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ON SHIFTING THE PRINCIPAL EIGENVALUE OF DIRICHLET PROBLEM TO INFINITY WITH NON-TRANSVERSAL INCOMPRESSIBLE DRIFT

Keywords: 

We prove that it is always possible to add some divergence free drift vector-eld to some two dimensional spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. By construction those drift vector-elds vanish on the boundary and their ow lines individually stay away from the boundary. The capacity of those drift vectorelds to accelerate diusivity originates from high frequency oscillation of the associated ow lines. The lower bounds for the spectrum are obtained through isoperimetric inequalities for ow invariant functions.

Introduction

In this paper, we consider, in a bounded domain Ω ⊂ R d , the following eigenvalue problem with Dirichlet boundary condition:

∆ϕ + V • ∇ϕ = λϕ in Ω, ϕ = 0 on ∂Ω,
where ∆ is the Laplace operator on R d and V is a divergence free C 1 vector-eld on Ω. We are interested in the inuences of the drift vector-eld V on the principal eigenvalue λ V := -sup Re(z); z ∈ spec(A V ) of the elliptic dierential operator

A V = ∆ + V • ∇
under the above boundary condition. It is well known that in this situation the principal eigenvalue is real and the corresponding eigen-function takes only real values. The principal value is an important indicator for the time the diusion generated by A V needs to reach the absorbing boundary ∂Ω. It is interesting to understand which geometric features of the ow generated by the vector-eld V inuence the principal eigenvalue. In [START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF] the authors Berestycki, Hamel and Nadirashvili studied the asymptotic behavior of the principal eigenvalue λ cV as some real parameter c grows to innity. More precisely, they proved that [START_REF] Adams | Sobolev Spaces[END_REF] 

lim |c|→∞ λ cV = inf Ω |∇ϕ| 2 dx; ϕ ∈ ker(V • ∇) ∩ H 1 0 , ϕ L 2 = 1 ,
where H 1 0 denotes the space of rst order Sobolev functions satisfying Dirichlet boundary conditions on Ω. An analogous result for the spectral gap

ρ V := -sup Re(z); z ∈ spec(A V ) \ {0}
of some diusion generator A V on a compact Riemannian manifold M without boundary was proved in [START_REF] Franke | The behavior of the spectral gap under growing drift[END_REF]. The expression in [START_REF] Adams | Sobolev Spaces[END_REF] shows, that in a situation, where almost all trajectories of the ow generated by the vector-eld V come arbitrarily close to the boundary ∂Ω of Ω, the limit of the principal eigenvalue becomes innite. Vector-elds with this property can easily be constructed; i.e.: the vector-eld V (x) = (1, 0, ..., 0); x ∈ Ω generates a ow following straight parallel lines which leaves the bounded domain Ω in nite time. Those type of examples are constructed via vector-elds which are transversal to the boundary on a portion of ∂Ω. One might ask, whether there exist examples, where the vector-eld is tangential to ∂Ω or even vanishing on ∂Ω. It can be seen from ( 1) that in order to have a diverging principal value it is sucient that the ow generated by V has a dense set of trajectories coming arbitrarily close to the boundary ∂Ω, since this then implies that the intersection of the kernel of the operator V • ∇ with H 1 0 only contains the zero function. This means that in this situation there exists a sequence of divergence free vector-elds of the form c n V such that the associated principal value diverges to innity. In dimension two, due to Jordan's curve theorem, it is not possible to construct measure preserving ows having a dense set of trajectories coming arbitrarily close to the boundary without ever reaching it. This also rules out the existence of ergodic ows in this situation. One can then relax the question and ask, whether one can nd a sequence of vector-elds V n with ow lines keeping some distance to the boundary ∂Ω such that the associated principal eigenvalues diverge to innity.

In the rst part of the paper, we construct a sequence of divergence free vectorelds satisfying this property on the domain Ω = B 1 (0) in R 2 . The result can be generalized to more general bounded domains in R d by using more advanced techniques. In order to reduce the complexity of our arguments, we choose to state and prove the special case of the open ball B 1 (0) extensively and to add a discussion on how to improve our result to more general bounded domains in a nal section at the end of the paper. Theorem 1. On the open ball B 1 (0) in R 2 there exists a sequence of continuous and piece-wise

C 1 vector-elds V n ; n ∈ N with the properties div(V n ) = 0 and V n | ∂B1(0) = 0 generating a ow Φ (n) t ; t ∈ R with dist {Φ (n) t (x); t ∈ R}, ∂B 1 (0) > 0, for all x ∈ B 1 (0)
such that the sequence of associated principal eigenvalues satises

lim n→∞ λ Vn = ∞.
The analogous problem on various compact Riemannian surfaces without boundary and on d-torus was studied in [START_REF] Franke | On how to push the spectral gap of a diusion on S 2 to innity[END_REF], [START_REF] Franke | Accelerating diusion on compact surfaces by drift[END_REF] and [START_REF] Hwang | Accelerating Brownian motion on N-torus[END_REF]. There the authors prove that the spectral gap ρ V can become arbitrarily large after a suitable choice of V .

The prove of Theorem 1, which will be prepared in the following sections and completed in Section 4, is based on the construction of explicit divergence free vectorelds V . Each of those vector-elds is constructed in Section 2 through its ow, which will be composed of smooth closed curves which do not leave the domain B 1 (0). Those curves are constructed to strongly oscillate in the radial direction as they orbit around the origin in Section 1. This feature of the trajectories, will ensure that ow-invariant functions have relatively large energy integrals compared to their L 2 -norms, where the ratio can be increased through augmentation of the number of oscillations. The resulting vector-eld V can then be multiplied with a large constant c and the asymptotic behavior of the resulting principal eigenvalue λ cV can be studied as c grows to innity. Note that the limit of the principal eigenvalue given in ( 1) is expressed through variation of energy integrals over the space of ow invariant functions. As noted above, this expression can be made arbitrarily large by increasing the ows oscillation and thus in order to obtain a vector-eld with a large principal eigenvalue we rst construct a ow with a suciently high number of oscillations and then multiply a suciently large constant to the underlying vector-eld. In order to prove Theorem 1 it is then necessary to show that the inmum of the variation problem can be made arbitrarily large by pushing up the number of oscillations. For this, in Section 3, we will introduce some suitable rotationally symmetric comparison problem, which takes into account the oscillation, and, in Subsection 3.1, use some Faber Krahn type argument in order to obtain lower bounds for the above variation problem in terms of the symmetrized variation problem. In Subsection 3.2 we then use an argument based on some kind of Cheeger constant in order to obtain lower bounds for the symmetrized problem which grows to innity as the number of oscillations increases. Those arguments are based on the careful analysis of the ratio between the length of the ows trajectories and the area that they encircle which is presented in Section 1.

One might ask, whether it is possible to give some estimate on the amplitude of the vector-eld which is necessary to push the principal eigenvalue over a prescribed value. However, this is not possible with the approach presented in this paper, since the method is based on applying the asymptotic result from [START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF], which does not provide such information.

construction of the flow lines

In this section, our goal is to construct ows of closed curves which oscillate in the radial direction as they revolve around the origin. In order to t into the unit ball B 1 (0) the amplitude of the oscillation has to be reduced to zero as the curves approach the unit circle ∂B 1 (0). Also the oscillation has to fade down to zero as the curves come closer to the origin. This will be incorporated into the construction through some suitable amplitude function η, which will be constructed below. In Proposition 1.2 we will show that the ratio between the length of those closed curves and the area that they encircle goes to innity uniformly over compact sets of radii as the number of oscillations increases. This will be essential for achieving the divergence of the Cheeger constants in Subsection 3.2.

Let B r (0) denote the ball of radius r centered at zero in R 2 . For a dierentiable curve γ : [0, T ] → R 2 we denote by (γ) its curve length in R 2 and for an measurable r .

and C 1 on ]0, 1[×[0, 2π[. Remark 1. For every r > 0, the set Γ (n) r is a closed curve in B 1 (0).
Lemma 1.1. For all n ∈ N and one has as r → 0 that (Γ (n) r ) ∼ (∂B r (0)) and also that a( Γ (n) r ) ∼ a(B r (0)).

Proof. At rst, note that, for r < 1 3 , the curve Γ (n) r oscillates n times between the circle of radius (r -r 2

2 ) and the circle of radius (r + r 2 2 ). Thus,

2π r - r 2 2 ≤ (Γ (n) r ) ≤ 2π r + r 2 2 + 2nr 2 .
After dividing the 3 sides of those inequalities by the arc length of ∂B r (0), we obtain

2π(r -r 2 2 ) 2πr ≤ (Γ (n) r ) (∂B r (0)) ≤ (2π(r + r 2 2 ) + 2nr 2 2πr .
Then, some computation yields

1 - r 2 ≤ (Γ (n) r ) (∂B r (0)) ≤ 1 + r 2 + nr π .
We obtain the rst assertion when taking the limit r → 0. The second assertion follows form the rst by integration over r. 

a( Γ (n) r ) = a( Γ (1) r ).
Remark 3. For c ∈]0, π[ let r c denote the unique radius such that

a( Γ (n) rc ) = c.
It follows from the previous remark that r c does not depend on n. It thus follows from Lemma 1.1 that for any choice of > 0 there exists a δ > 0 such that for c < δ one has that

c = a( Γ (n) rc ) ≤ (1 + )πr 2 c . Proposition 1.2. We have, for all c 0 < π that (2) inf 0<c<c0 (Γ (n) rc ) c -→ n→∞ ∞.
Proof. At rst, for a xed r, by computing the innitesimal arc length of the curve

Γ (n) r
and integrating over [0, π] with respect to the θ-variable, one has that

(Γ (n) r ) ≥ π 4 r 1 + n 2 η 2 (r) 8 .
For proving the assertion (2), we will identify 3 cases

inf 0<c<c0 (Γ (n) rc ) c ≥ min inf 0<c<c0 rc < 1 3 (Γ (n) rc ) c ; inf 0<c<c0 1 3 ≤rc ≤ 2 3 (Γ (n) rc ) c ; inf 0<c<c0 2 3 <rc (Γ (n) rc ) c .
For the rst case, i.e. r c < 1 3 , let us consider a sequence α n which converges to zero as n → ∞. One has

inf 0<c<c0 rc < 1 3 (Γ (n) rc ) c ≥ min inf 0<c<c0 0<rc <αn (Γ (n) rc ) c ; inf 0<c<c0 αn <rc < 1 3 (Γ (n) rc ) c .
For 0 < r c < α n , we can use Lemma 1.1 and Remark 3 to see that

c = γ( Γ (n) rc ) ∼ πr 2 c . It follows then that inf 0<c<c0 rc < 1 3 (Γ (n) rc ) c ≥ inf 0<c<c0 0<rc <αn π 4 r c 1 + n 2 η 2 (rc) 8 c ≥ inf 0<c<c0 rc <αn π 4 r c 1 + n 2 r 2 c 8 (1 + )πr 2 c . ≥ 1 4(1 + ) 1 α 2 n + n 2 8 -→ n→∞ ∞.
We now choose α n = 1 4 √ n which clearly satises α n → 0 as n → ∞. For the case when α n < r c < 1/3, one has

inf 0<c<c0 αn<rc < 1 3 (Γ (n) rc ) c ≥ inf 0<c<c0 rc <αn π 4 r c 1 + n 2 η 2 (rc) 8 c ≥ inf 0<c<c0 rc <αn π 2 r c 1 + n 2 r 2 c 8 c 0 ≥ π 4 α n 1 + n 2 α 2 n 8 c 0 ≥ π 4c 0 1 4 √ n + n 8 -→ n→∞ ∞.
For the second case, when

1 3 ≤ r c ≤ 2 3 , holds inf 0<c<c0 1 3 ≤rc ≤ 2 3 (Γ (n) rc ) c ≥ inf 0<c<c0 1 3 ≤rc ≤ 2 3 π 4 r c 1 + n 2 η 2 (rc) 8 c ≥ inf 0<c<c0 1 3 ≤rc ≤ 2 3 π 4 1 3 1 + n 2 1 3 + 1 3π sin(π(3rc-1)) 2 8 c 0 ≥ π 4 1 3 1 + n 2 ( 1 π -1 3π ) 2 8 c 0 ≥ π 4c 0 1 + n 2 ( 1 π -1 3π ) 2 8 -→ n→∞ ∞.
For the third case, one can see that

inf 0<c<c0 2 3 <rc <1 (Γ (n) rc ) c ≥ inf 0<c<c0 2 3 <rc <1 π 4 r c 1 + n 2 η 2 (rc) 8 c ≥ inf 0<c<c0 2 3 <rc <1 π 4 r c 1 + n 2 (1-rc) 2 8 c ≥ π 4 2 3 1 + n 2 K 8 c 0 -→ n→∞ ∞,
where K is a suitable positive constant which does not depend on n.

Construction of the vector-field

In this section, we use the previously constructed curves to construct their underlying vector-elds. In order to do so we rst introduce some suitable height function α n whose level sets are exactly the closed curves generated by the ow.

Taking the orthogonal gradient ∇ ⊥ α n of those functions will generate divergence free vector-elds V 0 n , whose ow lines correspond to the level sets of the function α n . Finally, we multiply the vector-eld V 0 n with a suitable ow-invariant function S which vanishes on the boundary, in order to guarantee that the resulting vectoreld V n = SV 0 n vanishes on the boundary.

We denote by (r, θ) ∈ R + × [0, 2π[ the polar coordinates on R 2 \{0}. With those new variables we have the following expression for the gradient operator of any C 1 -function F : R 2 → R:

∇F = ∂F ∂r , 1 r ∂F ∂θ .
We dene the orthogonal gradient of F denoted ∇ ⊥ F as follows:

∇ ⊥ F = - 1 r ∂F ∂θ , ∂F ∂r .
Remark 4. The orthogonal gradient ∇ ⊥ F of a function F satises the following two properties:

• (∇F ) t (∇ ⊥ F ) = 0; (v t denotes the transpose of a column vector v ∈ R 2 ); • div(∇ ⊥ F) = 0.
Remark 5. We can use the implicit function theorem to dene a C 1 -function

α n :]0, 1[×[0, 2π[ → R + which satises for all (r, θ) ∈ ]0, 1[×[0, 2π[ that h n (α n (r, θ), θ) = (r, θ).

Note that the function

α n is C ∞ on the open set O n := B 1 (0)\({0} ∪ Γ (n) 1 3 ∪ Γ (n) 2 3 
).

From this family of functions, we get a sequence of vector-elds V 0 n dened as

V 0 n := ∇ ⊥ α n (r, θ).
The vector-eld

V 0 n is continuous on B 1 (0)\{0} and C ∞ on the open set O n ⊂ B 1 (0). Remark 6. By construction V 0
n is a divergence free vector-eld which generates a ow following the curves Γ (n) r . For our purpose, we use the function η and r x , which where dened in the previous section, to introduce a strictly positive C 1 function S : B 1 (0) → R; x → η(r x ). The function S vanishes at the boundary ∂B 1 (0) and can be extended to a continuous function vanishing at the origin. We nally dene V n := SV 0 n . Remark 7. By construction the vector-eld V n is continuous on B 1 (0) and C ∞ on O n with zero divergence. Also V n vanishes on ∂B 1 (0) and in the origin. Its ow

Φ (n) t ; t ∈ R
preserves the measure a and follows the curves Γ (n) r ; r ∈]0, 1[, which do not come arbitrarily close to ∂B 1 (0); i.e.:

dist {Φ (n) t (x); t ∈ R}, ∂B 1 (0) > 0, for all x ∈ B 1 (0).
Thus the sequence of vector-elds V n ; n ∈ N is a good candidate for proving Theorem 1. In the upcoming sections, we will analyze the energy of functions

ϕ ∈ H 1 0 ∩ ker(V n • ∇).

Comparison arguments

In this section we show that the minimal energy over the space of ow invariant functions diverges to innity as the number of oscillations is increased. In order to do so, we introduce some suitable comparison problem, which is based on some change of the underlying area measure a to a rotationally symmetric measure a * , which incorporates the ratio between the ow lines length and the area that they encircle (see Proposition 3.3). This relation between the length of the boundary and the area of ow-invariant sets is then used in Subsection 3.1 to obtain some lower bound for the energy of ow invariant functions in terms of the energy of some rearranged rotationally invariant function with respect to the measure a * (see Proposition 3.4). Finally, in Subsection 3.2, we introduce some Cheeger type constant in order to show that the minimal energy of the symmetrized variation problems diverges to innity as the number of oscillations increases (see Proposition 3.5).

Let Φ (n) t ; t ∈ R be the ow generated by the vector-eld

V n in B 1 (0). By construc- tion the ow is C 1 on the open set of full measure O n := B 1 (0)\({0} ∪ Γ (n) 1 3 ∪ Γ (n) 2 3 
) and continuous on B 1 (0). In the following for a bounded domain Ω we denote by H 1 0 (Ω) the closure of the set of smooth functions with compact support in Ω with respect to the rst order Sobolev norm. In case of the domain B 1 (0) we abbreviate the expression to

H 1 0 . Lemma 3.1. For all n ∈ N the space C 1 (O n ) ∩ C(B 1 (0)) ∩ ker(V n • ∇) is dense in the space H 1 0 ∩ker(V n •∇)
with respect to L 2 -norm and also with respect to H 1 -norm.

Proof. In the same way as in Proposition 2.2 in [START_REF] Franke | On how to push the spectral gap of a diusion on S 2 to innity[END_REF] we can nd for a given > 0 and a given

v ∈ H 1 0 ∩ker(V n •∇) a v ∈ H 1 0 satisfying for a-almost all x ∈ B 1 (0) that v • φ t (x) = v (x) for all t ∈ R and v -v H 1 <
. By denition of H 1 0 , there exists some smooth function u with compact support in B 1 (0) such that u -v H 1 < . However, the function u is not in ker(V n • ∇). We thus average out the function u along the trajectories Γ (n) r ; 0 < r < 1 as follows

ū = 1 0 u • Φ (n) t/tn(x) dt,
where t n (x) is the rst return time of the ow

Φ (n) t ; t ∈ R in location x. Note that the map x → t n (x) is dierentiable on O n . Thus the transformation x → Φ t/tn(x) (x) is dierentiable on O n ⊂ B 1 (0). It follows from the construction that ū is in C 1 (O n )∩C(B 1 (0))∩ker(V n •∇)
. Also, by Theorem 3.35 in [START_REF] Adams | Sobolev Spaces[END_REF] there exist a constant K > 0 such that for all t ∈ [0, 1]

u -u • Φ (n) t/tn H 1 ≤ u -v H 1 + v -v • Φ (n) t/tn H 1 + (v -u ) • Φ (n) t/tn H 1 ≤ + 0 + K v -u H 1 ≤ (1 + K) .
Thus it follows that

u -ū H 1 ≤ 1 0 u -u • Φ (n) t/tn H 1 dt ≤ (1 + K) .
This implies

v -ū H 1 ≤ v -v H 1 + v -ū H 1 ≤ + v -u H 1 + u -ū H 1 ≤ (3 + K) .
The proof is complete, since can be chosen arbitrarily small and K is a constant not depending on .

Lemma 3.2. The minimizers of the function Q :

H 1 0 ∩ ker(V n • ∇) → R dened by Q(u) = B1(0) |∇u| 2 dx B1(0) |u| 2 dx
are non-negative functions u which satisfy the following monotonicity property:

r 1 < r 2 ⇒ u(x) ≥ u(y), ∀x ∈ Γ (n) r1 , y ∈ Γ (n) r2 .
Proof. By Lemma 3.1 we can assume that the minimizer u is in

C 1 (O n ) ∩ C(O n ) ∩ ker(V n • ∇).
This implies that u is constant along the ow lines

Γ (n) r ; r ∈ [0, 1].
Suppose u does not satisfy the above property. Let r crit be a critical radius such that there exist at least a radius r 0 < r crit with u(x) > u(y) for all

x ∈ Γ (n) rcrit , y ∈ Γ (n) r0 . One can construct a function u ∈ H 1 0 ∩ ker(V n • ∇) as follows: u(x) := u(x) for x ∈ B 1 (0(\ Γ rcrit ; 2 t crit -u(x) + + u(x) for x ∈ Γ rcrit ;
where t crit is the level of the function u on the set Γ rcrit and where x + denotes the positive part of a real x. Recall that for u ∈ H 1 0 then t crit -u(x)

+ ∈ H 1 0 (see [START_REF] Gilbarg | Elliptic Partial Dierential Equations of Second Order[END_REF] p.145). Note at rst that by simple calculus one has that |∇u(x)| = |∇ u(x)| for almost all x ∈ Ω. It follows that

B1(0) |∇u| 2 dx = B1(0) |∇ u| 2 dx.
The construction of u gives that

B1(0) | u| 2 dx > B1(0) |u| 2 dx.

As a consequence

B1(0) |∇u| 2 dx B1(0) |u| 2 dx > B1(0) |∇ u| 2 dx B1(0) | u| 2 dx .
This proves the claim.

Proposition 3.3. For every n ∈ N, there exists a measure a * n on B 1 (0) which is absolutely continuous with respect to the Lebesgue measure a, invariant with respect to rotations around zero and which satises for all c ∈ [0, π] the property

a * n (B r (0)) = c implies * n (∂B r (0)) := ∂ ∂r a * n B r (0) = (Γ (n) r(c) ).
Proof. The following proof is motivated from the analogous construction of comparison manifolds in [START_REF] Bérard | Spectral Geometry: Direct and Inverse Problems[END_REF] and [START_REF] Franke | Integral inequalities for the fundamental solutions of diusions on manifolds with divergence-free drift[END_REF] and the construction of comparison measures in [START_REF] Damak | Accelerating planar Ornstein-Uhlenbeck diusion with suitable drift[END_REF].

To ease notation, we drop the reference to n in the notation of the comparison measure a * . Suppose that a * is invariant by rotations around the origin and absolutely continuous with respect to a, then it must be of the form a * (dx) = ψ 0 (|x|)dx. In the following we want to determine the function ψ 0 . Let R(c) : [0, π] → [0, 1] be implicitly dened through

c = a * (B R(c) (0)) = 2π R(c) 0 sψ 0 (s)ds.
Dierentiating both sides of this equality with respect to c yields:

(3)

1 = 2πR(c)ψ 0 (R(c)) d dc R(c).
Recall now that, by dierentiating with respect to the r variable, one has that * (∂B r (0

)) = ∂ ∂r a * B r (0) = ∂ ∂r r 0 2πψ 0 (s)sds = 2πrψ 0 (r).
Due to (3), we obtain that

d dc R(c) = 1 2πR(c)ψ 0 (R(c)) = 1 * (∂B R(c) (0)) = 1 (Γ (n) rc )
.

Thus we obtain the following explicit formula for the function R(c):

R(c) = c 0 1 (Γ (n) ru )
du.

As a conclusion, the explicit formula for ψ 0 is given by:

ψ 0 :]0, 1[-→ R; s → (Γ (n) r R -1 (s) ) 2πs .
This ends the proof.

Remark 8. Note that it follows from the explicit expression for ψ 0 given at the end of the proof of Proposition 3.3, that ψ 0 (r) → 1 as r → 1.

3.1.

The rearrangement method and Faber-Krahn type inequalities. Let A be a measurable set in B 1 (0). Its symmetric rearrangement A * is the open ball centered around zero in B 1 (0) satisfying

a * n (A * ) = a(A).
For a non negative measurable function f , the following representation holds almost everywhere with respect to a

f (x) = ∞ 0 χ y|f (y)>t (x)dt.
Here we used the notation χ A for the indicator function over the set A. We dene its rearrangement function f * by:

f * (x) = ∞ 0 χ y|f (y)>t * (x)dt.
Then f * is lower semi-continuous (since its level sets are open), and is uniquely determined by the distribution function a {x; f (x) > s} of the function f .

Remark 9. Note that as the measure a * n depends on n the rearrangement function f * also depends on n. It then follows that f L 2 (B1(0),a) = f * L 2 (B1(0),a * n ) . By using standard arguments and Proposition 3.3 we can prove the following Faber-Krahn type inequality in this context.

Proposition 3.4. For all f ∈ C 1 (O n ) ∩ C(O n ) ∩ ker(V n • ∇) we have that B1(0) |∇f | 2 da ≥ B1(0) |∇f * | 2 da * n .
Remark 11. It follows from the construction and from the Faber-Krahn inequality that for f ∈ H 1 0 we have

f * ∈ H 1 0 (a * ) = g ∈ L 2 (B 1 (0), a * n ); B1(0) |∇g| 2 da * n < ∞ .
In the next paragraph, we will use a modied Cheeger type argument to nd a lower bound for the Rayleigh quotient of functions which are in ker(V n • ∇).

Cheeger type arguments.

For a xed c 0 ∈]0, π[, dene a Cheeger type constant by:

C (n) c0 := inf 0<c<c0 (Γ (n) rc ) c .
In the following we denote by R 2 + the set of positive H 1 0 functions on B 1 (0) ⊂ R 2 which are invariant with respect to rotations around the origin of R 2 . Proposition 3.5. Let

u n ∈ H 1 0 (a * n ) ∩ R 2
+ be a minimizer of the quotient

Q * n (u) = B1(0) |∇u| 2 da * n B1(0) u 2 da * n .
We have the following asymptotic behavior

Q * n (u n ) -→ n→∞ ∞.
Proof. Let u be a minimizer of Q * and consider

Ω t = {x ∈ B 1 (0) : u 2 (x) > t}.
The fact that ∇u 2 = 2u∇u and Cauchy Schwarz inequality gives that (4)

1 4 B1(0) |∇u 2 |da * n B1(0) u 2 da * n 2 ≤ B1(0) |∇u| 2 da * n B1(0) u 2 da * n .
Let us, for some t 0 > 0, put c 0 := a * (Ω t0 ). By the coarea formula (see p.88 in [START_REF] Chavel | Eigen-Values in Riemannian Geometry[END_REF]) this yields,

B1(0) |∇u 2 |da * n = ∞ 0 * n (∂Ω t )dt (5) = t0 0 * n (∂Ω t )dt + ∞ t0 * n (∂Ω t )dt ≥ C c0 ∞ t0 a * n (Ω t )dt.
It is evident that we can choose a suitable t 0 > 0 such that

t0 0 a * n (Ω t )dt = ∞ t0 a * n (Ω t )dt.
This yields ( 6)

B1(0) |∇u 2 |da * n ≥ 1 2 C c0 ∞ 0 a * n (Ω t )dt = 1 2 C c0 B1(0) u 2 da * .
Note that t 0 and c 0 depend on n since a * n depends on n. We have now to understand the behavior of the sequence t (n) 0 and c (n) 0 as n goes to innity. This is done in the following succession of lemmata. We can suppose without loss of generality that

u L 2 (a * ) = 1.
Lemma 3.6. There exist > 0 such that for all n ∈ N one has t (n) 0 > . Proof. Suppose that for a sub-sequence

t (n) 0 → 0 as n → ∞. It then would follow that ∞ t (n) 0 a * n (Ω (n) t )dt = t (n) 0 0 a * n (Ω (n) t )dt = B1(0) 1 {u 2 n ≤t (n) 0 } u 2 n da * n -→ n→∞ 0, which is not possible since ∞ 0 a * n (Ω t )dt = B1(0) u 2 n da * n = 1.
Lemma 3.7. For all r 0 ∈]0, 1[, the minimal value V 0 over all functions γ ∈ C([r 0 , 1]) with γ(1) = 0 and γ(r 0 ) = t 0 of the functional

L(γ) → 1 r0 r|γ (r)| 2 dr
is given by

V 0 = t 2 0 8(ln r 0 ) 2 2 -r 0 (ln r 0 ) 2 + 2r 0 ln r 0 -2r 0 .
Proof. We use calculus of variations. Let ∈ C([r 0 , 1]) with (1) = 0 and (r 0 ) = 0.

If γ realizes the minimum of the functional L, then it must satisfy:

0 = d dt t=0 L(γ + t ) = 2 1 r0 rγ (r) (r)dr = 2 (1)γ (1) + (r 0 )r 0 γ (r 0 ) - 1 r0 (γ (r) + rγ ) (r)dr = -2 1 r0 (γ (r) + rγ (r)) (r)dr.
From this, we obtain, the following dierential equation γ (r) + rγ = 0 with the boundary data γ(r 0 ) = t 0 and γ(1) = 0. It is easy to see that this dierential equation has the following unique solution satisfying the boundary conditions:

γ(r) = t 0 ln r 0 ln r.
If we plug in this solution into the integral, we obtain

L(γ) = 1 r0 r|γ (r)| 2 dr = t 2 0 (ln r 0 ) 2 1 r0 r| ln r| 2 dr = t 2 0 (ln r 0 ) 2 0 ln r0 s 2 e 2s ds = t 2 0 8(ln r 0 ) 2 0 ln r0 s 2 e s ds = t 2 0 8(ln r 0 ) 2 0 -r 0 (ln r 0 ) 2 -2 0 ln r0 se s ds = t 2 0 8(ln r 0 ) 2 0 -r 0 (ln r 0 ) 2 -0 + 2r 0 ln r 0 + 2 0 ln r0 e s ds = t 2 0 8(ln r 0 ) 2 0 -r 0 (ln r 0 ) 2 -0 + 2r 0 ln r 0 + 2 -2r 0 .
This nishes the proof.

Lemma 3.8. If c (n) 0 -→ n→∞ π then it follows that B1(0) |∇u n | 2 da * n -→ n→∞ ∞.
Proof. Let r n be the radius such that a *

n (B rn (0)) = c (n) 0 . Clearly the condition c (n) 0 → π implies r n ↑ 1.
We have that

B1(0) |∇u n | 2 da * n ≥ B1(0)\Br n (0) |∇u n | 2 da * n .
Since u n is rotationally invariant, there exist a function ūn such that ūn (|x|) = u n (x) for all x ∈ B 1 (0). Note that by construction one has that ūn (1) = 0 and ūn (r n ) = t

(n) 0 . It then follows from the remark following Proposition 3.3 that

B1(0)\Br n (0) |∇u n | 2 da * n ≥ 2π 1 rn r|ū n (r)| 2 ψ 0 (r)dr ≥ 2π 1 rn r|ū n (r)| 2 dr inf rn≤s≤1 ψ 0 (s) ∼ 2π 1 rn r|ū n (r)| 2 dr.
Further, from Lemma 3.7 and Lemma 3.6 we have

2π 1 rn r|ū n (r)| 2 dr ≥ 2π(t (n) 0 ) 2 8(ln r n ) 2 2 -r n (ln r n ) 2 + 2r n ln r n -2r n ≥ π 2 4(ln r n ) 2 2r n ln r n -r n (ln r n ) 2 = π 2 r n 2 ln r n - π 2 r n 4 -→ ∞ as r n → 1.
It thus follows that

B1(0)\Br n (0) |∇u n | 2 da * n -→ ∞ as r n → 1.
This nishes the proof of the lemma.

To conclude the proof of Proposition 3.5, we have to analyze two possible situations:

• Case 1: ∃ > 0 such that c (n) 0 < π -for all n ∈ N, then it follows from Proposition 1.2 that C (n)
c0 goes to innity as n goes to innity. Then it follows from inequalities ( 5) and ( 6) that

Q * n (u n ) -→ n→∞ ∞. • Case 2: If c (n) 0 -→ n→∞ π, from Lemma 3.8, we see that Q * n (u n )
goes to innity as n goes to innity.

Proof of Theorem 1.

The main argument follows the arguments given in [START_REF] Franke | On how to push the spectral gap of a diusion on S 2 to innity[END_REF]. Let ω * n be comparison measure associated to the vector-eld V n . For a given K > 0, Proposition 3.5 tells us that there exists N ∈ N suciently large such that inf

B1(0) |∇f | 2 da * n ; f ∈ H 1 (R 2 , a * n ) with f = 1 ≥ 2K, ∀n ≥ N.
By Proposition 3.4 an Remark 10 one has that:

inf B1(0) |∇f | 2 dx; f ∈ H 1 0 ∩ ker(V n • ∇) with f = 1 ≥ 2K.
We now can use the asymptotic behavior of the principal eigenvalue given in [START_REF] Adams | Sobolev Spaces[END_REF] to see that

lim a↑∞ λ aV ≥ 2K.
This implies λ aVn > K for some suitable choice of a > 0.

Generalizations to bounded domains in dimension two and more

In this last section we want to discuss how the material in the previous section can be upgraded do more general domains.

5.1. Simply connected bounded domains in the plane. First we arm that the statement of Theorem 1 also holds for a general bounded simply connected domain Ω.

Theorem 2. Let Ω be a bounded and simply connected domain in R 2 with piece-wise C 2 boundary. There exists a sequence of continuous and piece-wise C 1 vector-elds

V n ; n ∈ N on Ω with the properties div(V n ) = 0 and V n | ∂Ω = 0 generating a ow Φ t ; t ∈ R satisfying dist {Φ (n)
t (x); t ∈ R}, ∂Ω > 0, for all x ∈ Ω such that the sequence of associated principal eigenvalues satises

lim n→∞ λ Vn = ∞.
Proof. The proof is based on the conformal mapping theorem, which states that there exists a bi-holomorphic function ψ : Ω → B 1 (0). We can use this function to transform the function α n , which was dened on a parametrization of B 1 (0) in Section 2 to a function β n := α n • ψ dened on Ω vanishing on ∂Ω. One can then use the orthogonal gradient to generate a divergence free vector-eld V 0 n := ∇ ⊥ β n which generates a ow following the level sets of β n which correspond to regular sets of the form

Λ (n) r := ψ -1 (Γ (n) r ).
As in section 2 one can obtain a vector-eld V n vanishing on ∂Ω by multiplying V 0 n with a suitable function S ∈ ker(V 0 n • ∇). The arguments of Section 3 can all be easily generalized to this new situation once one can show some analogue of Proposition 1.2 for the family of curves Λ (n) r ; 0 < r < 1.

In order to check Proposition 1.2 for this situation, we rst note that Lemma 1.1 still holds if we replace B r (0) in the statement by the lled ellipse E r (a, b) with semi-minor and semi-major axes ra resp. rb, where a and b correspond to the two positive eigenvalues of the matrix Dψ -1 (0). This can be seen through linearization of the map ψ -1 , as for decreasing values of r the family of closed curves Λ (n) r and the sets Λ(n) r that they enclose, concentrate in shrinking neighborhoods of the point ψ -1 (0). This implies that for any sequence of positive numbers n ; n ∈ N with n → 0 one has

inf 0<c≤ n (Λ (n) rc ) a( Λ(n) rc ) ≥ (Λ (n) r n ) a( Λ(n) r n ) ∼ (∂E r n (a, b)) a(E r n (a, b)) -→ n→∞ ∞.
As in Section 2 for a given n ∈ N let r c > 0 be the unique solution of a( Λ(n

) rc ) = c.
To prove a version of Proposition 1.2 for the family of curves Λ (n) r we rst observe that by construction the curves Λ (n) rc oscillate n times between the two sets O c := ψ -1 (∂B rc-η(rc) (0)) and U c := ψ -1 (∂B rc+η(rc) (0)). Moreover, the function c → η(r c ) is bounded below by a positive constant d on any compact interval of the form [ , c 0 ]. Thus it follows that there exists a constant d > 0 such that

inf ≤c≤c0 dist(O c , U c ) > d .
Since the curve Λ (n) rc oscillates n times between O c and U c it follows that

inf ≤c≤c0 (Λ (n) rc ) ≥ nd .
This shows that for all choice of > 0 we have

inf ≤c≤c0 (Λ (n) rc ) a( Λ(n) rc ) ≥ nd c 0 -→ n→∞ ∞.
It is then possible to nd a sequence of positive numbers n ; n ∈ N such that n → 0 and

inf n ≤c≤c0 (Λ (n) rc ) a( Λ(n) rc ) -→ n→∞ ∞.
Alltogether, this shows that a version of Proposition 1.2 holds for the family of curves Λ (n) r ; 0 < r < 1 and thus nishes the proof of the theorem for bounded simply connected domains in R 2 .

Remark 12. For further use we note that the bi-holomorphic function ψ can be constructed to depend continuously on the jordan curve encircling the simply connected domain Ω (see [START_REF] Pommerenke | Boundary behavior of conformal maps[END_REF] Theorem 2.11). This implies by construction that the vector-elds V n in the previous proof also depends continuously on the domain Ω.

5.2.

Bounded domains in the plane. We also emphasize that Theorem 2 can be generalized to general bounded domains when applying some topological surgery method.

Theorem 3. Let Ω be a bounded domain in R 2 with C 2 boundary and suppose that there exists a nite or countable number of pairwise disjoint simply connected domains Ω i ; i ∈ I with piece-wise C 2 boundaries ∂Ω i satisfying (∂Ω i ∩ ∂Ω) > 0 such that i∈I Ω i ⊂ Ω ⊂ i∈I Ω i . There exists a sequence of continuous and piecewise

C 1 vector-elds V n ; n ∈ N on Ω with the properties div(V n ) = 0 and V n | ∂Ω = 0 generating a ow Φ t ; t ∈ R satisfying dist {Φ (n) t (x); t ∈ R}, ∂Ω > 0, for all x ∈ Ω
such that the sequence of associated principal eigenvalues satises

lim n→∞ λ Vn = ∞.
Proof. By using the methods from the proofs of Theorem 1 and Theorem 2, we nd for a given K > 0 and each of the domains Ω i a C 1 vector-eld V i dened on Ω i vanishing on its boundary ∂Ω i and generating a ow composed of closed curves staying away from ∂Ω i and further satisfying

inf Ωi |∇f | 2 dx; f ∈ H 1 0 (Ω i ) ∩ ker(V i • ∇) with f = 1 ≥ 2K.
We can patch together the vector-elds V i to obtain a continuous vector-eld V on Ω. Let f be a function from H 1 0 (Ω) ∩ ker(V • ∇) satisfying f = 1. We want to prove that the energy of the function f over the domain Ω also exceeds 2K. Since the space C 1 (Ω) ∩ ker(V • ∇) is dense in H 1 0 (Ω) ∩ ker(V • ∇) with respect to the H 1 -norm, we can assume without loss of generality that the function f is continuous and constant along the trajectories generated by V i . Since the ow-lines by construction ll the domain Ω i in a concentric way, the trajectories which come close to the boundary of Ω i also come close to some portion of the boundary of Ω. By assumption this portion has positive length and it can be seen that the restriction f i of f to any of the sub-domains Ω i must satisfy a Dirichlet boundary condition on ∂Ω i . This implies f i ∈ H 1 0 (Ω i ) ∩ ker(V i • ∇) for all i ∈ I. Note that since the supports of the functions are disjoint, the products f i f j vanish for i = j and it follows that

f 2 = Ω f 2 dx = Ω i∈I f i 2 dx = i∈I Ω f 2 i dx = i∈I f i 2 .
From this we have

Ω |∇f | 2 dx = i∈I Ωi |∇f i | 2 dx ≥ K i∈I f i 2 = 2K f 2 .
Since, according to the result from [START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF], we can push the principal eigenvalue of the Dirichlet problem driven by the vector-eld cV above the value K and since K can be chosen arbitrarily large, the existence of suitable vector-elds V n on Ω is guaranteed. Obviously the resulting ows are composed of ow lines which are closed and stay away from the boundary ∂Ω.

Bounded domains in any dimensions.

In this subsection, we further generalize Theorem 3 to arbitrary dimensions under some slicing condition on the domain.

Theorem 4. Let Ω be a bounded domain in R d with piece-wise C 2 boundary and suppose that the sets Ω x3,...,x d := {(x 1 , x 2 ) ∈ R 2 : (x 1 , x 2 , x 3 , ..., x d ) ∈ Ω} are simply connected for all (x 3 , ..., x d ) ∈ R d-2 (the empty set is considered as simply connected). There exists a sequence of continuous vector-elds V n ; n ∈ N on Ω with V n | ∂Ω = 0 and generating an area-preserving ow Φ t ; t ∈ R satisfying dist {Φ

(n) t (x); t ∈ R}, ∂Ω > 0, for all x ∈ Ω such that the sequence of associated principal eigenvalues satises

lim n→∞ λ Vn = ∞.
Proof. In order to keep notation simple, we consider the situation in three dimensions. The general case follows just the same line of arguments. The construction of the vector-eld is done by slicing the domain Ω along the third axis into two dimensional domains Ω x3 := {(x 1 , x 2 ) ∈ R 2 : (x 1 , x 2 , x 3 ) ∈ Ω}. By Theorem 3 there exists for any K > 0 and each x 3 ∈ R where Ω x3 is not empty a two dimensional vector-eld V x3 (x 1 , x 2 ) = (V (1) x3 (x 1 , x 2 ), V

x3 (x 1 , x 2 )) on Ω x3 such that λ Vx 3 > 2K. From this we can construct a three dimensional vector-eld

V (x 1 , x 2 , x 3 ) := (V (1) x3 (x 1 , x 2 ), V (2) 
x3 (x 1 , x 2 ), 0) on Ω. It follows from the continuity of the conformal mapping theorem with respect to the domain that was discussed in Remark 12 that the resulting vector-eld V x3 (x 1 , x 2 ) is continuous as x 3 varies. By construction the vector-eld V has a vanishing third component and is piece-wise C 1 with respect to the rst two components. It follows that div(V ) is well dened and equals zero all over Ω. Obviously, the trajectories generated by V do not leave the slice Ω x3 where they started and the ow lines, which correspond to the ow lines of the V z -vector-elds, stay a positive distance away from the boundary ∂Ω. Suppose that f is a function from H 1 0 (Ω) ∩ ker(V • ∇) with f = 1. It then follows that for almost all x 3 ∈ R one has that (x 1 , x 2 ) → f (x 1 , x 2 , x 3 ) is in H 1 0 (Ω x3 ) ∩ ker(V • ∇). This then implies

Ω |∇f | 2 dx = R Ωx 3 (∂ x1 f ) 2 + (∂ x2 f ) 2 + (∂ x3 f ) 2 dx 1 dx 2 dx 3 ≥ R Ωx 3 (∂ x1 f ) 2 + (∂ x2 f ) 2 dx 1 dx 2 dx 3 ≥ 2K R Ωx 3 f 2 dx 1 dx 2 dx 3 = 2K Ω f 2 dx = 2K.
As in the proofs of Theorem 1, one then concludes by multiplying V with a large constant and using the result from [START_REF] Berestycki | Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena[END_REF].

Remark 13. The condition requiring simply connected slices Ω x3 in Theorem 4 can certainly be relaxed to some more general condition which ensures that the decomposition of Ω x3 into simply connected sub-domains, that we used in Theorem 3, is suciently regular as the parameter x 3 varies. Remark 14. Also note that in dimension three and more it might be possible to construct vector-elds generating some weakly mixing ow on Ω. It then would be possible to use methods from [START_REF] Feng | Dissipation enhancement by mixing[END_REF] to construct vector-elds pushing the principal eigenvalue to innity through multiplication with increasing constants. However the ow lines generated by those vector-elds would come arbitrarily close to the boundary ∂Ω of the domain.

  Further, since for all θ ∈ [0, 2π[ and r > 0 the derivative ∂ ∂r h n (r, θ) = (0, 0) does not vanish, it follows that the graphs Γ (n) r are disjoint as r varies. Denote by Γ(n) r the open domain enclosed by the curve Γ(n) 

Remark 10 .

 10 The function f * constructed above veries, for all h ∈ R a {x; f (x) > h} = a * n {x; f * (x) > h} .