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STABILITY AND LARGE-TIME BEHAVIOR FOR THE 2D
BOUSSINEQ SYSTEM WITH VERTICAL DISSIPATION AND
HORIZONTAL THERMAL DIFFUSION

OUSSAMA BEN SAID! AND MONA BEN SAID?

ABSTRACT. The hydrostatic balance or hydrostatic equilibrium is one of the most
prominent topics in fluid dynamics, atmospherics and astrophysics. In fact, our at-
mosphere is mainly in hydrostatic equilibrium, between the upward-directed pres-
sure gradient force and the downward-directed force of gravity. Understanding the
stability of perturbations near the hydrostatic balance of the Boussinesq system
may help gain insight into some weather phenomena. This paper is concerned
with the 2D anisotropic Boussinesq equations involving only vertical dissipation
and horizontal thermal diffusion. When the spatial domain is Q = T x R with
T = [0, 1] being a 1D periodic box, this work establishes the stability and specifies
the precise large-time behavior of perturbations near the hydrostatic equilibrium.
The approach here is to distinguish the vertical averages of the velocity and tem-
perature from their corresponding oscillation parts.

1. INTRODUCTION

This paper focuses on the following 2D anisotropic Boussinesq system

OU +U-VU = —VP + 10U + goOey, z€Q, t>0,
V.U =0,

where U denotes the fluid velocity, P the pressure, © the temperature, v > 0
and n > 0 are parameters representing the kinematic viscosity and the thermal
diffusivity, respectively. Here e; = (0, 1) is the unit vector in the vertical direction,
go is a non zero constant and the spatial domain € is taken to be

Q=T xR,

with T = [0, 1] being a 1D periodic box and R being the whole line. This partially
dissipated system models anisotropic buoyancy-driven fluids in the circumstance
when the horizontal dissipation and the vertical thermal diffusion are negligible [24].

The Boussinesq systems are the most widely used models for atmospheric and
oceanographic flows (see, e.g., [4], [12], [22]). Over the past few years, many efforts
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have been devoted to understanding two fundamental issues concerning the Boussi-
nesq systems. The first is the global existence and regularity problem and the sec-
ond is the stability problem on perturbations near several physically relevant steady
states (see, e.g., [1], [2], 5], [9], [10], [13], [14], [15], [16], [17], [18], [19], [20], [21], [28]}.

This work intends to assess the stability and the precise large-time behavior of
perturbations near the hydrostatic equilibrium (Uye, ©p.) with

Une =0,  Ope = goa.

For the static velocity Up., the momentum equation is satisfied when the pressure
gradient is balanced by the buoyancy force, namely

1
—Vphe -+ g()@he €y = 0 or Phe = 5931’3

To understand the stability problem, we write the equations for the perturbation
(u,p, ), where

UIU—Uhe, p:P—Phe and 9:@_@he-

It is easy to check that (u,p, ) satisfies the following anisotropic Boussinesq equa-
tions with vertical dissipation and horizontal thermal diffusion

ou—+u-Vu=—-Vp+vopu-+glhe, z€Q, t>0,
0,0 +u - VO + gous = 10116,

V-u=0,

u(z,0) =ug(x), 6O(z,0) = 0y(x).

The difference between the original system (1.1) and the system governing the per-
turbations (1.2) is that the temperature equation in (1.2) contains gous. Without
this term, the L?-norm of the velocity u to (1.1) can grow in time due to the buoy-
ancy forcing term gofles. As specified in [3], solutions of the 3D Boussinesq equations
with even full dissipation and thermal diffusion can actually grow in time. This term
in (1.2) helps balance out gofe, in the energy estimates. Therefore, the buoyancy
forcing no longer plays a destabilizing role in (1.2). When the dissipation is degen-
erate and is only one-directional as in (1.1), it is not clear how the solution would
behave.

(1.2)

When the spacial domain is the whole space R?, the lack of the horizontal dis-
sipation makes it hard to control the growth of the vorticity w = V X u, which
satisfies

0w + - Vw = v 0pw + 90010, = €R? t>0. (1.3)

More precisely, we can obtain a uniform bound on the L2-norm of the vorticity w
itself, but it does not appear possible to control the L?-norm of the gradient of the
vorticity, Vw. In particular, if the temperature 6 were identically zero, (1.3) reduces
to the 2D Navier-Stokes equation with degenerate dissipation,

8tw +u-Vw= V&ng, T € R2, t> 0. (14)

(1.4) always has a unique global solution w for any initial data wy € H'(R?), however
the issue of whether ||Vw(t)| 2 for the solution w of (1.4) grows as a function of ¢
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remains an open problem. Furthermore, when there is no dissipation at all, namely
when v = 0, (1.4) becomes the 2D Euler vorticity equation

Ow+u-Vw=0, z€R*® t>0. (1.5)

As pointed out in many works (see, e.g., [8], [13], [31]), Vw(¢) of (1.5) can grow even
double exponentially in time. In particular, the velocity of the 2D Euler equations
in the Sobolev space H? is not stable. In contrast, solutions to the 2D Navier-Stokes
equations with full dissipation

Ow—+u-Vwo=vAw, zeR? t>0

decays algebraically in time, as shown by Schonbek (see, e.g., [25], [26]). The lack of
the horizontal dissipation in (1.4) prevents us from mimicking the approach designed
for the fully dissipative Navier-Stokes equations. In fact, when we resort to the
energy method to bound ||Vw(t)| 2, namely

1d
2.dt
the one-directional dissipation fails to control the nonlinearity. The difficulty is how
to obtain a suitable upper bound on the term on the right-hand side of (1.6). To

make full use of the anisotropic dissipation, we naturally divide this term further
into four component terms

IV (@)[2 + |0y Veo(t) |2 = —/w V- Veds, (1.6)

/Vw -Vu-Vwdr = /alul (Oyw)?* dx + /81uz 01w Ohw dx (1.7)

+/82U1 81w82w d:c+/82uz (82w)2 dx.

Due to the lack of the horizontal dissipation, the first two terms in (1.7) do not admit
a time-integrable upper bound. This explains the difficulty of seeking a solution w
of (1.4) in H? as well as lowering the exponential upper bound.

When we deal with the stability problem on (1.2), we encounter exactly the same
term in (1.7). Fortunately, the smoothing and stabilization effect of the temperature
through the coupling and interaction make the stability problem on (1.2) possible.
To reveal these effects, we first eliminate the pressure term in (1.2). Applying the
Helmholtz-Leray projection P = I — VA™!V- to the velocity equation yields

Oru = vOapu + P(gobes) — P(u - Vu). (1.8)
By the definition of PP,

(1.9)

_ —010oA710
P(90992) = gotley; — VA 'v- (90992) =90 [ e } .

60— 0sA10
Inserting (1.9) in (1.8) and writing (1.8) in terms of its component equations, we
get

{&gul = I/&qul — 908182A_19 + Nl, (1 10)

0tuQ = I/aQQUQ + goﬁlﬁlA‘lﬁ + NQ,
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where N; and N, are the nonlinear terms,
Ny = —(u-Vu, — AV - (u-Vu)), Ny=—(u-Vuy —HA™'V- (u-Vu)).
By differentiating the first equation of (1.10) in ¢, we obtain
Oty = vOoOuy — o010 AT 0,0 + O, N

Using the equation of 6, we replace 0,6 in the above equation by 1 0110 — gous —u -V
to write

8ttu1 = 1/8228151/4 -+ g88182A_1UQ — go7n) 8118182A_19 + g()&lagA_l(u . VH) -+ agNl.

By further making the substitution of god;9,A~10 by the first equation of (1.10),
namely

—g08182A_1¢9 = &gul — V822u1 — Nl,

we find
8ttu1 = 1/8228131/4 -+ 938182A_1UQ + n@ll(atul — V822u1 — Nl)
"—g(] 8182A_1(u . VG) + 8tN1,
which yields, due to the divergence-free condition Oyus = —0uq,

Oy — (N1 + vOa)Oyuy + vy Oaguy + gad11 A" uy = N, (1.11)
where N3 is the nonlinear term,
N3 = (0, — n011) Ny + 90010 A (u - V).
Through a similar process, us and 6 can be shown to satisfy
Ostty — (NO11 + vOag) Oy + 11 gy + 9o A ug = Ny, (1.12)
D0 — (NO11 + V0a2) 040 + 110290 + 9501 A0 = Nj
with
Ny = (0, — n011) Ny — go01O A (u - V),
N5 = — (0, — vOa2)(u - VO) — goNs.

Then, combining (1.11) and (1.12) and rewriting them into the velocity vector form,
we have converted (1.2) into the following new system

{attu — (11 + vDa2)Opu + vndi1 Oou + g3 A" u = N,

1.13
&gte — (7]811 —+ 1/822)8159 -+ 1/778118229 + gS@HA_l«? = N5, ( )

where

Ng = (N3, Ny) = —(0, — n011)P(u - Vu) + goVFO1 A" (u - V)
with V+ = (0, —0;). Taking the curl of the velocity equation, we can also convert
(3.43) into a system of w and 6,

&gtw — (7]811 + 1/822)8tw -+ 1/77811822w -+ ggﬁnA_lw = N7,
8tt6’ — (7’]011 + 1/822)&9 + 1/7’]0118229 + ggallA_IQ = N5,

where

N7 = —(0y — non ) (u - Vw) — goOr (u - V).
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Amazingly we have found that all physical quantities u,f and w satisfy the same
damped degenerate wave equation only with different nonlinear terms. In compar-
ison with the original system of (u, ) in (1.2), the wave equations (1.13) obeyed
by (u, ) helps unearth all the smoothing and stabilization hidden in the original
system. The velocity in (1.2) involves only vertical dissipation, but the wave struc-
ture actually implies that the temperature can stabilize the fluids by creating the
horizontal regularization via the coupling and interaction. By taking advantage of
these effects, the stability problem on (1.2) was recently established by Ben Said
and al in [1] when the spacial domain is the whole plane R?. However, the large
time behaviour of the solution in R? remains a mystery. When the spatial domain
is 2 = T x R, this paper also proves the stability of (1.2). More importantly, we
establish the precise large-time behavior of the solutions. The main idea here is
to separate a physical quantity into its horizontal average and the corresponding
oscillation. More precisely, for a function f = f(z1,x9) defined on T x R that is
integrable in x; over the 1D periodic box T = [0, 1], we define its horizontal average

f by
f To) = 1,9 d 1, .
Flaz) = [ floranis (1.14)
and we write,
f=F+7f. (1.15)

Clearly, the horizontal average f represents the zeroth Fourier mode of f while f
contains all non-zero Fourier modes.

The decomposition (1.15) is very special. First of all, this decomposition is or-
thogonal in the Sobolev space H*(Q) for any non-negative integer. As a special
consequence, the H*—norms of f and f are bounded by the H k—no~rm of f. Further-
more, this decomposition commutes with derivatives, and f and f of a divergence-
free vector field f are also divergence-free. A crucial property to be frequently used

in our estimates is that f admits strong versions of the Poincaré type inequality

1fllz2@) < ClOS @)y [ f @) < ClIOF a1 @)

By applying this decomposition to the velocity field v and the temperature 6, namely
writing
v=u+u 6=0+6
and taking advantage of the aforementioned properties we are able to deal with the
nonlinear terms in (1.7) suitably, even when there is only vertical dissipation. More
precisely, the following theorem holds.
The first result establishes the H2-stability while the second result provides the

decay rates of the oscillation portion (u, ).

Theorem 1.1. Let T = [0,1] be a 1D periodic box and let @ = T x R. Assume
ug, 0y € H*(Q) and V - ug = 0. Then there exists € = e(v,n) > 0 such that, if

[uoll sz + (|60l = < e,
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then (1.2) has a unique global solution (u,0) that remains uniformly bounded for all
time, for anyt > 0,

t
()1 + 10117 + 2V/0 102(7) ||l

t t
Loy / 106(r)|pedr + C(w, ) / lgodha2adr < CE?
0 0

where C(v,n) and C > 0 are constants.

Theorem 1.1 rigorously assesses that any small initial perturbation (in the H?*-
sense) leads to a unique global (in time) solution of (1.2) that remains small in H?
for all time. Furthermore, it implies that [|0;us(7)|72 is also time integrable.

Our second Theorem states that the oscillation part (u,6) decays to zero alge-
braically in time in the H'-norm. This result reflects the stratification phenomenon
of buoyancy driven fluids. It also confirms the observation of the numerical simula-
tions in [9]), the temperature becomes horizontally homogeneous and stratify in the
vertical direction as time evolves.

Theorem 1.2. Let ug, 0y € H*(Q)) with V - ug = 0. Assume that (ug, 0y) satisfies
[woll ez + [[6o]| 2 < e,

for sufficiently small e > 0. Let (u,0) be the corresponding solution of (1.2) with g

negative constant. Then the oscillation part (u,0) satisfies the following algebraic
decay in time,

@l + [16]] e < e(1+1)"2,

for some constant ¢ > 0 and for all t > 0. In addition, (u,0) has the asymptotic
behavior, as t — 0o,

(@)1 + 100 [17:) — 0.

As a special consequence of this decay result, the solution (u,0) of (1.2) ap-
proaches the horizontal average (@, #) asymptotically, and the Boussinesq system
(1.2) evolves to the following 1D system eventually

ou+u-Vu+ O_ = qo 9 + vo3u,
82p 0

We briefly outline the proofs for Theorem 1.1 and Theorem 1.2. Since the local
(in time) well-posedness on (1.2) in the Sobolev setting H?(2) can be shown via
standard approaches such as Friedrichs’ Fourier cutoff (see, e.g., [23]), the proof
of theorem 1.1 is reduced to establishing the global (in time) a priori bound on
the solution in H?(Q). The framework for proving the global H?-bound is the
bootstrapping argument. An abstract bootstrapping argument can be found in
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Tao’s book (see [29], p 20). To set it up, we define the following energy functional
for the H?-solution,

t
E(t) = max ([u(r)l[3 + [10(7)]152) +2V/0 102|727

0<7<t

t t
+27]/ ||81‘9||§{2d7'—|—5/ ||9081U2||2L2 dT, (116)
0 0

where ¢ > 0 is a suitably selected small parameter. Our main efforts are devoted to
proving that, for all t > 0,
E(t) < CL E(0) + Cy E(t)?, (1.17)
where C; and C5 are two uniform constants.
To do so, we need to fully exploit the extra regularization due to the wave struc-
ture in (1.13). We should mention here that, the control on the time integral of the
horizontal derivative of the velocity field, namely

t
/ lgoBrtun(7) 122 dr (1.18)
0

plays an improtant role in the proof. Clearly the uniform boundedness of (1.18) is
not a consequence of the vertical dissipation in the velocity equation but due to the
interaction with the temperature equation. More precisely, as in (3.61), we represent
goOrus in terms of the rest in the equation of 6,

g081UQ = —8t819 — 81 (u . VH) + 7]8111‘9,
then

||9081U2||%2 = —4o / 8t819 81’&2 dr — g0/81u2 81(u . V@) dx -+ 7]90/81U2 8111‘9 dx.

The time integrability of ||go0ius||2, is then converted to the time integrability of
other terms. This phenomenon of extra regularization and time integrability due
to the coupling also shows up in some other models of partial differential equations
such as the Oldroyd-B system (see [7], [11]).

Once (1.17) is established, the bootstrapping argument then asserts that, if

E(0) = [(uo, 00) 7> < €

for some sufficiently small € > 0, then E(¢) remains uniformly small for all time,
namely

E(t) < Cée? (1.19)

for a constant C' > 0 and for all ¢ > 0. In particular, (1.19) yields the desired
global H2-bound on the solution (u,f). We leave details on the application of the
bootstrapping argument in the proof of Theorem 1.1 in Section 3.

To prove the algebraic decay rates on the H!'-norm of the oscillation part stated
in Theorem 1.2, we first take the difference of (1.2) and its horizontal average, to
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write the system governing the oscillation (u, 6)

BT+ 1 - Vil + GadaT — VO + V= gobles, 120
0,0+ u - V0 + @050 — n020 + gotiz = 0. ’

The estimate of the H'-norm of (u,#) is naturally separated into controlling the

L*—norms ||(@, )]z and ||(Va, VO)||z:. One major difficulty is that the equation
of u has only vertical dissipation, but the aforementioned Poincaré inequality can
only bound a function in terms of its horizontal derivatives. As a consequence of
this disparity, some of the nonlinear parts related to u can not be bounded suitably
and require the upper bounds involving ||uy||z2. To deal with these terms, we seek
extra smoothing and stabilizing effect on uy by exploiting the coupling in (1.20).
More precisely, we include the following extra term along with the H!'-norm to form
a Lyapunov functional,

—§(ia, 6),

where § > 0 is a small constant and (ug, §) denotes the L*inner product. The time
derivative of this inner product generates §||z||7,, which help balance [|u2||?, from
the nonlinearity. By invoking various anisotropic inequalities stated in section 2, we
are able to show the following energy inequality

d /s _ ~ o~ " ~ 0.
= (1l + 1613 = 0(2,0) ) + vl + 91013 + SNzl < o,

which leads to the desired exponential decay in theorem 1.2. More details are
presented in Section 4.

The rest of the paper provides the details outlined above. Section 2 serves as a
preparation. It presents several anisotropic inequalities and some crucial properties
on the orthogonal decomposition such as the Poincaré type inequality for the oscil-

lation part f Section 3 proves Theorem 1.1 while Section 4 is devoted to verifying
Theorem 1.2.

2. PRELIMINARIES

This section serves as preparation for the proof of theorems 1.1 and 1.2. The first
few following lemmas contain several frequently used facts on the aforementioned
decomposition (1.15). While the last Lemma provides a precise decay rate for a
nonnegative integrable function, which is also monotonic in a generalized sense.

First, we present basic properties of f and f

Lemma 2.1. Let Q = T x R. Assume that f defined on ) is sufficiently reqular,
say f € H2(Q). Let f and [ be defined as in (1.14) and (1.15). Then

(a) The average operator f and the oscillation operator f commute with partial
derivatives,

Wf=0T=0, &f=0f, Of=0f &f=0f [=0.
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(b) If f is a divergence-free vector field, namely ¥V - f = 0, then f and f are also
divergence-free,

V- f=0 and V-f=0.
(c) f and f are orthogonal in H* for any integer k > 0, namely
(?7 f)Hk(Q) = /QDkf - D¥fdx =0, Hf“?{k(g) = H?H?{k(g) + Hf“?{k(g)
In particular,

Iy < Ny and (| Fllaey < 11 ey

The orthogonality is actually more general and holds for any integrable functions,

/Q?-ﬁd:czo.

All the items in Lemma 2.1 can be directly verified by the definition of f and f

The second lemma compares the 1D Sobolev inequalities on the whole line R and
on bounded domains.

Lemma 2.2. For any 1D function f € H*(R),

1 1
£l ey < V2 2y 111 )
For any bounded domain such as T = [0,1] and f € H*(T),

e
1 lzery < V2UFI 2y 1220y + 1 2y,

in particular, if the function f has mean zero such as the oscillation part f,
1 1
[l < C a1 o,

The following lemma presents anisotropic upper bounds for triple products as well
as for the L>-norm on the domain €. Anisotropic Sobolev inequalities are powerful
tools for dealing with anisotropic models. The whole space version of these type of
inequalities has previously been used in [6] in the 2D cases and in [30] in the 3D
case.

Lemma 2.3. Let Q@ = T x R. For any f,g,h € L*(Q) with d,f € L*(Q) and
Oag € L*(QY), then

1 Lol 1
| [ sane] < CUSILAS + 1ons 1) ol sl (21)
For any f € H?*(Q), we have

1F Nz SCIENE(IF Nz + 100f ]l c2) 18|12
x ([|0af1l 2 + |01 f || 12) 7.
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When f in Lemma 2.3 is replaced by its oscillation part f, then the lower-order
part in (2.1) can be dropped.

Lemma 2.4. Let Q@ = T x R. For any f,g,h € L*(Q) with d,f € L*(Q) and
Dag € L*(QY), then
| [ Fanas] < AT 11 Dol s o (2:2)

For any f € H?*(Q), we have

ey < ClFINENOFI 21 0aF 1 2 l| 018 f| 2 -

The next lemma assesses that the oscillation part fobeys a strong Poincaré type
inequality with the upper bound in terms of 0, f instead of Vf.

Lemma 2.5. Let [ and f be defined as in (1.14) and (1.15). If ||81f||Lz(Q) < 00,
then

11220 < ClloLf 2@,
where C'is a pure constant. In addition, if ||81f||H1(Q) < 00, then
[ fllze @) < CllO (@)

As a direct consequence of Lemma 2.5 and the inequality (2.2), one has

~ ~ 1 1
| [ Fahs| < ClorFluslal lousl - oo (23)

We refer the readers to [10] for detailed proofs of Lemmas 2.1, 2.3, 2.4 and 2.5.

The last lemma precises an explicit decay rate in (2.5) for functions that are
integrable and are decreasing in a general sense, namely (2.4).

Lemma 2.6. Let f = f(t) be a nonnegative function satisfying , for two constants
Co >0 and Cy > 0,

/00 f(r)ydr < Cy and f(t) <C1f(s) forany 0<s<t. (2.4)
0

Then, for Cy = max{2C, f(0),4CoC1} and for any t > 0,
f@#) < Cy(1+1)71 (2.5)
Furthermore, f(t) has the following large-time asymptotic behavior,

lim ¢ f(t) =0.

t——+o0

A detailed proof of Lemma 2.6 can be found in [21].
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3. THE H? NONLINEAR STABILITY
This section proves Theorem. 1.1.
Proof. The proof is naturally divided into two major parts. The first part is for the

existence, while the second part is for the uniqueness of solutions to (1.2).

To prove the global existence of solutions, it suffices to establish the energy in-
equality in (1.17) with E(t) being defined in (1.16). This process consists of two
main parts. The first is to estimate the H2norm of (u,f) while the second is to
estimate ||0;uz||2, and its time integral.

Note that, for a divergence-free vector field u, namely V - u = 0, we have
Vull: = flwllze,  |Aullr2 = [[Vw| 2,

where w = V x u is the vorticity. Then, the H2-norm of u is equivalent to the sum
of the L2-norms of u, w and Vw.
Taking the L2-inner product of (u,#) with the first two equations in (1.2), we find
that the L?*-norm of (u, @) obeys

t t
lu()IIZ> + 1) 22 +2V/0 102 ()72 dT+2n/0 10:6(7)|I7>d7

= [[uollZ> + [160llZ- (3.1)

To estimate the L?*-norm of (w, V#), we resort to the vorticity equation combined
with the temperature equation,

8tw +u-Vw = 1/822(,«] + 90819,

8,0 +u - V0 + gous = n0n0. (3.2)
Dotting the equations of w and V@ by (w, V6), yields
1d
5 7 Iellze + 1VOlZ2) + vl|Oalze + 0| VOLe = I + I, (3.3)

where

]1:g0/(019w—VuQ-V9)da:, Igz-/Vé’-Vu-Vde.

Writing w and u in terms of the stream function 1, namely w = Ay and u = V> :=

(_82¢7 81¢)7 we have
I = go /(81«9w — Vuy - VO) dx = go /(319Aw — Vo - Vo) dx

— 9 /(—e Ad1) + Adp 0) dx = 0.

We further write I, into four terms,

]2 = — /(81u1(819)2 + 81U2819829 + 821/4819829 + 82U2(82¢9)2) dx
= 121 + ]22 + ]23 + ]24.
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The terms on the right-hand side can be bounded as follows. The key point here is
to obtain upper bounds that are time integrable. Iy, I5» and Is3 can be bounded

directly. By Lemmas 2.1, 2.4 and Young’s inequality,
[21 L= /81U1(81‘9)2d$ = — /81171(81‘9)2d$
< c|[010]|7211020101|7: 101011 121101010 72| Ortin || 2
< clullm2 [10:6] %,
122 L= — /81[62819829615(7 = — /81[62815829615(7

< ¢1010]12,101810| 2,829 2. [|82020|| 2, || D s 2
< ¢ ||010]] m2|0]| m2 || Or w2 || 2

< )10l = (10101132 + 9nsa ),

123 L= /82U181982¢9d$ = — /82”1815829615(7

~ 1 ~ 1 1 1
< c||010]7:11010:0]|; || Ozur || 72| 02021 || 72 || 020 1.2
< c|010]| g2 | 0ot 2 |0| 22

< c[10ll= (10101132 + 19zl ).

(3.6)

Using the divergence-free condition V - u = 0, integration by parts and Lemmas 2.1

and 2.5, we obtain

Ig4 L= —/82u2(829)2dx - /81U1(82¢9)2d$
= —2/171 829 81829 dx

1 1 1 1
< c[|0o8|| 2 llun || 22 [ Orwa | 72110102011 2| 0201 00| 7 5
< c||0][m2 [|Ovun | 22 [|010]] 2
——

=[|0z2uz|| 2
< cl0llm= (12l + 1016132 ).
Collecting the upper bounds on 5 and inserting them in (3.3), we find
d
= (IVul[32 + [VOII32) + 2010, Vul[22 + 29]|n V6] 32
< el (u,0) 122 (0ol + 10101132 + Ohsal2).

Integrating (3.8) over [0,¢] and combining with (3.1), we obtain

t t
|| (w, 9)||§{1 + 21// ||82u(s)||%{1ds + 217/ ||019(s)||%{1ds
0 0
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t
< (oo, 00 31 + / 1t )l (1000l + 191013 + 9103 ) dir
< E(0) + cE(t)2. (3.9)

To control the H?mnorm of (u,), it then remains to bound the L?-norm of
(Vw, A#). Applying V to the first equation of (3.2) and dotting with Vw, and
apply A to the second equation of (3.2) and dotting with Af, we find

1d
2 dt
where

(IVwlze + [|A0(t)[72) + V|02 VwlZ + 0l AG||72 = Ty + o+ T3, (3.10)

J1 = qo /(V816’ - Vw — AuyAf) dx,
ng—/Vw-Vu-dez,

J3 = — / A - Au-V)dz.

The effort is still devoted to obtaining an upper bound that is time integrable for
each term.
Writing w and u in terms of the stream function 1, namely w = Ay and u = V+) :=

(_82¢7 81¢)7 we have
J1 =90 /(V@lﬁ - Vw — AusAf) dx = g /(vale -Vw — A0 AD) dx

= qo /(V@ﬁ -Vw — dyw Af) dx = gy /(V@ﬂ -Vw+ 0,Vw - V) dx

After integration by parts, we decompose .J3 it into four pieces,

J3:—/AﬁAulalﬁdx—/AHAm@gﬁdx

= J31 + J32 + J33 + J34. (311)

To deal with J3;, we make use of the orthogonal decompositions u = % + u and
0 =0 + 0 to write

A p—— / AOAu,0,0ds = — / AO A, 0,0dx
= —/Aeﬁllulﬁlgdx—/A@@ggulﬁlgdx

:/A9812U281§d$—/Aeﬁggulalgdﬁl}
= J311 + J312. (312)
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Applying Lemma 2.4 we obtain,
Tz = / AOD1yus0, 0

~ 1 ~ 1 1 1
< c[|010]|}2]]01010||} 2 || Or2uz]| ;2| O2012us |} 2 || AD]| L2
< |0 z2[]010|| 2 || Oou]| 122

< cllflle (101013 + 100l ), (3.13)

J312 = —/Aeﬁggulﬁlgd:c

< | 0r011 211101822 | G | 2:1180D010s | 2| A6 2
< /|6 12016 2 | 2
< cllflle (101013 + 190l ) (3.14)
Inserting the upper bounds for J3;; and Js315 in (3.12) yields
Jar < el0llm= (1010113 + 102ule ). (3.15)

To deal with J39, we divide it first into two terms,

Jgy = — / A Ausdy0dx
— / 0,010 Aus Do0dz — / 0,050 Ay D50 dac
_— / 0,010 Ausdy 0 d + % / Aoz (0:0)2 dz
— / 0,010 Aus 050 da — % / Adyuy (920)2d

= — / 01819 AUQ 029 dx + / Aul 829 81829da:
= J321 + J322. (316)

Invoking the decompositions of v and 6, we can rewrite J3o; as,

J321 = —/81019 A'UQ 8290[93

= —/01815811’(72 82561:17 — /81015811’(72 829~d:)5 — /810158221@ 829 dx
= Jaan1 + Ja212 + 33 (3.17)

The three terms in J35; can be bounded as follows. By interation by parts, Lemma
2.1, Holder’s inequality, Lemma 2.2 and Young’s inequality,

J3o11 1= — /51815811?72 82§d:5
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= /81011581{[2 829 dx

:/82§</81811581{[2d$1>d$2
R T

< [ 10811011z, 10101,8]13,
R

< 1|020]| s |01 T2 22, 12 1010016112, 12

< |00 g1 (|01 B2 | 2|01 0110 1.2

< cllfll = (10nuall32 + 1916112 ). (3.18)
By lemma 2.4 and then lemma 2.5

J3919 1= —/81815811172 8256133

~ 1 ~ 1 ~ 1 ~ 1
<c [|0:0]]}. [1010:0]|]:]]0110 72020110} 2 || Or1uz]| 2
——

<l010201,
< cfful| g2]|010][7- (3.19)

Making use of the divergence-free condition of u, Lemmas 2.1 and 2.4, we have

J3213 = - /01815822’&2 029 dx
= —/81815821’[[1 829 dx

< |01 |12 ]| 01021 |12 || 0016112 020110 221026 2
< |0l #2|016]| 22| Ozu | 122
< ||| = (||(919||?ar2 + ||52U||12H2>- (3.20)
Inserting (3.18), (3.19) and (3.20) in (3.17) we obtain
Jazn < el (u,0) 1 (1100013 + 1020l + | 9ru 32 ). (3.21)

We now turn to Jzso. We further decompose it into two terms,

J322 = /Aul 829 81829dl’

== /811??1 829 8182«%@ -+ /822U1 829 81825dx
== J3221 + J3222. (322)

Due to the divergence-free condition of u and Lemma 2.4,

J3901 1= /511171 52981256155
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= —/812’172 829 01250[:)3
1 o ~ 1 ~ 1
< cf|Orotiz || 71| 0101212} 2 [ 0120 || 21| 020120 || 1 1| 020 || 12
< |0 22| 2t 122 (| 10| 2
< clltllz (1100ulle + 1010132 ). (3.23)
By Lemma 2.4,

3909 1= /822U1 0»0 812§d$

~ 1 ~ 1 1 1
< || 0120|172 1010120]|; 2 || Oa2 ]| ;2 [| 020221 | 2 || D20 || 12
< ||| 2 || 0ot 772 1| 010| 1

< cllfll e (192l + 116132 ). (3.24)
Combining the estimates (3.23) and (3.24) and inserting them in (3.22) we find
Jsza < el (10l + 19101132 (3.25)
Putting (3.21) and (3.25) in (3.16) we obtain
Jsz < ell(u,0) 12 (103l + 11016)3: + 010 2. (3.26)
The next term .J33 is naturally split into two parts,

J33 = —2/A9VU1 : 81V9dx

= —2/A901u181019da7—2/A982u181829d1’

= J331 + J332. (327)

All terms can be bounded suitably. In fact, due to the divergence-free condition of
u and Lemma 2.4,

J331 = —2/A981u18119dx
= 2/A902U201815d1’

~ 1 ~ 1 1 1
< cf|0110]|7.1|010110]| 7 || O2usa || 2 || O202us | ;2 || AD]| 2
< c||0]| g2 [| Ozt 2| 10| 12

< cloll = (12slls + 046113 ). (328)
J330 can be bounded similarly, by 0,0 = 815 and Lemma 2.4,

J332 = —2/A902U10129d1'
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= —Q/Aeﬁgulﬁlggdx

-1 ~ 1 1 1

< c|[0120] 7211010120 | 12| O2wa || 72 | 0205 ua [| 22 [| A0 2

< |0 m2]|O2ul| 112 | 016)|| 1r

< cll0llms (192l + 19101 ) (3:29)
Inserting these upper bounds in (3.27) we get

Jss < el (1016)3 + 102ull3e). (3.30)

To estimate J34, we first invoke the decompositions u = 1+, 6 = 6+ 0 and Lemma
2.1, to write Js4 as

J34 = —2/A9VUQ : 82V9d3:
= -2 /(81uQ81829A9 + 0QUQ02629A9)0Z:)3
=2 / 0120, 02006 — 2 / Do 0,050 A0

= —2/811’[2810258119d1'—2/81172810258229d1'—2/82’&202829A9d1'

= J3a1 + J340 + J343. (3.31)
We start with J34;. By integration by parts, Lemmas 2.1 and 2.4 we have

J341 = —2/011720182501190[:):
=2 / 1728181825811§d$
< 0101211010101 3. [10120 2210201161 . | 01 s | 2
< c|lullg2118:0] %2 (3.32)
Using the decomposition 6 = 6 + 0 we write J340 as,

J342 = —2/811728102582290[:):

== —2/81@818258229dx—2/81@818258225dx

= J3491 + J3492. (3.33)

We start with Js401. Due to integration by parts, Lemma 2.1, Holder’s inequality,
Lemma 2.2 and Young’s inequality,

J3421 = —2/81{[281825822§d$

) / (o0, 1301 Dl + Dy i20201 0,0)00 dl
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= 2/025(/(8201{[2810254— 01?’[28201825)611’1>d1'2
R T

<c [ 10081 (100012l 10102813, + 1047z, 10u01 0283, )
R

< C||82§HL§3 <||82817I2||L32L31 H31829HL§2L31 + ||81713||L32L31 H32a1329||L32L31)

< clluBlm (110201 | 2| 0nD:01 12 + 1012l 1219201001 1.2
< cllfll e (10ul3e + 110063 + 1onuall3s ).
For J3499, we apply Lemma 2.4 then Young’s inequality,
J3409 1= —2/51?725182675225{01117
< 0220112101981 2. 1012011 2. 902616 2. 101 s .
< 01zl 10,6113 v | 2
< el (101613 + oveal 22
In view of (3.33), (3.34) and (3.35) we have
Jsrz < el (u,0) 2 (11000l + 19:0)3e + Oru 32 ).
Writing .J343 more explicitly and using 0,6 = 816’~, we have

J343 = —2/82uz82029A9d93

= -2 / 82u2822«98115dx —2 / 82u2822«9822«9dx
= J3431 + J3432.
From Lemma 2.4, J3431 can be bounded as,
J3431 = —2/82u2822«9811§dx
~ 1 ~ 1 1 1
< c||0110]] 72101011017 2| Otz | 72 [| 0202 us || 2 || D20 2
< |0 g2 |010]| g2 || Q2| 22

< cllflla= (19101132 + 193l ).

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

The estimate of J3435 is slightly more delicate. Due to the decomposition 8 = g+ 0,

we write J3432 as,

J3432 = —2/82u282298229dx

= —2/821@82258225(&5—4/821@82258225(1:5— 2/021@82250225(11’
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= J34301 + J34300 + J34323.

By V-4 =0 and Lemma 2.1, the first term J34391 is clearly zero,
Ty = —2 / OrtusdosBO B = 2 / 013 02sB0 B = 0
Applying Lemmas 2.4 and 2.5 and Young’s inequality,
J34320 1= —4/52U25225822§d1'

_ ~ 1 ~ 1 1 1
< || 0220|| 12| 0220 } 21| 010220 ||} 2 || Doua || 2| D2 Otz ||} -

_ ~ 1 ~ 1 1 1
< || 9220 12| 010220 | 71| 010220 | 2 | D22 || 2 | 02 D2uia || 7.
< ||0] 12| 010]| 112 [| o] 2

< cllflle (101013 + 102l )

J34303 1= —4/52U25225822§d1'

_ ~ 1 ~ 1 1 1
< || 0220|| 12| 0220 } 21| 010220 || 2 || Doua || 2| D2 Otz || 7 -

_ ~ 1 ~ 1 1 1
< || 0220|| 12 (| 010220 2 || 010220 | 7 2 || Otiz| 7 2 || 0202w || 7 -
< |0 g2 |010|| g2 [| O | 712

< cllfllae (10101132 + 19l ).
The bounds for Ja30 in (3.40), (3.41) and (3.42) lead to,
Jaaza < c[|0]| g2 <||819||%12 + ||82U||%12>
Combining (3.38) and (3.43) and inserting them in (3.37) we obtain
Jyis < cll0ll2 (1000132 + ozl ).
Inserting (3.32), (3.36) and (3.44) in (3.31) we get
Jsn < e, )l (101013 + 102ullEe + vl ).
Thus, by (3.15), (3.26), (3.30), (3.45), and (3.11),
Js < lu, 0)ll = (192l + 1Onuall3 + 1010132 ).

19

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

Now we turn to the next term J,. As we have explained in the introduction, we

need the help of the extra regularization term

t
/ ||81UQ||%2 dT.
0

(3.47)

In order to make efficient use of the anisotropic dissipation, we further write J; as

Jg = — /81u1 (01W)2 dr — /81U2 01w 02w dx
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— /82u1 01w 02wd55 — /82U2 (82w)2d:£
:/82u2 (81(4))261117 — /811,62 81w 82w dx

— /82U1 01w 02w dr — /02’&2 (02w)2 dx
=Jo1 + Jog + Joz + Joa. (3.48)

The terms Jo; through Jy4 can be bounded as follows. Due to V -u = 0, integration
by parts and Lemmas 2.1 and 2.4,

J21 = —/81u1(81w)2dx

:/82uz(81w)2 dx
= —2/’[[201@8201@(11’
1 1 1 1 _
< ¢tz 2|01z ]2 | 02010 || 7 21| 02010 2 || 2010 || 2
1 3
< cllul| 2| Orusa|l} 2 | Ooul|

< cllullzz (10veall3s + 1020l ). (3.49)

According to Lemmas 2.1 and 2.4,

J22 = —/81uz81w82w dx
- —/81?;281(’:]82&) dx

1 .1 L .1
< c||Orua|| 721[0101uz]| 12| 010 72| 02010 || 72 [| Do || 12
1 3
< cllulle vl 295
< cllull (10veall3s + 102ul% ). (3.50)

To bound Jo3, we first use the orthogonal decomposition of u; and w and Lemma
2.1, to write Jog as

J23 = —/82u181w82w dr = —/821,6181(2382(,0 dx

= — / 827181@82@ dr — /827181@82&3 dr — /02’[[101&3820) dx
= Joz1 + Jazo + Jozs. (3.51)

According to Lemma 2.1, the first term .Jo3; is clearly zero,

J231 = —/827181&82561.1’ = — / 821,6_182@/ 81(:} dflfldl'g =0. (352)
R T
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The terms Jo3o and Jy33 can be bounded directly. By Lemma 2.4,
J232 = —/82718@82&7 dx

1 1 1 PO _
< )| 00| 7201020 ||} 2 || 01| 72| 02010 | 7 2 || oTin || 2

< cllull ]| B2ulle, (3.53)

J233 = —/8217181&82&] dx
1 11 1
< c|[Opur || 22 [|010aun [| 2 [|O1@0]| 22 [| 02010 || £ 2| | Oow] | .2
< cffull 2| 0au - (3.54)
Inserting these upper bounds in (3.51) yields
J23 S CHUHHQHaguH%{z (355)

To deal with Joy we use the divergence-free condition of u, Lemma 2.1, and the
inequality (2.3) in Lemma 2.5

Jog = — / Dot (Opw)? d
_ / 0,710 + 0u3) da
=2 / OV 0,050 da — 2 / Ot (Do) da
< (051112 + 0:1 2 ) 191 13| o1 £ 01055

< cllull g2l OzullZ-- (3.56)

Collecting the bounds for Jy; through Jos obtained in (3.49), (3.50), (3.55) and
(3.56), we obtain

Jo < cljul| g2||Oxu| 3 - (3.57)
Inserting J; = 0, (3.46) and (3.57) in (3.10), we get

d
21 8ul3: + 1A0]32) + 2vl|0pAulE: + 2n)|01A0]
< | (u,0) 122 (0ol + 10101132 + 9ha2). (3.58)

Integrating (3.58) over the time interval [0, t] yields

t t
1Au()[IZ2 + 1260172 +2V/ H32AUI|2deT+2n/ |A0:0|7-dr
0 0

t
< Il + 18001 + ¢ [ 1. 0) ([0l + 0161 + orual)

< E(0)+ cE(t)e. (3.59)
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The next major step is to bound the last piece in E(t) defined by (1.16), namely

t
/ lgoOhusl|72 dr. (3.60)
0

Our strategy is to make use of the special structure of the equation for 4 in (1.2)
and replace go0ius in (3.60) via the equation of 6,

goaﬂLg = —8t819 — 81 (U : V@) + 7781119. (361)

Multiplying (3.61) with god;us and then integrating over R? yields
||9081U2||%2 = —g0/8t81«9 81u2 dx — 90/811@ 81(u . VH) dx -+ 907]/81U2 81119 dx
= Kl +K2+K3 (362)

Even though the estimate of K3 appears to be easy, the term with unfavorable
derivative 0yus will be absorbed by the left-hand side,

1
|K5| < nllgoOiual| 2 [|01110]] 22 < §||90(91U2||%2 +c[|010]| 52 (3.63)
We shift the time derivative in K7,
d
K1 = _QOE /819 81U2 dx -+ 90/819 818tu2 dx = K11 + Klg. (364)
Invoking the equation for the second component of the velocity, we have

K12 = —90/81819 8151,62 dx
=90 / O0110(—(u - Vug) — Oop + vOsous + gofl) dx
= 90/8119 (U . VUQ) dx + 90/0119 ng dx

_QOV/8119 Oxpus do — gg/anﬁ 0 dzx.

We further replace the pressure term. Applying the divergence operator to the
velocity equation yields

p = —A_lv : (U : VU) + goA_lage.

Therefore,

K12 = g0/811¢9 (U . VUQ) dx —|—g(]/8119 (—82A_1V . (u . Vu)) dx

— gol//8119 aQQUQ dr — 98/0119 011A_16’ dx
= K1 + Koo + Koz + K4 (3.65)

Due to Holder’s inequality and the fact that the double Riesz transform 0;; A1 is
bounded on L? for any 1 < ¢ < oo (see, e.g., [27]), we have

K124 = —gg / 819 811A_1019 dx S C ||819||L2||011A_1019HL2 S C ||819||%2 (366)
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Thanks to Holder’s inequality,
K123 = —goy/an(? 8221,62 dSL’ S & H8110||L2 ||8221,L2HL2. (367)

By integration by parts, Holder’s inequality and the boundedness of the double Riesz
transform,

K122 = g0/6119 (—82A_1V . (u : Vu)) dx

% / 10 DAY - (u- V) da

cl|10]| 2 AT 915V - (u- V)| 12

c[|0n0]] 2 [|02(u - Vu)| 12

c||0n0]| 2 ||Oow - Vu + u - VOqul| 2

||l 2 (NOzullzs |Vullps + lullocl| VO2u| £2)

|00 2 |02ullmr [Vullm + c[|018]| 22 Jul m2]| V Ozu 12 (3.68)

To deal with K51, we rewrite it as

K21 = go / 0110(u101us + us0sus)dx

VAN VAN VANRR VANRR VAN

= gofﬁllgul 01uQ d!L’ + 90/01151@ 82U2 dl’

= 90/8115{[1 Orup dx + 90/811(5“—1 O1uy dx + 90/81151@ Oy dx
= Ko + K212 + Ki913. (3.69)

By Lemma 2.4, the divergence-free condition of v and Lemma 2.5,

Ko = 90/8115171 Ouz dx

1 - .1 ~
< cl|0110] 72110201102 ||url|f2 [[Ovun||}2 [[Orua]| L2
—_——— N——

1 1
<|oviil|Z, =[xz,

IN

el |0sull e 19,61
< cllulle (10sullye + 191013 ). (3.70)

Due to Lemma 2.1, Holder’s inequality, Lemma 2.2 and then Young’s inequality,

K19 == 90/5115171 Oyuy dx

Ig(]/u_1</8115811f2dx1>dx2
R T

< [ mllondlus, 10r s, dr,
R

A

< cf[wn]|peg 101101 2, 2, 10102l 2, £z,
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< cl[w] 1 0016 21|01 | .2
< cllullz (10vuall3 + 1016132 ).
According to Lemma 2.4,
K13 == 90/8115'“2 Dyuy dx
~ 1 ~ 1 1 1
< ¢f|0110| 7210101101172 (| Ozuz| 721102 Doual|Fe [|uzl| 22
< cful| g2||O2ul| 2[00 112
< cllullz (1sulle + 19161132
Inserting (3.70), (3.71) and (3.72) in (3.69) we get
Kzt < eljullpe (102ul3 + 1vuallf + 1016132 ).
It then follows from (3.65), (3.66), (3.67), (3.68) and (3.73) that
Kol < clulle (19l + lovuall3s + 1010132 ).
It remains to bound K. We first split it into four terms,

K2 .= —90/81U2 81(U : V@) dx
= —90/81U2 81U1 019 dr — 90/01UQU181019 dx

— g0/81u281u2829 dr — g0/81UQU281829 dx
.= Kgl + K22 + K23 + K24.

Due to 0,0 = 815, Lemma 2.4 and Young’s inequality
Kgl = —go/ﬁluQ 81U1 819 dx

= —g0/81u2 81u1 81§dx

~ 1 ~ 1 1 1
< c[|010]|;21]01010||; 2 || Oauz]| ;2 || 02021z | 7 || Orua | 12
< cllul| g2 |02 21| 010]] 12

< cllull= (Nzulle + 12161132).

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

Using Lemma 2.1 and invoking the decompositions u = u + u we write Koy as

K22 = —90/81u2u181819 dx

= 90/8115171 Oiup dx + 90/5115171 O1uy dx
= Kooy + Kao.

(3.77)
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By Lemmas 2.4, 2.5 and the divergence-free condition of w,

Kooy = 90/8115?71 O1uy dx

1 PO i ~
< c||0110]]721|020110|| 2 |[ur]]72 [|Ovunl] 72 [|O1uz]| 2
—_—— ——

1 1
<llovarl|Z, =l10s1 %,

IN

¢ [|ull g2 (| Oxul| g2 (| 016 12
< cllull (10sulle + 1916112 (3.78)

To bound Kags, we first use Lemma 2.1, Holder’s inequality and then Lemma 2.2 to
obtain

A

Kooy := 90/811511_1 Oyuy dx

:90/71(/811581@0[1'1>d552
R T

<c [ (@l ondls, 100l s, de

R

< clfitll oz 10101122, 22, 191l 22,22,

< el 100181 21912l

< cllull (10vuall3 + 1016132 ). (3.79)
Then (3.78), (3.79) and (3.77) together leads to

Koo < clfull 2 (I00ullfe + 0vual3e + 10:011%2). (3.80)

By O1us = 01us and 0 = 0+ 0, we rewrite Ko3 as

K23 = —g0/81u281uz829da:

S / DT 2050 d — go / DDl da
= K231 + Kggg. (381)

To estimate K31, we make use of Lemma 2.1, Holder’s inequality and then Lemma
2.2 to get

Koz = 90/81?7251?72525 dx

:90/82§</8117231172d1'1>d552

R T

<c [ 10u8l10nTal 1z, 0172z, v
R

< cl|0:0] 1 |O10a | 2 12 1012|1212
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< /|08 | On s |2
< /|6 2 10h s 3. (3.82)
Via Lemma 2.4,
K3y = 90/3117231?725250[1'
< cl|0u8112. 11013011210y s 2. Da0h s | 2. | Dy 1.
< 0112l 2104611 | Oy | 2
< cll(u,0) 122 (101013 + Oru 3 ) (3.83)
Inserting the bounds for Ks3; and K3 in (3.81), we find
Koy < el (u,0) 12 (1916113 + |9yl ). (3.84)

The last term K5y can also be bounded due to the fact that w; = 0, Lemmas 2.4
and 2.5

K24 = —g0/81u2u281829 dx

= —go/aluz@alaﬁdf
~ s ok 1 1
<c |[uallf: [|Ovua| 72| Orus| 72| 0201usl| 7 21| 01020 | 2
1
<oz 2,
1 1 1 3
< cllfllallul 3 1001 01
< cll(u, 0)l1 (101013 + 1vualls ) (3.85)
Inserting (3.76), (3.80), (3.84), (3.85), in (3.75) we obtain
Ky < ol (u, )2 (10101%z + 1912132 + 195l ) (3.36)

Combining the bounds obtained above for K; through K3 in (3.63), (3.64), (3.74)
and (3.86) and inserting them in (3.62), we find

1 d
- Hgoﬁﬂmuiz <c ||81‘9||§{2 — Jo—; 819 81u2 dx
2 dt
el (s )2 (10013 + 1020l + v 3 ). (3.87)
Integrating (3.87) over [0, t] yields

t t
/ ||9081U2||%2 dr < C/ ||819||§12 dr — 290/51951U2 dﬂ?+290/5190 O1upg dz
0 0

t
+e / I, )l (1100613 + 1000l + 0103 ) dm
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t t
< [ loblndr+ c [ ol dr+ c(lul + 16])
0 0
+ e (lJuolli + 160llE) + e B(2)*. (3.:88)

We then combine the H'-bound in (3.9), the homogeneous H?-bound in (3.59)
and the bound for the extra regularization term in (3.88). When doing so, we need
eliminate the quadratic terms on the right-hand side of (3.88) by the corresponding
terms on the left-hand side, then it suffices to multiply both sides of (3.88) by a
suitable small coefficient 6 > 0. Taking (3.9) + (3.59) + ¢ (3.88) gives

0+ 1060+ 20 [ 1wl + 20 [ 10361t +6 [ landrual
< E(0) + cB(1)? + 6 ([u(t)fe + 10()1F2) + ¢ ((luollFzz + 160]172)
—l—cé/t | Ouu|Fp2dT + cé/t 1010]|32d7 + céE(t)%. (3.89)
Iféo>0is clrolosen to be sufﬁcient?ly small, say
céﬁ%, co<v, co<n,
then (3.89) is reduced to
E(t) < Cy E(0) + Cy B(t)2, (3.90)

where C; and (5 are positive constants. The proof of the desired stability result, is
then completed by applying the bootstrapping argument on (3.90). In fact, if the
initial data (ug, ), is sufficiently small, say,

1
E(0) = || (ug, 00) |32 < €% := exe ] (3.91)

then (3.90) allows us to show that
[ (u(t), 0()) |72 < 2C; €2

To initiate the bootstrapping argument, we make the ansatz that, for t < T

1
Et) < —
< 1o

and we then show that E(t) actually admits an even smaller bound by taking the
initial H2-norm E(0) sufficiently small. In fact, Inserting (3.92) in (3.90) yields

E(t) < CLE(0) + Cy E(t)?
< Cl 52 + 02 L E(t)

(3.92)

205
That is,
1E(t) <Cie* or E(t)<2C CE =2C, ¢, forallt <T.
2 - - 16C,C3  8C% ’ -

The bootstrapping argument then assesses that (3.92) holds for all time when E(0)
satisfies (3.91). This establishes the global stability.
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Finally we establish the uniqueness of H2-solutions to (1.2). Assume that (u(), p™), o))
and (u®,p®, 0@) are two solutions of (1.2) with one of them in the H?-regularity
class say (uV),01)) € L[>(0,T;H?). The difference between the two solutions

(u*, p*, 0%) with
0= u® O = p® 0 and gr = @ g
satisfies
ot +u® - Vur +u* - Vul) + Vp* = vdapu* + gol™ ey,
00" +u® Vo +u* - VO + goun® = non 6%,
V-u* =0,
u*(z,0) =0, 6%(z,0)=0.
We estimate the difference (u*,p*,6*) in L?*(R?). Taking the L2-inner product of
(3.93) with (u*,0*) and applying the divergence-free condition, we get
%%H(u*,@*)”% + v)|Opu* |72 + ]| 000" ||72 = — /u* VoVt dr — /u* VoW . 9" dx
=1+ L. (3.94)
By Lemma 2.3 and the uniformly global bound for ||[uV]| g,

(3.93)

I, = —/u*-Vu(l) ~udr

1 3 1 1
< e[ VO (19uO 2 + 1276 2) 900 2 o

J/

~~

<c
. .
< cflut| 2| O2u” | 72
v
< cwllzz + 19wz (3.95)

By Lemma 2.3 and the uniformly global bound for ||§W)|| 52,

I, = —/u*-v9<l> 0" dx

1

(1))|2 (1) IR SERTE
< cIVOV 7 (1900 22 + 191700 122)* w1705 172116

-

'

<c
< clfu | 2,10 2, 6] 12
< cllo 12 (Il + 110012
< |9 I + ellu 32 + S 10207 7. (3.96)
Putting the estimates (3.95) and (3.96) in (3.94) leads to
1d

5 71 )22 + wllOsu” 72 + nll0n6”IZ2
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* * 4 *
< eIl + 1671122 + 5w |32
or

d * * * * * *
pridCRL Mz + v)|02u|[72 + 0l|0107(|72 < cll(w”, 02 (3.97)
Gronwall’s inequality then implies,

[w* (@) L2 = [16"()]| 2 = 0.

That is, these two solutions coincide. This completes the proof of Theorem 1.1. [

4. DECcAY RATES RESULT
This section is devoted to the proof the decay rates presented in Theorem 1.2.

Proof of Theorem 1.2. We first write the equations of (%, #). Taking the average of

(1.2),
ou+u-Vu+ 0 = y + v0%7
t 0,p 9o ] 2 U (4.1)

@5 +u- Vg = 0,
where go is a negative constant. Taking the difference of (1.2) and (4.1), we find

U+ u - VU + 105U — vI2TU + VP = gobes | 2)
8,0+ u- V0 + 1050 — n020 + goti = 0. ’

Taking the L*-inner product of (u, ) with (4.2) yields,
Ld
2dt
:—/u-va-adx—/uaazu-adx—/u-v@édx—/@azéﬁdx
= Al + Ag + A3 + A4. (43)

Now, we estimate A; through A4. The first term A; is clearly zero due to V-u =0
and Lemma 2.1,

(1132 + 191132 ) + wl2aitl3 + nlnB 2

Al::—/u-Vﬂ-ﬂd:ﬂ:—/u-Vﬂ-ﬁdz+/u-Vﬂ-ﬂd1’:O. (4.4)
>~ >
Similarly,
As = /u V0 - bdx = 0. (4.5)

To bound A, we first write it as,

A2 = /@@ﬂ -udx

— / BT — / BT
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= A21 + A22. (46)
Due to the fact that us = 0 we have,

Applying Lemmas 2.4 and 2.5, the divergence-free condition of u and then Young’s
inequality leads to

Ay 1= — / BT da

1 1 1 SO
< || 05t 2| uzl|7- | otz || £ - [ l|Z2 [Orua |7,
1 1 1

<lonail|Z,=l0e73 )2, =[0>733]2,

< cllull 2 1301219212
< cllull (10132 + 19532 ). (4.8)

Inserting (4.7) and (4.8) in (4.6) we get
Ay < cllull e (118|122 + 05732 ). (49)

The last term A4 can be bounded via Lemma 2.1, Hélder’s inequality, and Lemmas
2.2 and 2.5,

Ay = —/17282§~§d:c

= —/@5(/5@0[931)(1:52
R T
< |00 1gg || @ 2161 2
< ¢[00 1| 32| 121216 2
< cl|6]] s |1 32| 2|01 2
< cll0ll e (13 + 10483 ) (4.10)
Collecting the estimates obtained above for A; through A, leads to

1dy, -~ ~ N N
S (115 + 1813 ) + vl0aitl: + nllond]3-
< ol ) (|72 + |03 + 19:8]3 ). (4.1)

Applying V to (4.2) yields

VU + V(u- Vi) + V(iadti) — vV 4+ VVP = goV(fes)
VO + V(u-V0) + V(i20:0) — nd2Vh + goViia = 0.

(4.12)
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Dotting (4.12) by (Vu, V), we obtain

~—

d _ ~ _ ~
Z(IVE@) 122 + V0 [12:) + V02Vl + 1|03

= — / V(u-Vu) - Vudr — /V(ﬁg@gﬂ) - Vudzx

N —

- / V(u-V0)-Vodr — / V (120,0) - VOdx
= Bl + BQ -+ Bg + B4. (413)

The terms By through B4 can be bounded as follows. We start with By. According
to Lemma 2.1, we write B; explicitly into four pieces,

B, = —/V(m)~Vﬂd:c

:—/V(u-Vﬁ)-Vﬂdz+/V(u-Vﬁ)-Vﬁda:

-

g

=0

= —/81u181ﬁ . 81ﬁd:17 — /01’&202& . 81170[:)3
- /82[61816 . 82ﬂdl' - /82u282ﬂ : agﬂdl’

= Bn + Bm + Blg + Bl4. (414)
We write the first term B;; as

BH = —/81u1816~ 816613(3
_— / OOy DT — / OOy adh T

= Blll -+ BHQ. (415)

By the divergence-free condition of v and Lemma 2.4

By = —/811’[181{[1811’[1dx

_ / DyitsDoindrinda

1 1 1 1

< cf| Otz || 12| 2wz | 72|01 Doz | 2 | 02wz | 2 (| 202z 72

< cf|ul| 2102l 71 (4.16)
Due to V - u = 0, integration by parts and Lemma, 2.4

Biyg = —/811’[18111}811’[2dx

- / ity inda
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= 2/1?28201’(7201’(72(11’
_ S U E o
< cf|Oa01 s | 2|12 72 | Oatiz|| 72 |Ov ]| 72 || 01 Ovuz | 7
18
< cfjull gz ||ual - [| 0ol 71
< cllulle (1132 + 1053 ).
Inserting the upper bound for Byj; and Bigp in (4.15) we get

By < clullye (1132 + 19513 ).

To deal with Bj,, we write it first as

Blg = —/81U28217' 816615(7

_ / OniisdaiOhiiyd — / Oniis DD nda
:= B9y + Bi2s.

For Bjs;, we use the divergence-free condition of u and Lemma 2.4

Bi = — / R / Ot Dy

1 .1 .1 U S
< cl|Ovua||r2|| 02t || 21| O102un || 12 || Oatia || 2 || D2 02z £ -

< cllullz=| 922l 3

(4.17)

(4.18)

(4.19)

(4.20)

The second piece By can be bounded using integrating by parts, Lemma 2.4 and

then Young’s inequality
Bigy = —/81@82@81@dx
= 2/828117227201272(1:5
1 1 1 1
< cf|0201uz|| 2 [|uz]] [ || O2tiz]| 72 || Oruz]| 72 ]| 01OV U2 | £
P A AT
< cllull (13 + sl )
Combining (4.20) and (4.21) and inserting them in (4.19) we obtain
Bua < clull e (|13 + 10513 ).
The term Bi3 is naturally divided into two integrals,

Blg = —/82u1816~ 826615(7

= —/82U1811’[1821’Lv1d1'—/82U1811’[282{[2d1'

(4.21)

(4.22)
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= Bl31 + Blgg. (423)
Due to V - u = 0 and Lemma 2.4,

Bz = —/azulaﬂflazﬁldif

= / 82u1821'[282{[1d:c

1 .1 .1 - 1
< c||Opur | 2[|O2tia |2 |01 Ot || 2 || Optin || 72| D2 Opin || 7
< c||ull 2| 02|71 (4.24)

Integrating by parts, making use of Lemma 2.4 and then Young’s inequality

Bizg = —/azuﬁﬂfzaz?fzdx

_ / On it ity + / Dyr T Oninda

1 1 1 1
< cl|010aun | 2 ||| 72 || Otz | 25 | 02tz | 12| 01 Opui2 | 7

1 1 1 1

+ cl|Oauy || 2 [|ua|| 2 || Oatia ]|} 2 [| 01 Oa iz | £ [| 010102z || 7 -

1 .3
< clullm2([ual|7 (|02l £

< cllullz (121132 + 10513 ). (4.25)
Inserting the estimates (4.24) and (4.25) in (4.23) we get
Bus < cllul (10132 + 1953 ). (4.26)

The last term By, can be bounded directly via Lemma 2.4,

Bl4 = —/02’&202’(7 . 82170[:)3

1 L L L
< c||Oaus|| 2| Oati| ;2 [|01 Dot 7 .|| Do) 2 || D2 Ot 7 5

< cllull 2|02 171 (4.27)
In view (4.14), collecting the upper bounds in (4.18), (4.22), (4.26) and (4.27) gives
By < cllull (0132 + 1052l ). (4.28)

The next term By is naturally split into four parts,

By = — / VY (i20,7) - Viidz
= — / 8117282@ . 816d$(7 - /8217282ﬂ : 8217dx

— /@alagﬂ . 81ﬁd:)3 — /@agagﬂ : 82176155
= Bgl + ng + ng + Bg4. (429)
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We rewrite Bsy; as,

Bgl = - /01’(7202@ . 81ﬁd:)3

— - [odomoidds - [ omomo s
:= Ba11 + Baa. (4.30)
Clearly, due to uy = 0,

3212 = - /01’(7202’&_201’[[2(11’ = 0. (431)

By the divergence-free condition of u, integration by parts, Lemma 2.1, Holder’s
inequality and then Lemma 2.2

By = —/51?7252171811710&"
- / 01 0Ty

_ / BT Dy

:/02?71(/?7251821726155061@
R T

< || Oxur|| L [[uz| 2|01 Oauz| 2
< c|| 0ot || g1 ||z || L2 ]| O1 D2tz || 2

< cflullm2lluz|| 2| Bxt]|
< cllfll e (13 + 110wl ). (4.32)
It then follows from (4.31), (4.32) and (4.30) that
B < clfulle (10271 + |2 (433)
According to Lemma 2.4,

BQQ = —/82{[282ﬂ . 82?7615(7

1 1 1

< || 01| 2| Optiz ||} || O1 Oaia || 2 | D2 7 [| Do D] 7 »

< ellull g2l 0017 (4.34)
Due to the definition of w,

ng = —/1728102ﬂ . 81&'(1:5 =0. (435)
By Lemma 2.4 and Young’s inequality,

Bg4 = —/1728202ﬂ . 82176155
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1 1 1 1

< || 020:1l| 2 [|wa |2 |02t || 2 (| O2ul| . |01 O] 72
1 3

< cllullm 1 ) 2110l

< cllull (10132 + 19531 ).

Combining (4.33), (4.34), (4.35), (4.36) and (4.29), we obtain
Bs < cllulle (13 + 1013 ).

To bound Bs, we first write v = u + w and use Lemma 2.1

By = —/V(u-Vg)-ng:)s

:_/V(u-v§)~v5dx+/wu~v5)-védx

J

-~

=0

S / 0,00,1,0,0dx — / 0500, 10,0, 0dx

— /81582u182§da: — /02582{[2825611’
:= Bs31 + B3y + Bss + Bsy.

All terms in (4.38) can be bounded suitably. In fact, by Lemma 2.4,

Bgl = —/81581{[1815615(]

< || Oniin| 12]|910]| 2.1 0101 0]| 2, || 01 0] 2, || 0201 01| 2.
< cf|ull 2| 040] 3.

To deal with Bsy, B3z and B3, we use Lemmas 2.4 and 2.5,

332 = —/82581172815(&5

< c||Ontia|| g2 1|020]|2, [1018:0]|2,1|010]|2, 110200 2.
——

1
<|11020]1 %,

< cllullm211048|lz1,

ng = —/81582u1825dx

< || D[z 1|0]|2, [1010:0]|2.1|810]|2.1|0200] 2
——

1
<[110:0]1 %,

< cllull 211048l

35

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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and
Bsy = — / 0,00,1120,0dx
< cloudloe 5, 10305011 102l 1 | 0uis
—
<[1010:8 2,
< || 2|0 111|016 1
< clflla= (122013 + 101813 ).
Inserting the estimates (4.39), (4.40), (4.41) and (4.42) in (4.38) yields
By < ¢l (u, )l (105113 + 104113 ).
It remains to bound B,. Again, we split B, into four pieces,

By = — / V (2050) - VOdx
= — /81(172825) . 81§d:c - /82(172825) . 82§d:c
- / Oy 1i30500,0dx — / 1120,0500,0dx

- / 120500, 0dx — / 30505000
= B41 + B42 + B43 + B44.

(4.42)

(4.43)

(4.44)

The terms above can be bounded as follows. Due to the definition of the horizontal

average 0,

B42 = /@818258156156 = 0.

(4.45)

To bound By, we use integration by parts, Lemma 2.1, Holder’s inequality and then

Lemma 2.2

B41 = —/81{[2825815(&5

— / 120,00,0,0dx

:/82§</1728181§d$1)d252
R T

< cl|0a8|es || 12101010 2
< |00 g ||zl 12101016 .
< cl|6]| 2|2 2016 1

< el (133 + 104813 ).

(4.46)
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The other two terms Bys, By can be bounded via Lemmas 2.4 and 2.5,
Bz = — / Oai0500,0d

_ ~ 1 ~ 1 - 1

< c[|0a0] 12 |020]]72 (10102017 | O2tia| L2]| 020212 |} -
1
<[101020] 7,

< |0 2[|010]] g1 || Oz 12

< cll0ll= (101113 + 023 ). (4.47)

B44 = —/172828258256137

_ ~1 ~1 I
< c||020a0]| 2 [|020]]72 [|010:0]|; 2 || w2 |72 || 0ozl 72
1
<[191820]| 2,

1 1 ~
< c||0] g2 |zl 72| 0ol | 016 £

< el (i + 12l + 10,713 ) (1.45)
Inserting all the bounds obtained above for By; through Byy in (4.44) gives
Bu < el (u, )12 (107113 + 193113 + 121132 ). (4.49)
Combining (4.28), (4.37), (4.43) and (4.49) yields

1d ~ ~ ~ ~
5= (IVE® I3 + V0132 ) + vlaaVillE: + nlo Vo).

< ol )l (105730 + 10001 + I TE:) . (4.50)

In order to control the norm ||us||z2 appearing in (4.11) and (4.50), we need to add
the following term,

d

dt
where 6 > 0 is a small constant to be fixed in the end of the proof. The inclusion of
this term will generate an extra regularization term to help bound ||uz||z2. Clearly,

(5(.0)) = ~6(0uiz, 6) — 6(, 0D),

this stabilizing term comes from the interaction between w and #. By Holder’s
inequality, one easily sees that, for sufficiently small § > 0,

(@, 0) |13 — d(dz,0) > 0.
Considering to the first equation of (4.2) and using the fact that s = 0, we have

Oty + u - Viiy + U0sTiz —vO21is + 0o = gob). (4.51)
=0

On the other hand, applying V- to the first equation of (4.2), we get
V- (u-Va) + V- (G057) + AF = godsb. (4.52)
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By (4.52), we can write
=AY (- V) — AV - (0057) + goA 50,
Hence,
B = —DA IV - (- Vi) — AV - (G505T) + goDadeA1E. (4.53)
Using (4.51) and the second equation of (4.2), we have

5.0 ,8) = (0 ) — (3, 00

= 5(g0 — Oup+ VT — - Vi, B)

— §(1, —gotin + n020 — 13050 — u - V)

= —god|0]|%. + /82ﬁ§dx - 51//83{;2%:6 46 [ u-Vidde

+ god|| a2 —517/0%5172d:):+5/ﬁ'2172825d9:+6/u-ngfgda:

The terms N; through Ng obey the following bounds. We start with N, and use
(4.53) to rewrite it first as,

Ny:=14 / Dopldz
- —6/82A‘1V (u- V) - Odx —5/82A‘1V - (G3057) - Odx
+ god / A0 - Odx

= N21 + N22 + N23. (455)

By Lemma 2.1 and integration by parts we split Ny, into three pieces

N21 = —5/82A_1V . (U/_\V/ﬂ) . 5615(7

= —5/82A_1V-(u-Vﬁ)-5dx+5/82A_1V-(u-VH)-5dx

J

-~

=0

=4 / AT O (u101T0) - Odw — & / A" 05 (us05T0) - O
) / (ur040) - DoA™ 0,0dx — 6 / (us0al) - DoA™ 0y0dx (4.56)
- —6/81171’12-82A‘181§d:c— 5/ulﬂ~8182A_1815dx

—4 / (usdot) - DoA™ 0y0da
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= Nai1 + Naig + Noys. (4.57)

Due to V - u = 0, Lemma 2.4 and the boundedness of the Riesz transform,
Nyjy = —6 / i - DAL, 0dx
=6 / Oyl - A0, 0

1 ! i~ a1

< cl|ull 2| 0ot || 25 |020212 | 22 ]|02A T 06|12, || 01 0. A0, 6] 2,
~ 1 ~ 1

< cl|ull g2 || o[ g1 [|0]] 721|010 ; -

< cl|lul| g2 | 0ot 1| 010 1

< cllullm (110213 + 10n01;: ). (458)

According to Lemma 2.4, the boundedness of the Riesz transform, Lemma 2.5 and
V.-u=0,

N212 = —5/’&1& : 8102A_181§d1’
1 1 o~ o~
< cllun | g2 ||| 2, ]| 00| 2, |01 02 A7 016]| 22| 01010 A1 016]|2,
1 1 ~ 1 ~ 1
< cllull g2 ||l 721|021l ;2 [|010]] 721]010:10]| 7
- ~ 1 ~n = ~
< cllullg2([[urllpz + ||uzl|z2) 2 |Oatl| 31 [| 010 0

<clulm (@B @I + 1025+ 10:8]3)
———"

<oz |12, =021,
< cllullzz (113 + 102al15 + 100113 ). (4.59)
Applying Lemma 2.4, the boundedness of the Riesz transform and then Lemma 2.5,
N213 == —5/(U282?7) . 82A_182§dx

1 1 o~ a1

< c|ual|r2]|021| 2, ]|02001| . |02 A7 D20 221|002 A1 00| 2,
~1 ~ 1

< cllull g2 || ot g ||0]] 72 | 010]] } -

< cllul| g2|| 2] g1 || 010 111

< cllulle (N5l + 193813 ). (4.60)
The bounds in (4.58), (4.59) and (4.60) lead to

Nar < cllulle (@13 + 0530 + 0,613 ). (461)
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Now we turn to the next term Noy. By Holder’s inequality, the boundedness of the
Riesz transform and Lemmas 2.1, 2.2 and 2.5

Ny := —6 / ATV - (l305T0) - Oda
< 00]|0pATMV - (@00m)|1210] 2
< ¢l a0 211 2
< 00|05 g || @ 216 2
< 0802 1 (| 2161 .2
< bl |ul| 2 |2l 21016 12
< dljulle (12 + 101813 ) (4.62)
For N3, we integrate by parts, use Plancherel’s theorem and then Lemma 2.5,

N23 = 905/8282A_1§- gdl‘
- goafazA—%é-aQA—%édx
= 00| 0A7"0] 3.2

Y [ L ik s

kEZ
k#£0

= 052/ 10k, &) Pdey = eb|0u03 < 51010203 < c50r0]%,  (4.63)

kEZ
k20

where A = (—A)2 and we have used the fact that the oscillation part has the hori-
zontal mode equal to 0, or 5(0, &) =0.
Collecting (4.57), (4.62), (4.63) and (4.55) yields
Ny < el ()l (105000 + Nl + 10713 ) + ol ndlf. (464)

To deal with N3 we use V - u = 0, integration by parts, Holder’s inequality and
Lemma 2.5,

Ny == —6v / Rinfdx = dv / 820,y O
— —bv / 111020, 0dx

< ovin| 210:0,0] 12

<cb( lal 9.7
——

<llorar |2 ,=]022]2
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< o (10al3 + 10,013 ). (4.65)
To estimate N4, we make use of Lemma 2.1 and integration by parts, to write it as

Ny = 5/uf-€/{[2§dx

:5/u-Vﬁ25d:E—5/u-Vﬁggdzz

J

~~

=0

—5 / udyinfdx + 6 / uDyiinOdx

=4 / dutfdr + 0 / udsinfd
= Ny + Nya. (4.66)
By Lemmas 2.4 and 2.5

Ny = =0 / O i 0dx

A AP A TR T A EX
P A A A
< clulls (105713 + 101813 + 111 ). (467)
Similarly,
Nyo = 5/u022729~d:£
1 1o~ 1
< cllull 2|92z 72| 9202t2 - 101721101011 7
< clluls2 19yl 1110161
< cllullz (195153 + 110483 ) (4.68)
Inserting (4.67) and (4.68) in (4.66) we find
Ny < eblfulle (105713 + 19,813 + 172l ). (469)
Clearly, the term Ny can be bounded via Lemma 2.5,
Ny = —god |2 < 31010112 < c30rd13. (4.70)
Due to Holder’s inequality and Young’s inequality,
Ng := —0n) / 2 0sda

< c81020 12|
< cb10r0 1| sl
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~ 0, ~
< 8l + 03 1 @.1)
Using integration by parts and Lemma 2.4, we get
N; = 6/27217282561:5 = 25/0227217250[:)3

1 1 1
< c0|Optia| | 010013 || 7|2 || ;2 || Oauia || 2 | €| 22

3 1
< |9yl £ |[az]l 22 |16]]rr2
< 010l (11022 7 + ll2i2]|72)- (4.72)

It remain to bound the last term Ng. We split it into three terms using Lemma 2.1,

Ng := 5/u-V§ﬁgd:)§

zé/u-vg@d:c—d/u-vgﬁgdzz

-

7

) / 0, 0tdx + 6 / w0, 0tpdr + 6 / UsOnDilnd

= Ngl + Ngg + Ngg. (473)
Due to Lemmas 2.4, 2.5 and divergence-free condition of u, we have

Ny = 5/171615172d9:

S A XA A A TA R A AR
S R A AT P
< 8|0 = ([| 92| 71 + [l32|72)- (4.74)
By Lemma 2.1, Holder’s inequality and Lemma 2.2,
Ngg := 0 / W0, Otpda
< 6| 35 101 6732 | o
< b (|25 1016 2132 | 12
< b ful s |48 2| B2 2
< callulle (10,013 + a3 ) (4.75)
Due to uy = 0, integration by parts, Lemma 2.4 and Young’s inequality

Ngz =0 / 05 0tiydr = & / 2050t da

— 95 / Oy ii01iyda
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I A A A A PR G A AR P
S AT AT
< 3)10llm= (19aiil3 + 13 ) (4.76)
Inserting (4.74), (4.75) and (4.76) in (4.73) leads to
Ny < cll(u, 0) | (1023 + 12113 + 1483 ) (4.77)

In view of (4.54), combining (4.64), (4.65), (4.66), (4.70), (4.71), (4.72) and (4.77)
we get

d, . =~ - ~ ~
—02 (i3, 0) < god |2ll32 + | (u, 0) 12 (11027l + 1212 )
0. _ _ ~
— g0 lal132 + 3 (Iaill + 19101 ) (4.78)
It then follows from (4.11), (4.50) and (4.78) that
d _ ~ o~ _ ~
= (1l + 1615 = 8(22,9) ) + 205l + 201016
< cll(u, 0) 1= (1023 + 101813 + 12113
30, - -
+ g0 2l 32 + 31 (s 0) e (1923 + 13
+ ed (|10l + 10063 ).

Now, by Theorem 1.1, if £ > 0 is sufficiently small and |Jug||z2 + ||0o]/z2 < €, then
|(w(t),0(t))|| g2 < ce. Hence we have

(s 4+ 183 — 5(2,8)) + 2033+ 200481
< ce( ol + 105 + 1l
T P S (L R AT
+ e (1owllzs + 191013 ).

Choosing € > 0 such that ce < —gomin(3, $), we obtain

)
4
(1B + 18130 — 5, 8)) + 2011053 -+ 200104813

< (1ol + 10,513 ) — 902

30 o ~ -
+ g0 NialE2 — g0 (1003 + Izl )

+ e (53 + 101613 )
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5 . » ~
< g7 1al13: + eo (ol + 10171 ).

Choosing § > 0 such that cd < min(v, 7, 5), we get

d /- ~ SO — ~ 0~
(1 + 1813 — 8(52,8)) + V105l + 0l Drb — g0 I3 < 0. (479)
Due to the above choice of §, we have
1/ _ - s
5 (Il + 10113 ) = 9z, ) > 0.

or

1, ~ _ ~ 3
5 Ul + 11617:) < [l + 1917 — o(a, 0) < §(||u||H1+||9||H1)

For any 0 < s < t, integrating (4.79) in time leads to

N~

t
- ~ _ ~ o
(@) + 10 7) +/ W0al5: +nll0r615 — go7llia]l72) dr

< ST + 1)

Especially, for any 0 < s <'t,

1@ 15+ 1815 < 3((s) I3 + 16(3)1170) (4.80)

and
o0 " " 5 "
/ (Wl 0otll3 + nl|0n0] 7 — gozllwlliz) dr < C < 0.
0

Combining with the time integral bounds from Theorem 1.1,

/000 |Gtz dt < o0, /000 |01z |32 dt < o0 and /000 10,0||3,2 dt < oo,
we get
/Ooo(||ﬂ(1ﬁ)||%r1 + 118(2)171) dt < oo. (4.81)
Applying Lemma 2.6 to (4.80) and (4.81) yields

@) 17+ 1)1 < et +1)7,

and the asymptotic behavior, as t — oo,

(@)l + 10 [7:) — 0.

This completes the proof of Theorem 1.2. O
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