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STABILITY AND LARGE-TIME BEHAVIOR FOR THE 2D
BOUSSINESQ SYSTEM WITH VERTICAL DISSIPATION AND
HORIZONTAL THERMAL DIFFUSION

OUSSAMA BEN SAID! AND MONA BEN SAID?

ABSTRACT. This paper addresses the stability and large-time behavior problem
on the perturbations near the hydrostatic balance of the two dimensional Boussi-
nesq system, taking into account vertical dissipation and horizontal thermal dif-
fusion. The spatial framework  is defined as T x R, where T spans [0, 1], repre-
senting the 1D periodic box, while R denotes the whole line. The results outlined
in this article confirm the fact that the temperature can actually have a stabi-
lizing effect on the buoyancy-driven fluids. The stability and long-time behavior
issues discussed here are difficult due to the lack of the horizontal dissipation and
vertical thermal diffusion. By formulating in the appropriate energy functional
and implementing the orthogonal decomposition of the velocity and the temper-
ature into their horizontal averages and oscillation parts, we are able to make up
for the missing regularization and establish the nonlinear stability in the Sobolev
space H?(Q) and acheive the algebraic decay rates for the oscillation parts in the
H'-norm.

1. INTRODUCTION

This paper focuses on the following 2D anisotropic Boussinesq system

U +U -VU = —-VP +v0pU+ gOey,, €, t>0,
00 +U-VO =700, (1.1)
V-U=0,

where U denotes the fluid velocity, P the pressure, © the temperature, v > 0
and n > 0 are parameters representing the kinematic viscosity and the thermal
diffusivity, respectively. Here e; = (0, 1) is the unit vector in the vertical direction,
go is a non zero constant and the spatial domain € is taken to be

Q=T xR,

with T = [0, 1] being a 1D periodic box and R being the whole line. This partially
dissipated system models anisotropic buoyancy-driven fluids in the circumstance
when the horizontal dissipation and the vertical thermal diffusion are negligible [24].

The Boussinesq systems stand out as the most commonly employed models for
studying atmospheric and oceanographic flows (see, e.g., [4], [12], [22]). Recent
research has been focused on addressing two fundamental challenges related to these
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equations, namely, global existence and regularity problem and the stability problem
on perturbations near various physically relevant equilibrium states (see, e.g., [1],
(2], 5], [9], [10], [13], [14], [15], [16], [17], [18], [19], [20], [21], [28]).

This work intends to show the H?(Q2)—stability and examine the the large-time
behavior of perturbations near the hydrostatic equilibrium (U, ©p.) with

Une =0,  Ope = goa.

For the velocity Uy, the momentum equation is fulfilled when the pressure gradient
is balanced by the buoyancy force, namely

1
—V Py + 90Opc€2 =0 or P = 593353-

To examine the stability problem, we need first to write down the equations for the
perturbation (u, p, 6), where

u=U—-Up, p=P—PF, and 0 =0 — 0Oy,

It is evident from equations (1.1) that (u,p,#) satisfies the following anisotropic
Boussinesq equations with vertical dissipation and horizontal thermal diffusion

ou—+u-Vu=—-Vp+vopu-+ glhe, z€Q, t>0,
010 +u - VO + gous = 10110,

V-u=0,

u(z,0) =up(x), 6O(x,0) = 0y(x).

The difference between the original system (1.1) and the system governing the per-
turbations (1.2) is that the temperature equation in (1.2) contains gous. Without
this extra term, the L?-norm of the velocity u to (1.1) can grow in time due to the
buoyancy forcing term gofles. With even full dissipation and thermal diffusion, as
taken in [3], solutions of the 3D Boussinesq equations can actually grow in time.
This term in (1.2) contributes to balancing gofe, in the energy estimates. Conse-
quently, the buoyancy forcing ceases to have a destabilizing impact in (1.2). In cases
where dissipation is degenerate and is only one-directional as in (1.1), it is not clear
how the solution would behave.

(1.2)

When the spacial domain is the whole space R?, the lack of the horizontal dissi-
pation complicates the control of the growth of the vorticity w = V x u, satisfying

0w + - Vw = v0pw + 90010, = €R? t>0. (1.3)

More precisely, it is feasible to derive a uniform bound on the L?-norm of the vorticity
w itself. Nonetheless, controlling the L*norm of the gradient of the vorticity, Vw,
does not seem achievable. In particular, if the temperature 6 is zero, (1.3) reduces
to the 2D Navier-Stokes equation with degenerate dissipation,

8tw +u-Vw= V&QQW, T € R2, t > 0. (14)

While (1.4) always has a unique global solution w for any initial data wy € H'(R?),
the question of whether ||[Vw(t)||z2 for the solution w of (1.4) grows with respect to
t remains an open problem.
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Furthermore, when there is no dissipation at all, namely when v = 0, (1.4) takes
the form of the 2D Euler vorticity equation

Ow+u-Vwu=0, xcR? t>0. (1.5)

As pointed out in many works (see, e.g., [8], [13], [31]), Vw(¢) of (1.5) can grow even
double exponentially in time. Particularly, the velocity of the 2D Euler equations in
the Sobolev space H? is not stable. Conversely, solutions to the 2D Navier-Stokes
equations with full dissipation

Ow—+u-Vo=vAw, zeR? t>0

decays algebraically in time, as shown by Schonbek (see, e.g., [25], [26]). The abs-
cence of the horizontal dissipation in (1.4) hinders our ability to follow the approach
used for the fully dissipative Navier-Stokes equations. Specifically, when applying
the energy method to bound ||Vw(t)|| 2, namely

1d
5 EHVW(t)H%ﬁ + V||82Vw(t)||%2 = — / Vw - Vu-Vwdz, (1.6)

the one-directional dissipation is not enough to control the nonlinearity. The chal-
lenge lies in acquiring a suitable upper bound for the term on the right-hand side
of (1.6). To effectively leverage the anisotropic dissipation, we naturally decompose
this term further into four component terms.

/Vw -Vu-Vwdr = /alul (Oyw)?* dx + /81uz 01w Ohw dx (1.7)

+/62u1 01w Oy d:z:+/02uQ (Opw)? da.

Without horizontal dissipation, establishing a time-integrable upper bound for the
first two terms in (1.7) is not possible.

When dealing with the stability problem on (1.2), we come across the same
nonlinear term presented in (1.7). Fortunately, the smoothing and stabilization
effect of the temperature through the coupling and interaction allows us to solve
the stability problem in (1.2). To reveal these effects, we start by eliminating the
pressure term in (1.2). Applying the Helmholtz-Leray projection P = I — VA~'V.
to the velocity equation in (1.2), we get

Oru = vOpu + P(gobes) — P(u - Vu). (1.8)
Using the definition of the Leray projection P,

(1.9)

_ —010, A0
P(gofes) = gofles — VAV - (gobles) = go [ e } -

0 — 2719

Substituting (1.9) into (1.8) and expressing (1.8) in terms of its component equa-
tions, yields

{@ul = I/aggul — goﬁlﬁgA‘le + Nl, (1 10)

Dyuy = v Oxpuiy + Go1 L A™'0 + Ny,
where N7 and N, represent the nonlinear terms,
Ny =—(u-Vuy — AV - (u-Vu)), No=—(u-Vuy— HhA™'V- (u-Vu)).
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Differentiating the first equation of (1.10) with respect to t, we get
Duur = vOa20yur — goO10s A1 0,0 + O, N,

Using the equation of 6 in (1.2), we substitute 0,0 in the above equation with
10110 — goug — u - VO to write

8ttu1 = V@gg@tul -+ g88182A_1UQ — go7) 8118182A_19 + g()&lagA_l(u . VH) -+ &gNl.
Additionally, replacing o019, A~16 by the first component equation of (1.10), namely
—g08182A_1¢9 = &gul — V822u1 — Nl,

we find
8ttu1 = uﬁggﬁtul + gS@lﬁgA_luz + 77811(0{&1 — l/aggul — Nl)
+go 0182A_1(u . V@) + 8tN1,
which in turn gives, due to the divergence-free condition Oyus = —0 uy,

Oyur — (MO11 + v0a2)Our + vn0i1 Oy + 93311A_1U1 = N3, (1.11)
where N3 is the nonlinear term,
N3 = (0, — n011) Ny + 90010 A (u - V).
Following the same procedure, we can easily show that us and 6 satisfy
Ostty — (nO11 + vOag) Oy + 11 gty + 9ol A ug = Ny, (1.12)
010 — (NO11 + v022)0,0 + 10110990 + 9ol A0 = Nj
with
Ny = (0, — n011) Ny — go010, A~ (u - V),
N5 = —(0; — v0a2)(u - VO) — goNs.

Then, merging (1.11) and (1.12) and expressing them into the velocity vector form,
we have reformulated (1.2) into the following new system

8ttu — (77811 + l/agg)atu + 1/7’]011822’& + g%@llA_lu = Nﬁ, (1 13)
&gte — (7]811 + 1/822)8159 + 1/778118229 -+ gS@HA_lﬁ = N5, ’

where

Ng = (N3, Ny) = —(0, — n011)P(u - Vu) + goV+T01 A (u - V)
with V+ = (0,, —;). By applying the curl of the velocity equation, we can likewise
transform (3.44) into a system of w and 6,

Opw — (MO11 + VOa2)Oyw + vndy1 0w + g0 A w = Ny,
Ol — (nO11 + v022) 040 + vnOy11 Dazf + 92011 A0 = N,
with
N7y = —(0, — no1)(u - Vw) — go01 (u - V).
Remarkably, we observe that all physical quantities u, # and w obey the same damped
degenerate wave equation, differing only in their respective nonlinear terms. Com-

pared to the original system of (u,#) in (1.2), the wave equations (1.13) reveal the
underlying smoothing and stabilization hidden in (1.2). In (1.2), where horizontal
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dissipation is absent in the velocity field, the wave structure implies that the tem-
perature can stabilize the fluids by creating the horizontal regularization through
the coupling and interaction. By taking advantage of these effects, the stability
problem on (1.2) was recently established by Ben Said and al in [1] when the spacial
domain is the whole plane R?. However, the large time behaviour of the solution
in R? remains a mystery. When the spatial domain is = T x R, this paper also
proves the stability of (1.2). Additionally, we analyze the large-time behavior of the
solutions. The core idea involves breaking down a physical quantity into its horizon-
tal average and the associated oscillation. Specifically, for a function f = f(xy, z5)
defined on T x R and integrable in z; over the 1D periodic box T = [0, 1], we define
its horizontal average f by

flaz) = /f(l)fl,ffz)dﬂfl, (1.14)
T
and we write,
f=7F+71 (1.15)

Note here that, the horizontal average £ corresponds to the zeroth Fourier mode of
f while f contains all non-zero Fourier modes.

The decomposition (1.15) possesses distinct properties. To begin with, this de-
composition is orthogonal in the Sobolev space H*(€2) for any non-negative integer.
This implies that the H*—norms of f and f are bounded by the H*—norm of
f. Furthermore, this decomposition commutes with derivatives, and f and fof a
divergence-free vector field f are also divergence-free. An essential property to be
frequently used in our estimates is that f admits strong versions of the Poincaré
type inequality

[ fllz2) < Cllofllzey,  [[fllze@ < ClOLf a1 -

Applying this decomposition to the velocity field u and the temperature 6, namely
writing

u=u-+1u O0=0+0
and exploiting the aforementioned properties we can effectively handle the nonlinear
terms in (1.7) appropriately, even when there is only vertical dissipation. More
precisely, the following theorems hold. Theorem 1.1 establishes the H Z_stability
while Theorem 1.2 specifies the decay rates of the oscillation part (u, 0).

Theorem 1.1. Let T = [0,1] be a 1D periodic box and let @ = T x R. Assume
ug, 0p € H*(Q) and V - ug = 0. Then there exists € = e(v,n) > 0 such that, if

[uollzz + (|60l 2 < e,

then (1.2) has a unique global solution (u,0) that remains uniformly bounded for all
time, for any t > 0,

t
()1 + 1017 + 2’//0 102(7) || 27
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t t
+ 2 [ 100 edr + ) [ adualiadr < 2
0 0

where C(v,n) and C > 0 are constants.

Theorem 1.1 states that any small initial perturbation, in the H?-sense, leads to
a unique global, in time, solution of (1.2) that remains small in H? for all time t.
Furthermore, it implies that the time-integral of ||0;us(7)||3, is finite.

The following Theorem asserts that the oscillation portion (u, ) decays to zero
algebraically in time in the H'-norm. This result aligns with the stratification phe-
nomenon of buoyancy driven fluids. Additionally, it affirms the observation derived
from the numerical simulations presented in [9], indicating that the temperature
becomes horizontally homogeneous and stratify in the vertical direction over time.

Theorem 1.2. Let ug, 0y € H*(Q2) with V - ug = 0. Assume that (ug, 0y) satisfies
[wollm2 + |00l 72 < e,

for sufficiently small e > 0. Let (u,0) be the corresponding solution of (1.2) with go
negative constant. Then the oscillation part (u,0) satisfies the following algebraic
decay in time,

[NIES

@l + 0] < e(1+1)"2,

for some constant ¢ > 0 and for all t > 0. In addition, (u,0) has the asymptotic
behavior, ast — 0o,

t(l@®) 1 + 10 I5) — 0.

According to Theorem 1.2, the solution (u, 0) of (1.2) approaches its horizontal
average (u, ) asymptotically, and eventually, the Boussinesq equations (1.2) evolves
to the following 1D system

ou+u-vVu+ O_ = qo 9 + vO3u,
ng 0

We briefly outline the proofs for Theorem 1.1 and Theorem 1.2. As the local,
in time, well-posedness on (1.2) in the Sobolev setting H?({2) can be established
using standard approaches such as Friedrichs” Fourier cutoff (see, e.g., [23]), the
proof of Theorem 1.1 is essentially reduced to demonstrating the global, in time, a
priori bound on the solution in H?(£2). To do so, we make use of the bootstrapping
argument (see [29], p 20). To set it up, we introduce the following energy functional
for the H?-solution,

t
B(t) = uas () + 10 ) +20 [ [0l

t t
2 / 1040]%dr + 6 / |01zl dr. (1.16)
0 0
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where 6 > 0 is a suitably selected small parameter. Our central objective, is to show
that, for a constant C' uniform and for all ¢t > 0,

E(t) < CE(0) + C E(t)?. (1.17)

To prove (1.17), we should make full use of the extra regularization resulting from
the wave structure in (1.13). Furthermore, the control on the time integral of the
horizontal derivative of the velocity field, namely

t
/ lgoBrtin(7) 122 dr (1.18)
0

plays an improtant role our proof. Note here, that the uniform boundedness of
(1.18) is not a consequence of the vertical dissipation in the velocity equation but
due to the interaction with the temperature equation. In fact, using the equation
of § in (3.61), we represent go0;us as,

g081UQ = —8t819 — 81 (u . VH) + 7]81119,
then

||9081U2||2L2 = —go/&gale 81u2 dr — g0/81u2 81(u . VG) dx -+ 7]90/81U2 81119 dx.

Hence, the time integrability of ||godiuz||7. is converted to the time integrability
of other terms. This phenomenon of extra regularization and time integrability,
resulting from the coupling, is also observed in other models of partial differential
equations, such as the Oldroyd-B system (see [7], [11]).

Once (1.17) is proven, the bootstrapping argument then gives that, if

E(0) = ||(uo, ) [|72 < €

for some sufficiently small € > 0, then E(¢) remains uniformly small for all time,
namely

E(t) < Cé? (1.19)

for a constant C' > 0 and for all ¢ > 0. In particular, (1.19) yields the desired
global H?-bound on the solution (u,f). We leave details on the application of the
bootstrapping argument in the proof of Theorem 1.1 in Section 3.

To demonstrate the algebraic decay rates on the H'-norm of the oscillation com-
ponent, as stated in Theorem 1.2, we initially take the difference of (1.2) and its

horizontal average, to write down the system governing the oscillation part (u, 6)

O + u - VU + 0ol — 02U + VP = gobes,
00 + u - VO + 13058 — n020 + gotia = 0.

(1.20)

Controling the H'-norm of (w, §) naturally involves estimating the L*—norms || (@, 0)|| 2

and [|(Vu, V)|| 2. Here, one major difficulty is that the equation of u has only ver-
tical dissipation, however, the aforementioned Poincaré inequality can only bound a
function in terms of its horizontal derivatives. Consequently, some of the nonlinear
parts associated with u can not be bounded suitably and require the upper bounds
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involving ||us||z2. To handle these terms, we seek extra smoothing and stabiliz-
ing effect on @y by exploiting the coupling in (1.20). Specifically, we introduce the
following extra term along with the H'-norm to form a Lyapunov functional,

—6(Ts, 0),

where 6 > 0 is a small constant and (Uy,6) denotes the L?-inner product. The
time derivative of this terme produces d||us||3,, which help balance ||us||3, from
the nonlinearity. Then, applying anisotropic inequalities presented in section 2, we
demonstrate the following energy inequality.

d /. _ ~ o~ _ ~ 0.,
(3 + 1813 — 02, 8)) + vl sl +nll&r8]3 + Tl <o,

resulting the desired algebraic decay stated in Theorem 1.2. More details are given
in Section 4.

The subsequent sections are organized as follows: Section 2 presents various
anisotropic inequalities and some crucial properties related to the orthogonal de-
composition, including the Poincaré type inequality for the oscillation portion f.

Section 3 is dedicated to the proof of Theorem 1.1 and Section 4 proves Theorem
1.2.

2. PRELIMINARIES

This Section serves as preparation for the proof of Theorems 1.1 and 1.2. Lemma
2.1 through Lemma 2.5 provide several frequently used facts on the orthogonal
decomposition. While Lemma 2.6 presents a precise decay rate for a nonnegative
integrable function, which is also monotonic in a generalized sense.

We start first, by presenting some basic properties of f and f

Lemma 2.1. Let Q = T x R. Assume that f defined on ) is sufficiently reqular,
say f € H2(Q). Let f and f be defined as in (1.14) and (1.15). Then

(a) The average operator f and the oscillation operator f commute with partial
derivatives,

Wf=0F=0, 0f =0of, hf=0f, Of=0f, ?:0-

(b) If f is a divergence-free vector field, namely V - f = 0, then f and f are also
divergence-free,

V-F=0 and V-f=0.

(c) f and f are orthogonal in H* for any integer k > 0, namely

(7. Py = [ DT~ Doz =0, 1 Eymy = [Ty + 17 s
In particular,

Iy < Ny and (| Fllaey < 11 ey
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The orthogonality is actually more general and holds for any integrable functions,

/Q?-ﬁd:czo.

Lemma 2.1 can be proven easily using the definition of f and f

The next Lemma compares the 1D Sobolev inequalities on the whole line R and
on bounded domains.

Lemma 2.2. For any 1D function f € H*(R),
1 1
1 ey < VE I 1 1
For any bounded domain such as T = [0,1] and f € H'(T),
1 lzery < V2IFI 2y 11220y + 1 N2y,

in particular, if the function f has mean zero such as the oscillation part f,
1 1
[l < C a1 2o

The following lemma presents anisotropic upper bounds for triple products as well
as for the L>-norm on the domain €. Anisotropic Sobolev inequalities are powerful
tools for dealing with anisotropic models. The whole space version of these type of
inequalities has previously been used in [6] in the 2D cases and in [30] in the 3D
case.

Lemma 2.3. Let Q = T x R. For any f,g,h € L*(Q) with 0,f € L*(Q) and
Oag € L*(QY), then

\ / fghdx) <O + 100 f 1 2)2 gl 21 0agl a bl 2. (2.1)
For any f € H?(Q), we have
£ Nz SCIFN LI F Nz + 10011 22) 18 |1 2
X (|0af1 12 + 1010 f || 12) 7.

Replacing f in Lemma 2.3 by its oscillation portion f, the lower-order part in
(2.1) can be dropped, as presented in the next Lemma.

Lemma 2.4. Let Q@ = T x R. For any f,g,h € L*(Q) with ,f € L*(Q) and
Dag € L*(Q), then

- ~ 1 ~ 1 1 1
| [ Fanas| < T F1 L ot nall o 22)
For any f € H*(Q), we have

I F ooy < ClFINENOFI 0o f 2|01 8a f| 2, -
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The subsequent Lemma states that the oscillation component fveriﬁes a strong
Poincaré type inequality with the upper bound expressed in terms of 0 f rather

than Vf.

Lemma 2.5. Let f and f be defined as in (1.14) and (1.15). If H&lfﬂLz(Q) < 00,
then

1120 < ClOLf | L2,
where C'is a pure constant. In addition, if ||81f||H1(Q) < 00, then

Hf||L°°(Q) < CH81f||H1(Q)-
As a direct consequence of Lemma 2.5 and the inequality (2.2), one has

~ ~ 1 1
| [ Fota] < ClosFles ol ong - (23)

We refer the readers to [10] for detailed proofs of Lemmas 2.1, 2.3, 2.4 and 2.5.

The last lemma precises an explicit decay rate in (2.5) for functions that are
integrable and are decreasing in a general sense, namely (2.4).

Lemma 2.6. Let f = f(t) be a nonnegative function satisfying , for two constants
CO>0 Cl’fld01>0,

/ f(r)ydr < Cy and f(t) <Cif(s) forany 0<s<t. (2.4)
0
Then, for Cy = max{2C, f(0),4CoC1} and for any t > 0,

ft) < Cy(1 417" (2.5)
Furthermore, f(t) has the following large-time asymptotic behavior,

A detailed proof of Lemma 2.6 can be found in [21].

3. THE H? NONLINEAR STABILITY
This section proves Theorem. 1.1.
Proof. The proof is naturally divided into two major parts. The first part is for the

existence, while the second part is for the uniqueness of solutions to (1.2).

To prove the global existence of solutions, it suffices to establish the energy in-
equality in (1.17) with E(t) being defined in (1.16). This process consists of two
main parts. The first is to estimate the H2norm of (u,f) while the second is to
estimate ||0;uz||2, and its time integral.

Note that, for a divergence-free vector field u, namely V - u = 0, we have

IVullpz = llwllz2,  |Aullz = [Vl 2,
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where w = V x u is the vorticity. Then, the H2-norm of u is equivalent to the sum
of the L2-norms of u, w and Vw.
Taking the L2-inner product of (u,#) with the first two equations in (1.2), we find
that the L?-norm of (u,6) obeys

t t
lu(®)Z2 + 0117 +2V/0 102 (7)1 22 d7+2n/0 10:6(7)I[7-dr
= [[uollZ> + [160llZ- (3.1)

Next, we estimate the L?-norm of (w, V#). We make use of the vorticity equation
and the temperature equation,

8tw +u-Vw = 1/822(,«] + 90819,

8,5«9 +u- \Y4 + JoUg = 7]8119. (32)
Dotting the equations of w and V@ by (w, V0), yields
1d
s—(lwllZ2 + [VOl72) + vl0wlliz + 0|1 VO|7: = I + I, (3.3)
2dt

where

11290/<819W—VU2'v9)dI, IQZ—/VGVUVGCLZ’

Then, expressing w and u in terms of the stream function 1, namely w = At and

u = V+ = (=0, 011)), we get

I = go /(81«9w — Vuy - VO) dx = go /(319Aw — Vo - Vo) dx

=90 /(—9 A0 + AOY 0) dx = 0.
We further write I into four terms,
I = - /(5‘1ul(019)2 + 012010020 + 0311010050 + Oyuz(9:0)?) d

= 121+[22+]23+[24. (34)

The key point here is to obtain upper bounds for the terms on the right-hand side
of (3.4) that are time integrable. By Lemmas 2.1, 2.4 and Young’s inequality, Io1,
I and I3 can be bounded as follows

121 L= /81U1(81¢9)2d1' = — /81171(81‘9)2d$

< cl|0101172 11020101 7110161 211010161 22| Ora | 2
< cllulluz 1101012, (3.5)

122 L= — /81[62819829615(7 = — /81[62815829615(7

< ¢ 1010]12,]101010]| 2,829 2. 82020]| 2. || Dy s 2
< cl|010]| g0 z2 || Orua || o2
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< cllfll = (1010112 + 9nss22), (3.6)

123 L= /82U181982¢9d$ = — /82[61815829615(7

< ¢ 1010121010101 2. || Oa10n || 2. 020211 | 221|020 .
< /001|219 1261
< cl10ll= (10101132 + 19zl ). (3.7)

Using the divergence-free condition V - u = 0, integration by parts and Lemmas 2.1
and 2.5, we obtain

[24 .= —/82uQ(829)2da: = /01'&1(829)2(11’
= -2 / 171 829 81829 dx

< c[|020]| 2 [[un || 22 | 01 ||| 01020 £ 21| 0201020 7 -
< c||0]| g2 [|Orua]| 12 [|016]| 2
——
=[|0z2uz|| 2
< cll6ll= (1100ull3e + 1010132 ). (3.8)
Hence, collecting the upper bounds on I and inserting them in (3.3), we find
d
ﬁ(HVUH%z +[IVO|72) + 20]10:Vull72 4 20]|01 V|72
< cll(u,0) 2 (0ol + 101003 + |Dr0al3). (39)

Thus, integrating (3.9) over [0,¢] and combining with (3.1), we get

t t
I 6) s+ 20 [ 0su(s) s+ 20 [ 0160 s
0 0

t
< (oo, 00 31 + / 1, )l (1000l + 191013 + 0103 ) dir

< E(0) + cE(t):. (3.10)

Njw

To bound the H?norm of (u,f), it then remains to control the L?-norm of
(Vw, Af). Applying V to the first equation of (3.2) then dotting with Vw, and
applying A to the second equation of (3.2) then dotting with A#, we find

1d
2dt
with

(IVwlze + [|A0(E)[72) + v[10:VwlZe + 0l A7 = Ty + o+ T3, (3.11)

J1 = qo /(V816’ - Vw — AuyAf) dx,
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ng—/Vw-Vu-dex,

J3 = — / A - Au-V)da.

Similarly, we need to obtaining an upper bound for that is time integrable for each
term in (3.11). Writing w and u in terms of the stream function v, namely w = A1)

and u = V¢ 1= (—=01p, 017)), we have
J1= 9o /(V@lﬁ - Vw — AusAf) dx = g /(V@ﬁ -Vw — A0 AD) dx

= 4o /(V@ﬁ -Vw — 81w AH) dr = Jo /(V@ﬁ -Vw + 81Vw . VH) dx

= 90/01(V6’ -Vw)dz = 0.
After integration by parts, we decompose Js3 it into four pieces,

J3: —/AHAulﬁledx—/AQAuQagﬁdx

= J31 + Jgg + J33 + J34. (312)

To deal with J3;, we make use of the orthogonal decompositions v = u + u and
0 =0+ 6 to write

J31 .= —/A@Aulalé’da: = —/AQAulﬁlgdx
= —/Aﬁﬁuulalgdx—/Aﬁﬁggulalgd:c

:/Aeﬁlguﬁlgdx—/Aeﬁggulﬁlgdx

= J311 + J312. (313)
Applying Lemma 2.4 we obtain,

J311 = /A9812U281§dl’

~ 1 ~ 1 1 1
< c||010]| 71101010 71| O12ua || 7 2| O2012us]| 7 [| AO]| L2
< c[|0]| 2|010|| 2 || 2| 772

< cllflle (101013 + 100l ) (3.14)
Jz1 1= — / AODpuy 0 0d

~ 1 ~ 1 1 1
< c[|010]|}2]|01010||} 2 || Oazur || 7 2| O2On2un || 2 || AD]| L2
< |0 g2 []010|| g2 || Do 12
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< cllflle (101013 + 100l ) (3.15)
Inserting the upper bounds for Js3;; and Js19 in (3.13) yields
Jor < el (10161 + 9zulle)- (3.16)
To deal with J35, we divide it first into two terms,

J30 = —/AQAUgaQQdZL’
= —/81816 Augy Ox0dx — /82829 Augy 0x0 dx
= — /01819 Aug0s 0 dx + % /Aﬁqu (020)* dx
= —/81816 Aug 0r0 dx — % /A81u1 (020)*dx

= — /8181‘9 AUQ 829 dx + /Au1 82‘9 81829dx
= J301 + J320. (3.17)

Invoking the decompositions of v and #, we can rewrite J3o; as,

J321 = —/81819 AUQ 82¢9d$(7

= — /01815811’(72 82561:17 — /81015811’(72 829~d:)5 — /810158221@ 829 dx
= Jaan1 + Ja212 + J3ms. (3.18)

The three terms in J35; can be bounded as follows. By interation by parts, Lemma
2.1, Holder’s inequality, Lemma 2.2 and Young’s inequality,

J3o11 = — /51815811?72 82§d:5

= /81811581172 825 dx

:/825(/81811581{[2d$1>d$2
R T

< [ 108101z, 1010118113,
R
< [|020]| £ | Otz | r2, 22 1010110 212,
< |02 1 (10132 | 12|01 911 0] .2
< clltll= (10vual3e + 19:6]1%2). (3.19)
By lemma 2.4 and then lemma 2.5

3912 1= —/81515811172 8250[1'
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~ 1 ~ 1 ~ 1 ~ 1
<c [|0:0]]7, [1010:0]|7:]]0110 72102011072 || Or1uz]| 2
—_——

<ln020 2,
< cffull 2| 010[7- (3.20)

Making use of the divergence-free condition of u, Lemmas 2.1 and 2.4, we have
J3213 = —/81815822u2 829 dx
= —/81015821171 829 dx

1 1 ~ 1 ~ 1
< cl|Onun |72 [|0100111 ]| 71| 0110 2| 020110|| 7 2 || 020 || 1.2
< ||| z2|010|| 2 || O | 112

< cllflla= (12101132 + 193l ). (3.21)
Inserting (3.19), (3.20) and (3.21) in (3.18) we obtain
Jaon < el|(w,0) a2 (1010113 + 1020l + 91122 (3.22)

We now turn to Js3oo. We further decompose it into two terms,

J322 = /Aul 829 81829da:

= / D111, D20 010-0dx + / Dastty Do 01 050d:
= J3221 + J3222. (323)
Due to the divergence-free condition of u and Lemma 2.4,
J3901 1= /511171 0,0 81256155
= — / Dol On0) D120
< ]| Oratiz | 21|01 Oraia |2, 101201 2.1| 020120 221|020 .2
< |0 g2 || Oaul| g2 || 016|| 2
< clltllz (1102ulle + 1010132 ). (3.24)
By Lemma 2.4,
3909 1= /822U1 0»0 812§d$
< ¢[|0120]| 221110120 22 ]| Bz 22| B2nzus ] 221|020 | 12
< cf|0]] = || Oaul| 2 (| 916|| 22

< el (0l + 10101 ). (3.25)
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Combining the estimates (3.24) and (3.25) and inserting them in (3.23) we find
Jsza < cll0ll e (1020l + 1916132 (3.26)
Putting (3.22) and (3.26) in (3.17) we obtain
Jsz < ell(u, )l (1020l + 10101z + Orual3 ). (3.27)
The next term .J33 is naturally split into two parts,

J33 = —2/A9VU1 : 81V9dx

= —Q/Aealulﬁlaledx—2/A982U181829dl’
= J331 + J332. (328)

All terms can be bounded suitably. In fact, due to the divergence-free condition of
u and Lemma 2.4,

J331 = —2/A901u10119dx
—2 / AOOyu20,0,0dx

~ 1 ~ 1 1 1
< cf|0110]]7.1]010110]| ;|| Oausa || 2 || O202us | ;2 || AD]| 2
< |0 g2 (| Ozt 2 || O1 0| 12

< clblls: (12l + 12:61%:). (3:29)
J330 can be bounded similarly, by 0,0 = 815 and Lemma 2.4,

J332 = —2/A902U10129d1'
= —Q/Aeagulalggdl’

~ 1 ~ 1 1 1
< cf|0120]| 72 [10101201| 2 | Oz un || 72| 0202 ua || 22 [ AG]| .2
< /[0l 2| Ozul| 12| 016 122
< clltllz (1100ull3e + 19101132 ). (3.30)
Inserting these upper bounds in (3.28) we get

Jss < el (101613 + 102ull3z). (3.31)

To estimate J34, we first invoke the decompositions u = 7 +u, 6 = 6+ 0 and Lemma
2.1, to write J34 as

J34 = —Q/AQVUQ : 82V9d:)3
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= -2 /(81uQ81829A9 + 0QUQ02829A9)0Z:)3
=2 / 0111201000 — 2 / Dot Dr OO AOdz:

= —2/811726102581190[93—2/81@8102562290[:):—2/62uQ02829A9d:)5

1= Jaa1 + J3a2 + Jaas. (3.32)
We start with J34;. By integration by parts, Lemmas 2.1 and 2.4 we have

Joyy 1= —2 / O11150,0500,,0dx
= 2/1’[281018250115611’

< cl|0010]|2,]1010110] 2. ]|01201| 2, 1| 02010 2, || D1 B2 | 1.2
< c|lull 21|01 32 (3.33)

Using the decomposition 6 = 6 + 0 we write J349 as,

J342 = —2/811728102582290[:):

== —2/81@818258229dx—2/81@818258225dx
= J3421 + J3422. (334)

We start with J3401. Due to integration by parts, Lemma 2.1, Holder’s inequality,
Lemma 2.2 and Young’s inequality,

J3421 = —2/81{[281825822§d$
iy / (05015501050 + 01 5>020, 0,000
= 2/025(/(8201{[2810254— 01?’[28201825)611’1>d1'2
R T

< C/R |325|<||8231172HL§1 H31325||L31 + ||81{[2||L31H8281825||L31)d:c2

< cll0uBl iz (10001l o2, 1nBoB 2,12, + 1011, 13, 1920102 12, )

< clluBlm (110201 | 2| nD:8| 12 + 1012l 121901001 12

< clltll= (1102ulle + 1910113 + 0uall3s ). (3.35)
For J3499, we apply Lemma 2.4 then Young’s inequality,

J3422 = —2/01'(72018250225(11’
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< c}|0220112 1019281 2. 101201122 92018 . 101 @ .-
< 0] 2l 210101 2 | Ov1 ) 2
< clol sl 2 (194613 + 10122 ).
In view of (3.34), (3.35) and (3.36) we have
Jsiz < ell(w,0) i (11020l + 19:60)3e + 01132 ).
Writing .J343 more explicitly and using 0,6 = 816’~, we have

J343 = —2/82uz82029A9d93

== —2/8211282298115(&—2/82u282298229dx

= J3431 + J3432.

From Lemma 2.4, J3431 can be bounded as,

J3431 = —2/82uQ82298115d9:

~ 1 ~ 1 1 1
< ¢||0110]|7211010110]| ;2 || Oaua || ;2 || 0202tz | 7 2| 0220 L2
< |0 2| 010|| g2 || O | 712

< cll0ll = (10101132 + 19l ).

(3.36)

(3.37)

(3.38)

(3.39)

The estimate of J3435 is slightly more delicate. Due to the decomposition 8 = g+ 0,

we write J3430 as,

J3432 = —2/02uQ02290229dx

= —2/821@82258225(&5—4/821@82258225(1:5— 2/021@82250225(11’

= J34301 + J34300 + J34323.

By V-4 =0 and Lemma 2.1, the first term J34391 is clearly zero,
Ty = 2 / OrtusdosBO B = 2 / 013 00sB0 B = 0.
Applying Lemmas 2.4 and 2.5 and Young’s inequality,
J34320 1= —4/52U25225822§d1'

_ ~ 1 ~ 1 1 1
< ¢[|0220]| £2[| 0220 | 72 [| 010220 || 1 | O2 2| £ 2 [| 2 D2 | 7

_ ~ 1 ~ 1 1 1
< || 0220|| 12 (| 010220 2 || 010220 7 2 || tiz| 7 2[| 0202 usa || 7 -

< |01l 1211010 12| Ozl 12

< cllfll e (101013 + 102l )

(3.40)

(3.41)

(3.42)
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J34303 1= —4/52U25225822§d1'

_ ~ 1 ~ 1 1 1
< || 0220]| £2[| 0220 | 72 [| 010220 || 1 | O2 2| 1 2 [| 2 Oz | 7

_ ~ 1 ~ 1 1 1
< || 0220|| 12 (| 010220 2 || 010220 7 2 || Otiz| 7 2 || D22 ua || 7 2
< |0 g2 |010|| g2 || O a| 712

< clltllz (1100013 + Ndaull3e ).
The bounds for Jay3s in (3.41), (3.42) and (3.43) lead to,
Jsisz < 0Lz (1910113 + 103l ).
Combining (3.39) and (3.44) and inserting them in (3.38) we obtain
Jais < 0l (101013 + 102ull3e).
Inserting (3.33), (3.37) and (3.45) in (3.32) we get
Jan < el )l (101013 + 102ulEe + Orual)3s ).
Thus, by (3.16), (3.27), (3.31), (3.46), and (3.12),
Js < |, 0)l1 = (19l + 1Onuall3 + 1026132 ).

19

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

As outlined in the introduction, we need the help of an extra regularization term to

bound J,, namely,

t
/ ||81UQ||%2 dT.
0

(3.48)

In order to make efficient use of the anisotropic dissipation, we express Jo as follows

Jg = — /81u1 (01W)2 dr — /81U2 01w 02w dx
—/82"&1 81w82wdx— /82’&2 (82w)2dx
:/82u2 (81W)2dl’—/81UQ 81w82wdx

— /82u1 01w 02w dr — /02’&2 (02w)2 dx
Z:J21 + J22 + J23 + J24.

(3.49)

The terms Jo; through Jys can be bounded in the following manner. Due to V-u = 0,

integration by parts and Lemmas 2.1 and 2.4,

J21 = —/81u1(81w)2dx

:/82uQ(81w)2 dx



20 O. BEN SAID AND M. BEN SAID
= —2/’[[201@8201@ dx

< cllial| 22101 a2 | 0o0h 5 | 2 | oD B | 02010
< cllull el yus | 2. 105l s
< cllullz (10veall3s + 1020l ).
According to Lemmas 2.1 and 2.4,
Jog 1= —/81UQ81w82w dx

= —/0127201&382w dx

1 L . L L
< c||Ovua||} 2| 0101z | ;2 | 01@]| 12 | 02010 | 7 2 || Dow || 2
1 3
< cllul| 2| Orusa|l; 2 | Ooul|

< cllullz (10veall3s + 1920l ).

(3.50)

(3.51)

To bound J,3, we first use the orthogonal decomposition of u; and w and Lemma

2.1, to write Jy3 as

J23 = —/82u181w82w dr = —/82u181@02w dx

= —/8211_181&7825(&—/827181&82&7dx—/821fl81&782w dx

= Jog1 + Jazz + Jass.

According to Lemma 2.1, the first term .Jo3; is clearly zero,

J231 = —/82u_181c~uagwdx = —/827182@/81@ dl’ldl’g =0.
R T

The terms Jo30 and Jy33 can be bounded directly. By Lemma 2.4,
J232 = — /827181&82&7 dx

1 1 1 _px _
< ¢f|02w]| 72 [|010:00]| 72| 010|122 | 02010 || 72 || Do || 2

< cllullm2]|0xull 7o,

J233 = —/82’[[181&82&] dx

1 SO S 1
< cf|Oxun || 72|01 0xtn [| 72|01 0| 2| 02010 2 (| Baw | 2
< cllull m2l|OzullZ
Inserting these upper bounds in (3.52) yields

Jaz < c||ul|m2]|Oaul) 3

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)
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To deal with Joy we use the divergence-free condition of w, Lemma 2.1, and the
inequality (2.3) in Lemma 2.5

J24 = —/82u2(82w)2da:
_ / 011 (05T + 042 da
= —2/8117182@82& dr — 2/81171(82(:;)2 dx

1 1 "
< (101 + 1105 22 ) 19171132 1050132 101 055 -
< cllullz 0zl (3.57)

Collecting the bounds for Jy; through Jos obtained in (3.50), (3.51), (3.56) and
(3.57), we obtain

Jo < cl|ull 2| Ozull7 - (3.58)
Inserting J; = 0, (3.47) and (3.58) in (3.11), yields

d

(1 AulF: + 180]32) + 2002 u 3 + 2]}, A0]13

< el (u,0) 2= (ol + 19101132 + 9hsl22). (3.59)
Integrating (3.59) over [0, t], we get

t t
1Au(t) 72 + 1260()]72 +2V/ ||82AUIIi2dT+2n/ 1A010|7-dr
0 0

t
< Il + 180003+ [ 1 0) e (10l + 10161 + vl

< E(0)+ cE(t)2. (3.60)
The subsequent step is to control the last piece in E(t) defined by (1.16), namely
t
[ lodra an (3.61)
0

Our strategy is to make use of the special structure of the equation for € in (1.2)
and replace go0ius in (3.61) via the equation of 6,

g081U2 = —8t819 — 81 (u : VH) -+ 7]8111‘9. (362)
Multiplying (3.62) by go0;us and then integrating over €2, we obtain
||g()01uQ||%2 = —go/@@lé’ 81U2 d!L’ — 90/81U2 81(u . V@) dl’ + 9077/01'&2 01119 dl’
= Kl +K2+K3 (363)
We bound K3 as follows,

1
| K3| < nllgoOiuzl| L2 [|01110]| 2 < §||90(91u2||2L2 + c|010]|7p, (3.64)
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the term with unfavorable derivative 0jus will be then absorbed by the left-hand
side of (3.64).
For Ky, we first shift the time derivative

d
Kl = —goa /819 81U2 dx + 90/819 818tuQ dr = Kll + Klg. (365)
Using the equation for the second component of the velocity, we write

K12 = —3go / 81819 8tu2 dx (366)
= —90/5119(—(u - Vug) — Oop + vOyauy + gob) da
= 90/8119 (U . VUQ) dx + 90/0119 ng dx

—g0V/8119 822U2 dx —gg/anﬁ 0 dx. (367)

Then, we apply the divergence operator to the velocity equation to express the
pressure term as

p=—A"'V"(u-Vu)+ goA™'0s0. (3.68)
),

Inserting (3.68) in (3.67), we obtain

K12 = g0/0119 (u : VUQ) dx +go/8119 (—82A_1V . (u : Vu)) dx
- g0V/8119 822U2 dr — g%/@lle 811A_19 dx

= K1 + Koo + Koz + K4 (3.69)

Due to Holder’s inequality and the fact that the double Riesz transform 0;; A1 is
bounded on L? for any 1 < ¢ < oo (see, e.g., [27]), we have

K124 = —gg / 819 811A_1019 dx S C ||819||L2||011A_1019HL2 S C ||819||%2 (370)
Thanks to Holder’s inequality,
K123 = —goy/an(? aQQUQ dSL’ S & H8110||L2 ||8221,L2HL2. (371)

By integration by parts, Holder’s inequality and the boundedness of the double Riesz
transform,

K122 = 4o / 8119 (—82A_1V . (U . VU)) dx

% / 10 DAY - (u- V) da

c||010]| L2 HA_1812V (u-Vu)| e
c||010]| 2 (|02 (u - V)| 2
Cc ||81¢9||L2 H&QU/ -Vu+u- V32u||L2

(VAN VARVAN
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< cl|010]|2 ([|O2ullLs IVullzs + [[ulloo]|VOrul|L2)
< |00l [|0pull g [[Vullar + cl|010]| 22 ||ull g2 ]|V Oyul| 2. (3.72)

To deal with K791, we rewrite it as

K121 = g0/8119(u101uQ + Ug@gUg)d!L’
= gofallgul 01uQ d!L’ + 90/01151@ 82U2 dl’

= 90/8115{[1 O1us dor + 90/811(5“_1 O1uy dx + 90/81151@ Oy dx
= Ko + K212 + Ki913. (3.73)

By Lemma 2.4, the divergence-free condition of u and Lemma 2.5,

Ko = 90/5115171 Oyuy dx

1 U S .1 .
< c||001017211020110] 2 |urllF2 [[Ovunll 72 [|Ovual| 2
—_—— ——

1 1
<llovutll 2, =l02uzll 7,

< c|lullg2 (|02l g2 [|010]] 2

< cllullz (102ullye + 19:6132). (3.74)

Due to Lemma 2.1, Holder’s inequality, Lemma 2.2 and then Young’s inequality,

K19 = 90/5115171 Oyuy dx

:90/771(/811581{[2dx1>dx2

R T

< [ mllondlus, 101z, dr,
R

< cf[wn]|peg [|01101| 2, 2, 10102l 2 £z,
< cf[wr] g [|0120]| 2 || Or iz | 2

< cllull (|1vuallf + 1016132 ). (3.75)
According to Lemma 2.4,
K213 := go / 811§U2 Oyuuy dx

~ 1 ~ 1 1 1
< c[|0110]| }1|010110]| ;2| Q2| ;2 |02 Oouia| 72 || uzl| 22

< cl|lul| g2 | 02| 21| 010]] 12

< cllull (10sulle + 19:61132). (3.76)
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Inserting (3.74), (3.75) and (3.76) in (3.73) we get

Kot < cljull e (|192ull + sl 22 + 1016112 (3.77)
It then follows from (3.69), (3.70), (3.71), (3.72) and (3.77) that

Kol < clfull (102l + 10yual22 + 10161 ). (3.78)

We now need to bound K5. We first split it into four terms,
Ky:= —g0/81u2 O1(u- Vo) dx
= —g0/81u2 O1uy 010 dx — go/ﬁluQuﬁl@lQ dx
— qo / O1ug01 U050 dx — go / O U000 dx

.= Kgl —|—K22—|—K23—|—K24. (379)

Due to 0,0 = 815, Lemma 2.4 and Young’s inequality
Kgl = —go/ﬁluQ 81U1 819 dx

= —90/811@ 01u1 01§da7

< c010]13:110:0:0]1 32110502 | 721020251 | Or s | 2

< cllull 2| 0zull 2| 010]| 2

< cllulz= (Naulle + 19161132). (3.80)

Using Lemma 2.1 and invoking the decompositions u = u + u we write Koy as

K22 = —0qo /81U2U181819 dx

= 90/8115171 Orup dx + 90/5115171 O1uy dx
= K221 + K222. (381)

By Lemmas 2.4, 2.5 and the divergence-free condition of w,

Kooy = 90/8115171 O1uy dx

1 .1 U ~
< c|010|72)1020110] 2 |uall 72 [|Ovanl]l 72 [|Ovual| L2
—_—— ——

1 1
<lloutl?, =l02uzll 7,

IN

¢ |lull g2 [|O2ul| g2 | 010]] 2

< cllullm (10sulle + 1916112 (3.82)

N
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To bound Ks9s, we first use Lemma 2.1, Holder’s inequality and then Lemma 2.2 to
obtain

Kooy := 90/811511_1 Oyuy dx

:90/71(/811581@0[1'1>d552
R T

<c [ [wEllondls, 100l s, de

R

< cllurlloeg 101102, 2 10102 22, 12

< el 011112 01 T 2

< cllull (10vuall3 + 1016132 ). (3.83)
Then (3.82), (3.83) and (3.81) together leads to

Koo < clfullm (I00ullfe + 0vualfe + 10:011%2). (3.84)

By O1us = 01us and 0 = 0+ 0, we rewrite Ko3 as

K23 = —g0/81UQ81UQ829dI

S / it 2050 d — go / DDl da
= K31 + Kasz. (3.85)

To estimate K31, we make use of Lemma 2.1, Holder’s inequality and then Lemma
2.2 to get

K31 = 90/81{[281{[2825 dx

290/825(/81{[281{[2dx1>dx2

R T

<c [ 108l10ul 1z, 01212,
R

< cl|020] 1 [|010a | 22 12 (|01 |12, 12

< ¢[|920| g1 |01 32|72

< cf|0]| sz | Orua 72 (3.86)
Via Lemma 2.4,

K3y = 90/8117231?725250[1'

~ 1 ~ 1 1 1
< ¢||020][7:1]01020]| 7 [|O1uz]| ;2 [| 0201 ua || 7 2| Orua | 2

1 1 1 3
< cl|0]| 2 [l 772110101 o | Or iz | 2
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< cll(u, 0)l1 (101013 + 10vual)3: ) (3.87)
Inserting the bounds for Ks3; and K3 in (3.85), we find
Kag < ¢l (u,0) 12 (1916113 + |9yl ). (3.88)

The last term K54 can also be bounded due to the fact that w3 = 0, Lemmas 2.4
and 2.5

K24 = —g0/81u2u281829 dx

= —90/81U271v281829d$
~ s BN 1 1
<c |[uaf 72 (|01 72| 01usl|7 |0201us]| 2|01 020 12
1
<llovizz)| %,
1 1 1 3
< cllolle lul 7a11000 ] 7o | a2
< cl|(u,0) 122 (101012 + 9ru 3 ). (3.89)
Inserting (3.80), (3.84), (3.88), (3.89), in (3.79) we obtain
Ky < ol (u, )2 (10101= + 19rsa 132 + 195l ) (3.90)

Collecting the bounds obtained above for K through K3 in (3.64), (3.65), (3.78)
and (3.90) and inserting them in (3.63), we get

1 d
5 Hgoﬁl’lm”%z < c||819||%12 —90%/81981112 dx
el (s )2 (100013 + 1020l + Orua 32 ) (3.91)

Integrating (3.91) over the time interval [0, ], we find

t t
/ H9081U2H%,2 dTS C/ H81¢9||§{2 dT—2g0/81981U2dI+2g0/8190 81U02 dl‘
0 0
t
+o / I, )2 (11006132 + 1000l + | Oru )

t t
< / 10460]2 dr + / 1sul%e dr + e (lullZp + 16]12)

+c([luollzn + 16oll7) + ¢ E(t)2. (3.92)

To conclude, we combine the H'-bound in (3.10), the homogeneous H?*bound
in (3.60) and the bound for the extra regularization term in (3.92). When doing
so, we need eliminate the quadratic terms on the right-hand side of (3.92) by the
corresponding terms on the left-hand side, then it suffices to multiply both sides of
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(3.92) by a suitable small coefficient § > 0. Taking (3.10) + (3.60) + § (3.92), leads
to

t t t
la(®)%e + 16(8) 30 + 20 / 1|2 + 21 / 1040]%dr + 6 / lgodhual2:
0 0 0

< E(0)+ cE@®)? + ¢d (Ju(®)lfe + 10)]152) + ¢ (luollfz + [160]132)

+c5/0t 18t Zadr + cé/ot 1006|2adr + ¢ B()} . (3.93)
If & > 0 is chosen to be sufficiently small, say
céﬁ%, co<v, co<n,
then (3.93) gives
E(t) < CyE(0) + Co E(t)?, (3.94)

where C; and (5 are positive constants. The proof of the desired stability result, is
then completed by applying the bootstrapping argument on (3.94). Indeed, if the
initial data (ug, 0p), is sufficiently small, say,

1
E(0) = 00)|3p: < €% = ———s 3.95
(0) = o) e < =* = o (395)
then (3.94) implies
I(u(t), 0(t)) |72 < 201 €°.
To initiate the bootstrapping argument, we make the ansatz that, for t < T
1

Et) < — 3.96
< 17 (3.96)

and we then show that E(t) actually admits an even smaller bound by taking the
initial H?-norm E(0) sufficiently small. In fact, Inserting (3.96) in (3.94) yields

3
2

E(t) < €y E(0) + CyE(t)
S Cl 82 + Cg L E(t)

20,
That is,
1E(z&)gclg2 or E(t) <20 oo =20, ¢, forallt <T.
2 16C,C2 ~ 8C?2 ’

The bootstrapping argument then assesses that (3.96) holds for all time when E(0)
satisfies (3.95). This establishes the global stability.

Finally, we establish the uniqueness of H?-solutions to (1.2). Assume that (u™®,p®, o)
and (u®,p® 6@) are two solutions of (1.2) with one of them in the H?-regularity
class say (u),0M)) € L*(0,7;H?). The difference between the two solutions
(u*, p*, 0%) with

w = u® @ =@ 0 and gt = g® g
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verifies
ot +u® - Vur +ut - Vul) + Vp* = vdapu* + gof*es,
,0" +u® - VO +u* - VOY + goun® = 1dp10",
V-u* =0,
u*(x,0) =0, 6 (z,0)=0.
We estimate the difference (u*,p*,0*) in L?*(Q). Taking the L?-inner product of
(3.97) with (u*,0*) and applying the divergence-free condition, we get
1d
2dt

(3.97)

| (u*, )72 + v||Oou*||32 + 0| 016772 = — /u* VoVt da — /u* VoW .9 dx
=1 + L. (3.98)
Due to Lemma 2.3 and the uniformly global bound for ||u®|| 2,
I, = —/u* - Vu . ut de
1

1))z (1) O L) a2 SER
< cIVu® 7 (96 22 + 19 VuDll2) * 7210 | 7 e

7

'

<c
" 3 N 1
< cf[u*|Z2 [ Oau”| 72
* (|2 v * (12
< cljullze + 710207 zo. (3.99)

Similarly, by Lemma 2.3 and the uniformly global bound for ||§™)]| -2,
Iy = —/u* VoW . 6" dx

(1))|2 (1) 1LY SERTE
< clIVOV 7 (1900 22 + 19170 122)* w170 172116
<c
* 3 * 3 *
< cllu* 1721100 172 160°)1 2
< el 12 (Il + 110012

1%
< efl07172 + ellu |z + 1100w |72 (3.100)

Putting the estimates (3.99) and (3.100) in (3.98) leads to
Ld
2dt

v
< eIl + 16071122 ) + 5w’ |32

1™, 022 + vl 02" [I 2 + | 0107122

or

d * * * * * *
N, 6) 52 + vl 02wz + nll0167 (172 < ell(w”, 07)17. (3.101)
Gronwall’s inequality then implies,

[u"(E)]|2 = [|6"(8)]| > = 0.
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In other words, these two solutions coincide. This finishes the proof of Theorem
1.1. [
4. DECAY RATES RESULT
This section is devoted to the proof the decay rates presented in Theorem 1.2.

Proof of Theorem 1.2. Taking the average of the system (1.2) and using the fact
that u - Vu = 0, we write the equations of (u, 6),

— 0 0
o+ u-Vu+ = — | +voiu,
t <a@) & (9) 2 (4.1)
00 +u -Vl =0,
where gg is a negative constant. By subtracting (4.1) from (1.2), we get
By + 1 - ViU + 05T — VIR + VP = gofles,

_ o . (4.2)
80 + u - VO + 62050 — 020 + gotiz = 0.

Taking the L*-inner product of (u,#) with (4.2) yields,
Ld
2dt
:—/u-va-adx—/uaazu-adx—/u-v@édx—/@azéﬁdx
= Al + Ag + A3 -+ A4. (43)

Now, we estimate A; through A4. The first term A; is clearly zero due to V-u =0
and Lemma 2.1,

(1032 + 191132 ) + vl 2aitl3 + nlnB2:

A= — m~ﬂdx:—/u-Vﬂ-ﬂdm+/u~Vﬂ~ﬂd:¢zO. (4.4)
> %
Likewise,
As ::/u-Vg-gd:)s:(). (4.5)

To bound A, we first write it as,
Ay = —/u}@ﬁ-ﬁdz
= [ @i - [ Boswinds

= Agl -+ A22. (46)
Due to the fact that u; = 0 we have,
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Applying Lemmas 2.4 and 2.5, the divergence-free condition of u and then Young’s
inequality leads to

Ay 1= — / Oy da

1 1 1 SO

< || 05t 2| wzl| 7, | otz || £ - [ l|Z2 [Orua |7,
1 1 1

<lonail|Z,=l0e73 2, =[0>733] 2,

< cllull =1 . 057
< cllulle (13 + 157132 ). (4.8)
Inserting (4.7) and (4.8) in (4.6) we get
As < clpulle (11122 + 0571132 ). (4.9)

The last term A4 can be bounded via Lemma 2.1, Hélder’s inequality, and Lemmas
2.2 and 2.5,

Ay = —/12'2825-50[:)3

= — / 025</9~@dx1>dz2
R T
< |00 25 122 | 2216 2
< l|020]| 1 ||| 121|016 .
< cl|6]] g2 |1 @21 211010 12
< cll0ll e (13 + 10083 ) (4.10)
Combining the estimates of A; through A4, we get

1dy, - ~ N N
S (115 + 1813 ) + vl0aitl: + nllond]3-
< el Ol (Il + 10503 + 12:83).  (411)

Applying V to (4.2), we write

VU4 V(u- V) + V(ta0st) — vV + VVP = goV(fes)
VO + V(u - VO) + V(10:0) — nd2Vh + goViiz = 0.

by (Vu, V6), we get

(4.12)

Dotting (4.12

~—

d _ ~ _ ~
Z(IVE@) 122 + V0 [2:) + V02Vl + nl|on V6] 3.

= —/V(u -Vu) - Vudr — /V(ﬁg@gﬂ) - Vudz

N —
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— / V(u- Vo) Vods — / V (2050) - VOda
= Bl+Bg+Bg+B4.

The terms B; through B, can be bounded as follows. We start with Bj.

Lemma 2.1, we write B, as,

By :=— [ V(u-Vu) - Vudz

:—/V(u-Vﬂ)-Vﬂdm+/V(m)-Vﬂdx

- -
g

=0

= — /81[61816 . 81ﬂdl' - /81U282ﬂ : aﬂjdl’

— /82u161ﬁ . 82ﬁda7 — /02’&202& . 82170[:)3
:= By + Bz + Bz + By

Further, we divide the first term Bj; into the following two integrals,

BH = —/81u1816~ 816615(7

_ / OO Ohiiyde — / DD Tnde
= B111 + Bi12.

By the divergence-free condition of u and Lemma 2.4
By = —/811’[181{[1811’[1dx
- [otdtosinds

1 .1 .1 U S
< c||Oatia|| L2 || G2tz || 72| 0102tz || {2 || Dotz ||} 2 || D2 022} -
< c||ull 2|02 |71

Due to V - u = 0, integration by parts and Lemma, 2.4
Biyg = —/811’[18111}811’[2dx
~ [ttt
= 2/172820127201272dx

1 1 1 St
< || 0201 ta| L2 [[ua ||} 2 || Ootia |7 2 (| Orua | 7 21| O1 01z ||} -

1 3
< c|lull m2([uzl| 7|02l £

31

(4.13)
Using

(4.14)

(4.15)

(4.16)
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< cllull (11132 + 19513 ). (4.17)
Inserting the upper bound for Bjy; and Bjpp in (4.15) we get
Bu < cllulle (10132 + 1953 ). (4.18)
To deal with Bjs, we write it first as

Blg = —/81U28217' 816615(3

_ / On it T — / OnitOniindh T
= Blgl -+ 3122. (419)

For Bjs;, we use the divergence-free condition of u and Lemma 2.4

Bi = — / R / Ot Dy

1 L L L
< cl|Ovtz| L2[|Oaun || 72 (| 01 02tin || 15 | Oatiz | £ 2 | D2z | 7
< cllull 2| Oaa| [ (4.20)

The second piece Bigs can be bounded using integrating by parts, Lemma 2.4 and
then Young’s inequality

Biag = —/81@82@81@dx
= 2/8281172{[281{[2dx
1 1 1 1
< | 020110 | 2| || 7, 102102 | 22 [| Oz 7 |01 Ov iz 7
< cllull 152112571 3
< cllullz (11132 + 1053 ) (4.21)
Combining (4.20) and (4.21) and inserting them in (4.19) we obtain
Bis < cluls (|12 + 211 (4.22)
The term B3 is naturally divided into two integrals,

Blg = —/02’&101’(7' 82ﬁdl'

= — /8211181’[[182’[[1d5(7 — /8211181’[[282’[[2d$
= Blgl -+ 3132. (423)
Due to V - u = 0 and Lemma 2.4,

Bz = —/82U18117182?71d55
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= / 02u182u~282u~1dx

1 L L L
< c|Oaun || 2| O2tiz || 72| 0102tz || ;2 || Dot || 2 || D2 Optin || £ -
< c||ull 2|02 |71 (4.24)

Integrating by parts, making use of Lemma 2.4 and then Young’s inequality

Bizp = —/azuﬁﬂfzaz?fzdx

_ / ity ity + / Dyr a0 Ooinda

1 B S B S .1
< c||010un || 2 || ua|[ 72 (| Oauia| 72| Do | 2|01 Dotz | 7
1 1 1 1
+ cf|Oaun || p2[|w2| 7 | O2tia|| 2 |01 Ootia | 2 (|01 01 Dotin | 7
1 3
< clullm2([ual|7 (|02l £
< cllull (121132 + 1953 ). (4.25)
Inserting the estimates (4.24) and (4.25) in (4.23) we get
Bus < cllull (|Ial132 + 192iil3 ). (4.26)
The last term By, can be bounded directly via Lemma 2.4,
Bl4 = —/02’&202’(7 . 8217d:)3
1 1 1 1
< c||Oaus| 22| Ooul| 7 |01 D2t 72 || Oaul| 72 (| 0200 7
< clul| 2| Dol 771 (4.27)

Collecting the upper bounds obtained in (4.18), (4.22), (4.26) and (4.27) and insert-
ing them in (4.14), yields

By < clul (13 + 1927l ). (4.28)
The next term By is naturally split into four parts,
By = — / V (u0:1) - Vudzx
= —/8117282ﬂ-81ﬁd:)3—/@u}@ﬂ-@ﬁdzz
- /1728182ﬂ~81'11d:c - /@&@H-@ﬂdm

= Bgl + BQQ + Bg3 + BQ4. (429)

We rewrite Bsy; as,

Bgl = - /01’(7202@ . 81ﬁd:)3
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— - [omomoiids - [ om0modds
:= Ba11 + Baa. (4.30)
Clearly, due to uy = 0,

Bglg = —/811728277281172dx =0. (431)

By the divergence-free condition of u, integration by parts, Lemma 2.1, Holder’s
inequality and then Lemma 2.2

By = —/8117282171811716155
- / On Oy Ty

_ / BT Dy

:/82u_1</@8182@dx1>dx2
R T

< || Osur| L [ w2l £2 (|01 Doz 2
< c||Oxtr| 1 ||z | 22 || 01 D22 || L2

< cllullm2lluz|| 2| Oyl
< e (1132 + il ). (132
It then follows from (4.31), (4.32) and (4.30) that
Bax < cllull (1027013 + 1321132 ). (4.33)
According to Lemma 2.4,

BQQ = —/82{[282ﬂ . 82?7615(7

1 .1 L 1
< c||0aT| 2 || Oatia ||} 2 |01 Dot || 7 || Do) 7 2 [| D2 Ot 7
< c|lull g2 |02u|71- (4.34)

By definition of w,
Bys i= — /1728182ﬂ -Ovudx = 0. (4.35)
Due Lemma 2.4 and Young’s inequality,
By = —/u}@ﬁﬁ - Oqudx

1 1 L L
< || 02021 2 || Uz || ;2 || Oatiz || 2 || O] 2 || O1 0o} -

1 3
< cllul[ g2 ([uzl| 21|02l £
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< cllull (10132 + 19531 ).
Collecting the estimates (4.33), (4.34), (4.35), (4.36) and (4.29), we get
By < cljully: (1l )12 + 1053 ).

To bound Bs, we first write v = u + w and use Lemma 2.1

—~——

By = —/V(u~V§)-V§d:¢

:_/V(u-vé)-véda:+/V(u-v5)-védx

J

-~

=0

= / 9100, 1,0,0dx — / 02001120, 0
— /81582U182§d$ — /82582172825(&5
:= D31 + B3y + B3z + DBsy.
All terms in (4.38) can be bounded suitably. In fact, by Lemma 2.4,
By = — / 0100110, 0dx

< || Oviin| 12]|910]| 2.1 0101 0] 2. (10101 2. || 0201 01| 2
< c||ull 201071

For Bsy, B3z and Bsy we use Lemmas 2.4 and 2.5,
By = — / 0500, 120, 0dx:
~ ~ 1 ~ 1 ~ 1 ~ 1
< cl|vuzlzz [|0:0][72 [1010:0]17211010]|7:11020:0]|7
———

1
<1101020] 7,

< cllull =100,

ng = —/81582u1825da:

~ 1 ~ 1 ~ 1 ~ 1
< c||Osunl|r2 (102072 [[01026]17211010]|7: 110201017
1
<[1910:0]| %,
< cllull 21010131,
and

Bay = — / 0,001,050

35

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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~ ~ 1 ~ 1 1 1
< c||0:0[12 (020172 [[01020]|7:[|O2tia]| 72 (| 02000 7
1
<[101020]| 7,
< cll6 a2 |02l 1111016 e
< cl0llu= (10513 + 101613 ). (4.42)
Combining the estimates (4.39), (4.40), (4.41), (4.42) and (4.38), we obtain
By < ol (u,0) (02135 + 1918113 ). (4.43)
To deal with By, we split it into four pieces,

By = — / V (20,0) - VOdx
= — /81(’[[2825) . 81§d:c - /82(172825) . 82§d:c
- / 0,130,000, 0dx — / 1120,0500,0dx

- / 12050050 — / 130,0500,0dx
= B41 + B42 + B43 + B44. (444)

The terms above can be bounded as follows. Due to the definition of the horizontal
average 0,

By = — / 112010500, 0dx = 0. (4.45)

For By, we use integration by parts, Lemma 2.1, Holder’s inequality and then
Lemma 2.2

B41 = —/81{[2825815(&5

- / 120,00,0,0dx

:/02§</1T281015d1'1)d1’2
R T

< |02l 25 |l 12101040 12

< )| 30| g1 [| G| 12101010 2

< cl|6] a2 2l 21 4B

< cllflle (a3 + 1028113 ). (4.46)

The other two terms B3z, By, can be bounded via Lemmas 2.4 and 2.5,

By == — / Oyiin0s00,0dx
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_ ~1 ~1 _ 1
< c||0x0]| 2 [|020] 72 (101020 7. |02tz || 2 || 0202tz | 7 -
1
<[101020]| 7,
< |0 g2 |010|| g1 [| D20 | 1

< cll0ll= (1010113 + 023 ). (4.47)

By = — / 11205050050

_ ~1 ~1 1 1
< || 02050|| 2 [|020]|72 (101020} 2 ||t02]| 72 [|Ortia ]|} -
1
S||3132§||22

1 1 ~
< cf|0]| g2 ||uz |7 1|02l F1[|016]]

< cll0ll e (1053 + 22 + 10113 ). (4.48)
Inserting all the bounds obtained above for By; through Byy in (4.44) leads to
Bu < el (u, )2 (1057113 + 193113 + 121132 ). (4.49)
Collecting (4.28), (4.37), (4.43) and (4.49) gives
1d ~ ~ ~ ~
S (IVE I3 + V8- ) + vl2:VillF. + nllo Vel 3.

< ol )= (105730 + 10401 + 1BR:) . (4.50)

Now, to control the norm ||uy||z2 present in (4.11) and (4.50), we need to add the
following term,

d . s -

—=(02,0)) = ~0(0iz, 6) — 8z, 09,

with 6 > 0 is a small constant to be fixed at the end of the proof. Doing so, we
generate an extra regularization term that helps bound ||us||r2. Note that, this
stabilizing term comes from the interaction between u and 6. Due to Holder’s
inequality, we have, for sufficiently small § > 0,

1@, 0) 13 — 8(w,6) > 0.
Using the first equation of (4.2) and @z = 0, we write

Oyl + u - Vi +@@—ua§@ + 0o = gof. (4.51)
-0
Applying V- to the first equation of (4.2), we obtain
V- (- V) + V- (3957) + AF = gods0. (4.52)
Making use of (4.52), we have

F= A"V (1 Vi) — A7V - (505T) + goA 1840,
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Then,
B = —DA IV - (1 Vi) — AV - (G505T) + goDadaA1E. (4.53)

By (4.51) and the second equation of (4.2), we write

—5%(@, 0) = —6(dyin, 0) — &(ts, 0,0)

= —5(gof — Oop + VOt — u - Vi, 6)

— 0(u2, —gota + n@fg— Up0s8 — u - Vg)

= —god|0]|% —I—/agﬁgdx—5V/0§1725dx+5/u/-€/ﬁ'2§d1’

+ god|| @22 — 57;/8%5@7261:6 + 5/@@32%:5 + 5/u - VOiydz

The terms N; through Ng obey the following bounds. For N,, we use (4.53) to
rewrite it as,

No:=4§ / oplda
— / BAY - (u- V1) - Odz — 6 / AV - (G057 - Odx

+ god / DOy AT0 - Oda
= N21 + N22 + N23. (455)

By Lemma 2.1 and integration by parts we split Ny, into three pieces
N21 = —5/82A_1V . (U/_\V/"J) . gdllf

= —6/82A‘1V : (u~Vﬂ)-§dm+5/82A_1V (u-Va) - Odx

J

-~

=0

= / AT, (uyD170) - Odx — & / Oy A0y (ug8,10) - Oda
= / (u1010) - AT 010dx — & / (usdot) - DoA™ 0y0da (4.56)
- —6/81171’12-82A‘181§d:c— 5/ulﬂ~8182A_1815dx

—4 / (usdot) - DoA™ 0y0da
= Nai1 + Naig + Noys. (4.57)
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Due to V - u = 0, Lemma 2.4 and the boundedness of the Riesz transform,

Ny = —6 / Oyl - o AT10,0dx
-5 / Oytinll - Oy A™10,0dx

< it 21| Baial| . 1020 | 22 1922 018112210102 016 7,

< cljull |0l 18] 2210461

< cljul| 2|0 111|010 a0

< clull= (573 + 12,813 ). (4.58)

According to Lemma 2.4, the boundedness of the Riesz transform, Lemma 2.5 and
V-u=0,

N212 = —5/’&1& . 8102A_181§d1’

1 1 a1 o~
< cllun | g2 ||| 3 ]| 00| 3, |01 02 A7 016] 22| 01010 A1 0462,
1 ! ~ 1 1
< cllull g2 ||l 721|020l 2110101 721]010:10]| 7
- ~ 1 i ~
< cllullm2([[urllpz + ||uzl|z2) 2 || 0ot 31 [| 010 0

<clulm (@B @I + 105 + 10:8)3)
——

<[y |12, =023 12,
< clull (1B 13 + 10513 + 120613 ). (459)
Applying Lemma 2.4, the boundedness of the Riesz transform and then Lemma 2.5,

N213 = —5/(’&202’17) . 02A_182§da7

< cljus | 21102 £ 102057 2, |02 0,62, 9184 0,8,
< clful] 22|57 211811 2,119,112
< clull 2 10sll 1 1026
< cljull (10571 + 10,813 ). (4.60)
The bounds in (4.58), (4.59) and (4.60) lead to
Nox < elfulle (11132 + 10573 + 19,8113 ). (4.61)

Now we turn to the next term Noy. Using Holder’s inequality, the boundedness of
the Riesz transform and Lemmas 2.1, 2.2 and 2.5

Ngg = —5/02A_1V . (172826) . gdl’
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< cd]|0pATY - (205)]| 210 2
< 0|02 2|6 2
< 00027 15 || T2 | 2 [10] .
< ¢8|yl g1 || G| 2116 2
< cblull 2|2l 21016 2

< cdllulle (12132 + 10483 ) (4.62)

To deal with Naz, we integrate by parts, use Plancherel’s theorem and then Lemma
2.5,

N23 = god/agagA_lg' gdl’
= g05/a2A—%5.82A—%5dx
= g00]|0A10]3.2

2 =
:9052/]1%]{;257_%‘9(]@52”2%2

kEZ
k20

<) / &10(k, &) = d]|0a0]172 < cd]|21050]72 < 601031, (4.63)
R

keZ
k#£0

where we denote A = (—A)% and we have used the fact that the oscillation part

5(0, &) has the horizontal mode equal to 0, namely 5(0, &) = 0.
Collecting (4.57), (4.62), (4.63) and (4.55), we find

Ny < |, O)ll e (10573 + 13al12: + 104003 ) + eoll@ndl. (464)

To deal with N3 we use V - u = 0, integration by parts, Holder’s inequality and
Lemma 2.5,

Ny == —6v / Rirfdx = dv / 820,y O
— —bv / 11020, 0dx

< 6v|in 121182018 12

<c( Jml +12:000%)
——

<llovut]l] ,=[102uz]12 5

< o (103 + 10,813 ). (4.65)



ANISOTROPIC 2D BOUSSINESQ SYSTEM

41

To estimate N, we make use of Lemma 2.1 and integration by parts, to write it as

N, ::5/u-Vﬁg§d1’

:5/u-V@5dx—5/u-Vﬁ2§dx

- -
'

=0

) / udyinfdr + & / wdyi0dx

=6 / Olitin0dx + 8 / udotinfdz
= Nai + Nayo.
By Lemmas 2.4 and 2.5
Ny = —0 / O litnOdx

1 U A R
< cl|Ovull 2| uzl| 2l O2uz 72 101172101611 7
AU
< cllullgz |zl 72 1050|2201 0]| 1
< cllullzz (157113 + 1939113 + 1721132 ).
Similarly,
N42 == 5/1,682?’[25(&5
SO U SN UIS B O
< cllull 2 || Oxuz | 221 0202w | 221161 22 || 0101| -
< cllull 2| Oxul| 11 [| 010|111
< cllull= (1ol + 19371131 ).
Inserting (4.67) and (4.68) in (4.66) we find
N < edllull (1057013 + 193013 + 1721132 ).
Clearly, the term Ny can be bounded via Lemma 2.5,
N5 = —god|0]32 < ¢d]|010]|2> < c6]|010]| 1.
Applying Holder’s inequality and Young’s inequality,
Ng := —0n / 82 0tda
< )13 2 @ | 2
< cb[|030)] s |2 2

~ §,
< cd)|010)3 — 901||U2||%2-

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)
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Using integration by parts and Lemma 2.4, we obtain
N7 = 6/272172825(1:5 = 25/0217217250[:)3
1 S S S
< cd||Oatia|| 72 [|0102un || 72 ||z 72 (| Oowa| 72 0| 2

3 1
< c6[|Oxul| 22 |uallZ- 16| a2

< 0|0 = (1021 + [[@2]Z2)-

(4.72)

It remain to bound the last term Ng. Making use of Lemma 2.1, we divide it into

three parts

Ng := 5/u-V§ﬁgd:)§

:5/u-V§Ugd$—5/u-V§ﬁ2dx

- -
'

=0
-6 / 0.0,0tydr + 5 / U0, 0tiyde + 0 / U900t da
:= Ng1 + Ngo + Ngs.

Due to Lemmas 2.4, 2.5 and divergence-free condition of u, we have
Ng; := 6/171615172d9:

1 1 1 ~
< cdljun| 72 |Ovun | Zelluzl| 22l O2uz | 7211016 2
3 1 ~
< cd||Opull 72 [|uzl| 7211010 2
< cd|0]| = (11022l 71 + [[@2]|72).
By Lemma 2.1, Holder’s inequality and Lemma 2.2,
Ngg = 5/71815172d1’
< 3 9165
< o[ g5 1016 2 || .
< o6 [ull [|046]| 2|32 | 2
< callulle (10,013 + a3 ).
Due to @y = 0, integration by parts, Lemma 2.4 and Young’s inequality
Ngg := 0 / us0o0izd = § / U30005d
=20 / Dz Oipd

1 1 1 ~
< c0|Optiz| 7| 0100t || 7 2|2 | 2 | Oatia || 2 || D20 || L2

(4.73)

(4.74)

(4.75)
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3 1
< cb]|0pul| |2l 22 6] 2
< <810l (110203 + 12113 ) (4.76)
Inserting (4.74), (4.75) and (4.76) in (4.73) leads to
Ny < e u, ) = (102730 + 132 + 12363 ). (477)

Considering (4.54) and collecting (4.64), (4.65), (4.66), (4.70), (4.71), (4.72) and
(4.77), we obtain

5 (i5,8) < g0l + (u, 0) = (53 + 1130
— o 3 + e (12573 + 1073 ). (4.78)
It then follows from (4.11), (4.50) and (4.78) that
1 + 18130 — 6 ) + 20|+ 20110:81
< cll(u, ) 2= (a3 + 100003 + 1132
902 N3 + el 0) L (10573 + 3

+ o (0al3 + 110083 )

Using Theorem 1.1, if & > 0 is sufficiently small and |[ug||zz + ||fo]lzz < €, then
| (u(t),0(t))|| m2 < ce and so,

d _ ~ o~ _ ~
(s + 1803 — 002, 8)) + 20l + 201018113
< ce(10atl s + 101013 + 1321132

30, 1o ~12 ~ 112
+ 907 Nal132 + cde (1 0ail3 + 121132
+ b (|10l + 10u6]15 ).

Choosing € > 0 such that ce < —gomin(3, $), we obtain

)
74
(1B + 18130 — 5, 8)) + 20135 + 20010481

< (1ol + 10,813 ) — 902513

30, - o _ _
+ g0 NialE2 — 90 (10003 + 2l )

+ o (053 + 101613 )

) _ » ~
< o3l + es (a3 + 117 ).
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Choosing § > 0 such that cd < min(v, 7, 5), we get
d (i~ 2 012 ~ ~112 0|12 0~ 2
= (Il + 08113 — 032, 8)) + wlGuitl + o181 — o7 lldal3 < 0. (4.79)
Due to the above choice of §, we obtain
L~ 012 ~
5 (N3 + 10113 ) — 822, 8) = 0.
or
Lo |12 ~112 012 ~ 3 1~2 012
Ul + 1101 < [allz + 16117 — 0z, 0) < ([l + [10]5).

For any 0 < s < ¢, integrating (4.79) in time leads to

SO + 18015 + [ w053 + 1103715 — 51215
< DU + 18
Then, for any 0 < s < t, we have
@)1 + 101 < 3(1[a(s) N7 + 10(s)]170) (4.80)

and

o _ " 5 _
/ (N dsall 7 + 0013 — 901||U2||iz)d7 < C<oo
0

Combining with the time integral bounds from Theorem 1.1,

/00 |G| 32 dt < o0, /00 |O1us||3. dt < oo and /OO 101013 dt < oo,
0 0 0
we get

/Om(llﬂ(t)llip + [18(6)][31) dt < oo. (4.81)
Finally, applying Lemma 2.6 to (4.80) and (4.81) leads to

[EO3 + 16 150 < e(1+6)7
and the asymptotic behavior, as t — o0,

t([E®) 10 + 10(0)]17:) = 0.

This completes the proof of Theorem 1.2. O
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