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The evaluation of a polynomial at several points is called the problem of multi-point
evaluation. Sometimes, the set of evaluation points is fixed and several polynomials
need to be evaluated at this set of points. Several efficient algorithms for this kind of
“amortized” multi-point evaluation have been developed recently for the special cases
of bivariate polynomials or when the set of evaluation points is generic. In this paper,
we extend these results to the evaluation of polynomials in an arbitrary number of
variables at an arbitrary set of points. We prove a softly linear complexity boundwhen
the number of variables is fixed.

1. INTRODUCTION

Let 𝕂 be an effective field, so that we have algorithms for the field operations. Given
a polynomial P∈𝕂[X1, . . . ,Xn] and a tuple 𝜶=(𝜶1, . . . , 𝜶d)∈(𝕂n)d of points, the compu-
tation of P(𝜶)≔(P(𝜶1), . . . ,P(𝜶d))∈𝕂d is called the problem of multi-point evaluation.

This problem naturally occurs in several areas of applied algebra. When solving
a polynomial system, multi-point evaluation can for instance be used to check whether
all points in a given set are indeed solutions of the system. In [16], we have shown that
efficient algorithms for multi-point evaluation actually lead to efficient algorithms for
polynomial system solving. Bivariate polynomial evaluation has also been used to com-
pute generator matrices of algebraic geometry error correcting codes [20].

In the univariate case when n= 1, it is well known that one may use so-called
“remainder trees” to compute multi-point evaluations in quasi-optimal time [1, 2, 4, 8,
22]. More precisely, if M(d) stands for the cost to multiply two univariate polynomials
of degree<d (in terms of the number of field operations in𝕂), then the multi-point eval-
uation of a polynomial of degree <d at d points can be computed in time O(M(d) log d).
Using a variant of the Schönhage–Strassen algorithm [3, 27, 28], it is well known that
M(d) =O(d log d log log d). If we restrict our attention to fields 𝕂 of positive charac-
teristic, then we may take M(d) =O�d log d 4log

∗d� [5] and conjecturally even M(d) =
O(d log d) [6]. In the remainder of this paper, we make the customary hypothesis that
M(d)/d is a non-decreasing function in d.

∗. This paper is part of a project that has received funding from the French “Agence de l'innovation de défense”.
†. This article has been written using GNU TEXMACS [10].
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Currently, the fastest general purpose algorithm for multivariate multi-point eval-
uation is based on the “baby-step giant-step” method; see e.g. [12, section 3]. For
a fixed dimension n andD≔∏i=1

n (degXi P+1) such that d=O(D), this method requires
Õ(d𝜛−1D) operations in 𝕂 (e.g. by taking 𝔸=𝕂 and 𝔹=𝕂d in [12, Proposition 3.3]).
Here Õ(Φ) is a common abbreviation for O(Φ (log Φ)O(1)), and 𝜛>1.5 is a constant
such that two n√ × n√ and n√ ×nmatrices with coefficients in𝕂 can be multiplied using
O(n𝜛) operations in 𝕂. The best known theoretical bound is 𝜛<1.629 [21, Table 2, half
of the upper bound for𝜔(2)] (combined with the tensor permutation lemma [17, Corol-
lary 7]). In the special case when n=2, d=D, and degX1P=degX2P, Nüsken and Ziegler
proved the sharper bound Õ(d(𝜛+1)/2) [24, particular case of Result 4].

In 2008, Kedlaya and Umans achieved a major breakthrough [18, 19]. On the one
hand, they gave an algorithm of complexity (d+D)1+o(1) for the case when 𝕂 has posi-
tive characteristic. On the other hand, they gave algorithms for multi-point evaluations
over ℤ/rℤ with quasi-optimal bit-complexity exponents. Unfortunately, to the best of
our knowledge, these algorithms do not seem suitable for practical purposes, as observed
in [13, Conclusion]. Even in the case when the dimension n is fixed, we also note that
the algorithms by Kedlaya and Umans do not achieve a smoothly linear complexity of
the form Õ(d+D).

Recently, several algorithms have been proposed for multi-point evaluation in the
case when 𝜶 is a fixed tuple of points [15, 23]. These algorithms are amortized in the
sense that we allow for potentially expensive precomputations as a function of 𝜶. The
algorithms from [15, 23] are both restricted to the case when 𝜶 is sufficiently generic,
whereas [14, 23] focus on the bivariate case n=2. In the present paper, we deal with the
general case when both n and 𝜶 are arbitrary. Our main result is the following:

THEOREM 1.1. Let n>1 be a fixed dimension and let 𝜶∈(𝕂n)d be a fixed set of points. Then,
given a polynomial P∈𝕂[X1, . . . ,Xn] with D≔∏i=1

n (degXi P+1)⩾d and an element of 𝕂 of
multiplicative order at least 4nn! (D+1), we can compute P(𝜶)=(P(𝜶1), . . . ,P(𝜶d)) using

O(M(D)(logD)n+1+M(d) (log d)n+2)
operations in 𝕂.

Remark 1.2. In characteristic zero, any integer different from 0, 1, and −1 has infinite
order. For finite fields 𝔽q, working in an algebraic extension 𝔽qk yields elements of order
up to qk−1. Replacing 𝔽q by such an extension induces an additional overhead of Õ(k)
in our complexity bound.

As in the generic case from [15], our algorithm heavily relies on the relaxed algorithm
for polynomial reduction from [9]. Given polynomials P,B1, . . . ,Bℓ∈𝕂[X1, . . . ,Xn], the
reduction algorithm computes Q1, . . . ,Qℓ,R∈𝕂[X1, . . . ,Xn] with

P = Q1B1+ ⋅ ⋅ ⋅ +QℓBℓ+R, (1.1)

where R is reduced with respect to some admissible ordering ≺ on monomials. The
relaxed algorithm from [9] essentially performs this reduction with the same complexity
(up to a logarithmic factor) as checking the relation.

For our application to multi-point evaluation, the idea is to pick the polynomials Bi
in the vanishing ideal

ℑ𝜶 ≔ {A∈𝕂[X1, . . . ,Xn] :A(𝜶)=𝟎}
of 𝜶, so P(𝜶) =R(𝜶). We may next recursively split-up the tuple of points 𝜶 into two
halves and adopt a similar strategy as in the univariate case.
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However, there are several technical problems with this idea. First of all, it would be
too costly to work with a full Gröbner basis {B1, . . . ,Bℓ} of ℑ𝜶, because the mere storage
of such a basis generally requires more than Õ(d) terms. In [15], we solved this issue
by working with respect to a so called “axial basis” instead. In the case when 𝜶 is not
generic, we have the additional problem that the shape of a Gröbner basis may become
very irregular. This again has the consequence that the mere size of all products QiBi
in (1.1) may exceed Õ(D).

In this paper, we address these problems by introducing the new technique of quasi-
reduction. The idea is to work simultaneouslywith several orderings on the monomials; in
particular, each Bi belongs to a Gröbner basis for ℑ𝜶with respect to a different admissible
ordering. The result of a quasi-reduction (1.1) is usually not reducedwith respect to any
usual Gröbner basis of ℑ𝜶, but we will still be able to control the size of R. Moreover,
during the quasi-reduction process, we will be able to ensure that the ratios

degX1 Qi : ⋅ ⋅ ⋅ :degXn Qi

and
degX1 Bi : ⋅ ⋅ ⋅ :degXn Bi

are similar for every i, which further allows us to control the size of the products QiBi.
The constant factor in our complexity bound of Theorem 1.1 grows exponentially as

a function of n. For the time being, we therefore expect our methods to be of practical use
only in low dimensions like n=2 or n=3. Of course, the present paper focuses on worst
case bounds for potentially highly non-generic cases. There is hope to drastically lower
the constant factors for more common use cases.

One major technical contribution of this paper is the introduction of quasi-reduction
and heterogeneous orderings. An interesting question for future work is whether these
concepts can be applied to other problems. For instance, consider a zero-dimensional
ideal ℑ⊆𝕂[X1, . . . ,Xn] and two Gröbner bases for ℑ with respect to different mono-
mial orderings. Each Gröbner basis induces a representation for elements of the quotient
algebra 𝕂[X1, . . . ,Xn]/ℑ. Does there exist a smoothly linear time algorithm to convert
between these two representations?

2. POLYNOMIAL REDUCTION

In this section we recall and extend some results from [9] to the context of this paper.

2.1. Admissible orderings
Let 𝔐 be the set of monomials X1

a1 ⋅ ⋅ ⋅ Xn
an with a1, . . . , an ∈ℕ. Any polynomial

P∈𝕂[X1, . . . ,Xn] can uniquely be written as a linear combination

P = �
M∈𝔐

PMM

with coefficients PM in𝕂 and finite support

supp P ≔ {M∈𝔐:PM≠0}.

Given a total ordering≺ on𝔐, the support of any non-zero polynomial P admits a unique
maximal element lm(P)= lm≺(P)∈𝔐 that is called the leading monomial of P; the cor-
responding coefficient lc(P)=lc≺(P)=Plm(P)∈𝕂 is called the leading coefficient of P.
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A total ordering ≺ on𝔐 is said to be admissible if

M |N ⟹ M≼N and M≼N ⟹ XiM≼XiN

for all monomialsM,N∈𝔐 and i∈{1,...,n}. In particular, the lexicographical ordering≺lex
defined by

X1
a1 ⋅ ⋅ ⋅Xn

an≺lexX1
b1 ⋅ ⋅ ⋅Xn

bn ⟺

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{
{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{
{
{ a1<b1 or
a1=b1∧ a2<b2 or
⋅⋅⋅
a1=b1∧ ⋅ ⋅ ⋅ ∧ an−1=bn−1∧ an<bn

is admissible.

2.2. Sparse polynomial products
A sparse representation of a polynomial P in𝕂[X1,...,Xn] is a data structure that stores the
set of the non-zero terms of P. Each such term is a pair made of a coefficient and a degree
vector. In an algebraic complexity model the bit size of the exponents counts for free, so
the relevant size of such a polynomial is the cardinality of its support.

Consider two polynomials P and Q of 𝕂[X1, . . . ,Xn] in sparse representation. An
extensive literature exists on the general problem of multiplying P and Q; see [26] for
a recent survey. For the purposes of this paper, a superset 𝒮 for the support of PQ will
always be known. Then we define SM(s) to be the cost to compute PQ, where s is the
maximum of the sizes of 𝒮 and the supports of P and Q. We will assume that SM(s)/s
is a non-decreasing function in s. Under suitable assumptions, the following proposition
will allow us to take SM(s)=O(M(s) log s) in our multivariate evaluation algorithm.

PROPOSITION 2.1. Let 𝜋1, . . . ,𝜋n be positive integers and let 𝜃 in 𝕂 be of multiplicative order at
least 𝜋≔𝜋1 ⋅ ⋅ ⋅ 𝜋n.
i. The set 𝒫 of all products 𝜃 e1𝜃 e2𝜋1 ⋅ ⋅ ⋅ 𝜃 en𝜋1 ⋅ ⋅ ⋅𝜋n−1 for (e1, . . . , en)∈∏i=1

n {0, . . . ,𝜋i−1} can
be computed using O(𝜋) operations in 𝕂.

ii. Let P and Q be in𝕂[X1, . . . ,Xn], in sparse representation. Let 𝒮 be a superset of the support
of PQ with degXiM<𝜋i for all M∈𝒮 and i=1,...,n. Assume that𝒫 has been precomputed.
Then the product PQ can be computed using O(M(s)log s) operations in𝕂, where s denotes
the maximum of the sizes of 𝒮 and the supports of P and Q.

Proof. The first statement is straightforward. The second one is an adapted version
of [11, Proposition 6]. □

2.3. Relaxed multivariate series
We assume that the reader is familiar with the technique of relaxed power series evalu-
ations [7], which is an efficient way to solve so-called recursive power series equations.
In [9], this technique was generalized to multivariate Laurent series that are expanded
according to some admissible ordering ≺.

Given a general admissible ordering ≺, we know from [25] that there exist real vec-
tors 𝜆1, . . . , 𝜆n∈ℝn, such that

X i≺X j ⇔ X𝜆⋅i≺lexX𝜆⋅ j,

where

X i ≔ X1
i1 ⋅ ⋅ ⋅Xn

in

𝜆⋅ i ≔ (𝜆1 ⋅ i, . . . ,𝜆n ⋅ i).
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For clarity we sometimes denote this ordering≺ by≺𝜆. In [9], it is always assumed that
𝜆1, . . . , 𝜆n∈ℕn and gcd((𝜆i)1, . . . , (𝜆i)n)=1 for all i.

Example 2.2. The graded lexicographical ordering≺glex is obtained by taking 𝜆1=(1,...,1),
𝜆2=(1,0, . . . , 0), 𝜆3=(0,1, 0 . . . , 0, ), . . ., 𝜆n=(0, . . . , 0, 1,0).

Example 2.3. In section 4.1, we will only need orderings for which 𝜆1=(2a1, . . . , 2an) for
certain a1, . . . ,an∈ℤ and 𝜆2=(1,0, . . . , 0),𝜆3=(0,1,0, . . . , 0), . . . ,𝜆n=(0, . . . , 0, 1,0). In fact,
we note that≺𝜆=≺c𝜆 for any c∈ℝ>, so modulo the replacement of 𝜆1 by 2−min(a1, . . . ,an)𝜆1,
we may assume without loss of generality that a1, . . . ,an∈ℕ, whenever we wish to apply
the theory from [9].

In order to analyze the complexity of relaxed products in this multivariate context,
we need to introduce the following quantities for finite subsets ℛ⊆𝔐:

𝜗i(ℛ) = max {𝜆i ⋅ e :X e∈ℛ}+1, i=1, . . . ,n
𝜗(ℛ) = 𝜗1(ℛ) ⋅ ⋅ ⋅ 𝜗n(ℛ).

We also define 𝜗≺,i(ℛ)≔𝜗i(ℛ) and 𝜗≺(ℛ)≔𝜗(ℛ) when we need to emphasize the
dependence on ≺.

THEOREM 2.4. [9, Theorem 3]Given sparse polynomials P,Q∈𝕂[X1,...,Xn] and a setℛ with
(supp P) (suppQ)⊆ℛ, the relaxed product PQ can be computed in time

O(SM(|ℛ|) log(𝜗(ℛ))).

2.4. Quasi-reduction
Let ≺ be a total ordering on 𝔐 and consider a finite family (Bi)i∈I of non-zero polyno-
mials in 𝕂[X1, . . . ,Xn]. Each Bi comes with a distinguished monomial Li∈supp Bi (that
will play the role of the leadingmonomial) andwe define Ti≔(Bi)LiLi. The family (Bi)i∈I
is equipped with a selection strategy, that is a function

𝜎: 𝔐 ⟶ I.

For each i∈ I, we also assume that we have fixed the setℜi⊆Li𝔐 of monomials that will
be selected for reduction with respect to Bi, for i∈ I. We assume that theℜi are pairwise
disjoint and we set

ℜ ≔ �
i∈I

ℜi.

Note that this corresponds to fixing a selection strategy, although we do not require that
ℜ⊇⋃i∈I Li𝔐 (which explains the terminology “quasi-reduction” below). For our appli-
cation later in this paper, the complement ℜ∖(⋃i∈I Li𝔐) will be a “rather relatively
small” finite set.

We say that P∈𝕂[X1, . . . ,Xn] is quasi-reduced if supp P∩ℜ=∅. We say that a total
ordering≺ on𝔐 is quasi-admissible (with respect to our choices of (Bi)i∈I, (Li)i∈I and the
selection strategy 𝜎) if M |N⟹M≼N for all M,N∈𝔐 and if

supp�MLi
Bi� ≼ M

for any i∈ I and any M∈ℜi.
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Polynomials that are not quasi-reduced are said to be quasi-reducible. In order to quasi-
reduce P∈𝕂[X1, . . . ,Xn] with respect to (Bi)i∈I we may use Algorithm 2.1 below. This
yields the relation

P = �
i∈I

QiBi+R,

such thatR is quasi-reducedwith respect to (Bi)i∈I. We call ((Qi)i∈I,R) the extended quasi-
reduction of P with respect to (Bi)i∈I.

Algorithm 2.1
Input. P and a finite family (Bi)i∈I with a selection strategy 𝜎.
Output. The extended quasi-reduction ((Qi)i∈I,R) of P by (Bi)i∈I.
1. Initialize R≔P and Qi≔0 for all i∈ I.
2. While suppR∩ℜ=∅ do:

a. Let M be the largest monomial of suppR∩ℜ;
b. Replace Q𝜎(M) by Q𝜎(M)+

RMM
T𝜎(M)

;

c. Replace R by R− RMM
T𝜎(M)

B𝜎(M).
3. Return ((Qi)i∈I,R).

By construction, we have

supp(QiLi) ⊆ ℜi (2.1)

for all i∈ I.

2.5. Relaxed quasi-reduction
The main contribution of [9] is a relaxed algorithm for the computation of extended
reductions. This algorithm generalizes to our setting as follows and provides an alter-
native for Algorithm 2.1 with a better computational complexity.

For each i∈{1, . . . , |I|+1}, let ei be the i-th canonical basis vector

ei≔�0, . . .(i−1)×, 0, 1,0, . . . , 0� ∈ {0,1}|I|+1.

We first define the operatorΦ on monomials:

Φ: 𝔐 ⟶ 𝕂[X1, . . . ,Xn]|I|+1

M ⟼ M
T𝜎(M)

e𝜎(M), if M∈ℜ

M ⟼ Me|I|+1 otherwise.

By linearity we next extend Φ to 𝕂[X1, . . . ,Xn]:

Φ(((((((((((( �
M∈𝔐

PMM))))))))))))≔ �
M∈𝔐

PMΦ(M).

Let Bi
∗≔Bi−Ti. By construction, we have

((Qi)i∈I,R) = Φ((((((((((((P−�
i∈I

QiBi
∗)))))))))))),

which allows us to regard ((Qi)i∈I,R) as a fixed point of the operator

((Qi)i∈I,R) ⟼ Φ((((((((((((P−�
i∈I

QiBi
∗)))))))))))).
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This operator is “recursive” in the sense of [9, section 4.2] with respect to the ordering≺.
Consequently ((Qi)i∈I,R) can be computed efficiently using relaxed power series evalu-
ation. The complexity of this relaxed quasi-reduction is stated in Theorem 4.4 below for
the specific ordering used by our multi-point evaluation algorithm. This definition and
study of this ordering is the purpose of the next section.

3. HETEROGENEOUS ORDERINGS

3.1. Weighted degree orderings
An admissible weight is an n-tuple𝒘=(w1,...,wn)∈(ℝ>)nwithw1 ⋅⋅⋅wn=1. Given amono-
mial X1

e1 ⋅ ⋅ ⋅Xn
en, we define its 𝒘-degree by

deg𝒘X1
e1 ⋅ ⋅ ⋅Xn

en = w1e1+ ⋅ ⋅ ⋅ +wn en.

For a non-zero polynomial P=∑M∈𝔐 PMM∈𝕂[X1, . . . ,Xn], we define its 𝒘-degree by

deg𝒘 P = max {deg𝒘M :PM≠0}.

We also define the ordering ≺𝒘 on𝔐 by

M≺𝒘N ⟺ (deg𝒘M<deg𝒘N)∨(deg𝒘M=deg𝒘N∧M≺lexN).

It is easy to check that ≺𝒘 is an admissible ordering.

3.2. Simplest elements of ideals
Consider a zero-dimensional ideal ℑ of 𝕂[X1, . . . ,Xn] and let

d ≔ dim𝕂𝕂[X1, . . . ,Xn]/ℑ.

Given an admissible weight 𝒘, there exists a unique non-zero polynomial B𝒘 in the
reduced Gröbner basis of ℑ whose leading monomial is minimal for ≺𝒘 and whose
leading coefficient is one. We call B𝒘 the 𝒘-simplest element of ℑ. Note that there are
at most d monomials below the leading monomial of B𝒘 for ≺𝒘.

PROPOSITION 3.1. Let
𝛿 ≔ n! (d+1)n�

and consider the set 𝒮𝒘,𝛿 of monomials M∈𝔐 with deg𝒘M⩽𝛿. Then |𝒮𝒘,𝛿|>d.

Proof. Let ℰ𝒘,𝛿⊆ℕn be the set of exponents of 𝒮𝒘,𝛿, so we have

𝒮𝒘,𝛿 = {X1
e1 ⋅ ⋅ ⋅Xn

en : (e1, . . . , en)∈ℰ𝒘,𝛿}.

The set ℰ𝒘,𝛿+[0,1]n in particular contains the simplex

𝒯 ≔ {(e1, . . . , en)∈(ℝ⩾)n :w1 e1+ ⋅ ⋅ ⋅ +wn en⩽𝛿},

whose volume is given by

vol 𝒯 = 𝛿n
n!w1 ⋅ ⋅ ⋅wn

= 𝛿n
n! = d+1.

Consequently, |𝒮𝒘,d|= |ℰ𝒘,d|=vol (ℰ𝒘,𝛿+[0,1]n)⩾vol 𝒯 =d+1. □

COROLLARY 3.2. For each i∈{1, . . . ,n}, we have

degXi B𝒘 ⩽ 𝛿
wi

.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7



Proof. We say that ℐ⊆𝔐 is an initial segment ℐ for≺𝒘 if N≺𝒘M⇒N∈ℐ for allM∈ℑ and
N∈𝔐. By definition, the set 𝒮𝒘,𝛿 is an initial segment for≺𝒘 and it contains at least d+1
monomials. Consequently, the set of linear combinations of monomials in 𝒮𝒘,𝛿 contains
at least one non-zero element of ℑ and therefore B𝒘. Now consider a monomialX1

e1 ⋅⋅⋅Xn
en

in supp B𝒘∩𝒮𝒘,𝛿. Then wi ei⩽deg𝒘X1
e1 ⋅ ⋅ ⋅Xn

en⩽𝛿 for i=1, . . . ,n, whence ei⩽𝛿/wi. □

3.3. Heterogeneous orderings
Nowconsider a finite non-empty set𝑾 of admissibleweights. Given amonomialM∈𝔐,
we define its 𝑾-degree deg𝑾M by

deg𝑾 M ≔ min
𝒘∈𝑾

deg𝒘M.

For a non-zero polynomial P=∑M∈𝔐 PMM∈𝕂[X1, . . . ,Xn], we define its 𝑾-degree by

deg𝑾 P ≔ max {deg𝑾 M :PM≠0}.

We define the heterogeneous ordering ≺𝑾 by

M≺𝑾N ⟺ (deg𝑾 M<deg𝑾N)∨(deg𝑾M=deg𝑾N∧M≺lexN).

LEMMA 3.3. The ordering ≺𝑾 verifies M |N⟹M≺𝑾N for all different M,N∈𝔐.

Proof. For all w∈𝑾 we have deg𝒘M<deg𝒘N, whence degWM<degWN. □

Example 3.4. Consider n=2, W={(1,1), (2,1/2)}. With M=X2
2 and N=X1 we have

deg𝑾M = min(2,1)=1
deg𝑾N = min(1,2)=1

deg𝑾(X1M) = min(3,3)=3
deg𝑾(X1N) = min(2,4)=2.

Therefore deg𝑾 M⩽deg𝑾 N but deg𝑾(X1M)⩽/ deg𝑾(X1N), which shows that the
ordering ≺𝑾 is not admissible.

Given𝒘∈𝑾 , its associated cone 𝔐𝒘⊆𝔐 is defined by

𝔐𝒘 ≔ {M∈𝔐:deg𝑾M=deg𝒘M}.

By construction, we have

𝔐 = �
𝒘∈𝑾

𝔐𝒘,

but this union is not necessarily disjoint. GivenX1
e1 ⋅⋅⋅Xn

en∈𝔐𝒘, we note thatX1
𝜆e1 ⋅⋅⋅Xn

𝜆en∈
𝔐𝒘 for any 𝜆∈ℚ> with 𝜆 e1, . . . , 𝜆 en∈ℕ; this explains the terminology “cone”.

3.4. Quasi-reduction
Let ℑ again be a zero-dimensional ideal of𝕂[X1,...,Xn] and let d≔dim𝕂𝕂[X1,...,Xn]/ℑ.
Let 𝑾 be a finite non-empty set of weights that will play the role of the index set I from
section 2.4. For𝒘∈𝑾 , let B𝒘 be the 𝒘-simplest element of ℑ and let

L𝒘 ≔ lm≺𝒘(B𝒘).
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We also define

Π ≔ X1 ⋅ ⋅ ⋅Xn.

We endow 𝑾 with the lexicographical ordering <lex and fix the following selection
strategy: for increasing 𝒘∈𝑾 , we set

ℜ𝒘 ≔ {M∈L𝒘𝔐:ΠM∈𝔐𝒘}∖(((((((((((((( �
𝒘′<lex𝒘

ℜ𝒘′)))))))))))))).
Now consider the total ordering ≺𝑾

∗ on𝔐 that is defined by

M≺𝑾
∗ N ⟺ ΠM≺𝑾 ΠN,

for allM,N∈𝔐. We call≺𝑾
∗ a shifted heterogeneous ordering. The shift of all exponents by

one (throughmultiplication byΠ) is motivated by the fact that the product of the partial
degrees of a monomial inΠ𝔐 never vanishes. This will be important in the next section
in order to establish certain degree bounds.

PROPOSITION 3.5. The ordering ≺𝑾
∗ is quasi-admissible.

Proof. Consider𝒘∈𝑾 and M∈ℜ𝒘, so that

deg𝑾 ΠM = deg𝒘ΠM.

Given N∈supp B𝒘, we need to prove that

U ≔ M
L𝒘

N ≼𝑾
∗ M.

Now L𝒘=lm≺𝒘(B𝒘) implies N≼𝒘L𝒘, whence ΠU≼𝒘ΠM. In particular, deg𝒘 ΠU⩽
deg𝒘ΠM and ΠU≼lexΠM whenever deg𝒘ΠU=deg𝒘ΠM.

If deg𝑾 ΠU=deg𝒘ΠU, then it follows that deg𝑾 ΠU<deg𝑾 ΠM or deg𝑾 ΠU=
deg𝑾 ΠM and ΠU≼lexΠM, whence ΠU≼𝑾ΠM and U≼𝑾

∗ M. Otherwise,

deg𝑾 ΠU = deg𝒘′ΠU < deg𝒘ΠU ⩽ deg𝒘ΠM = deg𝑾 ΠM

for some 𝒘′∈𝑾∖{𝒘}, whence ΠU≺𝑾 ΠM and U≺𝑾
∗ M. □

4. ON THE COMPLEXITY OF QUASI-REDUCTION

In this sectionwe instantiate theweight family𝑾 considered in the previous section, and
analyze the complexity of the corresponding quasi-reduction.

4.1. Selecting the weights
Consider a zero-dimensional ideal ℑ of 𝕂[X1, . . . ,Xn] and let d≔dim𝕂𝕂[X1, . . . ,Xn]/ℑ.
In order to devise an efficient algorithm to quasi-reduce polynomials with respect to ℑ,
our next task is to specify a suitable set of weights 𝑾 . We take 𝑾=𝛀D, with

𝛀D ≔ {(2e1, . . . , 2en) : (e1, . . . , en)∈ℤn, e1+ ⋅ ⋅ ⋅ + en=0,2|e1|⩽D, . . . , 2|en|⩽D}

and where D⩾d depends on the degree of the polynomials that we wish to reduce.

LEMMA 4.1. We have

|𝛀D| ⩽ (2 log2D+1)n−1.
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Proof. Consider e1, . . . , en∈ℤ with e1+ ⋅ ⋅ ⋅ + en=0 and 2|e1|⩽D, . . . , 2|en|⩽D. We have
ei∈{−⌊log2D⌋, . . . , ⌊log2D⌋} for i=1, . . . ,n−1 and en is determined uniquely in terms of
e1, . . . , en−1 by en=−(e1+ ⋅ ⋅ ⋅ + en−1). There are at most (2 ⌊log2 D⌋+1)n−1 ways to pick
e1, . . . , en in this manner. □

Assume that𝑾=𝛀D for someD⩾max(d,4). We associate a selection procedure and
a quasi-admissible ordering to 𝑾 as in section 3.4.

LEMMA 4.2. Let 𝒘= (w1, . . . ,wn)∈𝑾 and M =X1
e1 ⋅ ⋅ ⋅ Xn

en ∈𝔐 with ΠM ∈𝔐𝒘 and
(e1+1) ⋅ ⋅ ⋅ (en+1)⩽D. Then for all i, j∈{1, . . . ,n}, we have

wi (ei+1) ⩽ 2wj (ej+1).

Proof. Assume the contrary and let i be the index for which wi (ei+1) is maximal. Sim-
ilarly, let j be the index for which wj (ej+1) is minimal, so that wi (ei+1)>2wj (ej+1).
Since

[w1(e1+1)] ⋅ ⋅ ⋅ [wn(en+1)]=(e1+1) ⋅ ⋅ ⋅ (en+1) ⩽ D,

we have wj (ej+1)⩽ Dn� . In particular, since D⩾4 we have wj⩽ Dn� ⩽D/2.
If wi<1, then there must exist at least one index k≠ iwith wk⩾2 and

wi (ei+1) ⩾ wk (ek+1) ⩾ 2.

Since ei+1⩽D, this yields wi⩾2/D. If wi⩾1 then 1/D⩽wi/2⩽D, since D⩾2. In both
cases we consider the weight 𝒘′=(w1′, . . . ,wn′) with wi′=wi/2, wj′=2wj, and wk′=wk for
all k∈{1, . . . ,n}∖{i, j}. By what precedes, we have 𝒘′∈𝛀D.

We now verify that

deg𝒘′ΠM−deg𝒘ΠM = (wi′−wi)(ei+1)+(wj′−wj) (ej+1)
= 1

2 (2wj (ej+1)−wi (ei+1))
< 0.

This contradicts our assumption that ΠM∈𝔐𝒘, i.e. deg𝒘ΠM=deg𝑾 ΠM. □

COROLLARY 4.3. Let k∈{1, . . . ,n}. With the notations from Lemma 4.2 and

ē ≔ (e1+1) ⋅ ⋅ ⋅ (en+1)n� −1,

we have
ē+1
2wk

⩽ ek+1 ⩽ 2(ē+1)
wk

⩽
2 Dn�
wk

.

Proof. Lemma 4.2 implies

(ē+1)n = [w1 (e1+1)] ⋅ ⋅ ⋅ [wn(en+1)] ⩽ (2wk (ek+1))n,
but also

(wk (ek+1))n ⩽ [2w1(e1+1)] ⋅ ⋅ ⋅ [2wn (en+1)] = (2(ē+1))n.

The result follows by extracting n-th roots. □

4.2. Complexity of quasi-reduction
We define 𝕂[X1, . . . ,Xn]D to be the set of polynomials P∈𝕂[X1, . . . ,Xn] such that
(e1+1) ⋅ ⋅ ⋅ (en+1)⩽D for all X1

e1 ⋅ ⋅ ⋅Xn
en∈supp P. Given P∈𝕂[X1, . . . ,Xn]D, let us now

examine the complexity of extended quasi-reduction.
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THEOREM 4.4. Given P∈𝕂[X1, . . . ,Xn]D with D⩾ d, we may compute its extended quasi-
reduction

P = �
𝒘∈𝑾

Q𝒘B𝒘+R (4.1)

using
O(SM(D)(logD)n)

operations in 𝕂 (for any fixed value of n). In addition, for all𝒘∈𝑾, we have

�
i=1

n

(degXi(Q𝒘B𝒘)+1) ⩽ 2n+1n! (D+1).

Proof. We solve (4.1) using the relaxed approach from [9], recalled in section 2. How-
ever, contrary to the situation in [9], each individual product Q𝒘B𝒘 is computed in a
relaxed manner with respect to a different ordering (namely, ≺𝒘). More precisely, for
each individual product Q𝒘B𝒘, we recall from (2.1) that

L𝒘 suppQ𝒘 ⊆ ℜ𝒘.

Sowe can actually computeQ𝒘B𝒘 using the relaxed product algorithm fromTheorem 2.4
with respect to the ordering ≺𝒘. Here we note that the supports of Q𝒘 and B𝒘 are con-
tained in dense blocks of similar proportions: for i=1, . . . ,n, Corollary 3.2 yields

degXi B𝒘 ⩽
n! (d+1)n�

wi
,

whereas Corollary 4.3 implies

degXi Q𝒘+1 ⩽
2 Dn�
wi

.

Indeed, for any M=X1
e1 ⋅ ⋅ ⋅Xn

en∈suppQ𝒘, we have L𝒘M∈ℜ𝒘, whence ΠM∈𝔐𝒘 and
ei+1⩽2 Dn� /wi. Let ℛ𝒘 be the set of monomials X1

k1 ⋅ ⋅ ⋅Xn
kn with ki⩽degXi(B𝒘Q𝒘) for

i=1, . . . ,n, so that supp(B𝒘Q𝒘)⊆ℛ𝒘 and

|ℛ𝒘| ⩽ �
i=1

n

(degXi(B𝒘Q𝒘)+1).

Using w1 ⋅ ⋅ ⋅wn=1, we deduce that

�
i=1

n

(degXi(B𝒘Q𝒘)+1) = �
i=1

n

(degXi B𝒘+(degXi Q𝒘+1))

⩽ �
i=1

n

(((((((((((((((((
n! (d+1)n�

wi
+
2 Dn�
wi )))))))))))))))))

= �
i=1

n

� n! (d+1)n� +2 Dn� �

⩽ �
i=1

n

2 max(n!, 2n) (D+1)n�

⩽ 2nmax(n!, 2n) (D+1)
⩽ 2n+1n! (D+1).

It particular, as a side remark, we note that the dense multiplication of Q𝒘 and B𝒘 can be
done usingM(|ℛ𝒘|)=O(M(D)) operations in𝕂.
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As to the relaxed product of Q𝒘 and B𝒘, we first note that≺𝒘=≺𝜆, with the notation
from Example 2.3, where (2a1, . . . , 2an)= 2b (w1, . . . ,wn) with a1, . . . , an∈ℕ and 2b⩽D.
Consequently,

𝜗≺𝒘,1(ℛ𝒘) = �
1⩽i⩽n

2aiO(((((((((((((((((
Dn�
wi ))))))))))))))))) = O(D1+1/n)

𝜗≺𝒘,i(ℛ𝒘) = O(((((((((((((((((
Dn�
wi ))))))))))))))))), i=2, . . . ,n

and

𝜗≺𝒘 = O(((((((((((((((((D1+1/n�
i=2

n Dn�
wi ))))))))))))))))) = O(((((((((((((((((w1D2�

i=1

n 1
wi))))))))))))))))) = O(D3).

By Theorem 2.4, we may thus compute the relaxed product of Q𝒘 and B𝒘 in time

O(SM(|ℛ𝒘|) log(𝜗≺𝒘(ℛ𝒘))) = O(SM(D) logD).

Weneed to do |𝑾| such relaxedmultiplications. Now |𝑾|=O((logD)n−1) by Lemma 4.1,
so the complete computation takes O(SM(D) (logD)n) operations in𝕂. □

4.3. A degree bound for reduced polynomials
We finish this section with a bound for the size of reduced polynomials.

PROPOSITION 4.5. Consider a monomialM=X1
e1 ⋅⋅⋅Xn

en with ei⩾1 for i=1,...,n. If M is reduced
with respect to (B𝒘)𝒘∈𝑾, then

(e1+1) ⋅ ⋅ ⋅ (en+1) ⩽ 4nn! (d+1).

Proof. Assume for contradiction that there exists an M=X1
e1 ⋅ ⋅ ⋅Xn

en∈(Π𝔐)∖ℜ with

(e1+1) ⋅ ⋅ ⋅ (en+1) > 4nn! (d+1).

Setting

ē ≔ (e1+1) ⋅ ⋅ ⋅ (en+1)n� −1,

our assumption can be rewritten as

ē+1 > 4 n! (d+1)n� .

Let 𝒘∈𝑾 be such that

deg𝑾 ΠM = deg𝒘ΠM.

For i=1, . . . ,n, Corollary 4.3 implies

1
2 (ē+1) ⩽ wi (ei+1) ⩽ 2(ē+1).

Using Corollary 3.2 and our assumption that ei⩾1, this yields

degXi B𝒘 ⩽
n! (d+1)n�

wi
⩽

2(ei+1) n! (d+1)n�
ē+1 ⩽ ei+1

2 ⩽ ei.

This shows that L𝒘 divides M. In combination with our assumption that deg𝑾 ΠM=
deg𝒘ΠM, this means that M∈ℜ𝒘, a contradiction. □

12 AMORTIZED MULTI-POINT EVALUATION OF MULTIVARIATE POLYNOMIALS



5. REDUCTION OF THE BORDER

One limitation of Proposition 4.5 is that it does not apply tomonomialsX1
e1 ⋅⋅⋅Xn

en such that
ei=0 for some index i∈{1,...,n}. In this section, we show how to treat such lower dimen-
sional “border” monomials by adapting our reduction process. For any fixed subset
S⊆{X1, . . . ,Xn}, we will use the fact that the reduction process from the previous sub-
sections can be applied to polynomials in the variables from S and the ideal ℑ∩𝕂[S].
We next combine the reduction processes for all such subsets S⊆{X1, . . . ,Xn}.

5.1. Generalized weights
Given a finite subset S⊆{1, . . . ,n}, we write

𝔐|S ≔ {X1
e1 ⋅ ⋅ ⋅Xn

en∈𝔐: i∉S⟹ ei=0}
𝕂[X1, . . . ,Xn]|S ≔ {P∈𝕂[X1, . . . ,Xn] : supp P⊆𝔐|S}

ℑ|S ≔ ℑ∩𝕂[X1, . . . ,Xn]|S
Π |S ≔ ∏i∈SXi.

We note that ℑ|S is an ideal of 𝕂[X1, . . . ,Xn]|S with dim𝕂𝕂[X1, . . . ,Xn]|S/ℑ|S⩽d. Given
P∈𝕂[X1, . . . ,Xn], we define

AP ≔ {i∈{1, . . . ,n} :degXi P>0}

to be the set of active coordinates of P. For any two subsets S,T⊆{1, . . . ,n}, we define

S<T ⟺ (∃i∈T∖S, S∩{1, . . . , i−1}=T∩{1, . . . , i−1})

and note that this defines a total ordering on the set of subsets of {1, . . . ,n}.
A generalized weight is a tuple 𝒘∈(ℝ>∪{⊥})n and we call

A𝒘 ≔ {i∈{1, . . . ,n} :wi≠⊥}

its set of active coordinates. We say that𝒘 is admissible if∏i∈A𝒘
wi=1. For anymonomial

M=X1
e1 ⋅ ⋅ ⋅Xn

en∈𝔐|A𝒘, we define its 𝒘-degree by

deg𝒘X1
e1 ⋅ ⋅ ⋅Xn

en ≔ �
i∈A𝒘

wi ei.

The 𝒘-degree induces an ordering on𝔐|A𝒘 by setting

M≺𝒘N ⟺ deg𝒘M<deg𝒘N

for all M,N∈𝔐|A𝒘. We may naturally extend the notions of 𝒘-degree, leading mono-
mials, etc. to polynomials in 𝕂[X1, . . . ,Xn]|A𝒘. We also define the 𝒘-simplest element
of ℑ|A𝒘 to be the unique monic polynomial B𝒘∈ℑ|A𝒘 whose leadingmonomial is minimal
for ≺𝒘.

Given a set 𝑾 of generalized weights and S⊆{1, . . . ,n}, we define

𝑾|S ≔ {𝒘∈𝑾 :A𝒘=S}.

If 𝑾|𝑺 is non-empty, then we define

M≺𝑾|SN ⟺ (deg𝑾|SM<deg𝑾|SN)∨(deg𝑾|SM=deg𝑾|SN∧M≺lexN)
M≺𝑾|S

∗ N ⟺ Π |SM≺𝑾|SΠ |SN,

for all M,N∈𝔐|S.
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5.2. Quasi-reduction for generalized weights
We next extend the definitions from section 3.4 to the case when𝑾 is a set of generalized
weights with𝑾|S≠∅ for every subset S⊆{1,. . . ,n}. For each𝒘∈𝑾 , we take B𝒘 to be the
𝒘-simplest element of ℑ|A𝒘 and let

L𝒘 ≔ lm≺𝒘(B𝒘).

Wewill sometimes write B𝒘,ℑ instead of B𝒘whenwe need to emphasize the dependence
on ℑ. After declaring that⊥<ℝ>, the set𝑾 can still be endowedwith the lexicographical
ordering. For increasing 𝒘∈𝑾 , we now set

ℜ𝒘 ≔ {M∈L𝒘𝔐|A𝒘 :Π |A𝒘M∈𝔐𝒘,AM=A𝒘}∖(((((((((((((( �
𝒘′<lex𝒘

ℜ𝒘′)))))))))))))).
Sometimes, we will write ℜ𝒘,𝑾 instead of ℜ𝒘 when we need to emphasize the depen-
dence on𝑾 . Finally, we define our total ordering ≺𝑾

∗ on𝔐 by

M≺𝑾
∗ N ⟺ AM<AN or (AM=AN and M≺𝑾|AM

∗ N)

for all M,N∈𝔐.

PROPOSITION 5.1. The ordering ≺𝑾
∗ is quasi-admissible.

Proof. It is straightforward to check that ≺𝑾
∗ is indeed a total ordering such that

M |N ⟹ M≺𝑾
∗ N

for all M,N∈𝔐, by extending Lemma 3.3. Now consider𝒘∈𝑾 and

M ∈ ℜ𝒘 ⊆ 𝕂[X1, . . . ,Xs]|A𝒘.

Given N∈supp B𝒘⊆𝔐|A𝒘, Proposition 3.5 implies
M
L𝒘

N ≼𝑾|A𝒘
∗ M.

If A(M/L𝒘)N=AM=A𝒘, then this yields
M
L𝒘

N ≼𝑾
∗ M.

Otherwise, we have A(M/L𝒘)N⊆/ AM=A𝒘, soA(M/L𝒘)N<AM, with the same conclusion. □

5.3. Complexity analysis
Given a general weight𝒘∈(ℝ>)n and a subset E⊆{1,...,n} such thatwi=1 for all i∈E, we
define𝒘\E∈(ℝ>∪{⊥})n to be the generalizedweight𝒘′withwi′=wi if i∉E andwi′=⊥ if
i∈E. If𝒘 is admissible, thenwe note that𝒘\E is again admissible. GivenD⩾d, we define

𝛀D
# ≔ {𝒘\E :𝒘∈𝛀D,E⊆{1, . . . ,n}, (∀i∈E,wi=1)}.

Note that Lemma 4.1 directly implies

|𝛀D
# | ⩽ 2n |𝛀D| ⩽ 2n (2 log2D+1)n−1 = O((logD)n−1).

The complexity bound from Theorem 4.4 also still holds in our new setting:

THEOREM 5.2. Let 𝑾=𝛀D
# . Given P∈𝕂[X1, . . . ,Xn]D, we may compute an extended quasi-

reduction (4.1) using
O(SM(D)(logD)n)
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operations in 𝕂. In addition, for all𝒘∈𝑾, we have

�
i=1

n

(degXi Q𝒘B𝒘+1) ⩽ 2n+1n! (D+1). (5.1)

Proof. For each𝒘∈𝑾 , we have
L𝒘 suppQ𝒘 ⊆ ℜ𝒘 ⊆ ℜ𝒘,𝑾|A𝒘.

Using the same arguments as in the proof of Theorem 4.4, we obtain that the relaxed pro-
ductQ𝒘B𝒘 can be computed in timeO(SM(D) logD). Since there are |𝛀D

# |=O((logD)n−1)
such products to be computed, the complexity bound follows. The inequality (5.1) is
also obtained in a similar way as for Theorem 4.4. □

This time, we have the following unconditional version of Proposition 4.5.

PROPOSITION 5.3. Let M=X1
e1 ⋅ ⋅ ⋅Xn

en be a reduced monomial with respect to B. Then

(e1+1) ⋅ ⋅ ⋅ (en+1) ⩽ 4nn! (d+1). (5.2)

Proof. The monomial M is reduced with respect to B if and only if M is reduced with
respect to (B𝒘)𝒘∈𝑾|AM

. By Proposition 4.5, this implies

(e1+1) ⋅ ⋅ ⋅ (en+1) ⩽ 4ñ ñ! (d̃+1),

where ñ≔|AM|⩽n and d̃≔dim𝕂𝕂[X1, . . . ,Xn]|AM/ℑ|AM⩽d. □

6. MULTI-POINT EVALUATION

Let 𝜶∈(𝕂n)d be a tuple of pairwise distinct points and consider the problem of fastmulti-
point evaluation of a polynomial P∈𝕂[X1, .. .,Xn]D at 𝜶. For simplicity of the exposition,
it is convenient to restrict ourselves to the case when d=2ℓ is a power of two (without
loss of generality, we may reduce to this case by adding extra points). We define

ℑ𝜶 ≔ {P∈𝕂[X1, . . . ,Xn] :P(𝜶)=𝟎}

to be the vanishing ideal of 𝜶. We assume thatwe precomputed (B𝒘,ℑ𝜶)𝒘∈𝛀D
# . For anym∈

{1,2,. .. ,2ℓ−1} and i∈{0,.. .,d/m−1}, we also assume that we precomputed (B𝒘,ℑ𝜶′)𝒘∈𝛀D ′
# ,

where 𝜶′=(𝜶im+1, . . . , 𝜶im+m)∈(𝕂n)m and D′=4nn! (2m+1).
We are now ready to state our main algorithm.

Algorithm 6.1
Input. 𝜶∈(𝕂n)d with d=2ℓ and P∈𝕂[X1, . . . ,Xn]D.
Output. P(𝜶).
Note. We assume the precomputations that are stated above.
1. If ℓ=0, then return the naive evaluation P(𝜶).
2. Compute the quasi-reduction R of P w.r.t. (B𝒘,ℑ𝜶)𝒘∈𝛀D

# .
3. Recursively apply the algorithm to 𝜶1,n/2 and R.
4. Recursively apply the algorithm to 𝜶n/2+1,n and R.
5. Return the concatenations of the results of the recursive evaluations.
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THEOREM 6.1. Algorithm 6.1 is correct and runs in time

O(SM(D) (logD)n+SM(d) (log d)n+1).

Proof. The algorithm is clearly correct if ℓ = 0. For any recursive call of the algo-
rithm with arguments 𝜶′∈(𝕂n)m and P′, Proposition 5.3 ensures that we indeed have
P∈𝕂[X1, . . . ,Xn]D′ with D′ = 4nn! (2m+1). The correctness of the general case easily
follows from this.

As to the complexity bound, let us first assume that D⩽4nn! (2d+1). Then the same
condition is satisfied for all recursive calls. Now the computation of R takes

O(SM(D)(logD)n)=O(SM(d) (log d)n)

operations in𝕂, by Theorem 5.2. Hence, the total execution time T(d) satisfies

T(d) ⩽ 2T�d
2�+O(SM(d)(log d)n).

By unrolling this recurrence inequality, it follows that T(d) =O(SM(d) (log d)n+1). If
D>4nn! (2d+1), then the computation of R at the top-level requiresO(SM(D)(logD)n)
operations in 𝕂 and we have just shown that the complexity of all recursive computa-
tions is O(SM(d) (log d)n+1). □

Proof of Theorem 1.1. The proof follows from Theorem 6.1 and Proposition 2.1, by ana-
lyzing the cardinalities of the supports involved in the quasi-reductions.

Let us revisit the quasi-reduction computed in step 2 of Algorithm 6.1. From (5.1) in
Theorem 5.2 and (5.2) in Proposition 5.3, it follows that we may apply Proposition 2.1
for 𝜋=4nn!(D+1). For the recursive quasi-reductions, we may use even smaller values
for 𝜋. This justifies that we may indeed take SM(s)=O(M(s) log s) in Theorem 6.1. □
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