
HAL Id: hal-03502868
https://hal.science/hal-03502868

Submitted on 26 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combined Forest: a New Supervised Approach for a
Machine-Learning-based Botnets Detection

Christophe Maudoux, Selma Boumerdassi, Alex Barcello, Eric Renault

To cite this version:
Christophe Maudoux, Selma Boumerdassi, Alex Barcello, Eric Renault. Combined Forest: a New
Supervised Approach for a Machine-Learning-based Botnets Detection. IEEE GLOBECOM, Dec
2021, Madrid, Spain. �hal-03502868�

https://hal.science/hal-03502868
https://hal.archives-ouvertes.fr

Combined Forest: a New Supervised Approach for a

Machine-Learning-based Botnets Detection

Christophe Maudoux∗

0000-0001-5215-9046
Selma Boumerdassi∗

0000-0003-2603-2433
Alex Barcello† Eric Renault†

Abstract

Nowadays, botnet-based attacks are the most prevalent cyber-threats type. It is therefore essential to detect
this kind of malware using efficient bots detection techniques. This paper presents our security anomalies detection
system, based on a model that we named Combined Forest. Our approach consists of merging some pre-processed
Decision Trees to highlight different kinds of botnet by detecting their intrinsic exchanges. Using a supervised
data approach, each tree is built from a labelled dataset. In order to achieve this, we aggregate the IP-flows into
Traffic-flows to extract key features and avoid over-fitting. Then, we tested different machine learning algorithms
and selected the most suitable one. After that, many experiments have been done to determine the best parameters
and design the most accurate, adaptative and efficient model.

Index terms – botnets, anomalies detection, machine learning, supervised & meta algorithms, network, cybersecurity

I – INTRODUCTION

The most serious threat against networks and a major challeng-
ing topic within cybersecurity nowadays are bot proliferation
and botnet detection [1]. Botnets are an unusually large collec-
tion of devices compromised by malware and under the control
of a remote attacker. Unlike other more conventional malware
such as viruses, trojans or worms, bots exchange data with
each other or with an attacker through an open communication
channel using protocols such as IRC, HTTP or Peer-to-Peer
(P2P).

Some Supervised and Unsupervised approaches have been
developed to detect anomalies by using flow-based network
traffic analysis like [2, 3]. The first supervised approach re-
quires extracting thirty-nine different statistical features for
every traffic flow defined by source and destination IP/port
and protocol knowing that the source port can evolve and the
system needs to analyse each payload. The second study based
on the Principal Component Analysis unsupervised algorithm
uses the CTU13 dataset described in section V. Each scenario
here is split into two parts for training and testing purpose
that can introduce a bias. Furthermore, difficulty here is to
tag each obtained clusters as normal or malicious depending on
statistical analysis that can lead to misclassification. In this
paper, we focus on supervised Machine Learning Algorithms
(MLAs) and we propose a new approach based-on a boosted
forest built by combining several pre-processed Decision Trees.

The article is organized as follows. First, we introduce
the supervised MLAs employed for our research. After ex-
plaining botnets and their architectures, we detail the CTU13
dataset that we employed for training and testing our Anoma-
lies Detection System (ADS). Then, we present our Combined
Forest approach and evaluate the solution in terms of accuracy
and computing time. Future works consist in transposing our
detection system to mobile network.

II – MACHINE LEARNING ALGORITHMS

MLAs are programs that can learn from data and improve
from experience. Learning tasks may include defining the best
function that maps input to output, finding out the hidden
structure of unlabelled data or grouping samples such that
objects within the same cluster are more similar to each other
than to the objects from another cluster [4].

The most common type of machine learning process is to
learn the mapping function: Y = f(X)+ e to make predictions
of Y for new X with an irreducible error e based on the lack of
attributes to sufficiently characterize the best mapping. This
is called predictive modelling. The goal here is to make the
most accurate possible predictions, irrespective of the function
form.

Different MLAs make different assumptions about the shape
and structure of the function. Assumptions can greatly simplify
the learning process, but can also limit what can be learned.
This is why it is very important to try out different algorithms
on a machine learning problem.

2.1 Decision Tree (DT) or CART

Classification and Regression Trees (CART) is a supervised
algorithm that can be used for classification or regression predic-
tive modelling problems but are better at solving classification
ones. DTs are composed of two nodes: Decision and Leaf
nodes. It is a tree-structured classifier, where internal nodes
represent the features of a dataset, branches are the decision
rules and each leaf node represents the outcome. Decision
nodes are used to make choice and have multiple branches,
whereas Leaf nodes are the output of those decisions and do
not contain any further branches. Decisions are performed on
the basis of features from the given dataset. It is a graphical
representation for getting all possible solutions to a problem
based on given conditions. It is called a DT because, similar
to a tree, it starts with the root node, which expands on fur-
ther branches and constructs a tree-like structure depicted by
figure 1.

∗Cnam Paris – Cedric/Networks and IoT Systems, 75003 Paris, France. Email: {firstname.name}@cnam.fr
†ESIEE Paris – LIGM/UMR CNRS 8049, 93162 Noisy-le-Grand, France. Email: {firstname.name}@esiee.fr

Fig. 1. CART diagram

2.2 Random Forest (RF)

This model is based on a multitude of DTs as shown in figure 2.
It is one of the most popular and powerful MLAs. They select
which variable to split on using a greedy algorithm that mini-
mizes error. The DT can have a lot of structural similarities
and in turn result in high correlation of their predictions. Com-
bining predictions from multiple models in ensembles works
better if the predictions from the sub-models are uncorrelated
or weakly correlated. With Random Forest, the learning algo-
rithm is limited to a random sample of features on which to
search. The number of features that can be searched at each
split point must be specified as a parameter to the algorithm.

Fig. 2. Simplified RF

III – WHAT IS A BOTNET?

Cybersecurity is a major issue today. Over the last ten years,
botnets represent the latest growing threat. They are becoming
the preferred media for launching various attacks. During the
2000’s, botnets evolved to become more and more sophisticated
and malicious like Zeus, Stuxnet, Emotet, Retadup, . . .

Botnet topology is essentially built on four components:
(i) the compromised machines also known as the Bots or Zom-
bies (ii) the BotMaster who controls the botnet, developed
(iii) the bot code (iv) and the Command and Control server
(C&C server) used for leading the botnet. A generic botnet
topology is illustrated by figure 3.

Fig. 3. Botnet topology

Control architecture is the key aspect of any botnets. Bots
interact with the BotMaster to receive commands or send logs,
to each other or to exchange data over a network using legiti-
mate communication channels, in order to become part of a
wider network of infected devices [5].

Botnet resilience and also its efficiency lies in the structure
of its Command and Control architecture. The C&C channel is
the main weak point and without it, a botnet is just a collection
of useless infected devices.

IV – DETECTION PROCESS

Many researches have been done by monitoring network traf-
fic, analysing messages or parsing their payload contents with
induced privacy issues [2, 3]. In this paper, we will focus
on machine learning techniques used for extracting patterns
and detecting anomalous behaviours that could point out an
existing C&C channel between malware and consecutively a
botnet.

The main assumption of machine learning based ADS is
that botnets generate specific traffic patterns that could be
efficiently detected by MLAs. This approach affords a flexible
detection method that does not require any prior knowledge
of botnet traffic characteristics. It is independent and iso-
lated from communication technologies and resilience strate-
gies employed by botnets. Different kinds of MLAs have been
developed and implemented in several detection schemas [6, 7].

Three main steps are required to achieve a good anomaly
detection rate by using machine learning. First, all IP-flows
must be aggregated into Traffic-flows. During the second step,
specific features are extracted from aggregated flows to be used
for computing main characteristics and modelling decisions.
Finally, an MLA is trained and implemented to differentiate
malicious activities from benign traffic.

4.1 Traffic Flow Aggregation

Huge amount of data can be collected during a network dump
process. To decrease the data volume for analysis and be able
to highlight exchange patterns, IP-flows are merged into a
Traffic-flow corresponding to an exchange transaction between
a source and a destination. This communication is mainly
defined by source and destination IP address or port.

4.2 Features Selection & Patterns

Many features are available and can be extracted to define
patterns. The main ones are; transaction duration, source or
destination port, IP address, direction flow, number of trans-
mitted packets, packet size, payload content, connection state,
and protocol.

By using these characteristics, it is possible to define and
detect patterns. The aim is to reduce key information to extract
and analyse but keep the ability to detect new or unknown
malicious behaviours and therefore not miss attacks. Selecting
the right set of features for data modelling improve the perfor-
mance learning process and reduce computational costs such
as training time or required resource.

4.3 Training & Classification

Supervised MLAs training is based-on previously defined pat-
terns and by providing a labelled dataset. A dataset can be
created by capturing and tagging legitimate traffic from a
well-known network then merging it with generated malicious
traffic. In other hand, some open source labelled datasets are
publicly available. For our researches, we chose to experiment
the CTU13 dataset.

2

V – CTU13 DATASET

Czech Technical University 13 is a commonly applied dataset
for research like [3, 8] provided by Malware Capture Facility
Project of Czech Technical University [9]. It was captured in
2011 and consists of thirteen different botnet activity captures
called scenarios listed in table 1.

A scenario is a specific botnet traffic sample generated and
labelled as malicious data. Each malware uses several proto-
cols and performed different actions. Traffic from known and
controlled network endpoints like a router or switch is tagged
as normal.

TABLE 1
CTU13 Scenarios

Nmr/Id Dur (hrs) Bots Bot Size (GB)

42/1* 6.15 1 Neris 52

43/2 4.21 1 Neris 60

44/3* 66.85 1 Rbot 121

45/4 4.21 1 Rbot 53

46/5* 11.63 1 Virut 37.6

47/6* 2.18 1 Menti 30

48/7* 0.38 1 Sogou 5.8

49/8* 19.5 1 Murlo 123

50/9 5.18 10 Neris 94

51/10 4.75 10 Rbot 73

52/11 0.26 3 Rbot 5.2

53/12 1.21 3 NSIS.ay 8.3

54/13 16.36 1 Virut 34

*Scenarios used for training

Training process requires specific and labelled data to be
able to learn some botnet features and define a signature
based on intrinsic behaviour. Therefore, we chose the scenarios
marked with ’*’ to train different MLAs and leave out the other
ones. Each training scenarios contains just one bot activity
and only one infected host with IP address 147.32.84.165.

Other scenarios have been used for testing the forest built
by combining the DTs learned from the six training scenarios.

VI – COMBINED FOREST

We adopt a nonconformist approach to botnets and their C&C
channel detection which is not based on conventional tools
like C and Python/Jupiter. To construct our model and reach
our aim, we went through the following points. (i) Very large
IP ’binetflow’ files provided by the CTU13 dataset have been
aggregated into smaller Traffic-flows files by our advanced Perl

parser to be processed by Weka. (ii) Several supervised MLAs
have been tested to determine the most suitable one and four
Decision Trees have been extracted from training scenarios
using J48 and a Confidence Factor (CF) of ’0.35’. Increasing
the CF involved a more accurate resulting tree but with more
nodes and leaves. These deeper DTs are offset by the next
step. (iii) Each pre-processed DT has been improved with
the AdaBoost meta-classifier. (iv) All boosted trees have been
combined to build our forest with the Stacking method.

Typically, meta classifiers have been developed to boost
nominal classifiers like AdaBoost or ClassifierOptimizer. We
have implemented the AdaBoost method [10]. This meta-
algorithm can be used in conjunction with other MLAs to
improve performance. Output of the other ’weak learners’ is
combined into a weighted sum that represents the final output
of the boosted classifier. AdaBoost is adaptive in the sense

that subsequent weak learners are tweaked in favour of those
instances misclassified by previous classifiers.

Fig. 4. Our Combined-Forest model

Some meta algorithms like Vote, Bagging or Stacking exist
for gathering base class classifiers. To build our model, we
chose to employ the Stacking one with PART to combine our
pre-processed DT models [11]. It allows us to merge our DTs
into a model we named Combined Forest depicted by figure 4.

Bagging meta-algorithm did not increase performances and
Voting could not be used here because the result was always
false. For each testing scenario, only one tree is able to detect
botnet activity!

Pre-built models must be wrapped to be loaded into Weka

before using. To do so, a generic connector named Serializer
is required. This classifier loads a serialized model and calls it
to make predictions.

VII – TOOLS & METRICS

7.1 Workbench for Machine Learning

We conducted our studies with the Weka Toolbox1 to (i) find
out which is the best algorithm able to detect security anoma-
lies, (ii) determine the most suitable tuning parameter values
to improve performances and (iii) validate our proposed ADS.

Waikato Environment for Knowledge Analysis is a freely
available open source software developed at the University of
Waikato in New Zealand. Overall, data must be converted into
an ARFF (Attribute-Relation File Format) file. This is an
ASCII text file that describes a list of instances sharing a set
of attributes.

7.2 Basic Features

Algorithm performances can be evaluated by using multiple
metrics defined and explained below. We can define the follow-
ing four basic features:

True Positives (TP) correctly predicted to be true.

True Negatives (TN) correctly predicted to be false.

False Positives (FP) predicted to be true, but incorrect.

False Negatives (FN) predicted to be false, but incorrect.

1http://www.cs.waikato.ac.nz/ml/weka

3

http://www.cs.waikato.ac.nz/ml/weka

7.3 Performance Metrics

Therefore, main performance metrics are calculated based-on
the previous basic features:

Precision TP
TP+FP

⇒ expresses what fraction of predictions
as a positive class were actually positive.

True-Positive Rate (TPR) or Recall or Sensitivity
TP

TP+FN
⇒ fraction of all positive correctly predicted.

True-Negative Rate (TNR) or Specificity
TN

TN+FP
⇒ fraction of negative cases correctly predicted.

False-Positive Rate (FPR) FP
TN+FP

= 1− TNR

False-Negative Rate (FNR) FN
TP+FN

= 1− TPR

F-Measure (FM) or F1 Score 2 Recall.Precision
Precision+Recall

⇒ is the harmonic mean of Precision and Recall.

Matthews Correlation Coefficient (MCC)

TP.TN − FP.FN√︁
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Sensitivity and Specificity are inversely proportional to each
other. So when we increase sensitivity, specificity decreases
and vice versa.

VIII – EXPERIMENTS AND RESULTS

8.1 Feature Extraction

IP-flows must be aggregated into Traffic-flows to extract spe-
cific patterns and detect malicious activities. To highlight this
important step, we experimented with two opposite approaches:
(i) a basic parsing tool to directly analyse IP-flows and (ii) a
parser to aggregate IP-flows, both written in Perl.

8.1.1 Basic Parser

A first naive approach could just consist in transposing ’bi-
netflow’ files provided by the CTU13 dataset into ARFF files
without any modifications2.

We tested this basic parsing with S42 scenario and the
J48 algorithm [12]. First results exposed by table 2 seem very
impressive with TPR, Recall, Precision and F-Measure
= 1 and FPR = 0. These very good performances can be ex-
plained by the fact that J48 algorithm over-fits the data. Leaves
are based on source port and bot IP address (147.32.84.165).

8.1.2 Advanced Parser

Our advanced approach aims to aggregate some IP-flows into
Traffic-flows defined by a 4-tuple primary key. Client-Server
exchanges are identified by source and destination IP address
and port (socket), where the source port is versatile and can
evolve. We chose to build the Aggregation Key (AgK) with
the transport protocol [13, 14].

The 4-tuple aggregation key is set like this: AgK = Sr-
cAddr DstAddr Dport Protocol by using our advanced
parser3. Results obtained with the same J48 algorithm from
the S42 scenario pre-processed with our advanced parser are
detailed by table 3. DT learned from aggregated data is com-
posed of ’18’ leaves with a size equal to ’35’. Model metrics
are very good with TPR and Recall = 0.935, FPR = 0,
Precision = 0.959, F-Measure and MCC = 0.947.

Most important feature here is that the advanced model
does not refer to any IP address or source port. Table 4 sum-
marizes total number of flows after basic or advanced parsing

and relative number of flows marked as malicious with corre-
sponding ratios.

TABLE 2
Basic-parsing Confusion Matrix

Classified as True False

True 28,122 4

False 2 2,584,844

99.9998% Correctly classified instances!!!

TABLE 3
Advanced-parsing Confusion Matrix

Classified as True False

True 2,154 150

False 91 694,143

99.9654% Correctly classified instances

TABLE 4
Total IP & Traffic-flows

Scenario IP-flows (Ratio h) Traffic-flows (Ratio h)

S42 2,612,972/28,126 (10.65) 695,538/2,305 (3.3)

S44 4,156,939/2,556 (0.61) 684,175/2,464 (3.6)

S46 121,994/749 (6.1) 43,116/65 (1.5)

S47 520,225/230 (0.442) 119,375/4 (0.034)

S48 106,298/59 (0.555) 40,725/13 (0.32)

S49 2,762,306/1,414 (0.512) 462,824/63 (0.14)

Total flows/Labelled as bot (Malicious/Total ratio)

8.2 Experiments

Algorithm Selection

Weka provides many MLAs. We chose to test one Neural Net-
work i.e. Multilayer Perception (MLP), the Naive Bayes (NB)
algorithm and some DTs. Available DT algorithms are J48 and
some derived: J48Consolidate, DTGraft and BFTree. From
tables 5 to 7, we can deduce that (i) the J48 algorithm pro-
vides the best MCC with the minimum time testing and the
maximum specificity (see section 7.3) (ii) S47 and S48 can
not be used for building a DT because these scenarios do not
provide enough malicious data with only 4 (0.034h) and 13
(0.32h) botnet Traffic-flows respectively.

TABLE 5
Algorithms TPR/TNR/MCC

Scenario J48 NB MLP

S42 0.93/1.00/0.95 0.99/0.89/0.16 0.54/1.00/0.79

S44 1.00/1.00/0.99 1.00/0.96/0.33 0.00/1.00/X

S46 0.30/1.00/0.58 0.11/0.98/0.03 0.00/1.00/X

S48 0.00/1.00/X 0.68/0.95/? 0.00/1.00/X

S49 0.52/1.00/0.68 0.93/0.80.02/? 0.00/1.00/X

2https://bitbucket.org/cmaudoux/parsers/src/master/basic.pl
3https://bitbucket.org/cmaudoux/parsers/src/master/advanced.pl

4

https://bitbucket.org/cmaudoux/parsers/src/master/basic.pl
https://bitbucket.org/cmaudoux/parsers/src/master/advanced.pl

TABLE 6
Algorithms Elapsed Time Training/Testing

Scenario J48 NB MLP

S42 34.8/0.04 2.5/? ?/?

S44 20.2/0.05 2.5/0.36 708.6/0.12

S46 0.5/0.00 0.1/0.02 44.8/0.01

S47 2.0/0.01 0.3/0.06 127.6/0.02

S48 0.2/0.00 0.1/0.02 43.9/0.01

S49 13.8/0.02 1.9/0.19 500.5/0.09

TABLE 7
Weka DT Algorithms TPR/MCC

Scen. BF J48 Consolidate Graft

S42 0.89/0.93 0.93/0.95 0.97/0.73 0.93/0.94

S44 1.00/0.99 1.00/0.99 1.00/0.95 0.99/0.99

S46 0.04/0.48 0.31/0.72 0.68/0.19 0.26/0.52

S49 ? 0.52/0.68 0.65/0.47 0.50/0.69

All DTs reach a TNR equal to ’1’

Algorithm Optimisation

CF is used for pruning. Smaller values incur more pruning and
MCC variations (table 8). The tree is created according to the
implemented algorithm. The additional pruning process looks
at what nodes can be removed without affecting performance.
This step reduces the risk of over-fitting the training data. To
over-fit means that the model is able to classify the training
data perfectly, but nothing else because instead of learning the
underlying concept, the model learned intrinsic and specific
properties of the training data, making it worthless for real
data.

TABLE 8
MCC Depending on CF Parameter

Scen. 0.20 0.23 0.25 0.28 0.30 0.35 0.38

S42 0.95 0.95 0.95 0.95 0.95 0.95 0.94

S44 0.99 0.99 0.99 0.99 0.99 0.99 0.99

S46 0.57 0.57 0.57 0.55 0.55 0.56 0.55

S49 0.68 0.70 0.70 0.70 0.70 0.72 0.70

Confidence Factor modulation from 0.20 to 0.38

8.3 Results

The first step was to build our DT models from each training
scenario. From the previous experiments we can conclude that
the best results, presented in table 9, are obtained with the J48
algorithm and a Confidence Factor equal to ’0.35’. Table 10
exposes results reached after using the J48 algorithm boosted
with AdaBoost which improves the MCC compared to table 9.
Finally, tables 11 and 12 summarize the overall efficiency.

Our Combined Forest model performances are interesting
and encouraging with the following Mean/Standard Deviation
values computed from table 12: TPR = 0.374/0.123, Pre-
cision = 0.976/0.054, FM = 0.528/0.121 and MCC =
0.595/0.089. These results could be improved by providing
scenarios with higher Botnet/Total Traffic-flow ratio.

TABLE 9
Base-models

Scen. Size* TPR FM MCC ETT (s) Root

S42 35/18 0.932 0.945 0.945 36.5 Dport53

S44 25/13 0.997 0.993 0.993 17.6 Dport22

S46 33/17 0.308 0.455 0.517 0.5 Dport6774

S49 17/9 0.532 0.673 0.698 13.9 TotBytes

*Nodes/Leaves – J48 algorithm with CF = 0.35

TABLE 10
Boosted-models

Scen. TPR FM MCC Precision ETT (s)

S42 0.931 0.947 0.947 0.962 625

S44 0.991 0.991 0.991 0.992 329

S46 0.385 0.543 0.596 0.926 22

S49 0.597 0.747 0.772 1.00 188

J48 with CF = 0.35 and AdaBoost – ETT = Elapsed Time Training

TABLE 11
Combined Forest Results without AdaBoost

Scen. TPR Precision FM MCC Bot/Total flows

S43 0.356 0.965 0.520 0.586 309/427,810

S45 0.133 0.667 0.222 0.298 15/201,329

S50 0.471 0.979 0.636 0.678 3,303/436,460

S51 0.395 0.941 0.557 0.610 81/236,082

S52 0.333 1.0 0.5 0.577 9/43,330

S53 ? ? ? ? 977/92,482

S54 0.414 0.954 0.577 0.628 302/370,614

TABLE 12
Boosted Combined-Forest Results

Scen. TPR Precision FM MCC ETT (s)

S43 0.324 1.00 0.489 0.569 5

S45 0.200 1.00 0.333 0.447 2.5

S50 0.558 0.866 0.678 0.693 5

S51 0.457 1.00 0.627 0.676 3

S52 0.333 1.0 0.5 0.577 0.5

S53 ? ? ? ? 2

S54 0.374 0.991 0.54 0.609 5

ETT = Elapsed Time Testing

IX – DISCUSSION & FURTHER WORKS

Aggregate IP-flows into Traffic-flows by creating a 4-tuple pri-
mary key constructed of; source and destination IP, destination
port and protocol allowed the highlighting of the botnet C&C
channel as exposed in section 4.1. The last column of table 9
named ’Root’ specifies the first node of each model extracted
from the training data. With figure 5, It highlights the fact
that Neris (S42) exchanges over TCP/6667 or UDP/53 (DNS)
and Rbot ’s (S44) C&C channel is based on ssh (TCP/22). We
can suppose that Neris and Rbot obfuscate or mix their ex-
changes with ssh or DNS traffic to by-pass firewalls and also
prevent C&C channel detection. Same graphics also show that
Virut exchanges by using TCP on ports 80, 443 and 6667 – a
well-known backdoor – or UDP on port 53. It required more
digging and analysing bot code to confirm this.

5

Fig. 5. Neris and Rbot activities (plotted with jitter)

A first model implementation with the boosting algorithm
just after the stacking one did not increase the performances
significantly. Therefore, the boosting phase must occur after
the DT modelling as depicted by figure 4.

Our model is able to highlight a botnet family’s C&C chan-
nel if, of course, a corresponding DT has been extracted and
combined. Tables 11 and 12 show that botnet activities in S53
have not been detected by our Combined Forest because no
relative training scenario has been provided.

We plan to transpose our ADS to mobile network and test
our Combined Forest model with Android malware or mobile
botnets. This will require to define a new aggregation key and
an adaptation of the parser to extract useful features.

X – CONCLUSION

Botnets must be effectively detected to be defeated. This arti-
cle explores and describes how network traffic flow analysis and
machine learning can be employed to provide an efficient ADS.
We developed and exposed a new botnet detection system that
relies on Traffic-flows aggregation and supervised MLAs for
extracting patterns and modelling botnets C&C channel. Our
system is able to accurately highlight botnet activity using
network flow features and multi Decision Trees merged into
a Combined Forest. This approach that consists in detecting
C&C exchanges is more efficient because of pointing out attack
activities is often too late and more difficult! Additionally, our
ADS can be easily improved to detect new botnet families by
appending some corresponding previously learned DTs without
building all the model again.

We can deduce from our researches that this selected
approach provides high precision of traffic classification by
analysing a few key features, and it will also be suitable for
real-time application. We are planning further studies to test
and adapt this approach to implement a real-time system able
to detect mobile botnet activities.

References

[1] A. Guirakhoo. FBI IC3 2019: Cybercrime Results
in over $3.5 Billion in Reported Losses — Digital
Shadows. en-US. Mar. 2020. url: https://www.
digitalshadows.com/blog-and-research/fbi-

ic3 - 2019 - cybercrime - results - in - over - 3 -

5 - billion - in - reported - losses/ (visited on
11/12/2020).

[2] M. Stevanovic and J. M. Pedersen. “An Efficient
Flow-Based Botnet Detection Using Supervised Ma-
chine Learning”. In: ICIN. Honolulu, HI, USA: IEEE,
Feb. 2014, pp. 797–801. isbn: 978-1-4799-2358-8.
doi: 10.1109/ICCNC.2014.6785439. url: http://
ieeexplore.ieee.org/document/6785439/ (vis-
ited on 02/25/2021).

[3] E. S. C. Vilaça, T. P. B. Vieira, R. T. de Sousa,
and J. P. C. L. da Costa. “Botnet Traffic Detec-
tion Using RPCA and Mahalanobis Distance”. In:
WCNPS. Brasilia, Brazil: IEEE, Oct. 2019, pp. 1–6.
doi: 10.1109/WCNPS.2019.8896228. url: https:
//ieeexplore.ieee.org/document/8896228/.

[4] J. Brownlee. Master Machine Learning Algorithms:
Discover How They Work and Implement Them. en.
Machine Learning Mastery, Mar. 2016.

[5] M. Kumar. French Police Remotely Removed RE-
TADUP Malware from 850,000 Infected PCs. en.
Article. Aug. 2019. url: https://thehackernews.
com/2019/08/retadup- botnet- malware.html

(visited on 11/15/2020).

[6] S. Garćıa, M. Grill, J. Stiborek, and A. Zunino. “An
Empirical Comparison of Botnet Detection Meth-
ods”. en. In: Computers & Security 45 (Sept. 2014),
pp. 100–123. issn: 0167-4048. doi: 10.1016/j.cose.
2014.05.011. url: http://www.sciencedirect.
com/science/article/pii/S0167404814000923

(visited on 03/18/2020).

[7] B. Abraham, A. Mandya, R. Bapat, F. Alali, D. E.
Brown, and M. Veeraraghavan. “A Comparison of
Machine Learning Approaches to Detect Botnet
Traffic”. In: IJCNN. Rio de Janeiro: IEEE, July
2018, pp. 1–8. doi: 10.1109/IJCNN.2018.8489096.
url: https://ieeexplore.ieee.org/document/
8489096/ (visited on 02/25/2021).

[8] A. Blaise, M. Bouet, V. Conan, and S. Secci. “BotFP:
FingerPrints Clustering for Bot Detection”. In:
IEEE/IFIP Network Operations and Management
Symposium. Budapest, Hungary: IEEE, Apr. 2020.
doi: 10 . 1109 / NOMS47738 . 2020 . 9110420. url:
https : / / hal . archives - ouvertes . fr / hal -

02501912 (visited on 04/10/2021).

[9] The CTU-13 Dataset. A Labeled Dataset with Bot-
net, Normal and Background Traffic. en-US. url:
https://www.stratosphereips.org/datasets-

ctu13 (visited on 06/14/2020).

[10] Y. Freund and R. E. Schapire. “Experiments with a
New Boosting Algorithm”. en. In: ICML. Morgan
Kaufmann Series in Data Management Systems. San
Francisco, 1996, pp. 148–156.

[11] D. Wolpert. “Stacked Generalization”. en. In: Neu-
ral Networks 5.2 (Dec. 1992), pp. 241–259. issn:
08936080. doi: 10.1016/S0893-6080(05)80023-
1. url: https : / / linkinghub . elsevier . com /

retrieve/pii/S0893608005800231.

[12] D. N. Bhargava, G. Sharma, D. R. Bhargava, and M.
Mathuria. “Decision Tree Analysis on J48 Algorithm
for Data Mining”. en. In: IJARCSSE (2013), p. 6.
issn: 22776451, 2277128X.

[13] Stratosphere Testing Framework. en-US. url: https:
/ / www . stratosphereips . org / stratosphere -

testing-framework (visited on 01/17/2021).

[14] Example of Using STF for Detecting C&C Chan-
nels. An Analysis of Pushdo Malware. en-US. url:
https://www.stratosphereips.org/blog/2014/

03/9/example-of-using-stf-for-detecting-

cc-channels (visited on 01/15/2021).

6

https://www.digitalshadows.com/blog-and-research/fbi-ic3-2019-cybercrime-results-in-over-3-5-billion-in-reported-losses/
https://www.digitalshadows.com/blog-and-research/fbi-ic3-2019-cybercrime-results-in-over-3-5-billion-in-reported-losses/
https://www.digitalshadows.com/blog-and-research/fbi-ic3-2019-cybercrime-results-in-over-3-5-billion-in-reported-losses/
https://www.digitalshadows.com/blog-and-research/fbi-ic3-2019-cybercrime-results-in-over-3-5-billion-in-reported-losses/
https://doi.org/10.1109/ICCNC.2014.6785439
http://ieeexplore.ieee.org/document/6785439/
http://ieeexplore.ieee.org/document/6785439/
https://doi.org/10.1109/WCNPS.2019.8896228
https://ieeexplore.ieee.org/document/8896228/
https://ieeexplore.ieee.org/document/8896228/
https://thehackernews.com/2019/08/retadup-botnet-malware.html
https://thehackernews.com/2019/08/retadup-botnet-malware.html
https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1016/j.cose.2014.05.011
http://www.sciencedirect.com/science/article/pii/S0167404814000923
http://www.sciencedirect.com/science/article/pii/S0167404814000923
https://doi.org/10.1109/IJCNN.2018.8489096
https://ieeexplore.ieee.org/document/8489096/
https://ieeexplore.ieee.org/document/8489096/
https://doi.org/10.1109/NOMS47738.2020.9110420
https://hal.archives-ouvertes.fr/hal-02501912
https://hal.archives-ouvertes.fr/hal-02501912
https://www.stratosphereips.org/datasets-ctu13
https://www.stratosphereips.org/datasets-ctu13
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://linkinghub.elsevier.com/retrieve/pii/S0893608005800231
https://linkinghub.elsevier.com/retrieve/pii/S0893608005800231
https://www.stratosphereips.org/stratosphere-testing-framework
https://www.stratosphereips.org/stratosphere-testing-framework
https://www.stratosphereips.org/stratosphere-testing-framework
https://www.stratosphereips.org/blog/2014/03/9/example-of-using-stf-for-detecting-cc-channels
https://www.stratosphereips.org/blog/2014/03/9/example-of-using-stf-for-detecting-cc-channels
https://www.stratosphereips.org/blog/2014/03/9/example-of-using-stf-for-detecting-cc-channels

	Introduction
	Machine Learning Algorithms
	Decision Tree (DT) or CART
	Random Forest (RF)

	What is a Botnet?
	Detection Process
	Traffic Flow Aggregation
	Features Selection & Patterns
	Training & Classification

	CTU13 Dataset
	Combined Forest
	Tools & Metrics
	Workbench for Machine Learning
	Basic Features
	Performance Metrics

	Experiments and Results
	Feature Extraction
	Basic Parser
	Advanced Parser

	Experiments
	Results

	Discussion & Further Works
	Conclusion

