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A Graph-Based Knowledge Representation Language for
Concept Description

Alexandre Delteil
�

and Catherine Faron
�

Abstract. In this paper, we propose an expressive concept descrip-
tion language, ����� , for real world applications combining features
of both Conceptual Graphs (CGs) and Description Logics (DLs). Re-
garding concept descriptions in CGs, namely existential, positive and
conjunctive graphs, ����� is the closure of this language under the
Boolean operations. Now regarding DLs, ����� is an extension of� �
	 with graph structures in concept descriptions.
����� extends

� ��	 with the intersection � , composition  , converse
of roles ��� and role identity ������� � : we show how these constructs can
be expressed with EG and GR constructs.
We provide a sound and complete tableaux algorithm to prove the
satisfiability of ����� in NEXPTIME.

1 INTRODUCTION

Conceptual graphs (CG) is a knowledge representation model de-
scending from existential graphs [8] and semantic networks [6]. De-
scription Logics (DLs) are a family of knowledge representation for-
malisms focusing on concept description and reasoning about these
concepts, that provide effective reasoning procedures for fragments
of FOL. Previous works have attempted to state a correspondance be-
tween these two formalisms [4] [1]. In this paper, we propose a con-
cept description language ( ����� ) which combines features of both
Conceptual Graphs (CGs) and Description Logics (DLs). Regard-
ing concept descriptions in CGs, namely existential, positive and
conjunctive graphs, ����� is the closure of this language under the
Boolean operations. Now regarding DLs, ����� is an extension of� �
	 with graph structures in concept descriptions.
This extension is achieved by generalizing the existential restriction
and universal restriction constructs of

� �
	 into respectively an Ex-
istential Graph (EG) construct and a Graph Rule (GR) construct.
The EG construct enables to introduce graph structures in concept
descriptions and the GR construct can be viewed as the dual of the
EG construct: the negation of a graph rule concept can be expressed
with existential graph concepts, the negation of an existential graph
concept with a graph rule concept.
����� is thus an expressive concept description language for real
world applications: our work is driven by the modeling needs of real
world applications like in bioinformatics, chemical engeneering or
cartography, which are domains characterized by structured data.
In section 2 and 3, we present concept descriptions in DLs and in
CGs. In Section 4, we describe our concept description language
����� . In Section 5, we provide a tableaux algorithm to prove the
satisfiability of ����� . In Section 6, we prove our algorithm is sound
and complete and terminates in NEXPTIME.
�

INRIA, BP 93, 06902 Sophia Antipolis, France, adelteil@sophia.inria.fr�
I3S, BP 145, 06903 Sophia Antipolis, France, faron@essi.fr

2 CONCEPT DESCRIPTION IN DLs

A DL includes a terminological language and an assertional lan-
guage. The assertional language is dedicated to the statement of facts
and the terminological language to the description of concepts and
roles. The fundamental reasoning task is the computation of sub-
sumption relations between concepts.
A DL is inductively defined from a set ��� of primitives concepts, a
set ��� of primitive roles, the constant concepts � and  , and two
abstract syntax rules:

!#"%$ & �('  most general ' absurd
')� primitive concept
' !+*,$

concept disjunction
' ! � $ concept conjunction
')- ! negation
'/.�01� ! universal restriction on roles
')2301� ! existential restriction on roles

0 & 4
primitive role

' 4 � � role converse
'50 � 60 � role composition

The constructors used in these syntax rules determine the expressive
power of the DL being defined.
For example, the following concept description describes all the
highways or interstates whose at least one crossing road has a red-
light:

�87,�:9<;3=?>A@ *CBEDGF�H 0EI F > F�H �J�?23KL01MEIJI H IN�O�8P#MJ>A�Q�?23M D � � � P H �3R��:9<; F � .
The formal meaning of a concept description is classicaly given
through an extensional semantics by an interpretation S which is a
pair ( T�U , � U ). The domain T�U is an arbitrary non-empty set of indi-
viduals and � U is an interpation function mapping each concept with
a subset of T U and each role with a subset of T UWV T U . The deno-
tation of a concept of the DL defined above is given in Table 1.

An interpretation S is a model for a concept
!

if
! U is non-empty.!

is satisfiable iff there exists an interpretation S which is a model
of
!

. Based on this semantics,
!

is subsumed by
$

, noted
!YXZ$

,
iff
! U\[ $ U for every interpretation S .

3 CONCEPT DESCRIPTION IN CGs

3.1 Basic Notions on Conceptual Graphs

A simple conceptual graph is a bipartite (not necessarily connected)
graph composed of concept nodes and relation nodes describing re-
lations between these concepts. Each concept node K of a graph ]



Construct name Syntax Semantics
top / bottom � / � � U / �
disjunction ����� � U
	 � U
conjunction ����� � U
� � U
negation �� � U
� � U
universal restriction ����� � ���
��� U�� ������� U �

if !"� � �$#%�&� U then �'��� U)(
existential restriction *+��� � ���
��� U � *,�'��� U �!-� � �$#%�.� U and �'�.� U (
role converse � � � �/!-� � �$#%�&� U10 � U � !-� � �,#2��� U (
role composition � �23 � � �/!-� � �$#%�&� U10 � U � *,4'�&� U �!-� � 45# �.� U � and !-4 � �$#6�.� U � (

Table 1. Syntax and Semantics of DL Concept Descriptions

is labeled by a couple � F @87 H ��K � " 0 H+9 ��K � � , where 0 H,9 ��K � is either the
generic marker : corresponding to the existential quantification or an
individual marker corresponding to an identifier; ; is the set of all
the individual markers. Each relation node 0 of a graph ] is labeled
by a relation type

F @87 H �:0 � ; each relation type is associated with a sig-
nature expressing constraints on the types of the concepts that may
be linked to its arcs in a graph. Figure 1 presents an example of a
simple conceptual graph.

agentPerson: Peter Crosses:   * object Road:    *

location

Pedestrian Xing:   *

Figure 1. An example of conceptual graph

Concept types (respectively relation types of same arity) build up a
set <)= (resp. <)> ) partially ordered by a generalization/specialization
relation ?C� (resp. ? � ). �"< = " < > " ; � defines the support upon which
conceptual graphs are constructed. A support thus represents the on-
tological knowledge.

For a further detailed presentation CGs, the reader is invited to
refer to [10][3].

3.2 Logical Semantics

The semantics of CGs relies on the translation of both conceptual
graphs and their support into first order logic (FOL) formulas. A gen-
eralization relation between two concept types

F � and
F � of a support

is translated into the following FOL formula: .A@�� � �"@ �1B5� � �"@ �
where � � and � � are two unary predicates. A generalization relation
between two n-ary relation types

F � and
F � of a support is translated

into the following FOL formula:
.A@ � � � � .A@AC � � �"@ � " � � � " @AC ��B � � �"@ � " � � � " @AC � where � � and � �
are two n-ary predicates.

A conceptual graph ] is translated into FOL thanks to the D
operator defined in [10]: D#�8] � is a conjunction of unary predicates
translating the concept nodes of ] and n-ary predicates translating
the n-ary relation nodes of ] ; an existential quantification is intro-
duced for each generic concept. The semantics of the conceptual
graph presented in Figure 1 is given by the following FOL formula:

D#�8] �FE/2G@ " @ "IH � H 0EI M D �8� H F�H 0N�KJ ! 0EM1IJI H IN�"@ �LJ P#M >A���:@<�MJ
� H � H I F 0 ��> D)N � D 9G� H �OJ >A9 H DGF �"@ " � H F�H 0N�PJ M8QIR H K F �"@ " @<�SJT M1K%> F �8M D �"@ "$H � .
3.3 Reasoning with Conceptual Graphs

Conceptual graphs are provided with a subsumption relation ?�U cor-
responding to the logical implication:
] � ?+] � iff D#�8] � �2BVD#�8] � � .
A key operation called projection enables to compute subsumption
relations between graphs: ] � ? ] � iff there exists a projection W
from ] � to ] � . W is a graph morphism such that the label of a nodeD � of ] � is a specialization of the label of a node

D � of ] � withD � EXW�� D � � . Reasoning with conceptual graphs is based on the
projection which is sound and complete with respect to logical de-
duction. Finding a projection between two graphs is a NP-complete
problem [3].

3.4 Concept Description

Like DLs, CGs supports concept descriptions through a type defini-
tion mechanism [10]. It consists in associating a formal description
to a type, this description being a conceptual graph.
Formally, a concept type definition

F � �"@ �MY[Z\@�] asserts an equiv-
alence between a concept type

F � and a monadic abstraction Z\@G]
which consists of a conceptual graph ] whose concepts are either
atomic or defined and whose one concept among its generic ones is
designated by the formal parameter @ . Reasoning with type defini-
tion is detailed in [5]. Figure 2 presents the definition of the concept
type crossroad.
Similarly, n-ary relation types

F � can be defined by n-ary abstractions
Z\@ � " � � � " @AC ] .
The D interpretation function of CGs is extended to type definition:
D#� F � � is the FOL formula obtained from D#�8] � by removing the ex-
istential closure of the variable @ . D#� F � � thus has one single free vari-
able.

object

Road:  * agent

LocatedOn: *

Road:  *object

object

agent

Intersects: *

LocatedOn: *agentPlace:  *x

Figure 2. An example of concept type definition

When compared to concept descriptions in DLs, this type defini-
tion mechanism based on positive and conjunctive existential graphs
lacks of the expressiveness the negation and disjunction constructs
provide to most DLs. On the other hand, the graph structure of CGs
provides a higher expressiveness than the tree structure of most DLs.
We thus propose to merge both features into a graph based language
for concept description. Previous works have attempted to state a cor-
respondance between DLs and CGs [4] [1]. Here we take advantage
of both formalisms and build upon CGs with DL constructs.

4 GDL: A GRAPH DESCRIPTION LANGUAGE

In this section, we propose a concept description language based on
graphs and DL constructs. We call it ����� for Graph Description



Logic. Regarding concept descriptions in CGs, namely existential,
positive and conjunctive graphs, ����� can be viewed as the closure
of this language under the Boolean operations. Now regarding most
DLs, they are provided with Boolean constructs and ����� can be
viewed as an extension of the

� �
	 DL to allow graph structures in
concept descriptions. This extension is achieved by generalizing the
existential restriction and universal restriction constructs of

� �
	 .
Formally, ����� is inductively defined from a set �Q� of primitive

concepts, a set � � of primitive roles and the concepts � and  , by
the following abstract syntax rule:

!#"%$ & �('J most general ' absurd
')� primitive concept
')- ! negation
' ! � $ concept conjunction
' !+*,$

concept disjunction
' Z\@G] existential graph
' Z\@GP graph rule

In addition to the conjunction, disjunction and negation constructs,
the existential graph construct enables to introduce graph structures
in concept definitions.

Definition 1 An existential graph Z\@ � ] is a concept description
consisting of a connected graph ] whose concept nodes are all
generic, either atomic or defined by a concept description of ����� .
One of its concept nodes is designated by the formal parameter @ � .

The graph rule construct is the dual of the existential graph con-
struct: the negation of a graph rule concept can be expressed with
existential graph concepts and the negation of an existential graph
concept with a graph rule concept.

Definition 2 A graph rule Z\@ � P Y Z\@ � �8] B ! � � � � ! C � is
a concept description which consists of a pair of abstractions
� Z\@ � @ � � � � @AC<] " Z\@ � @ � � � �I@AC � ! ��� @ ��� � � � � ! C � @AC � � where:

� Z\@ � @ � � � � @ C ] is called the hypothesis of the graph rule Z\@ � P .
It is a connected graph whose

D	��

concept nodes are designated

by the formal parameters @ � " @ � " � � � " @AC . The concepts of ] are
all generic, either atomic or defined by a concept of ����� .� Z\@ � @ � � � � @ C � ! � � @ � � � � � � ! C � @ C � is the conclusion of the graph
rule. Each

!�
in the conclusion is a concept description of ����� .� @ � " @ � " � � � " @AC are called connection points; they correspond toD

coreference links between ] and
� ! � � : � ��� ��� � C , indicating that

the generic marker of each
!��

represents the same entity as one
concept of G.

The hypothesis and the conclusion of a graph rule have the same
number of concepts (

D���

). If a concept in the hypothesis of the

rule - designated by a formal parameter @ � - has no corresponding
concept

! �
in the conclusion of the rule, the most general concept �

is added for
!�

.

The duality between the existential graph construct and the graph
rule constructs is formally stated in the following two lemmas.

Lemma 1 If
! Y Z\@ � ] then - ! Y Z\@ � P where Z\@ � P is the

couple � Z\@ � @ � � � � @AC ] " Z\@ � @ � � � � @AC �  � @ ��� � � � �  � @AC � � . The
hypothesis of the rule is the graph ] of the initial existential graph;
the conclusion of the rule is the conjunction of absurd concepts.

Lemma 2 If
! Y Z\@ � P where Z\@ � P is a couple

� Z\@ � @ � � � � @AC ] " Z\@ � @ � � � � @AC � ! ��� @ ��� � � � � ! C � @AC � � , then
- ! Y���� Z\@ � ] � where each ] � is the graph obtained from ] by
replacing one of its nodes

� $ � � @ � � by the node
� - ! � � $ � � @ � � .

These two lemma are the key to put a ����� concept description in
negation normal form (NNF). A concept description is put in NNF by
pushing down the negations to primitive concepts, applying lemma
1 in case of negating an existential graph and lemma 2 in case of
negating a graph rule.

The formal meaning of ����� concept descriptions is given as an
extensional semantics by an interpretation S as described in Table 2.

Construct Syntax Semantics
top / bottom � / � � U / �
disjunction ��� � � U 	 � U
conjunction ��� � � U � � U
negation �� � U � � U
existential ��� ��� ��� � �.� U � *,� � �.� U � �$�$� � *,� C1�.� U
graph not necessarily distinct, with  "! � the number

of nodes of � in normal form, such that:
- if # �%$&� �('*) � ) # �%$+�-, ' is an arc of �
then !-� � � �., #%�&� U ,
- if # �%$&� �(' is a node in � then � � � � UA(

graph rule ��� ��/ ��� � �.� U � ��� � �.� U � �$�$� � ��� C �.� U
not necessarily distinct, with/10 ! �32 � � �I�I� �6C�# , such that � � �&� U�
if the following conditions hold:
- if # �%$&� �('*) � ) # �%$+�-, ' is an arc of �
then !-� � � �., #%�&� U ,
- if # 45$&� �(' is a node in � then � � �64 U (

Table 2. Syntax and Semantics of 7A�	8

����� extends
� ��	 with the intersection � , composition  , con-

verse of roles � � and role identity �8����� � : these constructs can be ex-
pressed with graph rules and existential graphs constructs as shown
in Table 3. On the other hand, number restrictions, role union, in-
stances can not be expressed in ����� .
An additional expressiveness like the possibility to add relations in
the conclusion of a graph rule would have led to loose the finite
model property: for instance, it would have been possible to express
the transitivity of a relation.

5 THE TABLEAUX EXPANSION RULES

In this section, we present a tableaux algorithm to prove the satisfia-
bility of ����� . Our proof is based on the construction of a constraint
system (see for instance [2]). A constraint system (c.s) is a labeled
graph �:9 "<;
" � � , where 9 is a set of nodes,

;
is a set of edges and �

is a function mapping a node to a set of concepts and an edge to a set
of roles. A c.s. contains a clash if for some node @�=69 ,  �= �?�"@ �
or >-? " -@?"A [ �?�"@ � . A c.s. is complete when all applicable rules
have been applied.
To prove the satisfiability of a concept

!
, we start with the structure

�B>/@ � A "�CA" � � where � �"@ � � E !
. Then we build the c.s. by applying

the expansion rules described in Figure 3, assuming
!

is in NNF.
!

is satisfiable iff the c.s. is complete and clash-free. We will prove it
in the next section.
The expansion rule for the existential graph construct can be seen as



DL constructs 7A� 8 expressions
* / � # �%$ � � � '�� ! / # � # �%$ � '
� / � # �%$ � � � '�� ! / # � # �%$ � � ' 2 # �%$ � � '
* ! / � � / � # � # �%$ � � � '�� ! / � # � # �%$ � � '� ! / � #��
��! /6� � / � # � # �%$ � � � '�� ! / � # � # �%$ � � ' 2 # � $ � � '� ! /6� #��
* ! / �23 / � #-� # �%$ � � � '�� ! / � # � # �%$ � '�� ! / � # � # �%$ � � '
��! / �63 / � #-� # �%$ � � � '�� ! / � # � # �%$ � '�� ! / � # � # �%$ � � '2 # �%$ � � '
* ! / � #-� # �%$ � � � '�� ! / # � # �%$ � '
��! / � #-� # �%$ � � � '�� ! / # � # �%$ � � ' 2 # �%$ � � '
* ! / �
	��+!-� # # � 4 # � � 4 $ � � � '� ! / #
��! / �
	��+!-� # # � 4 # �%$ � � � '� ! / # 2 # 45$ � � � '

Table 3. Expression of � 8)�A!-� � 3 ��� � � 	��,! � # # constructs in 7A� 8

the generalization of the rule for the 2 P ! construct.
A naive expansion rule for the graph rule construct that would fire
when the antecedent of the graph rule is matched would not be sound,
as it would not detect that the following concept is unsatisfiable:� � � @ ��� & �8P � & � ! � : �
� � ? � @ � � & �8P � & � � � : @ � B � - ! � : @ �
� � -@? � @ ��� & �8P � & � � � :8@ � B � - ! � :8@ �
The sound rule, stated in Figure 3, fires as soon as just the relational
part of the antecedent of the graph rule is matched.

� if
! � � ! � = � �"@G� and > ! � "%! � A��[ �?�"@ �

then � �"@ � & � �"@ ��� > ! � "%! � A*
if

! � * ! � = � �"@G� and
! � �=\�?�"@ � and

! � �=\�?�"@ �
then � �"@ � & � �"@ ��� > ! � A

or �?�"@ � & �?�"@ ��� > ! � A
Z\@ � ] if 1. Z\@ � ] =\�?�-Q � �

2. there does not exist Q � = 9 " � � � " Q5C = 9
not necessarily distinct, such that for all i,j:
- if

� � � @ � � & 0 � , & � � � @ , � is an arc in ]
then 0 � , =,� �-Q ��" Q , �
- if

� ! � � @ � � is a node in ] then
! � =\�?�-Q � � ,

then 1. create n new nodes Q � " � � � " Q C
2. � �-Q � � E5> !� A if

� !� � @ � � is a node in ]
3. � �-Q � � & � �-Q � ����> ! � A if

! � �E �
3. � �-Q � " Q , �2E5>J0 � , /

� � � @ � � & 0 � , & � � � @ , �
is an arc in ] A

Z\@ � P if 1. Z\@ � P =\� �-Q � � where P is � Z\@ � @ � � � � @ C ] "
Z\@ � @ � � � � @�C � ! ��� @ ��� � � � � ! C � @AC � �
2. there exists Q � =69 " � � � " Q5C =69
not necessarily distinct, such that
if
� $ � � @ � � & 0 � , & � $ , � @ , � is an arc in ]

then 0 � , =,� �-Q ��" Q , �
then for all i, � �-Q � � & � �-Q � ��� > $ � A�� > !� A

or �?�-Q � � & � �-Q � ��� > - $ � A
or . . . or � �-Q�C<� & � �-Q5C ��� > - $ C A

Figure 3. Tableaux Expansion Rules for 7A� 8

6 SOUNDNESS AND COMPLETENESS

In this section, we prove soudness and completeness of our tableaux
algorithm, and an NEXPTIME upper-bound for termination.
Let the size of a concept

!
, noted IN� ! � , be the number of symbols

in its description. It is inductively computed as follows:
- IN�8� � E 


for P a primitive concept,
- IN�.? ��� �2E IN�.? � � IN��� � �%
 and I �.? �����2E I �.? � � IN����� �3
 ,
- IN����] �2E 
 ��� � IN� !� � where the

!�
are the concepts of � ] ,

- IN�8] P �2E 
 � � � IN� !� � � IN� $ � � where the
!�

are the concepts of
the hypothesis of ] P and

$ �
are the concepts of its conclusion.

Lemma 3 Let
D

be the size of the input concept
!

for which a c.s.
is being built ( � �"@ � � E !

). Each node @ of the c.s. is labelled by at
most  D concepts.

Proof. The number of subconcepts of
!

is bounded by n, and each
concept labelling a node of the c.s. is either a subconcept of

!
or

a subconcept of the negation of a subconcept of
!

(because of the
Z\@ � P rule).
A node labelled by the negation of an EG concept is in fact labelled
by one GR concept (lemma 1).
A node labelled by the negation of a GR concept is in fact labelled by
a disjunction of at most n EG concepts (lemma 2). We optimize the*

rule application by choosing one of these n EG concepts (instead
of applying

D�! 

times the

*
rule). A node labelled by the negation

of a GR concept is thus in fact labelled by only one EG concept.
Each subconcept of the GR and EG concepts thus obtained is either
a subconcept of

!
or the negation of a subconcept of

!
.

Negating a concept at a node @ of the c.s. thus only adds one concept
to @ ’s labels, since all the subconcepts of this additional concept are
either subconcepts of

!
or negations of subconcepts of

!
. Each node

of the c.s. is thus labelled by at most  D concepts.

Lemma 4 Let
D

be the size of the input concept
!

for which a c.s.
is being built ( �?�"@ � � E !

). Each node @ of the c.s. is directly linked
to at most  D other nodes.

Proof. A node @ of the c.s. is linked to both the nodes of the c.s.
created by application of the Z\@ � ] rule at node @ and the nodes
created by application of the Z\@ � ] rule at another node @�" of the
c.s., this rule application having created nodes among which is @ .
The application of the Z\@ � ] rule to @ " has created at most

D
nodes;

@ may be linked to these
D

nodes.
Each of the � ] �$# ��� ��� � � C concepts labelling @ is a subconcept of

!
,

or is obtained by negating a GR concept of the same size. These GR
concepts are subconcepts of

!
, all different from each other (lemma

3). The sum of the sizes of the � ] �$# � � ��� � � C concepts is bounded by
the size

D
of
!

. The applications of the Z\@ � ] rule to the ��] ��# ��� ��� � � C
at node @ will then create at most

D
nodes in the c.s.; @ may be linked

to these
D

nodes.
@ is thus linked to at most  D nodes.

Lemma 5 Let
D

be the size of the input concept
!

for which a c.s.
is being built ( �?�"@ � � E !

). For each node @ of the c.s., there is an
undirected path of length less or equal to

D
between @ � and @ .

Proof. Node @ has been created by applying the Z\@ � ] rule to a con-
cept EG � at another node @ � of the c.s.
A concept EG

�
(resp. GR

�
) is a label of a node @ � of the c.s. iff one

of the following holds:
- The Z\@ � ] rule has been applied at a node @ �&% � of the c.s. to a con-
cept EG

�&% � , with EG
�

(resp. GR
�
) being a subconcept of EG

�'% � .



- The Z\@ � P rule has been applied at a node @ �'% � of the c.s. to a
concept GR

�&% � , with EG
�

being a subconcept of a concept in the
conclusion of GR

�'% � .
- The Z\@ � P rule has been applied at a node @ �'% � of the c.s. to a con-
cept GR

�'% � , with EG
�

(resp. GR
�
) being a subconcept of the negation

of a concept
!�'% � in the hypothesis of GR

�&% � .
By repeating this reasoning, we obtain a list of nodes @ � " � � � " @ � and
a list of concepts

! � " � � � ! � , where
! � is a subconcept of

!
and each! �$# � � ��� � � is either an EG concept or a GR concept which is a subcon-

cept of
!�'% � (or can be identified to a subconcept of same length).

Let the graph size of an EG concept (resp. a GR concept) be the
number of nodes in its graph (resp. its graph hypothesis). The sum
of the graph sizes of

! ��# ��� ��� � � is thus bounded by
D

. Since
! �$# ��� ��� � �

are connected graphs, there exists a path of length less or equal to
D

between @ � and @ .

Theorem 1 The application of the expansion rules for deciding of
the satisfiability of a ����� concept

!
terminates in NEXPTIME.

Proof. Each node of the c.s. built for
!

is linked to at most  D other
nodes (lemma 4) and there exists a path of length

D
between @ � and

each of the other nodes of the c.s. (lemma 5). The number of nodes
of the c.s. is thus bounded by �� D � C .
There are at most  D concepts labelling each of the (at most) �� D � C
nodes of the c.s. (lemma 3). The number of applications of an expan-
sion rule is thus bounded by �� D � C :  D .
The cost of all the applications of the

*
(resp. � ) rule is thus bounded

by �� D � C :  D .
The size of each GR (resp. EG) concept being less or equal to

D
,

the cost of all the applications of the Z\@ � P (resp. Z\@ � ] ) rule is thus
bounded by �� D � C :  D :#� �� D � C � C .

The application of the expansion rules terminates in
� � D C�� � E� �� C���� �	��
 C�� � .

Theorem 2 (Soundness) Let
!

be a ����� concept description in
NNF. If there exists a sequence of expansion rules starting from

!
that results in a complete c.s.  without clash, then

!
is satisfiable.

Proof. As  is clash-free, we use it to build an interpretation S with
T�U E 9 and

! U E > @3= 9�� ! = � �"@G�<A and 0 U E >A�"@ � " @ � ��=9 � � 0 = � ��� @ � " @ ��� �<A . We prove that S is a model of
!

by in-
duction on the structure of

!
. Here we only detail the case of the GR

construct. Let � be a subconcept of
!

with � = �?�"@ � :
If � Y Z\@ � P = � �-Q � � with P is � Z\@ � @ � � � � @AC ] "
Z\@ � @ � � � � @AC � ! � � @ ��� � � � � ! C � @AC � � , then for all Q � =
T U " � � � " Q C = T U such that �-Q � " Q , � = 0 U� , if

� $ � � @ � � & 0 � , &� $ , � @ , � is an arc in ] , then either Q � = ! U��� $ U� for all i or
Q , = �8- $ , �8U for some j. Thus Q � = � U .
It proves that @ � = ! U , with @ � the individual representing the start-
ing node. Thus

!
is satisfiable.

Theorem 3 (Completeness) Let
!

be a ����� concept description
in NNF. If

!
is satisfiable, then there is a sequence of expansion

rules starting from
!

that results in a complete and clash-free c.s.

Proof.
!

is satisfiable; let us call S a model of
!

. We use S to guide
the expansion rules applications. We inductively build a function
W mapping the nodes of the c.s. to the individuals of T U , such
that W
�"@ � = ��� " �"@G� � U (1) and �-W��"@ � " W��:@<� � = ��� " �"@ " @<� � U (2)
where � " �:><� is the conjunction of elements of � �:><� . We suppose
W has been defined for the c.s. being constructed and we extend it

depending on the next expansion rule to be applied. Here we only
detail the case of the GR rule:
If Z\@ � P = � ��K � � with Z\@ � P Y � Z\@ � @ � � � �I@�C<] "
Z\@ � @ � � � � @ C � ! � � @ � � � � � � ! C � @ C � � and W���K � � E Q � , then
W���K � � = � Z\@ � P#� U and for all Q � = T U " � � � " Q C = T U such
that �-Q ��" Q , � = 0 U� , if

� $ � � @ � � & 0 � , & � $ , � @ , � is an arc
in ] , then there are two cases: either Q � = ! U� � $ U� for all i or
Q , = �8- $ , � U for some j. For all nodes K � " � � � " K C (and K � ) such
that 0 � , = �?��� K � " K , � � , in the first case we add

! �
and

$ �
to

�?��K � � for all i or in the second case we add - $ , to � �-Q , � for j.
W���K � � = ��� " ��K � � �8U still holds for all i.
The c.s. can thus be completed with W satisfying (1) and (2). S is a
model of the c.s. and the c.s. is thus satisfiable and clash-free.

7 CONCLUSION

We have presented the graph-based concept description language
����� , which we have shown to be decidable and for which we have
given a sound and complete tableaux algorithm. ����� enables to rep-
resent concept descriptions with complex graph patterns as well as
negation and disjunction, which leads to an expressive language.
Other works have studied the possibility of including specific
or general graph patterns in concept descriptions. In DLs lit-
erature, [7] presents an algorithm for satisfiability of the DL� ��	�� � "  "L* " � � " �8����� � � , for which a NEXPTIME upper bound is es-
tablished. Role composition and intersection provide a way to rep-
resent some particular graph-like structures, that the author calls
cactus-shaped models. Its algorithm takes advantage of the fact
that the patterns in his DL are of a special kind: they are induc-
tively defined thanks to  , * and � constructs, and can thus be in-
ductively decomposed. Special expansion rules are provided, one
for each role construct and each quantifier. When compared to� ��	�� � "  "L* " ��� " �8����� � � , ����� graph patterns are of any possible
complexity and are handled as a whole, by a unique expansion rule
for each quantifier.
In CGs literature, graph rules have been introduced in [9]. Their
structure is more general than the one of ����� GR, but they do not
handle disjunction nor negation.
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