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A Graph-Based Knowledge Representation Language for Concept Description

In this paper, we propose an expressive concept description language, ¢ ¤£ ¦¥ , for real world applications combining features of both Conceptual Graphs (CGs) and Description Logics (DLs). Regarding concept descriptions in CGs, namely existential, positive and conjunctive graphs, ¢ ¤£ ¦¥ is the closure of this language under the Boolean operations. Now regarding DLs, ¢ ¤£ §¥ is an extension of ¨¥ © with graph structures in concept descriptions. ¢ ¤£ ¦¥ extends ¨¥ © with the intersection , composition , converse of roles and role identity ! #" $ : we show how these constructs can be expressed with EG and GR constructs. We provide a sound and complete tableaux algorithm to prove the satisfiability of ¢ ¤£ ¦¥ in NEXPTIME.

INTRODUCTION

Conceptual graphs (CG) is a knowledge representation model descending from existential graphs [START_REF] Pierce | Collected Papers of Charles Sanders Pierce[END_REF] and semantic networks [START_REF]Semantic Networks in Artificial Intelligence[END_REF]. Description Logics (DLs) are a family of knowledge representation formalisms focusing on concept description and reasoning about these concepts, that provide effective reasoning procedures for fragments of FOL. Previous works have attempted to state a correspondance between these two formalisms [START_REF] Coupey | Towards Correspondence between Conceptual Graphs and Description Logics[END_REF] [START_REF] Baader | Tractable and Decidable Fragments of Conceptual Graphs[END_REF]. In this paper, we propose a concept description language (¢ ¤£ ¦¥ ) which combines features of both Conceptual Graphs (CGs) and Description Logics (DLs). Regarding concept descriptions in CGs, namely existential, positive and conjunctive graphs, ¢ ¤£ ¦¥ is the closure of this language under the Boolean operations. Now regarding DLs, ¢ ¤£ §¥ is an extension of ¨¥ © with graph structures in concept descriptions. This extension is achieved by generalizing the existential restriction and universal restriction constructs of ¨¥ © into respectively an Ex- istential Graph (EG) construct and a Graph Rule (GR) construct. The EG construct enables to introduce graph structures in concept descriptions and the GR construct can be viewed as the dual of the EG construct: the negation of a graph rule concept can be expressed with existential graph concepts, the negation of an existential graph concept with a graph rule concept.

¢ ¤£ ¦¥ is thus an expressive concept description language for real world applications: our work is driven by the modeling needs of real world applications like in bioinformatics, chemical engeneering or cartography, which are domains characterized by structured data. In section 2 and 3, we present concept descriptions in DLs and in CGs. In Section 4, we describe our concept description language ¢ ¤£ ¦¥ . In Section 5, we provide a tableaux algorithm to prove the satisfiability of ¢ ¤£ §¥ . In Section 6, we prove our algorithm is sound and complete and terminates in NEXPTIME.
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CONCEPT DESCRIPTION IN DLs

A DL includes a terminological language and an assertional language. The assertional language is dedicated to the statement of facts and the terminological language to the description of concepts and roles. The fundamental reasoning task is the computation of subsumption relations between concepts.

A DL is inductively defined from a set ' )( of primitives concepts, a set ' )0 of primitive roles, the constant concepts 1 and 2 , and two abstract syntax rules: 

SH % TH & role composition

The constructors used in these syntax rules determine the expressive power of the DL being defined. For example, the following concept description describes all the highways or interstates whose at least one crossing road has a redlight:

VU D XW `Y Qa cb ed B gf ih qp #r H is p b p #r $ t cP Qu vH Iw is ts r s x" y V 5w tb e cP Qw h % " r Q XW `Y p $ .
The formal meaning of a concept description is classicaly given through an extensional semantics by an interpretation which is a pair ( ¦ , ). The domain ¦ is an arbitrary non-empty set of individuals and is an interpation function mapping each concept with a subset of and each role with a subset of . The deno- tation of a concept of the DL defined above is given in Table 1.

An interpretation is a model for a concept

3 if 3 is non-empty. 3
is satisfiable iff there exists an interpretation which is a model of

3

. Based on this semantics,

3 is subsumed by 6 , noted 3 6 
, iff [START_REF] Chein | Nested Graphs: A Graph-based Knowledge Representation Model with FOL Semantics[END_REF] 6 for every interpretation .

CONCEPT DESCRIPTION IN CGs

Basic Notions on Conceptual Graphs

A simple conceptual graph is a bipartite (not necessarily connected) graph composed of concept nodes and relation nodes describing relations between these concepts. Each concept node u of a graph 

Logical Semantics

The semantics of CGs relies on the translation of both conceptual graphs and their support into first order logic (FOL) formulas F ed % " " " F ed eg ' % 4d % 4 " " " 4 d eg $ ¨f ' & 4d % 4 " " " 4 d eg $ where ' % and ' & are two n-ary predicates.

A conceptual graph is translated into FOL thanks to the h operator defined in [START_REF] Sowa | Conceptual Graphs, Conceptual Structures: Information Processing in Mind and Machine[END_REF]: h 5 V $ is a conjunction of unary predicates translating the concept nodes of and n-ary predicates translating the n-ary relation nodes of ; an existential quantification is intro- duced for each generic concept. The semantics of the conceptual graph presented in Figure 1 is given by the following FOL formula:

h 5 V $ pi GP qd 4 d 4 sr ' r H is w h V' r p #r H x$ ut 3 H iw Is ts r s x 4d $ vt 5w b e ! Xd `$ wt ' r r s p H b
h Ax h W q r $ yt b eW r h qp 4d 4 ' r p #r H x$ t w V s r u p 4d 4 d `$ t w Iu 7b p Vw h 4d 4 6r $ .

Reasoning with Conceptual Graphs

Conceptual graphs are provided with a subsumption relation c ¦ cor- responding to the logical implication:

% c C & iff h 5 V % $ Pf h 5 V & $ .
A key operation called projection enables to compute subsumption relations between graphs: % c & iff there exists a projection from & to % . is a graph morphism such that the label of a node

h % of % is a specialization of the label of a node h & of & with h % i h & $ .
Reasoning with conceptual graphs is based on the projection which is sound and complete with respect to logical deduction. Finding a projection between two graphs is a NP-complete problem [START_REF] Chein | Nested Graphs: A Graph-based Knowledge Representation Model with FOL Semantics[END_REF].

Concept Description

Like DLs, CGs supports concept descriptions through a type definition mechanism [START_REF] Sowa | Conceptual Graphs, Conceptual Structures: Information Processing in Mind and Machine[END_REF]. It consists in associating a formal description to a type, this description being a conceptual graph. Formally, a concept type definition p ( 4d $ w d ! asserts an equiv- alence between a concept type p ( and a monadic abstraction d q which consists of a conceptual graph whose concepts are either atomic or defined and whose one concept among its generic ones is designated by the formal parameter d . Reasoning with type definition is detailed in [START_REF] Leclere | Reasoning with type definitions[END_REF]. Figure 2 presents the definition of the concept type crossroad.

Similarly, n-ary relation types p 0 can be defined by n-ary abstractions d % 4 " " " 4 d eg .

The h interpretation function of CGs is extended to type definition: h 5 p ( $ is the FOL formula obtained from h 5 V $ by removing the ex- istential closure of the variable d . When compared to concept descriptions in DLs, this type definition mechanism based on positive and conjunctive existential graphs lacks of the expressiveness the negation and disjunction constructs provide to most DLs. On the other hand, the graph structure of CGs provides a higher expressiveness than the tree structure of most DLs. We thus propose to merge both features into a graph based language for concept description. Previous works have attempted to state a correspondance between DLs and CGs [START_REF] Coupey | Towards Correspondence between Conceptual Graphs and Description Logics[END_REF] [START_REF] Baader | Tractable and Decidable Fragments of Conceptual Graphs[END_REF]. Here we take advantage of both formalisms and build upon CGs with DL constructs.

GDL: A GRAPH DESCRIPTION LANGUAGE

In this section, we propose a concept description language based on graphs and DL constructs. We call it ¢ ¤£ §¥ for Graph Description Logic. Regarding concept descriptions in CGs, namely existential, positive and conjunctive graphs, ¢ ¤£ ¦¥ can be viewed as the closure of this language under the Boolean operations. Now regarding most DLs, they are provided with Boolean constructs and ¢ ¤£ ¦¥ can be viewed as an extension of the ¨¥ © DL to allow graph structures in concept descriptions. This extension is achieved by generalizing the existential restriction and universal restriction constructs of ¨¥ © .

Formally, ¢ ¤£ §¥ is inductively defined from a set ' ( of primitive concepts, a set ' 0 of primitive roles and the concepts 1 and 2 , by the following abstract syntax rule: In addition to the conjunction, disjunction and negation constructs, the existential graph construct enables to introduce graph structures in concept definitions.

Definition 1 An existential graph d ¡ is a concept description consisting of a connected graph whose concept nodes are all generic, either atomic or defined by a concept description of ¢ ¤£ ¦¥ .

One of its concept nodes is designated by the formal parameter d ¡ .

The graph rule construct is the dual of the existential graph construct: the negation of a graph rule concept can be expressed with existential graph concepts and the negation of an existential graph concept with a graph rule concept. 

Definition 2 A graph rule d ¡ d ¡ V f 3 ¡ " " " 3 g $ is a concept
Lemma 2 If 3 d ¡ where d ¡ is a couple d ¡ d % " " " d eg 4 d ¡ d % " " " d eg ¢ 3 ¡ !£ d ¡ "¥ " " " ¢ 3 g £ d eg ¥ $ , then E 3 $# &% d ¡ %
where each % is the graph obtained from by replacing one of its nodes ¢ 6 % £ d % ¥ by the node ¢ E 3 % 6 % £ d % ¥ . These two lemma are the key to put a ¢ ¤£ ¦¥ concept description in negation normal form (NNF). A concept description is put in NNF by pushing down the negations to primitive concepts, applying lemma 1 in case of negating an existential graph and lemma 2 in case of negating a graph rule.

The formal meaning of ¢ ¤£ §¥ concept descriptions is given as an extensional semantics by an interpretation as described in Table 2. -if 5 76 8( @9 BA A 5 76 C( ED 9 is an arc of 0 then 3 E( 1 ( FD 5 7% 8 , -if 5 R S6 8( @9 is a node in 0 then ( % TR @ Table 2. Syntax and Semantics of U e § ©V ¢ ¤£ ¦¥ extends ¨¥ © with the intersection , composition , con- verse of roles and role identity V ! #" $ : these constructs can be expressed with graph rules and existential graphs constructs as shown in Table 3. On the other hand, number restrictions, role union, instances can not be expressed in ¢ ¤£ ¦¥ .

Construct Syntax Semantics top / bottom / ¡ ¢ / £ disjunction ¤ ¦¥ § ¤ © § conjunction ¤ ¦ § ¤ § negation ¤ ¢ ¤ existential ' )( ¡
An additional expressiveness like the possibility to add relations in the conclusion of a graph rule would have led to loose the finite model property: for instance, it would have been possible to express the transitivity of a relation.

THE TABLEAUX EXPANSION RULES

In this section, we present a tableaux algorithm to prove the satisfiability of ¢ ¤£ §¥ . Our proof is based on the construction of a constraint system (see for instance [START_REF] Buchheit | Decidable reasoning in terminological knowledge representation systems[END_REF]). A constraint system (c.s) is a labeled graph XW 4 `Y 4 ¥ $ , where W is a set of nodes, Y is a set of edges and ¥ is a function mapping a node to a set of concepts and an edge to a set of roles. A c.s. contains a clash if for some node d a TW , 2 a ¥ c 4d $ or b Ec 4 E dc 4e ¥ c 4d $ . A c.s. is complete when all applicable rules have been applied. To prove the satisfiability of a concept 3 , we start with the structure fb Gd ¡ e 4 g e4 ¥ $ where ¥ 4d ¡ $ i 3

. Then we build the c.s. by applying the expansion rules described in Figure 3, assuming 3 is in NNF.

3

is satisfiable iff the c.s. is complete and clash-free. We will prove it in the next section. The expansion rule for the existential graph construct can be seen as 

V A¤ e3 E 1 Q 1 1 © D3 5 5 constructs in U e § V
the generalization of the rule for the P 3 construct. A naive expansion rule for the graph rule construct that would fire when the antecedent of the graph rule is matched would not be sound, as it would not detect that the following concept is unsatisfiable:

¢ 1 £ d ¡ ¥ 8 V $ 8 ¢ 3 £ X ¥ ¢ c £ d ¡ ¥ 8 V $ 8 ¢ 1 £ X d ¥ f ¢ E 3 £ X d ¥ ¢ E dc £ d ¡ "¥ 8 V $ 8 ¢ 1 £ X Vd ¥ f ¢ E 3 £ X Vd ¥
The sound rule, stated in Figure 3, fires as soon as just the relational part of the antecedent of the graph rule is matched.

if 3 % 3 & a ¥ 4d q$ and b 3 % 4 73 & e ! ¥ c 4d $ then ¥ 4d $ 8 ¥ 4d $ ¦" b 3 % 4 73 & e B if 3 % B 3 & a ¥ 4d q$ and 3 % a ¥ c 4d $ and 3 & a ¥ c 4d $ then ¥ 4d $ 8 ¥ 4d $ ¦" b 3 % e or ¥ c 4d $ 8 ¥ c 4d $ #" b 3 & e d ¡ if 1. d ¡ a ¥ c E ¡ $ 2.
there does not exist % a W 4 " " " 4 Sg a W not necessarily distinct, such that for all i,j:

-if ¢ 1 £ d ¥ 8 H D 8 ¢ 1 £ d D ¥ is an arc in then H D a D¥ E #4 D $ -if ¢ 3 £ d ¥ is a node in then 3 a ¥ c E $ , then 1. create n new nodes % 4 " " " 4 g 2. ¥ E $ i Sb 3 e if ¢ 3 £ d ¥ is a node in 3. ¥ E ¡ $ 8 ¥ E ¡ $ $" &b 3 ¡ e if 3 ¡ i 1 3. ¥ E 4 D $ Pi Sb tH D / ¢ 1 £ d ¥ 8 H D 8 ¢ 1 £ d D ¥ is an arc in e d ¡ if 1. d ¡ a ¥ E ¡ $ where is d ¡ d % " " " d g 4 d ¡ d % " " " d g ¢ 3 ¡ ¤£ d ¡ ¦¥ " " " ¢ 3 g £ d eg ¥ $ 2.
there exists % a TW 4 " " " 4 Sg a TW 

not necessarily distinct, such that if ¢ 6 £ d ¥ 8 H D 8 ¢ 6 D £ d D ¥ is an arc in then H D a D¥ E #4 D $ then for all i, ¥ E $ 8 ¥ E $ $" b 6 e %" b 3 e or ¥ c E ¡ $ 8 ¥ E ¡ $ $" b E 6 ¡ e or . . . or ¥ E $g `$ 8 ¥ E Sg $ ¦" b E 6 g e

SOUNDNESS AND COMPLETENESS

In this section, we prove soudness and completeness of our tableaux algorithm, and an NEXPTIME upper-bound for termination.

Let the size of a concept 3 , noted s x 3 $ , be the number of symbols in its description. It is inductively computed as follows:

-s x V' $ i

for P a primitive concept, A node labelled by the negation of an EG concept is in fact labelled by one GR concept (lemma 1). A node labelled by the negation of a GR concept is in fact labelled by a disjunction of at most n EG concepts (lemma 2). We optimize the B rule application by choosing one of these n EG concepts (instead of applying h !3 times the B rule). A node labelled by the negation of a GR concept is thus in fact labelled by only one EG concept. Each subconcept of the GR and EG concepts thus obtained is either a subconcept of 3 or the negation of a subconcept of

3

.

Negating a concept at a node d of the c.s. thus only adds one concept to d 's labels, since all the subconcepts of this additional concept are either subconcepts of is being built (¥ c 4d ¡ $ i 3 ) being a subconcept of the negation of a concept 3 97 % in the hypothesis of GR 87 % . By repeating this reasoning, we obtain a list of nodes d % 4 " " " 4 d % and a list of concepts 3 % 4 " " " 3 % , where 3 % is a subconcept of 3 and each 3 65 % ¦ % is either an EG concept or a GR concept which is a subcon- cept of 3 97 % (or can be identified to a subconcept of same length).

Let the graph size of an EG concept (resp. a GR concept) be the number of nodes in its graph (resp. its graph hypothesis). The sum of the graph sizes of 

with & a ¥ c 4d $ : If & d ¡ a ¥ E ¡ $ with is d ¡ d % " " " d eg 4 d ¡ d % " " " d eg ¢ 3 ¡ £ d ¡ ¥ " " " ¢ 3 g £ d eg ¥ $ ,

3

is satisfiable; let us call a model of 3 . We use to guide the expansion rules applications. We inductively build a function mapping the nodes of the c.s. to the individuals of , such that 4d $ a ¥ 4 4d q$ $ (1) and E 4d $ 4 Xd `$ $ a ¥ 4 4d 4 d `$ $ (2) where ¥ 4 Xb `$ is the conjunction of elements of ¥ Xb `$ . We suppose has been defined for the c.s. being constructed and we extend it depending on the next expansion rule to be applied. Here we only detail the case of the GR rule:

If d ¡ a ¥ u ¡ $ with d ¡ d ¡ d % " " " sd g ` 4 d ¡ d % " " " d g ¢ 3 ¡ £ d ¡ ¥ " " " ¢ 3 g £ d g ¥ $ and u ¡ $ i ¡ , then u ¡ $ a d ¡ 5$ and for all % a 4 " " " 4 g a such that E #4 D $ a H D if ¢ 6 £ d ¥ 8 H D 8 ¢ 6 D £ d D ¥ is an arc in , then there are two cases: either a 3 6 for all i or D a VE 6 D $ for some j. For all nodes u % 4 " " " 4 u g (and u ¡ ) such that H D a ¥ c u 4 u D $ , in the first case we add 3 and 6 to ¥ c u $ for all i or in the second case we add E 6 D to ¥ E D $ for j.

u $ a ¥ 4 u $ $ V still holds for all i. The c.s. can thus be completed with satisfying (1) and ( 2). is a model of the c.s. and the c.s. is thus satisfiable and clash-free.

CONCLUSION

We have presented the graph-based concept description language ¢ ¤£ ¦¥ , which we have shown to be decidable and for which we have given a sound and complete tableaux algorithm. ¢ ¤£ ¦¥ enables to rep- resent concept descriptions with complex graph patterns as well as negation and disjunction, which leads to an expressive language. Other works have studied the possibility of including specific or general graph patterns in concept descriptions. In DLs literature, [START_REF] Massacci | Decision Procedures for Expressive Description Logics with Intersection, Composition, Converse of Roles and Role Identity[END_REF] 

Figure 2 .

 2 Figure 2. An example of concept type definition
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 131 description which consists of a pair of abstractions d ¡ d % " " " d eg ` 4 d ¡ d % " " " sd eg ¢ 3 ¡ ¤£ d ¡ ¦¥ " " " ¢ 3 g £ d eg ¥ $ where: § d ¡ d % " " " d g is called the hypothesis of the graph rule d ¡ . It is a connected graph whose h © concept nodes are designated by the formal parameters d ¡ 4 d % 4 " " " 4 d eg . The concepts of are all generic, either atomic or defined by a concept of ¢ ¤£ ¦¥ . § d ¡ d % " " " d g ¢ 3 ¡ £ d ¡ ¥ " " " ¢ 3 g £ d g ¥ is the conclusion of the graph rule. Each 3 in the conclusion is a concept description of ¢ ¤£ ¦¥ . § d ¡ 4 d % 4 " " " 4 d eg are called connection points; they correspond to h coreference links between and ¢ 3 £ X ¥ % ¦ g , indicating that the generic marker of each 3 represents the same entity as one concept of G.The hypothesis and the conclusion of a graph rule have the same number of concepts ( h ). If a concept in the hypothesis of the rule -designated by a formal parameter d -has no corresponding concept 3 in the conclusion of the rule, the most general conceptThe duality between the existential graph construct and the graph rule constructs is formally stated in the following two lemmas.Lemma If 3 d ¡ then E 3 d ¡ where d ¡ is the couple d ¡ d % " " " d eg 4 d ¡ d % " " " d eg ¢ 2 £ d ¡ ¥ " " " ¢ 2 £ d eg ¥ $ . Thehypothesis of the rule is the graph of the initial existential graph; the conclusion of the rule is the conjunction of absurd concepts.
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Figure 3 .

 3 Figure 3. Tableaux Expansion Rules for U e § V

- 3 are the concepts of the hypothesis of and 6 are the concepts of its conclusion. Lemma 3 3 (

 3633 s x Fc '& $ Pi s x Fc $ ¨s x (& $ 7 and s Fc '& §$ Pi s Fc $ ¨s x (& §$ Q , -s x () ¦ $ Pi 10 s x 3 $ where the 3 are the concepts of ) , -s x V $ Pi ¨0 s x 3 $ ¨s x 6 $ where the Let h be the size of the input concept 3 for which a c.s. is being built (¥ 4d ¡ $ i 3 ). Each node d of the c.s. is labelled by at The number of subconcepts of 3 is bounded by n, and each concept labelling a node of the c.s. is either a subconcept of 3 or a subconcept of the negation of a subconcept of because of the d ¡ rule).

3 or negations of subconcepts of 3 .Lemma 4 3 , 3 .these h nodes. d is thus linked to at most 2 h nodes. Lemma 5

 334335 Each node of the c.s. is thus labelled by at most 2 h concepts. Let h be the size of the input concept 3 for which a c.s. is being built (¥ c 4d ¡ $ i 3). Each node d of the c.s. is directly linked to at most 2 h other nodes. Proof. A node d of the c.s. is linked to both the nodes of the c.s. created by application of the d ¡ rule at node d and the nodes created by application of the d ¡ rule at another node d #4 of the c.s., this rule application having created nodes among which is d . The application of the d ¡ rule to d 4 has created at most h nodes;d may be linked to these h nodes.Each of the ) 65 % ¦ & g concepts labelling d is a subconcept of 3 , or is obtained by negating a GR concept of the same size. These GR concepts are subconcepts of all different from each other (lemma 3). The sum of the sizes of the ) 65 % ¦ & g concepts is bounded by the size h of The applications of the d ¡ rule to the ) ¦ 5 % ¦ & g at node d will then create at most h nodes in the c.s.; d may be linked to Let h be the size of the input concept3for which a c.s.

3 5 %Theorem 1 3 is linked to at most 2 h 3 .

 51323 ¦ % is thus bounded by h . Since 3 65 % ¦ % are connected graphs, there exists a path of length less or equal to h between d ¡ and d . The application of the expansion rules for deciding of the satisfiability of a ¢ ¤£ §¥ concept 3 terminates in NEXPTIME. Proof. Each node of the c.s. built for other nodes (lemma 4) and there exists a path of length h between d ¡ and each of the other nodes of the c.s. (lemma 5). The number of nodes of the c.s. is thus bounded by (2 h $ g . There are at most 2 h concepts labelling each of the (at most) (2 h $ g nodes of the c.s. (lemma 3). The number of applications of an expansion rule is thus bounded by (2 h $ g X 2 h. The cost of all the applications of theB (resp. ) rule is thus bounded by (2 h $ g X 2 h. The size of each GR (resp. EG) concept being less or equal to h , the cost of all the applications of the d ¡ (resp. d ¡ ) rule is thus bounded by (2 h $ g X 2 h X 5 (2 h $ g $ g .The application of the expansion rules terminates in¡ h g £¢ $ i ¡ (2 g ¤¢ ¦¥ § © g ¤ $ .Theorem 2 (Soundness) Let 3 be a ¢ ¤£ ¦¥ concept description in NNF. If there exists a sequence of expansion rules starting from 3 that results in a complete c.s. without clash, then 3 is satisfiable. Proof. As is clash-free, we use it to build an interpretation with ¦ i W and 3 i b d Qa W 3 a ¥ 4d q$ `e and H i b e 4d % 4 d & $ ¤a W & H a ¥ d % 4 d & $ `e . We prove that is a model of 3 by induction on the structure of Here we only detail the case of the GR construct. Let & be a subconcept of

3

 3 

Table 1 .

 1 Syntax and Semantics of DL Concept Descriptions

	Construct name top / bottom disjunction conjunction negation universal restriction existential restriction role converse role composition	Syntax / ¡ ¤ ¦¥ ¨ § ¤ ¦ ¨ § Semantics ¢ / £ ¤ © § ¤ § ¤ ¢ ¤ ! " $# % &¢ ' )( 0% &¢ 21 if 3 4# 1 ( 65 7% 8 then ( 9% ¨¤ A@ B C ! " $# % &¢ ' B D( 9% &¢ 1 3 E# 1 ( 65 7% F and ( 9% F¤ @ % " G3 E# 1 ( 65 7% 8¢ IH ¢ ' 3 E( 1 # D5 P% ¨ @ % PQ & " G3 E# 1 ( 65 7% 8¢ IH ¢ ' B DR 9% 8¢ 1 3 E# 1 R S5 2% F % and 3 ER 1 ( 65 T% F & @
	is labeled by a couple generic marker X corresponding to the existential quantification or an p d VU r u $ 4 H r CW u $ $ , where H r DW u $ is either the individual marker corresponding to an identifier; Y is the set of all the individual markers. Each relation node H of a graph is labeled by a relation type p d VU r XH $ ; each relation type is associated with a sig-
	nature expressing constraints on the types of the concepts that may
	be linked to its arcs in a graph. Figure 1 presents an example of a
	simple conceptual graph.		
	Person: Peter	agent	Crosses: *	object	Road: *
				location	
				Pedestrian Xing: *	
	Figure 1. An example of conceptual graph
	Concept types (respectively relation types of same arity) build up a set Àa (resp. Àb ) partially ordered by a generalization/specialization relation c g( (resp. c 0 ). 4`a 4 `b 4 Y $ defines the support upon which
	conceptual graphs are constructed. A support thus represents the on-
	tological knowledge.			
	For a further detailed presentation CGs, the reader is invited to
	refer to [10][3].				

Table 3 .

 3 Expression of

  Node d has been created by applying the d ¡ rule to a con- cept EG % at another node d % of the c.s. The d ¡ rule has been applied at a node d 87 % of the c.s. to a con- cept EG 87 % , with EG (resp. GR ) being a subconcept of EG 97 % . -The d ¡ rule has been applied at a node d 97 % of the c.s. to a concept GR 87 % , with EG being a subconcept of a concept in the conclusion of GR 97 % . -The d ¡ rule has been applied at a node d 97 % of the c.s. to a con- cept GR 97 % , with EG (resp. GR

	). For each node d of the c.s., there is an undirected path of length less or equal to h between d ¡ and d .
	Proof. A concept EG	(resp. GR	) is a label of a node d of the c.s. iff one
	of the following holds:	
	-		

  VE 6 D $ V for some j. Thus ¡ a & . It proves that d ¡ a 3 , with d ¡ the individual representing the start-

	then for all % a D if ¢ 6 £ d ¥ 8 H D 8 ¢ 6 D £ d D ¥ is an arc in , then either a 3 4 " " " 4 g a such that E 4 D $ a H ! 6 for all i or D a ing node. Thus 3 is satisfiable.
	Theorem 3 (Completeness) Let in NNF. If 3 is satisfiable, then there is a sequence of expansion 3 be a ¢ ¤£ ¦¥ concept description rules starting from 3 that results in a complete and clash-free c.s.
	Proof.

  presents an algorithm for satisfiability of the DL , for which a NEXPTIME upper bound is established. Role composition and intersection provide a way to represent some particular graph-like structures, that the author calls cactus-shaped models. Its algorithm takes advantage of the fact that the patterns in his DL are of a special kind: they are inductively defined thanks to , B and constructs, and can thus be in- ductively decomposed. Special expansion rules are provided, one for each role construct and each quantifier. When compared to , ¢ ¤£ ¦¥ graph patterns are of any possible complexity and are handled as a whole, by a unique expansion rule for each quantifier. In CGs literature, graph rules have been introduced in[START_REF] Salvat | Theorem Proving Using Graph Operations in the Conceptual Graph Formalism[END_REF]. Their structure is more general than the one of ¢ ¤£ ¦¥ GR, but they do not handle disjunction nor negation.

	¨¥ © 4 V ! # $ $ ¨¥ © 4 4 vB 4 4 4 vB 4 4 V ! # $ $