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This paper concerns the relation between exact controllability and stabilizability with arbitrary decay rate in infinite dimensional spaces. It appears that in several cases the notions are equivalent, but there are a lot of situations when additional conditions are needed, for example in Banach spaces. This is a short and non exhaustive review of some research on control theory for infinite dimensional spaces initiated by V. I. Korobov during the 70th of the past century in Kharkov State University.
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Introduction

We consider linear systems in the general form

ẋ = Ax + Bu, (1) 
where the state x(t) and the control u(t) take values in Banach spaces X and U . The linear operator A is the infinitesimal generator of a C 0 -semigroup S(t) = e At and B is a linear bounded operator. We consider also the cases of Hilbert spaces and some situation when B is an unbounded but admissible operator. The function u(t) is supposed, at least, Bochner integrable. By exact (null) controllability we mean controllability from any state to any state (or zero state). By complete stabilizability we mean exponential stabilizability with arbitrary decay rate by linear state feedback u = Fx. Sometimes the problem is called pole or spectrum assignment.

The well known relation between complete controllability and pole assignment in finite dimensional spaces X and U may be formulated in the following form.

Theorem 1. Let A and B be (real or complex) matrices of dimension n × n and n × m respectively, x and u vector functions of suitable dimension. The system

ẋ = Ax + Bu (2)
is completely controllable, i.e. rank [B AB • • • A n-1 B] = n, if and only if the system is completely stabilizable, i.e. for all λ 1 , . . . , λ n ∈ C, there exists a feedback u = F x such that the spectrum of the closed loop system verifies:

σ(A + BF ) = {λ 1 , . . . , λ n }, i.e. the problem of pole assignment by linear feedback is solvable.

A nice proof in the general case can be found in [START_REF] Wonham | Linear multivariable control: a geometric approach[END_REF]. If the system is assumed to be real (matrices are all real), the spectrum is formed by real or complex conjugate numbers.

Another formulation of the same statement is that all the poles are controllable (Hautus criteria):

∀λ ∈ σ(A), rank[λI -A B] = n.
Our purpose is to discuss some important results on the same problems in infinite dimensional Hilbert or Banach spaces. Since the spectrum is more complicated and the behavior of infinite dimensional systems is not completely determined by the spectrum, solutions of such problems, when they exist, are not so simple.

We recall some classical results concerning the relation between exact controllability and complete stabilizability.

The first important result in this context was given by Slemrod: if e At is a group, then exact controllability implies complete stabilizability. The converse, for a group, was proved by Zabczyk (see for example [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF]). The result was generalized and precised by several authors for the case of a bounded operator A in Banach spaces, for the case of a semigroup e At and for some classes of systems, governed by partial differential equations or functional-differential equations.

We discuss more precisely the relations between exact (null) controllability and complete stabilizability. In general, for linear systems in Hilbert spaces, exact null controllability implies complete stabilizability, but the converse is not true. We give more recent results on functional-differential systems of neutral type.

Preliminaries

In this section we give some definitions and well known basic results on exact controllability and stabilizability for System [START_REF] Andrew | Range inclusion and factorization of operators on classical Banach spaces[END_REF]. The mild solution (strong for x 0 ∈ D(A) and some restrictions on the class of controls u) is given by

x(t) = x(t, u(•), x 0 ) = e At x 0 + t 0 e A(t-τ ) Bu(τ )dτ. (3) 
Definition 1. System (1) is exactly controllable if for all x 0 , x 1 ∈ X, there exists a time T and a control u ∈ L p (0, T ; U ), p ≥ 1 (shortly L p ) such that x(T, u(•), x 0 ) = x 1 . If the same holds for x 1 = 0, we talk about exact null controllability. If e At is a group, or if it is formed by surjective operators, then both notions are equivalent. If necessary, the class of controls L p will be specified.

The notion of stabilizability is based on one concept of asymptotic stability. In infinite dimensional spaces there are several ones. In this paper we consider only exponential stability.

Definition 2.

The semigroup e At , or the uncontrollable system, is said to be exponentially stable if for some real M ≥ 1, ω > 0, and for all t ≥ 0, we have e At ≤ M e -ωt .

In finite dimensional space exponential stability is characterized by the fact that the spectrum of matrix A is in the left half complex plane. The situation in infinite dimensional spaces is much more complicated, see for example [START_REF] Van Neerven | The asymptotic behaviour of semigroups of linear operators. Operator theory advances and application[END_REF] and references therein. Definition 3. System (1) is said exponentially stabilizable if there exists a linear feedback control u(t) = Fx(t) such that the closed loop system becomes exponentially stable, i.e. for some ω > 0 e (A+BF )t ≤ M ω e -ωt , M ω ≥ 1.

The system is said to be completely stabilizable if it is exponentially stabilizable for all ω > 0.
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In some cases the feedback F is allowed to be not bounded but admissible in some sense.

Complete stabilizability replaces the notion of spectrum assignment which is difficult to be expressed in infinite dimensional spaces. The first reason is that the structure of the spectrum may be complicated and the second one is that, what is noted before, the behavior of the solutions of the systems is not determined by the spectrum only. However, in some cases it is possible to consider this concept also, as we will see later.

Let us now give some general characterizations of the given concepts. We denote by R T the "reachability"operator

R T u(•) = T 0 e A(T -τ ) Bu(τ )dτ.
It is easy to see that this is a linear bounded operator from L p to X. System (1) is exactly controllable if and only if Im R T = X, it is exactly null controllable if and only if Im R T ⊂ Im e AT , for some T > 0.

The surjectivity of the operator R T in Banach spaces can be characterized by the following property of the adjoint operator R * T (see, for instance, [START_REF] Rudin | Functional analysis[END_REF])

∃δ > 0 : ∀x * ∈ X * , R * T x * ≥ δ x * , (4) 
where norms are operator or vector norms in the adjoint space. To obtain a more or less explicit condition of exact controllability we need the expression of adjoint operator and the norm R * T x * . We have the following expressions [START_REF] Rabah | Commandabilité des systèmes linéaires à retard constant dans les espaces de Banach (Controllability of linear systems with constant delay in Banach spaces[END_REF]:

         R * T x * = T 0 B * S * (t)x * q dt 1 q , if u ∈ L p , p > 1, R * T x * = ess sup{ B * S * (t)x * , t ∈ [0, T ]}, if u ∈ L 1 , (5) 
where ess sup denotes the essential supremum of a set. In fact, it is possible to show that the conditions of exact controllability in the class of controls L p for p > 1 are equivalent and exact controllability in the class L 1 is essentially different. This can be summarized by the following formulation. This gives, in particular, the lack of exact controllability in the class L p for p > 1 for compact or analytic semigroups (see [START_REF] Triggiani | A note on the lack of exact controllability for mild solutions in Banach spaces[END_REF][START_REF] Triggiani | A note on the lack of exact controllability for mild solutions in Banach spaces[END_REF][START_REF] Louis | On exact controllability in Hilbert spaces[END_REF]). The following example shows that there exist systems which are exactly controllable in the class L 1 , but not exactly controllable in classes L p , p > 1.

Example 1 ([19]). Let X = U = 2 , {e i , i = 1, 2, . . . } be the canonical basis in 2 . Let B be defined as the identity operator B = I, and

Ax = ∞ i=1 -i x, e i e i , x = ∞ i=1 x, e i e i , ∞ i=1 i 2 | x, e i | 2 < ∞.
It is easy to see that A is the infinitesimal generator of a C 0 -semigroup

S(t)x = ∞ i=1 e -it
x, e i e i , t ≥ 0 of compact operators for t > 0. The system is exactly controllable in the class L 1 , because R * T x * L∞ = x * , but not in the class L p , p > 1, the operators S(t) being not surjective for t > 0.

2

Let us now consider the problem of null exact controllability. The characterization of this concept is not so clear in general Banach spaces. It is more simple when X and U are Hilbert spaces. This is due to the following classical result.

Theorem 3 [START_REF] Douglas | On majorization, factorization, and range inclusion of operators on Hilbert space[END_REF], [START_REF] Douglas | On majorization, factorization, and range inclusion of operators on Hilbert space[END_REF]). Let C and D be linear bounded operators in Hilbert spaces:

C ∈ L (H 1 , H 2 ), D ∈ L (H 3 , H 2 ).
The following conditions are equivalent:

1. Im C ⊂ Im D.
2. There is a linear bounded operator E such that C = DE.

∃µ ≥

0 : ∀x ∈ H 2 we have C * x 2 ≤ µ 2 D * x 2 .
This means that in Hilbert spaces the condition of exact null controllability Im R T ⊂ e AT may be characterized as follows.

Theorem 4. Let us suppose that X and U are Hilbert spaces. Then the system (1) is exactly null controllable in the class L 2 if and only if

∃δ > 0 : ∀x ∈ X, T 0 B * S * (t)x 2 dt ≥ δ 2 S * (T )x 2 .
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As it was pointed out by several authors (including Douglas, see for example [START_REF] Embry | Factorization of operators on Banach space[END_REF]), Theorem 3 is not true in this form in general Banach spaces. Some other formulations are possible (see, for instance, [START_REF] Embry | Factorization of operators on Banach space[END_REF][START_REF] Andrew | Range inclusion and factorization of operators on classical Banach spaces[END_REF]). We cannot develop this question here, but we will return to the application of Douglas theorem in Section 4.1.

Exact controllability implies complete stabilizability

In the section we will see how exact controllability can imply complete stabilizability. The main framework here is the Hilbert spaces setting.

Consider System (1) in the case of Hilbert spaces X and U . Under the condition that the operator A is the infinitesimal generator of a group e At , B ∈ L (U, X), Slemrod [START_REF] Slemrod | A note on complete controllability and stabilizability for linear control systems in Hilbert space[END_REF] obtained the first result in this way:

The condition

∃δ > 0, ∀x ∈ X : T 0 B * e -A * τ x 2 dτ ≥ δ x 2 (6) 
implies complete stabilizability

∀ω > 0, ∃F ∈ L (X, U ), e (A+BF )t ≤ M ω e -ωt , M ω ≥ 1,
with a linear bounded feedback F given by F = -B * K -1 ω (T ), where

K ω (T ) = T 0 e -2ωt e -Aτ BB * e -A * τ dτ.
This operator K ω (T ) is, in fact, the Gramian of the system

ẋ = Ax + ωx + Bu,
and the group S ω (t) = e ωt e At has the infinitesimal generator (A + ωI).

The inequality in ( 6) is the condition of exact controllability at time T in the case of a group, and in Hilbert spaces. It corresponds to the Kalman integral criterion:

K 0 (T ) = T 0 e -Aτ BB * e -A * τ dτ
is bounded invertible. The fact that this is a necessary and sufficient condition of exact controllability in Hilbert spaces was published first (to the best of our knowledge) in [START_REF] Megan | On the space of linear controllable systems in Hilbert spaces[END_REF] for the case of a bounded operator A, but the proof, based on Theorem 3 (see [START_REF] Douglas | On majorization, factorization, and range inclusion of operators on Hilbert space[END_REF]), can easily be rewritten in the case of a group e At with unbounded operator A, or directly from [START_REF] Douglas | On majorization, factorization, and range inclusion of operators on Hilbert space[END_REF].

We can formulate this result as follows.

Theorem 5. For System [START_REF] Andrew | Range inclusion and factorization of operators on classical Banach spaces[END_REF], where A is the infinitesimal generator of a group, U and X being Hilbert spaces, exact controllability implies complete stabilizability.

Доведення. This a short proof, see [START_REF] Slemrod | A note on complete controllability and stabilizability for linear control systems in Hilbert space[END_REF] for more details. Let ω > 0 be given. Let us take the feedback control

u(t) = Fx(t) = -B * K -1 ω (T )x(t).
We obtain then the closed loop system

ẋ(t) = (A + ωI -BB * K -1 ω (T ))x(t),
where I is the identity operator, and the solution is given by the group S * ωF (t) generated by the operator

A + ωI -BB * K -1 ω (T ).
Let x 0 ∈ D(A * ), then a simple calculation gives (see Appendix in [START_REF] Slemrod | A note on complete controllability and stabilizability for linear control systems in Hilbert space[END_REF]):

d dt S * ωF (t)x 0 , K ω (T ) -1 S * ωF (t)x 0 = -e -ωT B * e -A * T S * ωF (t)x 0 -B * S * ωF (t)x 0 .
By density of D(A * ), this implies the uniform boundedness of S ωF (t)

∃M ≥ 1, S ωF (t) ≤ M, t ≥ 0.
This means that for all ω > 0, there exists a feedback law F, such that

S F (t) = e (A+BF )t ≤ M e -ωt , t ≥ 0.
This means that the system is completely stabilizable. 2

Following Slemrod and using some results by Lions, Komornik [START_REF] Komornik | Rapid boundary stabilization of linear distributed systems[END_REF] proved an analogous result for the case when B is unbounded. This was applied to systems governed by PDE with boundary control.

Shortly, with some conditions on the operator B, complete stabilizability is obtained from exact controllability and the feedback is

F = -JB * K -1 ω , K ω = T 0 e -2ωt e -Aτ BJB * e -A * τ dτ,
where J is the canonical Riesz isomorphism.
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Example 2. This allows to obtain the complete stabilization of systems like

                   ẅ(t, ξ) -∇w(t, ξ) = 0, (t, ξ) ∈ R + × Ω w(0, ξ) = f (ξ), ξ ∈ Ω ẇ(0, ξ) = g(ξ), ξ ∈ Ω w(t, ξ) = u(t, ξ) ξ ∈ ∂Ω.
The boundary control is given by the formula

u(t, ξ) = Fw(t, ξ) = -JB * K -1 ω (w(t, ξ), ẇ(t, ξ)) defined in the space H -1 (Ω) × L 2 (Ω): u(t, ξ) = ∂ ν (P w(t, ξ) + Q ẇ(t, ξ)),
where P and Q are linear and bounded. 2

In the general case of a semigroup, we have the following implication: Theorem 6. For System (1) in Hilbert spaces, with bounded operator B, exact controllability to zero implies complete stabilizability by bounded feedback F.

This is a consequence of the following result implicitly contained in the paper by Datko [START_REF] Datko | Uniform asymptotic stability of evolutionary processes in a Banach space[END_REF] (see also [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF]Ch. III. 4]).

Theorem 7. Exactly null controllable systems are exponentially stabilizable.

The latter and the following remark give Theorem 6.

Remark 1. Controllability of System (1) is equivalent to controllability of the shifted system:

ẋ = Ax + ωx + Bu.
This result may be extended to the case of an unbounded control operator. We consider the same system (1) in Hilbert spaces, with possible unbounded B and F, they are supposed to be admissible in a certain sense:

B bounded from U to the space X -1 which is the completion of X with the norm (λI -A) -1 x .

Theorem 8 ([24]

). If system (1), in Hilbert spaces, with admissible operator B is exactly null controllable in X -1 , then it is completely stabilizable by an admissible feedback and then, finally, by a bounded feedback F.

The converse is not true, and there are different situations [START_REF] Rabah | Exact null controllability, complete stabilizability and continuous final observability of neutral type systems[END_REF].

Example 3. In the space L 2 (0, +∞), consider the semigroup

S(t)f (ξ) = e -t 2 2 -ξt f (ξ + t), t ≥ 0, ξ ≥ 0.
It is not difficult to see that for this semigroup:

∀ω > 0, ∃M ω ≥ 1, S(t) ≤ M ω e -ωt .
We have σ(S(t)) = {0} and then σ(A) = ∅.

It is easy to see that, for some f = 0 we have S(t)f = 0 for any t ≥ 0. The system is completely stabilizable (B = 0) but not controllable.

2

Example 4. In the space L 2 (0, 1), consider the semigroup

S(t)f (ξ) = f (ξ + t) 0 ≤ t + ξ ≤ 1, 0 t + ξ > 1.
It is not difficult to see that for this semigroup

∀ω > 0, ∃M ω ≥ 1, S(t) ≤ M ω e -ωt .
We have σ(S(t)) = {0} and then σ(A) = ∅.

For any initial function f ∈ L 2 (0, 1), we have S(t)f (x) = 0 for t > 2. This means that S(t) = 0, for all t > 2. Then, for any control operator B, the system is exactly null controllable at time T > 2 with the trivial control u = 0. 2

Complete stabilizability implies exact controllability

In this Section we consider how complete stabilizability may imply exact (null) controllability, and is there an equivalence in some situation as in finite dimensional spaces.

Banach space, bounded case

Consider System (1) where operators A and B are linear, bounded: A ∈ L (X) and B ∈ L (U, X). This means that it is not the case of partial differential or functional-differential equations (with delay). Anyway, it is of historical and theoretical interest.

An important result on complete stabilizability was obtained in [START_REF] Sklyar | The problem of the perturbation of an element of a Banach algebra by a right ideal and its application to the question of the stabilization of linear systems in Banach spaces[END_REF]. First we formulate result about exact controllability.

Theorem 9 (Korobov-Rabah (1979), [START_REF] Korobov | Exact controllability in Banach space[END_REF]). System (1) is exactly controllable if and only if there exists k ∈ N such that

Im [B AB • • • A k B] = X, (7) 
where

[B AB • • • A k B] is acting from U × • • • × U to X
and the condition is independent on the class of controls.
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In fact the exact controllability holds in the class of piece-wise controls, when the condition of the theorem is verified.

Theorem 10 (Sklyar (1982), [START_REF] Sklyar | The problem of the perturbation of an element of a Banach algebra by a right ideal and its application to the question of the stabilization of linear systems in Banach spaces[END_REF]). System (1) with bounded operators is completely stabilizable if and only if the block operator [B AB • • • A k B] is right invertible for some k:

∃P i ∈ L (X, U ), i = 0, 1, . . . , k : BP 0 + ABP 1 + • • • + A k BP k = I. (8) 
There is a spectral formulation, which is a consequence of the following result.

Theorem 11 [START_REF] Kaashoek | Analytic operator functions with compact spectrum. III: Hilbert space case: Inverse problem and applications[END_REF], [START_REF] Kaashoek | Analytic operator functions with compact spectrum. III: Hilbert space case: Inverse problem and applications[END_REF]). The operator

[B AB • • • A k B] is right invertible for some k if and only if operators [λI -A B], from X × U to X are right invertible for all λ ∈ C, i.e. ∀λ ∈ C, ∃Q λ ∈ L (X), ∃P λ ∈ L (X, U ) : (λI -A)Q λ + BP λ = I. ( 9 
)
This gives a spectral formulation of the characterization of complete stabilization.

Theorem 12. System (1) is completely stabilizable if and only if operators [λI -A B] are right invertible for all λ ∈ C.

If U, X are Banach spaces, not isomorphic to Hilbert spaces, the condition (8) (or the spectral formulation ( 9)) is more than exact controllability, it is equivalent to the following two conditions: 

1. Im [B AB • • • A k B] = X, i.

Ker [B AB • • • A

k B] is complemented.
This means that in Banach spaces (not isomorphic to Hilbert spaces) there are exactly controllable systems, generated by a group, which are not completely stabilizable.

Example 5 [START_REF] Sklyar | The problem of the perturbation of an element of a Banach algebra by a right ideal and its application to the question of the stabilization of linear systems in Banach spaces[END_REF]). Consider the Banach space U which has at least a subspace L which cannot be complemented in U . Let X be the factor space U/L and B be the canonical projection of U onto X = U/L. The operator B is then onto (surjective). This means that the system ẋ = x + Bu, is exactly controllable because Im B = X (here A = I). If we suppose that it is completely stabilizable, then, according to Theorem 8, there exists P ∈ L (X, U ) such that FP = I, and Ker P = L can be complemented. This is in contradiction with the construction of L.

2

The result of Theorem 10 was proved in [START_REF] Markus | Complete controllability of spectrum assignment in infinite dimensional spaces[END_REF] without citing the original result [START_REF] Sklyar | The problem of the perturbation of an element of a Banach algebra by a right ideal and its application to the question of the stabilization of linear systems in Banach spaces[END_REF].

The situation is different in Hilbert spaces: every closed subspace can be complemented and the equivalence between range condition [START_REF] Kaashoek | Analytic operator functions with compact spectrum. III: Hilbert space case: Inverse problem and applications[END_REF] and right invertibility (8) can be given by Douglas theorem.

Remark 2. When this paper was under review, appeared a conference paper [START_REF] Makarov | On Assignment of the Upper Bohl Exponent for Linear Discrete-Time Systems in Infinite-Dimensional Spaces[END_REF] on exact controllability and complete stabilizability (in fact arbitrary assignability of the Bohl exponent) of a class of linear non-stationary discrete systems in Banach spaces. The main result concerns a case when the state operator is constant, the control operator is periodic, the space X is a reflexive Banach space and U is a separable Hilbert space: it is claimed that exact controllability implies arbitrary assignability of Bohl exponents. No proofs are given in this paper.

Hilbert spaces, bounded case, spectrum assignment

In Hilbert spaces, exact controllability is equivalent to complete stabilizability, but more precisely we have a pole assignment result which may be interesting, at least in operator theory.

Theorem 13 [START_REF] Eckstein | Exact controllability and spectrum assignment[END_REF] [START_REF] Eckstein | Exact controllability and spectrum assignment[END_REF]). The system (1) is exactly controllable if and only if for every nonempty compact set Λ ⊂ C, there is a bounded linear feedback F, such that σ(A + BF) = Λ, i.e. the problem of spectrum assignment is solvable.

The proof uses explicitly the Hilbert space structure, in particular the fact that the subspace Ker[B AB • • • A k B] can always be complemented. There is also a dual formulation of this result in [START_REF] Kaashoek | Analytic operator functions with compact spectrum. III: Hilbert space case: Inverse problem and applications[END_REF] and a constructive approach of the dual operator corresponding to F: let C be an operator from X to the Hilbert space Y , find K such that σ(A + KC) = Λ. This appears in the problem of detectability and construction of asymptotic observers.

To summarize the characterization in Hilbert spaces, when the operators are bounded, we can formulate as follows.

Theorem 14. Let U and X be Hilbert spaces, A and B be linear bounded operators. The following statements are equivalent 1. The system (1) is exactly controllable in the class L 2 .

2. For every nonempty compact set Λ ⊂ C, there is a bounded linear feedback F, such that σ(A + BF) = Λ, i.e. the problem of spectrum assignment is solvable.

Im [B AB • • • A

k B] = X for some k ∈ N,
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4. Im [λI -A B] = X for all λ ∈ C.
This is a complete analog of Theorem 1.

Unbounded case in Hilbert spaces

We return to the system (1) with unbounded A and bounded B.

Theorem 15 [START_REF] Megan | On the space of linear controllable systems in Hilbert spaces[END_REF], Zabczyk (1976), see [START_REF] Zabczyk | Mathematical control theory: an introduction[END_REF]). If e At is a group and the system (1) in Hilbert spaces is completely stabilizable, then it is exactly controllable.

This result was extended to the case of surjective operators e At , t ≥ 0 by Rabah & Karrakchou (1997) and Zeng & Xie & Guo (2013), see [START_REF] Rabah | On Exact Controllability and Complete Stabilizability for Linear Systems in Hilbert Spaces[END_REF]35].

We can summarize as: Theorem 16. The system (1) in Hilbert spaces, with a bounded operator B, is exactly controllable in the class L 2 if and only if 1. Operators e At are surjective for t ≥ 0.

The system is completely stabilizable.

Exact controllability is equivalent to exact null controllability when e At are surjective for t ≥ 0.

But what about exact controllability in the class L 1 in this context? Surjectivity of operators e At is not needed. Let us return to Example 1.

Example 6 (Example 1 continued). As we saw, the system is exactly controllable in the class L 1 but not in the class L p for p > 1. Let us show that it is completely stabilizable by a bounded feedback. Let us take arbitrary ω > 0 and n ∈ N such that n > ω. Define operator F from X = 2 to U = 2 by

Fx = n-1 i=1 (i -n) x, e i e i .
Then

(A + BF)x = n-1 i=1 -n x, e i e i + ∞ i=n -i x, e i e i , which gives for the semigroup S F (t) = e (A+BF )t e (A+BF ) x 2 = n-1 i=1 e -2nt | x, e i | 2 + ∞ i=n e -2it | x, e i | 2 ≤ e -2nt x 2 .
And this means that e (A+BF ) ≤ e -nt ≤ e -ωt , i.e. the system is completely stabilizable.

The case of neutral type systems

We consider some large class of neutral type systems

ż(t) = A -1 ż(t -1) + Lz t (•) + Bu(t), (10) 
where

Lz t (•) = 0 -1 [A 2 (θ) ż(t + θ) + A 3 (θ)z(t + θ)] dθ,
with z(t) taking values in R n and u(t) in R p . The system can be written as

ẋ = Ax + Bu, (11) 
where A is the infinitesimal generator of a C 0 -semigroup e At given in the product space

M 2 (-1, 0; R n ) def = R n ×L 2 (-1, 0; R n )
, noted shortly M 2 , and A, B are defined by

Ax(t) =   Lz t (•) dz t (θ) dθ   , x(t) = z(t) z t (•) , Bu(t) = u(t) 0 ,
with the domain D(A) given by

D(A) = (v, ϕ) ∈ M 2 : ϕ(•) ∈ H 1 , v = ϕ(0) -A -1 ϕ(-1) .
The characteristic matrix is noted by

∆ A (λ) = λI -A -1 e -λ -λ 0 -1 A 2 (θ)e sθ dθ - 0 -1 A 3 (θ)e sθ dθ.
The behavior of the dynamical system is described by the spectrum:

σ(A) = {λ : det ∆ A (λ) = 0}.
The set σ(A) is formed by eigenvalues of finite multiplicity, see for example [START_REF] Rabah | Stability analysis of neutral type systems in Hilbert space[END_REF] and references therein.

Complete stabilizability

It is characterized by two conditions: one on the spectrum σ(A) , the second on the neutral term (here A -1 ).

Theorem 17 ([20]). The system [START_REF] Korobov | Exact controllability in Banach space[END_REF], in abstract form [START_REF] Louis | On exact controllability in Hilbert spaces[END_REF], is completely stabilizable if and only if

1. For all λ ∈ C, rank ∆ A (λ) B = n. 2. For all µ ∈ C, µ = 0, rank µI -A -1 B = n.
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The condition 2 may be formulated as

Im A -1 ⊂ Im [B A -1 B • • • A n-1 -1 B].
Proof. It is important to check the meaning of the second condition. A large part of the spectrum of A may be obtained from the non zero spectrum of the matrix A -1 :

λ = log |µ| + i(arg µ + 2kπ) + o(1/|k|), k ∈ Z.
The eigenvalues are in some circles centered at log µ with decreasing radii, when |k| is growing [START_REF] Rabah | Stability analysis of neutral type systems in Hilbert space[END_REF]. The pole assignment is possible in the interior of the circles under Condition 1, which means the controllability of poles.

The spectrum of the operator A is close to some vertical axes defined by the spectrum of the neutral term, the matrix A -1 . We need to move these axes by the feedback in order to obtain complete stabilizability, and then the corresponding values µ must be controllable. The necessity of both conditions is then clear enough.

Let us shortly consider the sufficient part. The condition 2 allows to move arbitrary all the non zeros eigenvalues of A -1 , and to make it simple. The condition 1 allows to control an eigenvalue in the interior of circles (for k large). It remains then to move a finite number of eigenvalues, it is possible as shown in [START_REF] Rabah | On strong regular stabilizability for linear neutral type systems[END_REF][START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF].

It is of interest to show the form of the feedback needed for exponential and then for complete stabilizability:

u(t) = Fx(t) = F -1 ż(t -1) + T 0 [F 2 (θ) ż(t + θ) + F 3 (θ)z(t + θ)] dθ.
This means that F is not bounded and domains of A + BF and A are not the same. However this form is necessary in order to move the spectrum [START_REF] O'connor | On stabilization by state feedback for neutral differential equations[END_REF][START_REF] Pandolfi | Stabilization of neutral functional differential equations[END_REF]. 

Complete stabilizability and exact controllability

The notion of exact controllability for System (10) must be modified. As here the control u is finite dimensional, exact controllability in the sense of Definition 1 is not possible. In fact it may be shown that, in this case, the reachability set R T is in D(A) [START_REF] Rabah | The analysis of exact controllability of neutral-type systems by the moment problem approach[END_REF][START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF]. Then by exact controllability at time T , we mean R T = D(A), and exact null controllability means to reach zero from all initial condition in D(A). Results given in [START_REF] Rabah | The analysis of exact controllability of neutral-type systems by the moment problem approach[END_REF][START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF] may be summarized in the following theorem. Theorem 18. If A is the infinitesimal generator of a group or, equivalently, if the matrix A -1 is not singular, 0 / ∈ σ(A -1 ), then exact controllability is equivalent to complete stabilizability.

Proof. If µ = 0 is not in σ(A -1 ), conditions 1 and 2 of Theorem 17 give a criteria of exact controllability. We refer to [START_REF] Rabah | The analysis of exact controllability of neutral-type systems by the moment problem approach[END_REF][START_REF] Rabah | Stability and stabilizability of mixed retarded-neutral type systems[END_REF] for detailed proofs. In our case of System [START_REF] Korobov | Exact controllability in Banach space[END_REF], for exact null controllability we can obtain only a partial result.

Theorem 19. Exact controllability to zero of System (10) implies complete stabilizability.

Proof. If Condition 1 in Theorem 17 is not verified, it means that some eigenvalues are not controllable. Taking a corresponding eigenvectors as an initial condition, we can see that exact controllability does not hold. To prove Condition 2 in Theorem 17, we can proceed by derivation of the solution z(t) = 0 for t ≥ T ≥ n. The calculation gives [START_REF] Rabah | Exact null controllability, complete stabilizability and continuous final observability of neutral type systems[END_REF]), which means that Condition 2 in Theorem 17 is verified.

Im A -1 ⊂ Im [B A -1 B • • • A n-1 -1 B] (see
The converse (in fact the criteria of exact null controllability without relation with stabilizability) has been proved in some particular cases of neutral type systems with discrete delays [START_REF] Metel Skiȋ | Criteria for the constructive identifiability and complete controllability of linear time-independent systems of neutral type[END_REF][START_REF] Khartovskiȋ | Complete controllability and controllability for linear autonomous systems of neutral type[END_REF] and in the case of retarded systems [START_REF] Olbrot | Null controllability of a class of functional differential systems[END_REF]. In the case of our general system [START_REF] Korobov | Exact controllability in Banach space[END_REF], the question is still open, see Conjecture in [START_REF] Rabah | Exact null controllability, complete stabilizability and continuous final observability of neutral type systems[END_REF] and [START_REF] Barkhayev | Conditions of exact null controllability and the problem of complete stabilizability for time-delay systems[END_REF].

Conclusion

We gave a short review of the relations between exact controllability and pole assignment (complete stabilizability). There are a lot of papers concerning different classes of systems, in particular, governed by partial differential equations. This paper gives our point of view to some questions concerning abstract infinite dimensional systems, based on results close to ours, in particular for functional differential equations of neutral type. Several problems are still open concerning the general abstract case or some particular classes. Добре вiдома еквiвалентнiсть мiж повною керованiстю та розташуванням полюсiв у ситуацiї скiнченновимiрних просторiв в загальному випадку не має мiсця в нескiнченномiрних просторах. Точної керованостi недостатньо для повної стабiлiзацiї, якщо U i X є банаховими просторами. У постановцi Гiльбертового простору цей результат є справедливим. Зворотньє твердження також не є простим: в деяких ситуацiях повна стабiлiзацiя передбачає точну керованiсть (у просторi Банаха з обмеженими операторами), в iнших ситуацiях це не вiдповiдає дiйсностi. Вiдповiднi результати наведенi з деякими iдеями доведення. Технiчнi деталi можна знайти в цитованiй лiтературi. Наведено кiлька прикладiв. Особлива увага придiляється випадку нескiнченновимiрних систем, збудованих за системами iз загаюваннями нейтрального типу iз розподiленими загаюваннями. Бiльш детально дослiджується питання про зв'язок мiж точною нуль-керованiстю та повною стабiлiзацiєю. Загалом мiж цими поняттями немає еквiвалентностi. Однак для деяких класiв рiвнянь нейтрального типу iснує еквiвалентнiсть. Питання про те, чи є еквiвалентнiсть для бiльш загальних систем, залишається вiдкритим. Це короткий i невичерпний огляд деяких дослiджень теорiї керування у нескiнченновимiрних просторах. Нашi роботи в цiй сферi були iнiцiйованi В. I. Коробовим протягом 70-х рокiв минулого сторiччя у Харкiвському державному унiверситетi.

Ключовi слова: Точна керованiсть; повна стабiлiзацiя; нескiнченновимiрнi системи; нейтральний тип.

On exact controllability and complete stabilizability for linear systems Rabah Rabah IRCCYN, Ecole des Mines de Nantes 1 Rue de la Noë, 44300 Nantes, France In this paper we consider linear systems with control described by the equation ẋ = Ax + Bu where functions u and x take values in U and X respectively. For such object, a short review of results concerning relations between exact controllability and complete stabilizability (stabilizability with arbitrary decay rate) is given. The analysis is done in various situations: bounded or unbounded state and control operators A and B, Banach or Hilbert spaces U and X.
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The well known equivalence between complete controllability and pole assignment in the situation of finite dimensional spaces is no longer true in general in infinite dimensional spaces. Exact controllability is not sufficient for complete stabilizability if U and X are Banach spaces. In Hilbert space setting this implication holds true. The converse also is not so simple: in some situations, complete stabilizability implies exact controllability (Banach space setting with bounded operators), in other situation, it is not true. The corresponding results are given with some ideas for the proofs. Complete technical development are indicated in the cited literature. Several examples are given. Special attention is paid to the case of infinite dimensional systems generated by delay systems of neutral type in some general form (distributed delays). The question of the relation between exact null controllability and complete stabilizability is more precisely investigated. In general there is no equivalence between the two notions. However for some classes of neutral type equations there is an equivalence. The question how the equivalence occurs for more general systems is still open. This is a short and non exhaustive review of some research on control theory for infinite dimensional spaces. Our works in this area were initiated by V. I. Korobov 
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 1 Fig. 1. Spectrum of A, for each µ ∈ σ(A -1 ), µ = 0.

  This implies a necessary condition of exact controllability in the class L p for p > 1: operators S(t) = e At are surjective for all t ≥ 0.
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