λ 0 ) -p 0 q + (λ 0 ) = 4 sinh(σ 0 t -ik 0 x), -q 0 p -(λ 0 ) -p 0 q -(λ 0 ) = 4 cosh(σ 0 t -ik 0 x) -4λ 0 .

(A.5)

By using the first two lines of (A.5), we obtain Φ-1 = [2ik 0 ϕ 0 , 0], (A.6)

where

is precisely the L-antiperiodic eigenfunction of the Lax system (2.2)-(2.3) for u = û0 and λ = λ 0 . Next, using the equalities

we compute the derivatives

which together with the four equalities of (A.5), lead to

where

is the L-antiperiodic generalized eigenfunction satisfying (L -λ 0 I)ϕ 1 = ϕ 0 , and

is a second linearly independent solution to the Lax system (2.2)-(2.3) for u = û0 and λ = λ 0 , which is not L-antiperiodic in x.

Finally, by differentiating (A.8) in λ and using (A.5) we obtain

which consists of non-L-antiperiodic functions, Remark 17. These computations can be transferred to KMB given by (5.3) by taking k 0 = iβ 0 and σ 0 = iα 0 . In particular, we obtain two linearly independent solutions of the Lax system