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UNSTRUCTURED INDUCTIVE PEEC FORMULATION
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Enrico Vialardi2, Jonathan Siau2, Rémy Perrin-Bit2
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An adaptive mesh refinement procedure is presented in order to address efficiently low frequencies electromagnetic problems
with the unstructured PEEC method. An a posteriori error estimator based on an equilibrated energy criterion is proposed, which
means that two dual solutions are necessary. Actually, knowing that there is no dual formulation for the PEEC method, an auxiliary
method is proposed in order to calculate a second admissible solution. This method is based on a projection of the PEEC solution
from facets to edges function space in order to ensures the continuity of the electric field in the mesh. Two test cases have been
treated in order to show the efficiency of the procedure. First, an inductive coupling test case which is the TEAM Workshop problem
no◦7. Second, a circuit coupling test case which is a laminated busbars, this last one being treated for a low frequency case and
also for the DC case. Adaptive mesh refinement procedure has shown great potential and makes the unstructured PEEC method
much more functional and attractive for modeling complex devices.

Index Terms—Integral Method, Unstructured Partial Element Equivalent Circuit (PEEC) method, Error Estimators, Adaptive
mesh refinement.

I. INTRODUCTION

POWER electrical devices are generally associated to
complex geometries. The modeling of electromagnetic

fields which is necessary in their design process can present
errors, in particular with eddy current problems. Indeed, the
accuracy of the numerical solution is crucial to correctly
interpret the results obtained. The errors which can be induced
are not only related to the numerical methods themselves,
but also to a bad use of these methods. The most common
is the sub-discretization of the domain which induces errors,
especially for magneto-harmonic problems, where the correct
representation of the electric current path is very important in
order to accurately catch the skin effects. Numerical errors
are also introduced with the use of a weak formulation
including a material constitutive relationship. In this case,
two physical quantities, which are continuous in two different
functional spaces respectively, are only interpolated using a
single functional space leading to local numerical inaccuracies.

The Partial Element Equivalent Circuit (PEEC) method [1],
[2], [3] has been shown to be well suited for the analysis of
many Electromagnetic (EM) devices, such as busbars, PCBs,
integrated circuit interconnects, packaging and others. These
devices have a rather plane geometry and their conductive parts
are separated by a large amount of surrounding air, which is
not necessary to mesh when using PEEC method, being an
integral technique, unlike FEM methods where the air sur-
rounding the devices must be well meshed. This characteristic
represents one of the main advantages of PEEC, along with
its ability to couple with electric circuits, thanks to the fact
that PEEC formulation transforms Maxwell’s equations on the
active domain into an equivalent circuit representation.

The main motivation of this paper is to develop an efficient
error estimator for the unstructured PEEC method, and to
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couple it with an adaptive mesh refinement procedure. These
developments will improve the accuracy without excessively
increasing the number of degrees of freedom (DOF). This
will make the method much more functional and attractive
to model complex devices. Even if the PEEC method leads to
dense matrices, there are matrix compression methods in order
to reduce the computation time and memory consumption as
much as possible. An Adaptive Multi Level Fast Multipole
Method (AMLFMM) is used as the compression algorithm.
This approach avoids the complexity of the parabolic calcu-
lation of the integration and resolution steps according to the
DOF, but the complexity remains a major drawback of the
PEEC method.

For the PEEC method, error estimators have not been
investigated in the literature, but they have been widely studied
for the finite element method (FEM). Two categories of error
estimators have been developed. The first is called a priori
error analysis and consists in evaluating the mesh quality
according to the shape of its elements by detecting poor
ones as shown in [4] and in [5]. This type of error analysis
is not suitable for magneto-harmonic problems because it is
entirely geometrical and supposes that the initial mesh already
respects the skin depth, which is not generally the case. The
second category is the a posteriori error analysis. It consists
in evaluating the numerical solution quality using different
estimator techniques. A quick and certainly non-exhaustive
review of the different estimation techniques is presented in
the introduction of the paper [6], and we can cite also [7]
for superconvergent patch recovery (SPR) error estimator. A
lot of work have been developed for magneto-harmonic FEM
as shown in [8], [9], [10], but not yet for the unstructured
PEEC method. In this paper, the a posteriori error analysis is
originally focused.

The equilibrated error estimator [11] is maybe the most pop-
ular technique. It consists in comparing two complementary
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solutions of a problem obtained with two different formula-
tions. For the eddy current problem, the technique starts from a
first initial numerical solution J to build an admissible second
E′ solution. It can be done by solving a dual formulation
when available, or by projection and reconstruction using the
appropriate tools as shown in [11]. This equilibrated error
estimator is based on the non-verification of the material
constitutive relationship (e.g. Ohm’s law) in the active domain,
using the initial and the admissible solutions.

The unstructured inductive PEEC method does not already
have a clear dual formulation. To deal with the equilibrated
estimator, an admissible solution is obtained by projecting the
first initial solution and reconstructing it in the edge function
space as shown in [11]. An energy-based error criterion
approach has been used. It is supposed to be a good way
to estimate the error in this case. This criterion is based on
the accuracy on the computation of the energy stored in each
mesh element, and it does not depend directly on the functional
space of the solution, unlike the current density J or the
electric field E.

This paper is structured as follows. In Section II, the quasi-
static (or inductive) unstructured PEEC formulation [12] is
presented. Section III presents the method to compute the
second admissible solution. Section IV presents the method to
compute the estimated error on the mesh. This error estimation
will be compared to a reference error computed on a very
fine mesh. Section V presents the adaptive mesh refinement
procedure which is coupled with the error estimator in order to
refine the mesh where it is needed. Section VI presents some
examples in order to validate the mesh refinement procedure.
Finally a conclusion is given in Section VII.

II. UNSTRUCTURED INDUCTIVE PEEC FORMULATION

Considering Maxwell’s equations under quasi-static as-
sumption with only non magnetic conductive material in a
domain Ω, the electric field E is:

E(P ) = −jωA(P ) −∇V(P ) (1)

where A is the magnetic vector potential, V is the electric
scalar potential, ω is the angular frequency, and P is the
observation point. Considering J the current density, the
magnetic vector potential A is

A(P ) =
µ0

4π

∫
Ω

J(Q)

r
dΩ (2)

where r is the distance between P and the integration point
Q, and µ0 is the magnetic permeability of the vacuum.
Considering the following linear constitutive law

J = σ ·E (3)

for Ω where σ is the electrical conductivity, and introducing
equations (2) and (3) in (1), we get

J(P )

σ(P )
= −jω

µ0

4π

∫
Ω

J(Q)

r
dΩ−∇V(P ) (4)

As proposed in [13], the current density J is interpolated with
first-order face shape functions such as

J =
∑
i

wf iIi (5)

where wf i is the face shape function and Ii the electric current
flowing through the face i. Applying a standard Galerkin pro-
jection procedure to (4) and using w as projection functions,
a matrix system is obtained.

([R] + jω [L]) {I} = {δU} (6)


[R]i,j =

∫
Ω

wf i
wf j

σ dΩ

[L]i,j =
µ0

4π

∫
Ω
wf i

∫
Ω

wf j

r dΩdΩ

{δU}i = −
∫
Ω
wf i∇V dΩ

(7)

For the boundary faces of Ω not connected to the external
circuit, the flowing current has to be imposed to zero using
(8), where n is the external normal.

J · n = 0 (8)

Matrix system (6) can be seen as a classical circuit matrix
system ZI = U, where each unstructured mesh element is
associated to its equivalent circuit representation, as shown in
Fig.1. This equivalent circuit is composed of one resistance

Fig. 1. Equivalent circuit representation for an unstructured mesh

and one self inductance for each face of the mesh element
and is completed by all mutual inductances. This equivalent
circuit can be solved using a classical circuit analysis approach
in order to get all the electric quantities especially the electric
current flowing in each branch which is an image of J.

Note that formulations taking magnetic and dielectric ma-
terials are available [2], [3] for this work only the formulation
with conductive material is used. In this paper, the solution J
obtained by the equation (6) is considered as a primal solution.
This solution has been found in the facets functional space as-
sociated to the mesh faces of the domain, this functional space
naturally ensures the continuity of the normal component of
J. Unfortunately, this functional space does not ensure the
continuity of the tangential component of E which would be
rather ensured with an edges functional space associated to
the mesh edges of the domain.

III. COMPUTING THE ADMISSIBLE SOLUTION E′

In the literature, the unstructured PEEC method does not
have actually a self dual formulation where the electric field
E is the main unknown. So in order to calculate the admissible
solution E′ which ensures the continuity of its tangential
component in the domain Ω, a projection and reconstruction
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method of E is used, as proposed in [11] but for the magnetic
field H.

In physics, the tangential component of the electric field
E and the normal component of the current density J are
continuous across the boundaries of the domain, they need
also to be continuous for a discretization in edges and facets
functional spaces respectively. Considering these properties,
the current density obtained from the primal solution J can be
scaled and projected from the facets to the edges functional
space, this procedure is done by solving a finite element
problem, according to:∑

j

∫
Ωe

wei · wej ·E′
jdΩe =

∫
Ωe

wei ·
J

σ
dΩe (9)

where we are the edge shape functions used for the interpola-
tion, and J

σ represents values of the electric field E at Gauss
points of each mesh element. The field E′ is obtained and the
continuity of its tangential component on the mesh edges is
ensured. This method is very efficient because a complete dual
problem does not need to be solved, but only a FEM limited
to the active material, i.e. very few DOF and a low memory
need compared to PEEC approach to get the initial solution.

IV. CALCULATION OF THE MESH DISCRETIZATION ERROR

This section is divided in three subsections, the first one
presents how to compute a reference error for a specific
mesh in order to compare the error estimator presented in the
second subsection, the comparison itself is done in the third
subsection.

A. Reference error for a mesh discretization

Before trying to estimate a discretization error, a reference
error is necessary to be able to validate error estimation.
A rather intuitive method to calculate the reference error is
proposed. Two meshes of the same simple parallelepipedic
conductive volume are used. The first is meshed very coarsely
and the other finely. This method is used very easily if the
very fine reference mesh results from successive sufficient
dichotomous divisions of the coarse mesh.

We aim to compute the error on the coarse mesh considering
that the error is almost zero for the fine mesh. Let us suppose
that a PEEC solution has been obtained for both meshes. The
global error is written in the following equation:

εglobal =
|
∫
Ωcoarse

(Jcoarse)
2
dΩcoarse −

∫
Ωref

(Jref )
2
dΩref |∫

Ωref
(Jref )

2
dΩref

(10)

where Ωcoarse and Ωref are the coarse and reference mesh
global domains respectively, Jcoarse and Jref are the current
densities in the coarse and reference mesh respectively.

B. Error estimation criterion

Thanks to the methods presented in Section II and III, the
primal J and the admissible E′ solutions are computed. The
error in the discretization of the constitutive relation (3) can be
estimated using the energy-based estimator [14]. The criterion

is based on the computation of the difference of both values
per mesh element of the energy, one computed using the primal
solution and the other using the admissible one. This estimator
allows to see clearly the computation error for the Joule losses.

In equation (11), the local error estimator is written in a
normalized way according to a global quantity in the domain
Ω. This normalization helps to highlight the contribution of
the local error of a mesh element to the global error.

ηelem = N × |
∫ΩE

J2dΩE − ∫ΩE
(σ ·E′)

2
dΩE∫

Ω
J2dΩ

| (11)

And the global error estimator is written as follows

ηglobal = | ∫ΩJ
2dΩ− ∫Ω(σ ·E′)

2
dΩ∫

Ω
J2dΩ

| (12)

where N is the number of mesh elements.

C. Comparison between estimation and reference errors

In this validation part, the simple mesh presented in Fig.
2 is used. It allows to compute the reference error easily
using equation (10) and the regular hexahedral mesh with
dichotomous divisions. A comparison is made for the behavior
of global errors returned by the error estimator. The global
error estimation calculated using equation (12) allows to
evaluate the convergence of the global quantities.

In Fig. 2, a circular coil is fed by a current source with an
intensity of 1A at 500 Hz. The 3D parallelepipedic plate is
composed of copper. The dimensions are as follows:

• Circular non-meshed coil:
– Radius 30 mm
– Cross-section 3.14 mm2

• 3D plate: 100× 100× 1 mm
• Air-gap: 0.5 mm (very close)

The skin depth is equal to 3 mm for this case, the plate is over-
meshed with 4 elements according to the thickness in order to
ensure the quality of the solution in this direction. In theory,
three elements in the skin depth with a first order interpolation
are sufficient to well represent the variation of electric current.
Therefore the dichotomous division only occurs in the plane
parallel to the coil.

Fig. 2. Simple test case (3D plate under-meshed with a circular coil)

1) Reference error computation
In order to calculate the reference error, it is necessary

to find a reference mesh which supposes that the solution
obtained is sufficiently correct. Simulations are made on
various refined meshes resulting from dichotomous divisions
of the initial mesh presented in Fig. 2. The Joule losses in the
plate are calculated for each mesh, this leads to determine the
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final one which is considered as the reference and associated
to a null error. Fig. 3 shows the evolution of the Joule losses
according to the number of elements, the losses starting to
stabilize from the third mesh. The error between the fourth
and the fifth mesh is negligible, this concludes that after four
dichotomous cuts, a sufficient fine mesh is obtained to have
correct results.

The last mesh is taken as reference, and then the errors on
the other meshes are calculated, they are shown on the data
labels in Fig. 3.

Fig. 3. Joule losses in the plate according to the number of mesh elements

The first mesh composed of 100 hexahedral elements is the
worst among the other meshes in terms of under-meshing. We
will try to estimate its numerical error with our error estimator.

2) Error estimation
In this part, the admissible solution E′ is considered. Fig.

4 presents the global errors estimated with the energy-based
estimator between both solutions. These errors are calculated
on the meshes introduced in the previous paragraph. Reference
errors are also represented in Fig. 4. We can notice that
estimated errors present a very good behavior compared to
the right one.

Fig. 4. Global errors evolution according to the number of mesh elements

It validates our PEEC-based error estimator, the edge pro-
jection method being fast with a complexity of approximately
O(N), a good easiness in terms of implementation and without
any modeling assumptions.

V. ADAPTIVE MESH REFINEMENT PROCEDURE

In order to test the error estimator, we will not use the p-
refinement strategy, i.e. we remain at the same interpolation
order as in the equation (5). An adaptive refinement algorithm

is developed using h-refinement, with a coupling with the mesh
generator of the Altair Flux™ FEM solver software [15]. The
adaptive mesh refinement process has the following general
structure:

1) Solve the problem with an initial coarse mesh that
respects the geometry.

2) Estimate the local and the global error in the mesh.
3) If the estimated global error is acceptable, stop the pro-

cess. Otherwise, elements that have local errors greater
than the desired accuracy are selected for refinement.

4) Send the refinement information to the software, do the
mesh refinement and return the new refined mesh.

5) Go to the first step and replace the previous mesh by
the new refined one, and do iterations until the global
error converges.

The mesh refinement procedure is executed, by taking a
condition to refine an element via its local error estimation,
such as

ηlocalelem ≥ ηglobal
2

(13)

where ηlocalelem is the local estimated error for a mesh
element, and ηglobal is the global estimated error.

Through this relative condition, our wish is to try to divide
the estimated global error by two since it refines all the
elements greater than its half, therefore where the errors
are important at each iteration, and avoids dense random
refinement.

The element cutting strategy consists in using only the
surface mesh (the boundaries of the volume ). For each triangle
element to be cut, a node is inserted in the middle of each
edge among its three edges, thus four new triangles replace the
initial triangle. By using this cutting strategy, we are obliged
to also cut the neighboring triangles in half in order to keep
the conformity of the mesh, as shown in Fig. 5, but currently
without using any mesh regularization. Then the volume mesh
is built using a classical Voronoi-Delaunay mesh generator
taking the border mesh as a starting point.

Fig. 5. Cutting strategy of a triangular element (regular division) and its
neighbor (conformity division). Left: two triangles before cutting the one
marked by a white cross. Right: cutting result, the new regular edges are
in red, the conformity edge is yellow dashed

VI. APPLICATION EXAMPLES

Several simulations are presented in this section. It includes
pure eddy current problem as proposed in TEAM Workshop
problem 7 [16] shown in Fig. 6. It includes also the simulation
of a complex industrial test case with circuit type component
connections, in DC but also with low frequency sources. This
test case is a laminated bus bars.
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A. TEAM Workshop problem 7

The problem device is presented in Fig. 6. It consists of a
coil and a volume plate with a hole. For the simulation, a non-
meshed coil powered by a 2742 A-turn real current source is
selected. The plate is meshed with a initial tetrahedral conform
mesh composed of 380 elements.

Fig. 6. Geometry of the TEAM problem 7 (the dimensions are in mm)

The proposed scenario consists in solving the problem at
50 Hz and at 200 Hz, then in comparing the Joule losses
computed with the references obtained in [13] with a dense
FEM mesh of 2,000,000 elements. Let us notice this very fine
FEM mesh has been chosen in order to be sure that the solution
has converged and can be considered as a reference in order
to determine the accuracy of the PEEC solution.

The adaptive mesh refinement procedure is executed in
order to converge to a final mesh with a sufficiently low
error. The evolution of Joule losses in the plate over the
iterations of adaptive refinement is shown in Fig. 7, this figure
also compares it with the reference results, and with those
obtained with uniform refinement, i.e. all elements are cut out
at each iteration. Table I presents a summary of the comparison
between the results obtained over the adaptive refinement
iterations with the FEM reference, and it also presents their
cost in computation time.

TABLE I
RELATIVE ERROR OF THE PEEC ADAPTIVE REMESHING COMPARED WITH

FEM SOLUTION AND THE TIME COSTS

50Hz 200Hz
Elements Joule

losses
(W)

Diff Time
cost
(min)

Elements Joule
losses
(W)

Diff Time
cost
(min)

FEM
3D

2 M 4.70 Ref / 2 M 9.5 Ref /

PEEC
2nd

mesh
iteration

6,868 4.63 1.48
%

2 4,629 8.92 6.08
%

3

PEEC
3rd
mesh
iteration

33,977 4.70 0.08
%

12 21,666 9.46 0.44
%

13

(50 Hz)

(200 Hz)

Fig. 7. Joule losses values in the plate according to the number of mesh
elements at 50Hz and 200Hz

As shown in Fig.7, we notice that the converged solution
obtained with the FEM is quickly obtained and very close
to the reference (<6%), even if the starting mesh is very
coarse as in this case. If we have a look at the uniform
refinement procedure, the 4th iteration could not be solved
with our computer due to the large number of elements (around
800,000). In Fig. 7 at the 3rd iteration, the same value of Joule
loss is obtained for uniform and adaptive refinement, but with
a large difference in terms of number of elements, as shown in
Fig. 8, and in terms of computation time, 12 minutes for the
adaptive and 103 minutes for the uniform from the start whole
adaptive procedure (50 Hz). If we increase the frequency i.e
increase of the skin effect or if we need to deal with a more
complex geometry, basic uniform mesh refinement becomes
unsustainable for the PEEC method making the adaptive mesh
technique compulsory.

In Fig. 9, a comparison is done between the estimated global
errors and real error, i.e. the Joule losses by taking the final
mesh as a reference. The global estimated error has globally
the same behavior compared to the real, which proves that
the calculating method of the second admissible solution and
the error estimator proposed are very efficient for dealing with
this type of eddy current problem. The Fig. 10 presents a well
distribution of the real part of the current density at 50 Hz and
200 Hz.

The Fig. 11 shows the distribution of local errors estimated
at 50 Hz for the initial and the final mesh. For the initial mesh,



JOURNAL OF TRANSACTIONS ON MAGNETICS 6

(a)

(b)

Fig. 8. The mesh obtained for the 3rd iteration of refinement at 50 Hz:
(a) uniform (112.000 elements), (b) adaptive (34.000 elements)

Fig. 9. Global errors on the plate at 50 Hz

the local error seems to be higher on the main path of the eddy
currents that must be refined. And for the final mesh, the error
is considerably reduced except on very few elements located
on the corner of the mesh where current density concentrates.

B. Laminated busbars test case

A problem with an industrial complexity has been solved.
As shown in Fig. 12. it includes several connections with
circuit type components (resistors, capacitors). The IGBT

(50 Hz)

(200 Hz)

Fig. 10. Distribution of the Real part of the current density (A/m2) at 50 Hz
and 200 Hz

Fig. 11. Estimated local error distribution at 50 Hz for the initial and the
final mesh
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and diodes have been modeled by their ON-state internal
resistances. The circuit is fed by a 1V voltage source.

In order to obtain the result shown in Fig. 12, consider-
ing the condition (13), a coarse initial mesh describing the
geometry was considered. By choosing the global accuracy
at 1%, current distribution presented in Fig. 13 is obtained
after 3 iterations of refinement procedure at 1 kHz. The global
estimated error and the error on the Joule losses evolves
rather in the same way over the iterations with a slight
overestimation.

Fig. 12. Distribution of the current density (A/m2) on the laminated busbars
when supplied by a voltage source of 1 V at 1 kHz

Fig. 13. Global errors on the laminated busbars at 1 kHz

For the DC case, the capacitors (C-BUS) in Fig. 12 have
been replaced by resistors as shown in Fig. 14. In this case,
although there is no skin effect, there are still numerical
errors related to the sub-discretization of the geometry and
of the electric current path. After two iterations of refinement
procedure, we notice that the value of Joule losses does not
really vary, this means that the initial mesh was sufficient
enough to calculate the global quantities of the device as
shown in Fig. 15, but the refinement has clearly improved
the local quantities.

VII. CONCLUSION

In this work, an error estimator has been proposed for the
unstructured inductive PEEC based on two dual solutions.

Fig. 14. Distribution of the current density (A/m2) on the laminated busbars
when supplied by a voltage source of 1 V in DC

Fig. 15. Global errors on the laminated busbars in DC case

Avoiding to develop a dual formulation of PEEC method, an
approach has been proposed to calculate a second admissible
solution. An a posteriori error estimator has been used. It is
based on the verification of the Ohm’s constitutive relation
in the mesh, this relation being weakly ensured by PEEC
formulation. The estimator is an equilibrated energy-based
criterion and has shown great efficiency. A method to calculate
a so-called reference error on a regular hexahedral mesh has
also been introduced, it made it possible to validate the error
estimator.

Two test cases were handled. First, an inductive coupling
test case which is the TEAM Workshop problem no◦7. It
leads to very satisfactory results in comparison with a known
solution obtained by FEM method. Second, a circuit coupling
test case which is a laminated busbars, has been treated
efficiently in low frequency case and in DC case. The adaptive
mesh refinement procedure has shown great potential and
makes the unstructured PEEC method much more functional
and attractive for modeling complex devices.
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[8] Z. Tang, Y. Le Ménach, E. Creusé, S. Nicaise, and F. Piriou, “Residual
a posteriori estimator for magnetoharmonic potential formulations with
global quantities for the source terms,” IEEE Transactions on Magnetics,
vol. 51, no. 3, pp. 15–18, 2015.
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