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Introduction

Management of environmental ressources often requires the analysis of multivariate extreme values. In climate studies, extreme events represent a major challenge due to their consequences. The problem of missing data is present in many fields in particular in environmental research (see [START_REF] Xia | Forest climatology: estimation of missing values for bavaria, germany[END_REF], or Section 2 in [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF]), usually due to instruments, communication and processing errors. In a time series setting, the observation periods of a multivariate series could be different and overlap only partially. The problem of estimating when unequal amounts of data are available to each variable is meaningful in many applications for financial economics where data cannot be generated as neatly overlapping samples (see [START_REF] Patton | Estimation of multivariate models for time series of possibly different lenghts[END_REF]). Missing values in dependence modeling is of a prime interest as the nonparametric estimation of the empirical copula process has been tackled by [Segers, 2015] under the Missing Completely At Random (MCAR) condition. In this paper, we consider nonparametric methods for assessing extremal dependencies involving variables with missing values under MCAR condition. We are particularly interested in the dependence structure of multivariate extreme value distribution.

Formally, this concept is defined as follows.

Let (Ω, A, P) be a probability space and X = (X 1 , . . . , X d ) be a d-dimensional random vector with values in (R d , B(R d )), with d ≥ 2. This random vector has a joint distribution function F and its margins are denoted by F j (x) = P{X j ≤ x} for all x ∈ R and j ∈ {1, . . . , d}. A function C : [0, 1] d → [0, 1] is called a d-dimensional copula if it is the restriction to [0, 1] d of a distribution function whose margins are given by the uniform distribution on the interval [0, 1]. Since the work of [Sklar, 1959], it is well known that every distribution function F can be decomposed as F (x) = C(F 1 (x 1 ), . . . , F d (x d )), for all x ∈ R d and the copula C is unique if the marginals are continuous. We will consider in the rest of the paper a d-dimensional random vector X which distribution is a multivariate extreme value distribution F , i.e., its one dimensional distributions are Generalized Extreme-Value (GEV) distributions and the copula C is an extreme value copula (see [START_REF] Gudendorf | Extreme-value copulas[END_REF]), defined by

C(u) = exp (-(-ln(u 1 ), . . . , -ln(u d ))) , u ∈ (0, 1] d , (1) 
with : [0, ∞) d → [0, ∞) the stable tail dependence function which is convex, homogeneous of order one, namely (cx 1 , . . . , cx d ) = c (x 1 , . . . , x d ) for c > 0 and satisfies max(x 1 , . . . , x d ) ≤ (x 1 , . . . , 

x d ) ≤ x 1 +• • •+x d , ∀(x 1 , . . . , x d ) ∈ [0, ∞) d . Denote by ∆ d-1 = {(w 1 , . . . , w d ) ∈ [0, 1] d : w 1 + • • • + w d =
(x 1 , . . . , x d ) = (x 1 + • • • + x d )A(w 1 , . . . , w d ), w j = x j x 1 + • • • + x d , (2) 
for j ∈ {2, . . . , d} and w 1 = 1 -w 2 -• • • -w d with (x 1 , . . . , x d ) ∈ [0, ∞) d \ {0}. Notice that, for every w ∈ ∆ d-1

and u ∈]0, 1[ C(u w1 , . . . , u w d ) = u A(w) .

(3)

Based on the madogram concept from geostatistics, the λ-madogram is introduced in [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF] to capture bivariate extremal dependencies. The generalization of the λ-madogram was previously proposed by [START_REF] Fonseca | Generalized madogram and pairwise dependence of maxima over two regions of a random field[END_REF] and [START_REF] Marcon | Multivariate nonparametric estimation of the pickands dependence function using bernstein polynomials[END_REF], this quantity is defined in the latter as:

ν(w) = E   d j=1 {F j (X j )} 1/wj - 1 d d j=1 {F j (X j )} 1/wj   , (4) 
if w j = 0 and 0 < u < 1, then u 1/wj = 0 by convention. The w-madogram can be interpreted as the L 1 -distance between the maximum and the average of the uniform margins F 1 (X 1 ), . . . , F d (X d ) elevated to the inverse of the corresponding weights w 1 , . . . , w d . This quantity describes the dependence structure between extremes by its relation with the Pickands dependence function as stated by the Proposition 2.2 of [START_REF] Marcon | Multivariate nonparametric estimation of the pickands dependence function using bernstein polynomials[END_REF], namely

A(w) = ν(w) + c(w) 1 -ν(w) -c(w) , (5) 
with c(w) = d -1 d j=1 w j /(1 + w j ). Through this relation, it contributes to the vast literature of the estimation of the Pickands dependence function for bivariate extreme value copula (see [Pickands, 1981], [Deheuvels, 1991], [START_REF] Capéraà | A nonparametric estimation procedure for bivariate extreme value copulas[END_REF], [START_REF] Hall | Distribution and dependence-function estimation for bivariate extreme-value distributions[END_REF]) and extended to the multivariate extreme value copula (see for example [START_REF] Gudendorf | Nonparametric estimation of multivariate extreme-value copulas[END_REF]). Also, a test for assessing asymptotic independence in dimension d ≥ 2 has been designed based on the w-madogram (see [START_REF] Guillou | Inference for asymptotically independent samples of extremes[END_REF]). Several methods for handling missing values in the framework of extremes have been proposed for univariate time series (see e.g. [Hall andScotto, 2008, Ferreira et al., 2021]). However, handling missing values in the context of multivariate extreme values with d ≥ 2 is still in their infancy.

Main results

The main contribution of this paper is to give an estimator of the w-madogram in (4) involving variables with missing values and to study its asymptotic properties. As far as we know, only [START_REF] Guillou | Madogram and asymptotic independence among maxima[END_REF] detailed the variance for the madogram of a bivariate random vector while taking the independent copula and found 1/90. In this paper we propose improvements in three directions : we consider a general multidimensional case (d ≥ 2), we deal with missing data and we consider a dependence structure given by an extreme value copula. Thus, we present in Theorem 1 a functional central limit theorem that gives the weak convergence for the considered multivariate madogram towards a tight Gaussian process for which the covariance function depends on the probabilities of missing. When the trajectory of our empirical process is fixed, we show in Proposition 1 the asymptotic normality of the estimator of the multivariate madogram where explicit formula for the asymptotic variance is also given. These results are transposed to the estimation of the Pickands dependence function with missing data in Corollary 2 by the use of the functional delta method.

Notations

The symbol means to be equal to. In order to shorten formulas, notations u j (t) (u 1 , . . . , u j-1 , t, u j+1 , . . . , u d ), u jk (s, t) (u 1 , . . . , u j-1 , s, u j+1 , . . . , u k-1 , t, u k+1 , . . . , u d ), will be adopted for s, t ∈ [0, 1], (u 1 , . . . , u j-1 , u j+1 , . . . , u d ) ∈ [0, 1] d-1 and j, k ∈ {1, . . . , d} with j < k. The notation 1 (resp. 0) corresponds to the d-dimensional vector composed out of 1 (resp. 0). Similarly, we define 1 j (s), 0 j (s), 1 jk (s, t) and 0 jk (s, t) with the same idea of previous notations of this paragraph.

The following notations are also used. Given X an arbitrary set, let ∞ (X ) denote the space of bounded real-valued functions on X . [START_REF] Van Der | Weak Convergence and Empirical Process: With Applications to Statistics[END_REF]). Given that n ∈ N * , X, X n are maps from (Ω, A, P) into a metric space X and that X is Borel measurable, (X n ) n≥1 is said to converge weakly to

X if E * f (X n ) → Ef (X)
for every bounded continuous real-valued function f defined on X , where E * denotes outer expectation in the event that X n may not be Borel measurable. In what follows, weak convergence is denoted by

X n X.
The paper is organised as follows: We propose in Section 2 estimators of the w-madogram suitable to the missing data framework. We state the weak convergence of the depicted estimators. Explicit formula for the asymptotic variance are also given. In Section 3, we illustrate the performance of the considered estimator in the finite-sample framework. Section 4 is devoted to apply our method on a dataset with missing data and non-concomittant record periods of annual maxima rainfall in Central Eastern Canada. A discussion on our assumptions and possible extensions of this work are presented in Section 4. All the proofs are postponed to the A.

2 Non parametric estimation of the Madogram with missing data

We consider independent and identically distributed (i.i.d.) copies X 1 , . . . , X n of X. In presence of missing data, we do not observe a complete vector X i for i ∈ {1, . . . , n}. We introduce I i ∈ {0, 1} d which satisfies, ∀j ∈ {1, . . . , d}, I i,j = 0 if X i,j is not observed. To formalize incomplete observations, we introduce the incomplete vector Xi with values in the product space d j=1 (R ∪ {NA}) (where NA denotes a missing data) such as Xi,j = X i,j I i,j + NA(1 -I i,j ), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.

We thus suppose that we observe a 2d-tuple such as

(I i , Xi ), i ∈ {1, . . . , n}, (6) 
i.e. at each i ∈ {1, . . . , n}, several entries may be missing. We also suppose that for all i ∈ {1, . . . , n}, I i are i.i.d copies from I = (I 1 , . . . , I d ) where I j is distributed according to a Bernoulli random variable B(p j ) with p j = P(I j = 1) for j ∈ {1, . . . , d}. We denote by p the probability of observing completely a realization from X, that is p = P(I 1 = 1, . . . , I d = 1). Let us now define the empirical cumulative distribution in case of missing data, we write for notational convenience

{ Xi ≤ x} { Xi,1 ≤ x 1 , . . . , Xi,d ≤ x d } and n j = n i=1 I i,j , Fn,j (x) = n i=1 1 { Xi,j ≤x} I i,j n j , ∀x ∈ R, Fn (x) = n i=1 1 { Xi≤x} Π d j=1 I i,j n i=1 Π d j=1 I i,j , ∀x ∈ R d , (7) 
where { Xi,j ≤ x} = ∅ (resp. { Xi ≤ x} = ∅) if Xi,j = NA (resp. if there exists j ∈ {1, . . . , d} such that Xi,j = NA).

The idea raised here is to estimate non parametrically the margins using all available data of the corresponding series. To avoid dealing with points at the boundary of the unit square, it is more convenient to work with scaled ranks (see for example [START_REF] Genest | Rank-based inference for bivariate extreme-value cop-ulas[END_REF]) defined explicitely by

U i,j = n j n j + 1 Fn,j ( Xi,j ) = 1 n j + 1 n k=1 1 { Xk,j ≤ Xi,j } I i,j , j ∈ {1, . . . , d}. (8) 
We recall the definition of the hybrid copula estimator introduced by [Segers, 2015] ĈH

n (u) = Fn ( F ← n,1 (u 1 ), . . . , F ← n,d (u d )), u ∈ [0, 1] d ,
where F ← n,j denotes the generalized inverse function of Fn,j for j ∈ {1, . . . , d}, i.e. F ← n,j (u) = inf{x ∈ R| Fn,j (x) ≥ u} with 0 < u < 1. The normalized estimation error of the hybrid copula estimator is

C H n (u) = √ n ĈH n (u) -C(u) , u ∈ [0, 1] d . ( 9 
)
On the condition that the first-order partial derivatives of the copula function C exists and are continuous on a subset of the unit hypercube, [Segers, 2012] obtained weak convergence of the normalized estimation error of the classical empirical copula process (see [Deheuvels, 1979]). To satisfy this condition, we introduce the following assumption as suggested in [Segers, 2012] (see Example 5.3).

Assumption A.

1. The distribution function F has continuous margins F 1 , . . . , F d .

2. For every j ∈ {1, . . . , d}, the first-order partial derivative ˙ j of with respect to x j exists and is continuous

on the set {x ∈ [0, ∞) d : x j > 0}.
The Assumption A1 guarantees that the representation

F (x) = C(F 1 (x 1 ), . . . , F d (x d )
) is unique on the range of (F 1 , . . . , F d ). Under the Assumption A2, the first-order partial derivatives of C with respect to u j denoted as Ċj exists and are continuous on the set {u ∈ [0, 1] d : 0 < u j < 1}. We now propose an estimator of the w-madogram defined in Equation ( 4) under a general context with possible missing data.

Definition 1. Let (I i , Xi ) n i=1 be a sample given by Equation (6), we define the hybrid nonparametric estimator of the w-madogram in Equation (4) by

νH n (w) = 1 n i=1 Π d j=1 I i,j n i=1     d j=1 U 1/wj i,j - 1 d d j=1 U 1/wj i,j   Π d j=1 I i,j   , (10) 
where U i,j are scaled ranks defined as in Equation (8).

The intuitive idea here is to estimate the margins using all available data from the corresponding variables and estimate ν(w) using only the overlapping data. Notice that in the complete data framework, i.e. when p = 1 we retrieve a variation of the w-madogram such as defined in [START_REF] Marcon | Multivariate nonparametric estimation of the pickands dependence function using bernstein polynomials[END_REF], namely

νn (w) = 1 n n i=1   d j=1 U 1/wj i,j - 1 d d j=1 U 1/wj i,j   ,
with U i,j in {1/(n + 1), . . . , n/(n + 1)}.

Note that the theoretical quantity defined in (4) does verify endpoint constraints, i.e. ν(e j ) = (d -1)/2d for all j ∈ {1, . . . , d} where e j is the jth vector of the canonical basis.

Remark 1. Unlike ν, the estimator defined in (10) does not verify the endpoints constraints. In addition, the variance at e j does not equal 0. Indeed, suppose that we evaluate this statistic at w = e j as U i,j ∈ (0, 1) for every i ∈ {1, . . . , n} and j ∈ {1, . . . , d} we obtain the following estimator

νH n (e j ) = 1 n i=1 Π d j=1 I i,j n i=1 U i,j - 1 d U i,j Π d j=1 I i,j .
In this situation, the sample U i,1 , . . . , U i,j-1 , U i,j+1 , . . . , U i,d n i=1

is taken into account through the indicators sequence (I i,1 , . . . , I i,j-1 , I i,j+1 , . . . , I i,d ) n i=1 and induces a supplementary variance when estimating.

Proceeding as in [START_REF] Naveau | Modelling pairwise dependence of maxima in space[END_REF] for the bivariate case and complete data framework, we propose below a modified estimator which satisfies the endpoint constraints in the general multivariate framework with possible missing data.

Definition 2. Let (I i , Xi ) n i=1 be a sample given by Equation (6) and νH n (w) be as in (10). Given continuous functions λ 1 , . . . , λ d : ∆ d-1 → R verifying λ j (e k ) = δ jk (the Kronecker delta) for j, k ∈ {1, . . . , d}, we define the hybrid corrected estimator of the w-madogram by

νH * n (w) = νH n (w) - d j=1 λ j (w)(d -1) d 1 n i=1 Π d j=1 I i,j n i=1 U 1/wj i,j Π d j=1 I i,j - w j 1 + w j . ( 11 
)
Remark 2. One has often that endpoint corrections do not have an impact to the asymptotic behavior with complete data framework and unknown margins (see Section 2.3 and 2.4 of [START_REF] Genest | Rank-based inference for bivariate extreme-value cop-ulas[END_REF]). That is not always the case in the missing data framework and this feature is of interest as discussed in Remark 1.

In the following we prove a functional central limit theorem (see Theorem 1) concerning the weak convergence of the following processes

√ n νH n (w) -ν(w) w∈∆ d-1 , √ n νH * n (w) -ν(w) w∈∆ d-1 . (12) 
Before presenting this result, we introduce below a specific assumption on the missing mechanism.

Assumption B. We suppose that for all i ∈ {1, . . . , n}, the vector I i and X i are independent, i.e. the data are missing completely at random (MCAR).

Without missing data, the weak convergence of the normalized estimation error of the empirical copula process has been proved by [START_REF] Fermanian | Weak convergence of empirical copula processes[END_REF] under a more restrictive condition than Assumption A. The difference being that C should be continuously differentiable on the closed hypercube. Denoting by D([0, 1] 2 ) the Skorohod space, this statement makes use of previous results on the Hadamard differentiability of the map φ :

D([0, 1] 2 ) → ∞ ([0, 1] 2 )
which transforms the cumulative distribution function F into its copula function C (see also Lemma 3.9.28 from [START_REF] Van Der | Weak Convergence and Empirical Process: With Applications to Statistics[END_REF]). With the hybrid copula estimator, we need a technical assumption in order to guarantee the weak convergence of the process C H n in (9) (see [Segers, 2015]). We note for convenience marginal distributions and quantile functions into vector valued functions F d and F ← d :

F d (x) = (F 1 (x 1 ), . . . , F d (x d )), x ∈ R d , F ← d (u) = (F ← 1 (u 1 ), . . . , F ← d (u d )), u ∈ [0, 1] d . Assumption C. In the space ∞ (R d ) ⊗ ( ∞ (R), . . . , ∞ (R))
equipped with the topology of uniform convergence, we have the joint weak convergence

√ n( Fn -F ); √ n( Fn,1 -F 1 ), . . . , √ n( Fn,d -F d ) (α • F d , β 1 • F 1 , . . . , β d • F d ) ,
where the stochastic processes α and β j , j ∈ {1, . . . , d} take values in ∞ ( [0, 1] d ) and∞ ([0, 1]) respectively, and are such that α • F and

β j • F j have continuous trajectories on [-∞, ∞] d and [-∞, ∞] almost surely.
Under Assumptions A and C, the stochastic process C H n in (9) converges weakly to the tight Gaussian process S C defined by

S C (u) = α(u) - d j=1 Ċj (u)β j (u j ), ∀u ∈ [0, 1] d . ( 13 
)
Lemma 1 in A states that the estimator Fn of the joint distribution and estimators of margins Fn,j defined in Equation ( 7) verify Assumption C (see A for details). We now have all tools in hand to consider the weak convergence of the stochastic processes in Equation ( 12). We note by

{X ≤ F ← d (u)} = {X 1 ≤ F ← 1 (u 1 ), . . . , X d ≤ F ← d (u d )}.
Theorem 1. Let G a tight Gaussian process and continuous functions λ 1 , . . . ,

λ d : ∆ d-1 → R verifying λ j (e k ) = δ jk .
If C is an extreme value copula with Pickands dependence function A and under Assumptions A and B, we have the weak convergence in ∞ (∆ d-1 ) for hybrid estimators defined in Equations ( 10) and ( 11), as n → ∞,

√ n νH n (w) -ν(w) w∈∆ d-1 1 d d j=1 [0,1] α(1 j (x wj )) -β j (x wj )dx - [0,1] S C (x w1 , . . . , x w d )dx w∈∆ d-1 , √ n νH * n (w) -ν(w) w∈∆ d-1 1 d d j=1 (1 + λ j (w)(d -1)) [0,1] α(1 j (x wj )) -β j (x wj )dx - [0,1] S C (x w1 , . . . , x w d )dx w∈∆ d-1
,

where S C is defined in (13), α(u) = p -1 G(1 {X≤F ← d (u),I=1} -C(u)1 {I=1} ) and β j (u j ) = p -1 j G(1 {Xj ≤F ← j (uj ),Ij =1} - u j 1 {Ij =1} ) for j ∈ {1, . . . , d} and u ∈ [0, 1] d . For (u, v, v k ) ∈ [0, 1] 2d+1
, for j ∈ {1, . . . , d} and j < k the covariance functions of the processes α and β j are given by

cov (β j (u j ), β j (v j )) = p -1 j (u j ∧ v j -u j v j ) , cov (β j (u j ), β k (v k )) = p jk p j p k (C(1 j,k (u j , v k )) -u j v k ) , and 
cov (α(u), α(v)) = p -1 (C(u ∧ v) -C(u)C(u)) , cov (α(u), β j (v j )) = p -1 j (C(u j (u j ∧ v j )) -C(u)v j ) ,
where u ∧ v denotes the vector of componentwise minima and p jk = P(I j = 1, I k = 1).

We use empirical process arguments formulated in [START_REF] Van Der | Weak Convergence and Empirical Process: With Applications to Statistics[END_REF] to establish such a result.

Details can be found in A.1. The following proposition states the asymptotic distribution of the estimators and gives explicit formula for the asymptotic variances for a fixed element of the unit simplex ∆ d-1 .

Proposition 1. Let p = (p 1 , . . . , p d , p) and w ∈ ∆ d-1 , under the framework of Theorem 1, we have

√ n νH n (w) -ν(w) d → n→∞ N 0, S H (p, w) , √ n νH * n (w) -ν(w) d → n→∞ N 0, S H * (p, w) .
Moreover the asymptotic variances are given by

S H (p, w) = 1 d 2 d j=1 (p -1 -p -1 j )σ 2 j (w) + σ 2 d+1 (p, w) + 2 d 2 j<k p -1 -p -1 j -p -1 k + p jk p j p k σ jk (w) - 2 d d j=1 (p -1 -p -1 j )σ
(1)

j (w) + 2 d d j=1 d k=1 p -1 k - p jk p j p k σ (2) jk (w),
and

S H * (p, w) = 1 d 2 d j=1 (p -1 -p -1 j )(1 + λ j (w)(d -1)) 2 σ 2 j (w) + σ 2 d+1 (p, w) + 2 d 2 j<k p -1 -p -1 j -p -1 k + p jk p j p k (1 + λ j (w)(d -1))(1 + λ k (w)(d -1))σ jk (w) - 2 d d j=1 (p -1 -p -1 j )(1 + λ j (w)(d -1))σ (1) j (w) + 2 d d j=1 d k=1 p -1 k - p jk p j p k (1 + λ j (w)(d -1))σ (2) jk (w),
where explicit expressions of the functions σ 2 j for j ∈ {1, . . . , d}, σ 2 d+1 , σ jk with j < k, σ

(1) j with j ∈ {1, . . . , d}, σ

(2) jk for j, k ∈ {1, . . . , d} are detailed in the proof for the sake of readibility.

Considering the special case of independent copula, Corollary 1 below gives a closed form of the limit variance which no longer depends on the Pickands dependence function.

Corollary 1. In the framework of Theorem 1 and if C(u) = Π d j=1 u j , then the functions σ 2 d+1 , σ

(1) j with j ∈ {1, . . . , d}, have the following forms, for w ∈ ∆ d-1 :

σ 2 d+1 (p, w) = 1 4   1 3p - d j=1 p -1 j w j 4 -w j   , σ (1) j (w) = 1 2 1 3 - 1 1 + w j + w j 3(1 + w j )(3 + w j ) ,
and σ jk for j < k, σ

(2) jk for j < k and σ

(2) kj with k < j are constants and equal to 0.

Remark 3. From our knowledge, only [START_REF] Guillou | Madogram and asymptotic independence among maxima[END_REF] gave an explicit value of the variance for the madogram of a bivariate random vector considering the independent copula. The result stated in Corollary 1 is not an extension of this result because the hypothesis w ∈ ∆ d-1 is crucial. Nevertheless, the same techniques used to prove Proposition 1 can be applied to show a similar explicit formula of the asymptotic variance for an extension of the madogram in [START_REF] Guillou | Madogram and asymptotic independence among maxima[END_REF] for d ≥ 2.

Weak consistency of our estimators directly comes down from Proposition 1. We are nonetheless able to state the strong consistency only under Assumption B.

Proposition 2 (Strong consistency). Let (I i , Xi ) n i=1 an i.i.d sample given by Equation ( 6). Under Assumption B for a fixed w ∈ ∆ d-1 , it holds that

νH n (w) a.s. → n→∞ ν(w), νH * n (w) a.s. → n→∞ ν(w).
For the rest of this section, we use our previous results to state some properties of the Pickands estimator in the missing data framework.

It is a common knowledge that the w-madogram is of main interest to construct of the Pickands dependence function.

Indeed, given Equation ( 5), one can define an estimator of the Pickands dependence function by estimating the w-madogram and using it as a plug-in estimator. Most interesting properties of the w-madogram such as strong consistency and the weak convergence are thus translated for the Pickands estimator using continuous mapping theorem and the Delta method. In the missing data framework we define the following estimator.

Definition 3. Let (I i , Xi ) n i=1 be a samble given by (6), the hybrid nonparametric estimator of the Pickands dependence function is defined as

ÂH * n (w) = νH * n (w) + c(w) 1 -νH * n (w) -c(w) , (14) 
where νH * n (w) defined in Equation (11) and c(w

) = d -1 d j=1 w j /(1 + w j ).
Using the results of [START_REF] Marcon | Multivariate nonparametric estimation of the pickands dependence function using bernstein polynomials[END_REF] (namely, Theorem 2.4), Proposition 1 and Proposition 2 of this paper, we state the following corollary.

Corollary 2. Let p = (p 1 , . . . , p d , p) and (I i , Xi ) n i=1 be a samble given by (6). For w ∈ ∆ d-1 , if C is an extreme value copula with Pickands dependence function and under Assumption B, it holds that

ÂH * n (w) a.s. → n→∞ A(w).
Furthermore, if C additionally verifies Assumptions A.1 and A.2, we obtain

√ n ÂH * n (w) -A(w) d → n→∞ N (0, V(p, w)) ,
where the closed formula of the asymptoptic variance is given by V(p, w) = (1 + A(w)) 4 S H * (p, w), with S H * (p, w)

as in Proposition 1.

Numerical results

In this section we verify our findings concerning the closed formula of the asymptotic variances through a simulation study. To do so, we compare empirical counterparts of the asymptotic variances computed out with Monte Carlo simulations with the explicit asymptotic variances given by Proposition 1. Our simulation studies are implemented using Python programming language and all the codes are available online in this github repository.

Presentation of the models

We present here the six models (M1 to M6) used for this simulation study. The d-dimensional Gumbel and the asymmetric logistic models are considered in models M1 and M2 below, the remaining ones (models M3 to M6) concern only the bivariate case.

M1

The symmetric logistic, or Gumbel model [Gumbel, 1960] is defined by the following Pickands dependence function

A(w 1 , . . . , w d ) =   d j=1 w θ j   1/θ , with θ ∈ [1, ∞).
We retrieve the independent case when θ = 1 and the dependence between the variables is stronger as θ goes to infinity. The restriction to d = 2 is immediate from the definition.

M2 Let B be the set of all nonempty subsets of {1, . . . , d} and B 1 = {b ∈ B, |b| = 1}, where |b| denotes the number of elements in the set b. The asymmetric logistic model in [Tawn, 1990] is defined by the following Pickands dependence function d(2 d-1 -1) asymmetry parameters. In case of d = 2, we go back to the asymmetric logistic model in [Tawn, 1988], namely

A(w 1 , . . . , w d ) = b∈B   j∈b (θ j,b w j ) θ b   1/θ b , where θ b ∈ [1, ∞) for all b ∈ B \ B 1 ,
A(w) = (1 -ψ 1 )w + (1 -ψ 2 )(1 -w) + (ψ 1 w) θ + (ψ 2 (1 -w)) θ 1/θ , with θ ∈ [1, ∞), ψ 1 , ψ 2 ∈ [0, 1]. For d = 3
, the Pickands dependence function is expressed as

A(w) =α 1 w 1 + ψ 1 w 2 + φ 1 w 3 + (α 2 w 1 ) θ1 + (ψ 2 w 2 ) θ1 1/θ1 + (α 3 w 2 ) θ2 + (φ 2 w 3 ) θ2 1/θ2 + (ψ 3 w 2 ) θ3 + (φ 3 w 3 ) θ3 1/θ3 + (α 4 w 1 ) θ4 + (ψ 4 w 2 ) θ4 + (φ 4 w 3 ) θ4 1/θ4 ,
where α = (α 1 , . . . , α 4 ), ψ = (ψ 1 , . . . , ψ 4 ), φ = (φ 1 , . . . , φ 4 ) are all elements of ∆ 3 .

M3

The asymmetric negative logistic model in [Joe, 1990] is defined via

A(w) = 1 -(ψ 1 (1 -w)) -θ + (ψ 2 w) -θ -1/θ ,
with parameters θ ∈ (0, ∞), ψ 1 , ψ 2 ∈ (0, 1]. The special case ψ 1 = ψ 2 = 1 returns the Galambos model [START_REF] Oliveira | The asymptotic theory of extreme order statistics[END_REF].

M4 The asymmetric mixed model in [Tawn, 1988] corresponds to

A(w) = 1 -(θ + κ)w + θw 2 + κw 3 ,
with parameters θ and κ satisfying θ ≥ 0, θ + 3κ ≥ 0, θ + κ ≤ 1, θ + 2κ ≤ 1. The special case κ = 0 and θ ∈ [0, 1] yields the symmetric mixed model. In the symmetric mixed model, when θ = 0, we recover the independent copula.

M5

The model of Hüsler and Reiss in [START_REF] Hüsler | Maxima of normal random vectors: Between independence and complete dependence[END_REF]] is given by the Pickands dependence function

A(t) = (1 -t)Φ θ + 1 2θ log 1 -t t + tΦ θ + 1 2θ log t 1 -t ,
where θ ∈ (0, ∞) and Φ is the standard normal distribution function. As θ goes to 0 + , the dependence between the two variables increases. When θ goes to infinity, we are in case of near independence.

M6 The Student t-EV model in [START_REF] Demarta | The t copula and related copulas[END_REF] is given by

A(w) = wt ν+1 (z w ) + (1 -w)t ν+1 (z 1-w ), with z w = (1 + ν) 1/2 [{w/(1 -w)} 1/ν -θ](1 -θ 2 ) -1/2 ,
and parameters ν > 0, and θ ∈ (-1, 1), where t ν+1 is the distribution function of a Student-t random variable with ν + 1 degrees of freedom.

Description of numerical experiments

For each numerical experiment, the endpoint-corrected w-madogram estimator in ( 11) is computed using λ j (w) = w j . The study consists in three different experiments (E1, E2 and E3). For all experiments, the empirical counterpart of the asymptotic variance given by Proposition 1 is computed out through a given grid of the simplex ∆ d-1 . For a given element w of this grid, n iter ∈ N \ {0} random samples of size n are generated from the models M1 to M6 given above. By using these samples we estimate the associated w-madogram. We thus compute the empirical variance of the normalized estimation error namely,

E H n (w) V ar √ n νH n (w) -ν(w) , E H * n (w) V ar √ n νH * n (w) -ν(w) , (15) 
where νH n and νH * n are the vectors composed out of the n iter hybrid and corrected estimators (see Equations ( 10) and ( 11)) of the w-madogram, respectively. We also define the Mean Integrated Squared Error (MISE) between E H n and S H the asymptotic variance computed in Proposition 1 (resp. between E H * n and S H * ), that is E2 We fix d = 3 and we consider M1 and M2 with n iter = 100 and n = 512. We set the dependence parameter as θ = 1 and θ = 2 for the first model. For the second one we take α = (0.4, 0.3, 0.1, 0.2), ψ = (0.1, 0.2, 0.4, 0.3), φ = (0.6, 0.1, 0.1, 0.2) and θ = (θ 1 , . . . , θ 4 ) = (0.6, 0.5, 0.8, 0.3) as the dependence parameter. We take p 1 = p 2 = p 3 = 0.9 and thus p = 0.729, p ij = 0.81 with i, j ∈ {1, 2, 3} and i < j. We grid the [0, 1] 2 cube into 10000 points at same distance from each other and we only keep those with w 2 + w 3 < 1.0 where w 2 and w 3 are in the grid of the cube, we set w 1 = 1 -w 2 -w 3 . Let ∆ d-1 n be 199 points uniformly sampled from ∆ 2 and n iter = 300, Equation ( 16) is estimated with

M ISE H E ∆ d-1 E H n (w) -S H (p, w) 2 dw , M ISE H * E ∆ d-1 E H * n (w) -S H * (p,
M ISE H n = 1 10 10 l=1 1 199 k∈∆ d-1 n E H n,l (k) -S H (p, k) 2 ,
where E H n,l , l ∈ {1, . . . , 10} is the empirical counterpart of S H taking the empirical variance of 30 estimators νH n (w) with w ∈ ∆ d-1 n . Each estimator of the w-madogram is computed out through a random sample with n = 512. Again, M ISE H * n is defined in a similar way.

E3 In this experiment, we aim to show that our conclusions are verified in a high dimension setting. We compute empirical counterpart of the asymptotic variance for a varying dimension d and we compare its value to the theoretical one given by Proposition 1. Furthermore, as the probability of observing a complete row decrease quickly with respect to the dimension d, i.e. p = p -d 1 , we set that there is no missing data. We consider the symmetric logistic model with dependence parameter θ = 2. We sample 300 points from the unit simplex ∆ d-1 and we compute the following quantity

δ H n (w) E H n (w) -S H (1, w) S H (1, w) , (17) 
where E H n is computed from n iter = 100 estimators of the w-madogram with sample size n ∈ {216, 512, 1024}. The results are collected for several values of d ∈ {5, 10, . . . , 40}.

Note that for Experiments E1 and E2, the missing mechanism is such as I 1 , . . . , I d are pairwise independent and p j = p 1 , ∀j ∈ {1, . . . , d}. The independence setup corresponds to the worst scenario where the missingness of one variable does not influence the missingness of the other variables. A contrario, if we suppose that I 1 , . . . , I d are strongly dependent, i.e. none or all entries are missing, we then estimate a statistic on a sample of average length p × n and we are turning back to inference in a complete data framework with a reduced sample size. This is also readily seen from the closed formula in Proposition 1, indeed in a strongly dependent setting we have p = p 1 , so the asymptotic variance is reduced to the complete data framework up to a multiplicative factor.

Results of experiments

Results of Experiment E1 are depicted in Figure 1. For all panels, empirical counterparts given by Equation ( 15) (points) fit the theoretical values exhibited from Proposition 1 (solid lines). For the hybrid estimator, as discussed in Remark 1, both empirical and theoretical values of the asymptotic variance are different from zero for each w ∈ {{0}, {1}}. The corrected version provides this feature and also modifies the shape of the curve (see Remark 2). Indeed the asymptotic behavior of the hybrid and the corrected estimators are different in the missing data framework. Notice that, in terms of variance, we do not have a strict dominance from one estimator to another.

Results for Experiment E2 are depicted in Figures 2 and3. In Figure 2, empirical counterparts given by Equation ( 15) are depicted with points and closed expressions of the asymptotic variance given by Proposition 1 are drawn by a surface. Figure 3 presents the same studies differently by showing the level sets associated to the surfaces of Figure 2. As in Experiment E1, empirical counterparts given by the points fits the surface. Also, for the first row of Figure 2, we see that if w ∈ {{e 1 }, {e 2 }, {e 3 }} then both theoretical and empirical counterparts are different from zero while this feature no longer applies in the second row with the introduction of the corrected version. In this two figures, we see that E H n and E H * n and their empirical counterparts are close.

In order to quantify errors in Figures 1 and2, in 

Extremal dependence rainfall analysis via hybrid madogram

In climate studies, extreme events such as heavy precipitations represent major challenge since damages from extreme weather events may have heavy consequences in both economic and human terms. Their spatial characteristics are of a prime interest and w-madogram and its estimator studied in this paper (see Equation ( 10)) are able to capture those characteristics. A seminal application which bridges extreme value theory and geostatistics is the study of extreme rainfall since we expect spatial dependence among the recording weather stations. Precisely, we observe daily precipitation at station j ∈ {1, . . . , d} over n years. Concerning extreme events, one cannot use directly the observation for inference and we focus on block maxima. The block maxima approach is based on the observation of a sample of block maxima X i = (X i,1 , . . . , X i,d ) where X i,j corresponds to the maximum at station j ∈ {1, . . . , d} within the ith disjoint block of observation. A block could be either hourly, daily or annual for example. Consistent to our approach, we do not observe X i but an incomplete vector Xi ∈ d j=1 (R + ∪ NA). Our main goal is to estimate the extremal dependence between maxima of groups of station. This will be done for several clusters within which similar climate characteristics are envisaged leading to dependence among extremes.

For each cluster, we compute the corrected hybrid madogram in Equation ( 10). This quantity is used to estimate the extremal coefficient (see for instance [Smith, 1990]), using the relation between the Pickands and the madogram given in Equation ( 5), defined by

θ = d A 1 d , . . . , 1 d . ( 18 
)
This satisfies the condition 1 ≤ θ ≤ d, where the lower and upper bounds represent the case of complete positive dependence and independence among the extremes, respectively. Since its upper bound depends on d, the extremal coefficient can, alas, only be used to compare clusters of the same size. In each cluster, the extremal coefficient in ( 18) is estimated by θn = d ÂH * n where ÂH * n is given in Definition 3.

We illustrate the proposed methodology on rainfall data measured in millimimeter registred in 95 stations in Center Eastern Canada for a duration of 24 hours publicly available in the section engineering climate datasets of the Government of Canada website. Annual maxima precipitations for a 24-hour duration are recorded from 1914 to 2017. The location of stations in Fig. 5 are given in the WGS84 coordinate space in order to have Euclidean distance between the stations and taking account of the geodesic geometry of the Earth. A specific characteristic of the considered rainfall data is the sparsity of the recorded data, i.e. a lot of recordings are missing (see [START_REF] Palacios-Rodriguez | Smooth Copula-based Generalized Extreme Value model and Spatial Interpolation for Sparse Extreme Rainfall in Central Eastern Canada[END_REF] for details). Four stations were removed of the analysis due to a tiny coverage of the observation period. As the measurements are maxima over a long period of time, it is reasonable to assume that they come from a multivariate extreme value distribution see Equation ( 1). The dataset we consider in this section and codes are available in the github repository.

With the remaining 91 stations, we compare the extremal dependence between several groups of stations as it has been done by [START_REF] Marcon | Multivariate nonparametric estimation of the pickands dependence function using bernstein polynomials[END_REF] (see Section 5) for France using a dataset with complete observations. We emphasize that the comparison of the extremal coefficient is solely relevant when clusters are of the same size. Thus, clusters were obtained by running the constrained k-means algorithm on the station coordinates (see for instance [START_REF] Bradley | Constrained k-means clustering[END_REF]) by forcing clusters of the same size : d = 7 or d = 13, i.e. 13 groups of 7 stations and vice versa. As overlapping data naturally decrease as the size of clusters increases, the case of cluster size d = 13 cannot be considered here. Among the 13 clusters of size d = 7, we only keep those having at least 10 overlapping annual maxima within the cluster which results on 7 remaining clusters depicted in Figure 5a. The estimated coefficient range is between 3.88, indicating strong dependence, and 5.07, indicating medium dependence (see Figure 5b). Our estimations suggest an acute dependence among extremes in clusters 1-3 in Figure 5a. We can observe in Figure 5b that extreme precipitations are more likely to be dependent in the central coastal Atlantic region, a contrario, one can notice a weak dependence among extreme values in the scattered clusters in the north of the region.

Conclusions

A method based on madograms to estimate multivariate extremal dependencies with allowing missing data has been developed in this paper. Under the MCAR hypothesis, we studied the asymptotic behaviour for the proposed estimators. This approach is of interest to study spatio-temporal process ponctually observed as observations may not overlap. Moreover, we have derived closed expressions of their respective asymptotic variances for a fixed element in the simplex. Numerical results in a finite sample setting give further evidences to our theoretical results and on performances of the proposed estimators of the madogram in the missing data setting. Finally, we applied our approach to the study of extremal dependencies of annual maxima of daily rainfall in Central Eastern Canada.

As for future work, an interesting improvement could be to lower the MCAR assumption on the misssing data.

Indeed, estimating nonparametrically the empirical copula process with missing data outside this framework is still unexplored. As a starting point, semiparametric inference for copula and copula based-regression allowing missing data under Missing At Random (MAR) mechanism have been studied by [START_REF] Hamori | Calibration estimation of semiparametric copula models with data missing at random[END_REF] and [START_REF] Hamori | Copula-based regression models with data missing at random[END_REF].

Another interesting direction could also be to build a dissimiliraty measure based on the bivariate w-madogram for clustering. This approach was already tackled by [START_REF] Bernard | Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France[END_REF], [START_REF] Bador | Spatial clustering of summer temperature maxima from the cnrm-cm5 climate model ensembles & e-obs over europe[END_REF] and [START_REF] Saunders | A regionalisation approach for rainfall based on extremal dependence[END_REF] to partition respectively France, Europe and Australia with respect to extreme observations using the sole madogram. The idea here could be to use the infimum or the integral over w ∈ (0, 1) of the bivariate w-madogram as a dissimilarity measure and to show its strong consistency in the sense formulated by [Pollard, 1981]. One limitation of our application is that clusters of same size is mandatory to compare the estimated extremal coefficient between clusters in Equation ( 18). This feature stems from the bounds of the Pickands dependence function which depends on the dimension of the extremal random vector. Further investigations are thus needed to interpret extremal coefficient between clusters of different sizes, e.g. to assess asymptotic independence between two extremal random vectors.

A Proofs

A.1 Proofs of main results

For the rest of this section, we will write, for notational convenience, n i = Π d j=1 I i,j and N = n i=1 n i . The following proof gives arguments used to establish the functional central limit theorem of our processes defined in Equation ( 12). Before going into details, we need an intermediary lemma to assert that the empirical cumulative distribution functions in case of missing data verify Assumption C and give covariance functions of the asymptotic processes α and β j with j ∈ {1, . . . , d}. This result comes down from [Segers, 2015] (see Example 3.5) where the result was proved for bivariate random variables but the higher dimension is directly obtained using same arguments.

Lemma 1. Let ( √ n( Fn -F ); √ n( Fn,1 -F 1 ), . . . , √ n( Fn,d -F d ))
with Fn and Fn,j for j ∈ {1, . . . , d} as in (7).

Then Assumption C is satisfied with

β j (u j ) = p -1 j G 1 {Xj ≤F ← j (uj ),Ij =1} -u j 1 {Ij =1} , j ∈ {1, . . . , d}, α(u) = p -1 G 1 {X≤F ← d (u),I=1} -C(u)1 {I=1} ,
where G is a tight Gaussian process. Furthermore the covariance functions of the processes β j (u j ), α(u), for

(u, v, v k ) ∈ [0, 1] 2d+1 , j ∈ {1, .
. . , d} and j < k, are given by

cov (β j (u j ), β j (v j )) = p -1 j (u j ∧ v j -u j v j ) , cov (β j (u j ), β k (v k )) = p jk p j p k (C(1 j,k (u j , v k )) -u j v k ) , cov (α(u), α(v)) = p -1 (C(u ∧ v) -C(u)C(u)) , cov (α(u), β j (v j )) = p -1 j (C(u j (u j ∧ v j )) -C(u)v j ) ,
where u ∧ v denotes the vector of componentwise minima and p jk = P(I j = 1, I k = 1).

Proof of Lemma 1 is postponed to A.2.

Proof of Theorem 1 First, let us define the rank-corrected hybrid copula process suited with our estimator and its associated empirical copula process by

ĈR n (u) = 1 n i=1 Π d j=1 I i,j n i=1 Π d j=1 1 { Ui,j ≤uj } I i,j , C R n = √ n ĈR n -C . One can show that sup u∈[0,1] d ĈH n (u) -C R n (u) ≤ 2d np n ,
with pn = n -1 n i=1 Π d j=1 I i,j . Note that pn converges in probability to p ∈]0, 1] which implies that the difference between ĈH n and ĈR n is asymptotically negligible. Details for the proof are given solely for the estimator νH * n as the weak convergence for νH n is obtained similarly via an adequate continuous transformation of νH n with ĈR n . Using that E[F j (X j ) α ] = (1 + α) -1 for α = -1, we can write ν(w) as :

ν(w) =E   d j=1 {F j (X j )} 1/wj - 1 d d j=1 {F j (X j )} 1/wj   + d j=1 λ j (w)(d -1) d w j 1 + w j -E {F j (X j )} 1/wj =E   d j=1 {F j (X j )} 1/wj   - 1 d d j=1
(1 + λ j (w)(d -1))E {F j (X j )} 1/wj + a(w), with a(w) = (d -1)d -1 d j=1 λ j (w)w j /(1 + w j ). Let us note by g w the function defined as

g w : [0, 1] d → [0, 1], u → d j=1 u 1/wj j - 1 d d j=1
(1 + λ j (w)(d -1))u

1/wj j .

One can write our estimator of the w-madogram and the theoretical w-madogram in missing data framework as an integral with respect to the rank-corrected hybrid copula estimator and the copula function, respectively. We thus have:

νH * n (w) = 1 N n i=1 g w U i,1 , . . . , U i,d ) Π d j=1 I i,j + a(w) = [0,1] d g w (u) d ĈR n (u) + a(w), ν(w) = [0,1] d g w (u) dC(u) + a(w).
We obtain, proceeding as in Theorem 2.4 of [START_REF] Marcon | Multivariate nonparametric estimation of the pickands dependence function using bernstein polynomials[END_REF] :

√ n νH * n (w) -ν(w) = 1 d d j=1
(1 + λ j (w)(d -1))

[0,1] C R n (1 j (x wj ))dx - [0,1] C R n (x w1 , . . . , x w d ) dx,
where 1 j (u) denotes the vector composed out of 1 except for the jth component where u does stand and with C H n in (9). Consider the function φ :

∞ ([0, 1] d ) → ∞ (∆ d-1 ), f → φ(f ), defined by (φ)(f )(w) = 1 d d j=1 (1 + λ j (w)(d -1)) [0,1] f (1 j (x wj ))dx - [0,1] f (x w1 , . . . , x w d )dx.
This function is linear and bounded thus continuous. The continous mapping theorem (see, e.g., Theorem 1.3.6 of [START_REF] Van Der | Weak Convergence and Empirical Process: With Applications to Statistics[END_REF]) implies, as

n → ∞ √ n(ν H * n -ν) = φ(C R n ) φ(S C ), in ∞ (∆ d-1
). Recall that S C is the asymptotic process where C H n does converge in the sense of the weak convergence in ∞ (∆ d-1 ) and is defined by S C (u) = α(u)-d j=1 β j (u j ) Ċj (u) with u ∈ [0, 1] d and α and β j are processes defined in Lemma 1. We note that S C (1 j (x wj )) = α(1 j (x wj )) -β j (u j ) and we obtain our statement.

The asymptotic normality of our estimators directly comes down from being a linear transformation of a tight Gaussian process for w ∈ ∆ d-1 . The proof below uses technical arguments to exhibit the closed expressions of the asymptotic variances of the Gaussian limit distributions of our estimators in Equation ( 10) and ( 11). Furthermore, this proof strengthen our choice of the definition of the corrected estimator. Indeed, the chosen form of the corrected estimator makes computations more tractable as we only have to compute terms for the hybrid estimator and to multiply those by different factors. Two tools make the computation feasible. The first one is the form exhibited by Equation (2) which transforms a double integral with respect to the trajectory of the copula function as the double integral of a power function. When this trick is not possible, again the expression of the extreme value copula with respect to the Pickands dependence function is of main interest. Indeed, with some substitutions, we are able to express the double integrals as the integral with respect to the Pickands dependence function using the following equality :

- [0,1] w α ln(w) dw = 1 (α + 1) 2 ,
where α = -1.

Proof of Proposition 1 Recall that p = (p 1 , . . . , p d , p). By definition the asymptotic variance S H (p, w) for a fixed w ∈ ∆ d-1 is given by

S H (p, w) := V ar   1 d d j=1 [0,1] α(1 j (x wj )) -β j (x wj )dx - [0,1] S C (x w1 , . . . , x w d )dx   .
Using properties of the variance operator, we thus obtain

S H (p, w) = 1 d 2 d j=1 V ar [0,1] α(1 j (x wj )) -β j (x wj )dx + V ar [0,1] S C (x w1 , . . . , x w d )dx + 2 d 2 j<k cov [0,1] α(1 j (x wj )) -β j (x wj )dx, [0,1] α(1 k (x w k )) -β k (x w k )dx - 2 d d j=1 cov [0,1] α(1 j (x wj )) -β j (x wj )dx, [0,1] α(x w1 , . . . , x w d )dx + 2 d d j=1 d k=1 cov [0,1] α(1 j (x wj )) -β j (x wj )dx, [0,1] β k (x w k ) Ċk (x w1 , . . . , x w d )dx .
By definition of the covariance functions of α , β j with j ∈ {1, . . . , d} given in Lemma 1, we have for the variance terms V ar

[0,1] α(1 j (x wj )) -β j (x wj )dx = p -1 -p -1 j σ 2 j (w), V ar [0,1] S C (x w1 , . . . , x w d )dx = σ 2 d+1 (p, w).
Using Equation (1), we have C(x w1/wj , . . . , x w d /wj ) = exp --ln(x) w j w 1 , . . . , ln(x)

w j w d = exp - ln(x) w j (-w 1 , . . . , -w d ) = x A(w)/wj = x Aj (w) ,
where we use the homogeneity of order one of and that -(-w 1 , . . . , -w d ) = A(w) as stated by the identity of Equation ( 2) and that w ∈ ∆ d-1 . Now, consider the substitution x = w 1-s and y = w s , the jacobian of this transformation is given by -ln(w), we have

- µ j (w) w j (1 -w j ) [0,1] [0,1-wj ]
C w sw1/(1-wj ) , . . . , w 1-s , . . . , w sw d /(1-wj ) w

(1-s) Aj (w)+

1-w j w j

-1 +s w j

1-w j ln(w)dsw, where we note by A j (w) := A(w)/w j with j ∈ {1, . . . , d}. We now compute the quantity C w sw1/(1-wj ) , . . . , w 1-s , . . . , w sw d /(1-wj ) .

Using the same techniques as above, we have

C w sw1/(1-wj ) , . . . , w 1-s , . . . , w sw d /(1-wj ) = exp -- sw 1 1 -w j ln(w), . . . , -(1 -s) ln(w), . . . , - sw d 1 -w j ln(w) = exp -ln(w) - sw 1 1 -w j , . . . , -(1 -s), . . . , - sw d 1 -w j .
Now, using that w ∈ ∆ d-1 , remark that s i =j w i /(1 -w j ) = s, we have, using Equation ( 2)

-- sw 1 1 -w j , . . . , -(1 -s), . . . , - sw d 1 -w j = A (z j (1 -s)) ,
where z = (sw 1 /(1 -w j ), . . . , sw d /(1 -w j )). So we have

γ 1j (w) = - µ j (w) w j (1 -w j ) [0,1-wj ] [0,1] w A(zj (1-s))+(1-s) Aj (w)+ 1-w j w j -1 +s w j 1-w j ln(w)dws = µ j (w) w j (1 -w j ) [0,1-wj ] A (z j (1 -s)) + (1 -s) A j (w) + 1 -w j w j -1 + s w j 1 -w j + 1 -2 ds.
No further simplifications can be obtained. For j < k, let us define the quantity τ jk such as

p jk p j p k τ jk (w) E [0,1] β j (u wj ) Ċj (u w1 , . . . , u w d )du [0,1] β k (v w k ) Ċk (v w1 , . . . , v w d )dv . (20) 
Again, we have

τ jk (w) = [0,1] 2 (C(1 jk (u wj , v wj )) -u wj v wj ) Ċj (u w1 , . . . , u w d ) Ċk (v w1 , . . . , v w d )duv.
We set x = u wj and y = v w k , the left side becomes

τ jk (w) = 1 w j w k [0,1] 2
C(1 jk (x, y)) Ċj (x w1/wj , . . . , x w d /wj ) Ċk (y w1/w k , . . . , y w d /w k )x (1-wj )/wj y (1-w k )/w k dxy

= µ j (w)µ k (w) w j w k [0,1] 2
C(1 jk (x, y))x Aj (w)+(1-wj )/wj -1 y A k (w)+(1-w k )/w k -1 dxy. Now, we set x = w 1-s and y = w s and we obtain

τ jk (w) = µ j (w)µ k (w) w j w k [0,1] A(0 jk (1 -s, s)) + (1 -s) A j (w) + 1 -w j w j -1 + s A k (w) + 1 -w k w k -1 + 1 -2
ds.

The right side of Equation ( 20) is given by

[0,1] 2 u wj v w k Ċj (u w1 , . . . , u w d ) Ċk (v w1 , . . . , v w d )duv = µ j (w)µ k (w) (1 + A(w)) 2 .
Hence the result for σ 2 d+1 (w). Using the same techniques, we show that for j ∈ {1, . . . , d}

σ 2 j (w) = [0,1] 2 (u ∧ v) wj -u wj v wj duv = 1 (1 + w j ) 2 w j 2 + w j .
For j < k, we compute

σ jk (w) = [0,1] 2 C(1 jk (u wj , v w k )) -u wj v w k duv = 1 w j w k [0,1] A(0 jk (1 -s, s)) + (1 -s) 1 -w j w j + s 1 -w k w k + 1 -2 ds - 1 1 + w j 1 1 + w k . Let j ∈ {1, . . . , d}, thus σ (1) j (w) = [0,1] 2 C (u w1 , . . . , (u ∧ v) wj , . . . , u w d ) -C(u w1 , . . . , u w d )v wj ds = 1 w j (1 -w j ) [0,1] A(z j (1 -s) + (1 -s) 1 -w j w j + s w j 1 -w j + 1 -2 ds + 1 1 + A(w) 1 2 + A(w) - 1 1 + w j .
Now, for σ Finally, we give some elements to establish Corollary 2. The strong consistency follows directly from the stability of the almost surely convergence through a continuous fuction. The weak convergence comes down from the functional Delta method (see, e.g., Theorem 3.9.4 of [START_REF] Van Der | Weak Convergence and Empirical Process: With Applications to Statistics[END_REF]) and from result in Proposition 1. (1 + λ j (w)(d -1))

[0,1]

α(1 j (x wj )) -β j (x wj )dx - where we used Proposition 1 to conclude.

A.2 Proofs of auxiliary results

Proof of Lemma 1 Following [Segers, 2015] [START_REF] Van Der | Weak Convergence and Empirical Process: With Applications to Statistics[END_REF]). The empirical process G n defined by

G n (f ) = √ n 1 n n i=1 f (I i , X i ) -E[f (I i , X i )] , f ∈ F,
converges in ∞ (F) to a P -brownian bridge G. For x ∈ R d , Fn,j (x j ) = p j F j (x j ) + n -1/2 G n g j,xj p j + n -1/2 G n f j , Fn (x) = pF (x) + n -1/2 G n g d+1,x p + n -1/2 G n f d+1 .

We obtain for the second one p Fn (x) -F (x) = n -1/2 G n (g d+1,x ) -Fn (x)G n (f d+1 )

= n -1/2 (G n (g d+1,x -F (x)f d+1 )) -n -1/2 G n (f d+1 )( Fn (x) -F (x)).

We thus have √ n Fn (x) -F (x) = p -1 (G n (g d+1,x -F (x)f d+1 )) -p -1 G n (f d+1 )( Fn (x) -F (x)).

Applying the central limit theorem and Assumption B gives that G n (f d+1 ) d → N (0, P(f d+1 -Pf d+1 ) 2 ), the law of large numbers gives also Fn (x) -F (x) = • P (1). Using Slutsky's lemma gives us √ n Fn (x) -F (x) = p -1 (G n (g d+1,x -F (x)f d+1 )) + • P (1).

Similar reasoning might be applied to the margins, as a consequence, Assumption C is fulfilled with for u ∈ [0, 1] d ,

β j (u j ) = p -1 j G g j,F ← j (uj ) -u j f j , α(u) = p -1 G g d+1,F ← d (u) -C(u)f d+1 .
Let us compute one covariance function, the method still the same for the others, without loss of generality, suppose that j < k, we have for u j , v k ∈ [0, 1] cov(β j (u j ),

β k (v k )) = E p -1 j G g j,F ← j (uj ) -u j f j p -1 k G g k,F ← k (v k ) -v k f k = 1 p j p k E G g j,F ← j (ui) -u j f j G g k,F ← k (vj ) -v k f k = 1 p j p k P X j ≤ F ← j (u j ), X k ≤ F ← k (v k ), I j = 1, I k = 1 - p jk p j p k u j v k = 1 p j p k P X j ≤ F ← j (u j ), X k ≤ F ← k (v k ) P {I j = 1, I k = 1} - p jk p j p k u j v k = p jk p j p k (C(1 jk (u j , v k )) -u j v k ) .
Hence the result.

Proof of Lemma 2

The lemma becomes trivial once we write, ∀i ∈ {1, . . . , n} and j ∈ {1, . . . , d} U 1/wj i,j = {F j (X j )} 1/wj + U 1/wj i,j -{F j (X j )} 1/wj ≤ {F j (X j )} -{F j (X j )} 1/wj .

  1} the unit simplex. By homogeneity, is characterized by the Pickands dependence function A : ∆ d-1 → [1/d, 1], which is the restriction of to the unit simplex ∆ d-1 :

  For f : X → R, let ||f || ∞ = sup x∈X |f (x)|. Here, we use the abbreviation Q(f ) = f dQ for a given measurable function f and signed measure Q. The arrows a.s. → , d → denote almost sure convergence and convergence in distribution of random vectors. Weak convergence of a sequence of maps will be understood in the sense of J.Hoffman-Jørgensen (see Part 1 in [van der

  and the asymmetry parameters θ j,b ∈ [0, 1] for all b ∈ B and j ∈ b. The model should verify the following constrains b∈B(j) θ j,b = 1 for j ∈ {1, . . . , d} where B (j) = {b ∈ B, j ∈ b} and if θ b = 1 for every b ∈ B \ B 1 , then θ j,b = 0 ∀j ∈ b. The model contains 2 d -d -1 dependence parameters and

  w) 2 dw . (16) E1 We set d = 2. A Monte Carlo study is implemented here to illustrate Proposition 1 in finite-sample setting with missing data. We consider M2, M3, M4, M5 and M6 where we fix n iter = 300 and n = 1024. The chosen grid is {1/200, . . . , 199/200} and we take p 1 = p 2 = 0.75. We estimate M ISE H in (16) by n,l , l ∈ {1, . . . , 10} is the empirical counterpart of S H taking the empirical variance of 30 estimators νH n (w) where w = (k/200, 1 -k/200) and k ∈ {1, . . . , 199}. Each estimator of the w-madogram is computed out through a random sample with n = 1024. By using the second equation in (16), the estimator M ISE H * n is defined similarly.

  Figure 1: E H n in red and E H * n in green (see (15)) as a function of w, of the asymptotic variances of the estimators of the w-madogram for six extreme-value copula models. The empirical variances are based on 300 samples of size n = 1024. Solid lines are the theoretical value given by Proposition 1.

Figure 2

 2 Figure 2: E H n (first row) and E H * n (second row) given by (15) as a function of w-madogram. The empirical variances are based on 100 samples of size n = 512. Empirical counterparts are represented with points and theoretical values given by Proposition 1 are drawn by a surface.

Figure 3 :Figure 4 :

 34 Figure 3: Level sets of E H n and E H * n , as a function of w, of the asymptotic variances of the estimators of the w-madogram. We present the level sets corresponding to sufaces of Fig 2. On the left panel is represented the theoretical value given by Proposition 1 while on the right the empirical counterpart is given.

  Figure 5: Analysis of Canadian annual rainfall maxima in the period 1914-2017. (a) Spatial representation of the 7 selected clusters obtained via the constrained k-means algorithm. (b) Clusters of 49 weather stations and their estimated extremal coefficients (with d = 7) obtained with the corrected version of the hybrid madogram.

-

  w-madogram with known margins and, second, we show that the limit of sup surely. Before going into the main arguments, we need the following lemma.Lemma 2. We have, ∀i ∈ {1, . . . , n} F j (X j )1/wj .The proof of Lemma 2 is postponed to A.2.Proof of Proposition 2We prove it for νH n (w) as the strong consistency for νH * n (w) uses the same arguments. The estimator νH n (w) in (10) is strongly consistent since it holdsνH n (w) -ν(w) = νH n (w) -ν n (w) + ν n (w) -ν(w) ≤ νH n (w) -ν n (w) + |ν n (w) -ν(w)| ,By direct application of Assumption B and the law of large number, we have that |ν n (w) -ν(w)| Lemma 2 to obtain the second inequality. The right term converges almost surely to zero by Glivencko-Cantelli Theorem and the uniform continuity of x → x 1/wj on [0, 1].

Proof of Corollary 2 .

 2 Applying the functional Delta method, we have as n → j (x wj )) -β j (x wj )dx-[0,1] S C (x w1 , . . . , x w d dx) w∈∆ d-1For a fixed w ∈ ∆ d-1 , as a linear transformation of a tight Gaussian process, it follows that √ n ÂH * n (w) -A(w)

S

  C (x w1 , . . . , x w d ) dx   = (1 + A(w)) 4 S H * (p, w),

  Example 3.5, we consider the functions from {0, 1} d × R d into R : for x ∈ R d , and j ∈ {1, . . . , d} fj (I, X) = 1 {Ij =1} , g j,xj (I, X) = 1 {Xj ≤xj ,Ij =1} , f d+1 = Π d j=1 f j , g d+1,x = Π d j=1 g j,xj.Let P denote the common distribution of the tuple (I, X). The collection of functionsF = {f 1 , . . . , f d , f d+1 } ∪ d j=1 {g j,xj , x j ∈ R} ∪ {g d+1,x , x ∈ R d }is a finite union of VC-classes and thus P -Donsker (see Chapter 2.6 of [van der Vaart

Table 1 :

 1 H * ). As indicated by Figures1 and 2, errors in Table1are close to zero. Estimation of M ISE H and M ISE H * (×10 -5 ) defined in (16) for Experiment E1 in the sixth first columns and E2 in the last three columns.

	H * n for the corresponding

Table 1 are displayed M ISE H n and M ISE n and S Figure 4 illustrates the results of Experiment E3 where we have drawn boxplots for Equation (

17

). Not surprisingly, we observe that both the size of the boxplots and the median value are increasing with d. However, this augmentation drops as the sample size n increases and seems to appear as reasonable and able to handle the case of rather high n / * n
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We obtain similarly for the covariance terms cov [0,1] α(1 j (x wj )) -β j (x wj )dx,

α(1 j (x wj )) -β j (x wj )dx, [0,1] α(x w1 , . . . , x w d )dx = p -1 -p -1 j σ

(1)

α(1 j (x wj )) -β j (x wj )dx, [0,1] β k (x w k ) Ċk (x w1 , . . . , x w d )dx = p -1 k -p jk p j p k σ

(2) jk (w).

We first show in details the closed form for σ 2 d+1 , the other forms are given without explanations as the technical tools used are those used for σ 2 d+1 . Proceding as before, we decompose this quantity as a linear combination of the variance (the squared term γ 2 1 and γ 2 j for j ∈ {1, . . . , d}) and the covariance terms (γ 1j and τ jk ) with the probabilities of missing. The explicit formula of these quantities will be defined below. We set

Let us exhibit a useful form of the partial derivatives of the extreme value copula. We have ∀j ∈ {1, . . . , d} :

Furthermore, as (x 1 , . . . , x d ) is homogeneous of degree 1, the partial derivative ˙ j (x 1 , . . . , x d ) is homogeneous of degree 0 for j ∈ {1, . . . , d}. We thus obtain a suitable form of the partial derivatives of the extreme value copula

where µ j (w) ˙ j (-w 1 , . . . , -w d ). Now, using linearity of the integral and the definition of the covariance function of α, we obtain

Let us compute

.

The quantity γ 2 j (w) is defined by the following

It is clear that

We now deal with cross product terms, the first we define is

.

Under the rectangle [0, 1] × [0, u], we have for the right term

For the left term, by definition, we have

C(u w1 , . . . , v wj , . . . , u w d ) Ċj (v w1 , . . . , v w d )dvu.

Let us consider the substitution x = v wj and y = u 1-wj , we obtain

C y w1/(1-wj ) , . . . , x, . . . , y w d /(1-wj ) × Ċj x w1/wj , . . . , x w d /wj x (1-wj )/wj y wj /(1-wj ) dxy.

Let us compute the quantity Ċj (x w1/wj , . . . , x w d /wj ) = C(x w1/wj , . . . , x w d /wj ) x µ j (w).

if j < k, we obtain

Hence the statement.

The following lines will give some details to establish the explicit formula of the asymptotic variance when we suppose that components of the random vector X are independent. In this framework, we have that µ j (w) = 1 for every j ∈ {1, . . . , d} and thus Ċj (u w1 , . . . , u w d ) = u 1-wj . Furthermore, in the independent case, most of the integrals are reduced to zero.

Proof of Corollary 1 In the term σ 2 d+1 given in Equation ( 19), only the terms γ 2 1 , γ 2 j and γ 1j matter because, in the independent case :

For γ 1j , we have to compute

For γ 2 1 and γ 2 j , we just have to set A(w) = 1 in their respective expressions to obtain :

We thus have

Other computations follow from the same arguments.

We are now going to prove Proposition 2. The strong consistency of the our estimators will be established in a twostep process : first, we prove the strong consistency of the estimator ν n (w) which is the nonparametric estimator Taking the max over j ∈ {1, . . . , d} gives -{F j (X j )} 1/wj .

Moreover, by symmetry of U i,j and F j , the second one follows similarly.