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Abstract

The modeling of dependence between maxima is an important subject in several applications in risk analysis.

To this aim, the extreme value copula function, characterised via the madogram, can be used as a margin-free

description of the dependence structure. From a practical point of view, the family of extreme value distributions

is very rich and arise naturally as the limiting distribution of properly normalised component-wise maxima. In

this paper, we investigate the nonparametric estimation of the madogram where data are completely missing at

random. We provide the functional central limit theorem for the considered multivariate madrogram correctly

normalized, towards a tight Gaussian process for which the covariance function depends on the probabilities of

missing. Explicit formula for the asymptotic variance is also given. Our results are illustrated in a finite sample

setting with a simulation study.

Keywords and phrases : Madogram, Extreme value copula , Missing Completely At Random (MCAR),

Nonparametric estimation.

MSC2020 subject classifications : 62D10, 62G05, 62G20, 62G32, 62H10, 62H12.

1 Introduction

Management of environmental ressources often requires the analysis of multivariate extreme values. In climate stud-

ies, extreme events represent a major challenge due to their consequences. The problem of missing data is present

in many fields in particular in environmental research (see [Xia et al., 1999], or Section 2 in [Saunders et al., 2021]),

usually due to instruments, communication and processing errors. In a time series setting, the observation peri-

ods of a multivariate series could be different and overlap only partially. The problem of estimating when unequal

amounts of data are available to each variable is meaningful in many applications for financial economics where data

cannot be generated as neatly overlapping samples (see [Patton and Wiley, 2006]). Missing values in dependence

modeling is of a prime interest as the nonparametric estimation of the empirical copula process has been tackled

by [Segers, 2015] under the Missing Completely At Random (MCAR) condition. In this paper, we consider

nonparametric methods for assessing extremal dependencies involving variables with missing values under MCAR
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condition. We are particularly interested in the dependence structure of multivariate extreme value distribution.

Formally, this concept is defined as follows.

Let (Ω,A,P) be a probability space and X = (X1, . . . , Xd) be a d-dimensional random vector with values in

(Rd,B(Rd)), with d ≥ 2. This random vector has a joint distribution function F and its margins are denoted by

Fj(x) = P{Xj ≤ x} for all x ∈ R and j ∈ {1, . . . , d}. A function C : [0, 1]d → [0, 1] is called a d-dimensional copula

if it is the restriction to [0, 1]d of a distribution function whose margins are given by the uniform distribution on the

interval [0, 1]. Since the work of [Sklar, 1959], it is well known that every distribution function F can be decomposed

as F (x) = C(F1(x1), . . . , Fd(xd)), for all x ∈ Rd and the copula C is unique if the marginals are continuous. We

will consider in the rest of the paper a d-dimensional random vector X which distribution is a multivariate extreme

value distribution F , i.e., its one dimensional distributions are Generalized Extreme-Value (GEV) distributions and

the copula C is an extreme value copula (see [Gudendorf and Segers, 2010]), defined by

C(u) = exp (−`(− ln(u1), . . . ,− ln(ud))) , u ∈ (0, 1]d, (1)

with ` : [0,∞)d → [0,∞) the stable tail dependence function which is convex, homogeneous of order one, namely

`(cx1, . . . , cxd) = c`(x1, . . . , xd) for c > 0 and satisfies max(x1, . . . , xd) ≤ `(x1, . . . , xd) ≤ x1+· · ·+xd, ∀(x1, . . . , xd) ∈
[0,∞)d. Denote by ∆d−1 = {(w1, . . . , wd) ∈ [0, 1]d : w1 + · · · + wd = 1} the unit simplex. By homogeneity, ` is

characterized by the Pickands dependence function A : ∆d−1 → [1/d, 1], which is the restriction of ` to the unit

simplex ∆d−1 :

`(x1, . . . , xd) = (x1 + · · ·+ xd)A(w1, . . . , wd), wj =
xj

x1 + · · ·+ xd
, (2)

for j ∈ {2, . . . , d} and w1 = 1 − w2 − · · · − wd with (x1, . . . , xd) ∈ [0,∞)d \ {0}. Notice that, for every w ∈ ∆d−1

and u ∈]0, 1[

C(uw1 , . . . , uwd) = uA(w). (3)

Based on the madogram concept from geostatistics, the λ-madogram is introduced in [Naveau et al., 2009] to

capture bivariate extremal dependencies. The generalization of the λ-madogram was previously proposed by

[Fonseca et al., 2015] and [Marcon et al., 2017], this quantity is defined in the latter as:

ν(w) = E

 d∨
j=1

{Fj(Xj)}1/wj − 1

d

d∑
j=1

{Fj(Xj)}1/wj

 , (4)

if wj = 0 and 0 < u < 1, then u1/wj = 0 by convention. The w-madogram can be interpreted as the L1-distance

between the maximum and the average of the uniform margins F1(X1), . . . , Fd(Xd) elevated to the inverse of

the corresponding weights w1, . . . , wd. This quantity describes the dependence structure between extremes by its

relation with the Pickands dependence function as stated by the Proposition 2.2 of [Marcon et al., 2017], namely

A(w) =
ν(w) + c(w)

1− ν(w)− c(w)
, (5)

with c(w) = d−1
∑d
j=1 wj/(1 + wj). Through this relation, it contributes to the vast literature of the estimation

of the Pickands dependence function for bivariate extreme value copula (see [Pickands, 1981], [Deheuvels, 1991],
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[Capéraà et al., 1997], [Hall and Tajvidi, 2000]) and extended to the multivariate extreme value copula (see for

example [Gudendorf and Segers, 2012]). Also, a test for assessing asymptotic independence in dimension d ≥ 2

has been designed based on the w-madogram (see [Guillou et al., 2018]). Several methods for handling missing

values in the framework of extremes have been proposed for univariate time series (see e.g. [Hall and Scotto, 2008,

Ferreira et al., 2021]). However, handling missing values in the context of multivariate extreme values with d ≥ 2

is still in their infancy.

Main results The main contribution of this paper is to give an estimator of the w-madogram in (4) involving

variables with missing values and to study its asymptotic properties. As far as we know, only [Guillou et al., 2014]

detailed the variance for the madogram of a bivariate random vector while taking the independent copula and

found 1/90. In this paper we propose improvements in three directions : we consider a general multidimensional

case (d ≥ 2), we deal with missing data and we consider a dependence structure given by an extreme value

copula. Thus, we present in Theorem 1 a functional central limit theorem that gives the weak convergence for

the considered multivariate madogram towards a tight Gaussian process for which the covariance function depends

on the probabilities of missing. When the trajectory of our empirical process is fixed, we show in Proposition 1

the asymptotic normality of the estimator of the multivariate madogram where explicit formula for the asymptotic

variance is also given. These results are transposed to the estimation of the Pickands dependence function with

missing data in Corollary 2 by the use of the functional delta method.

Notations The symbol , means to be equal to. In order to shorten formulas, notations

uj(t) , (u1, . . . , uj−1, t, uj+1, . . . , ud),

ujk(s, t) , (u1, . . . , uj−1, s, uj+1, . . . , uk−1, t, uk+1, . . . , ud),

will be adopted for s, t ∈ [0, 1], (u1, . . . , uj−1, uj+1, . . . , ud) ∈ [0, 1]d−1 and j, k ∈ {1, . . . , d} with j < k. The notation

1 (resp. 0) corresponds to the d-dimensional vector composed out of 1 (resp. 0). Similarly, we define 1j(s), 0j(s),

1jk(s, t) and 0jk(s, t) with the same idea of previous notations of this paragraph.

The following notations are also used. Given X an arbitrary set, let `∞(X ) denote the space of bounded real-valued

functions on X . For f : X → R, let ||f ||∞ = supx∈X |f(x)|. Here, we use the abbreviation Q(f) =
∫
fdQ for

a given measurable function f and signed measure Q. The arrows
a.s.→ ,

d→ denote almost sure convergence and

convergence in distribution of random vectors. Weak convergence of a sequence of maps will be understood in

the sense of J.Hoffman-Jørgensen (see Part 1 in [van der Vaart and Wellner, 1996]). Given that n ∈ N∗, X,Xn are

maps from (Ω,A,P) into a metric space X and that X is Borel measurable, (Xn)n≥1 is said to converge weakly to

X if E∗f(Xn)→ Ef(X) for every bounded continuous real-valued function f defined on X , where E∗ denotes outer

expectation in the event that Xn may not be Borel measurable. In what follows, weak convergence is denoted by

Xn  X.

The paper is organised as follows: We propose in Section 2 estimators of the w-madogram suitable to the missing

data framework. We state the weak convergence of the depicted estimators. Explicit formula for the asymptotic

variance are also given. In Section 3, we illustrate the performance of the considered estimator in the finite-sample

framework. Section 4 is devoted to apply our method on a dataset with missing data and non-concomittant record
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periods of annual maxima rainfall in Central Eastern Canada. A discussion on our assumptions and possible

extensions of this work are presented in Section 4. All the proofs are postponed to the A.

2 Non parametric estimation of the Madogram with missing data

We consider independent and identically distributed (i.i.d.) copies X1, . . . ,Xn of X. In presence of missing data, we

do not observe a complete vector Xi for i ∈ {1, . . . , n}. We introduce Ii ∈ {0, 1}d which satisfies, ∀j ∈ {1, . . . , d},
Ii,j = 0 if Xi,j is not observed. To formalize incomplete observations, we introduce the incomplete vector X̃i with

values in the product space
⊗d

j=1(R ∪ {NA}) (where NA denotes a missing data) such as

X̃i,j = Xi,jIi,j + NA(1− Ii,j), i ∈ {1, . . . , n}, j ∈ {1, . . . , d}.

We thus suppose that we observe a 2d-tuple such as

(Ii, X̃i), i ∈ {1, . . . , n}, (6)

i.e. at each i ∈ {1, . . . , n}, several entries may be missing. We also suppose that for all i ∈ {1, . . . , n}, Ii are

i.i.d copies from I = (I1, . . . , Id) where Ij is distributed according to a Bernoulli random variable B(pj) with

pj = P(Ij = 1) for j ∈ {1, . . . , d}. We denote by p the probability of observing completely a realization from X,

that is p = P(I1 = 1, . . . , Id = 1). Let us now define the empirical cumulative distribution in case of missing data,

we write for notational convenience {X̃i ≤ x} , {X̃i,1 ≤ x1, . . . , X̃i,d ≤ xd} and nj =
∑n
i=1 Ii,j ,

F̂n,j(x) =

∑n
i=1 1{X̃i,j≤x}Ii,j

nj
, ∀x ∈ R, F̂n(x) =

∑n
i=1 1{X̃i≤x}Π

d
j=1Ii,j∑n

i=1 Πd
j=1Ii,j

, ∀x ∈ Rd, (7)

where {X̃i,j ≤ x} = ∅ (resp. {X̃i ≤ x} = ∅) if X̃i,j = NA (resp. if there exists j ∈ {1, . . . , d} such that X̃i,j = NA).

The idea raised here is to estimate non parametrically the margins using all available data of the corresponding

series. To avoid dealing with points at the boundary of the unit square, it is more convenient to work with scaled

ranks (see for example [Genest and Segers, 2009]) defined explicitely by

Ũi,j =
nj

nj + 1
F̂n,j(X̃i,j) =

1

nj + 1

n∑
k=1

1{X̃k,j≤X̃i,j}Ii,j , j ∈ {1, . . . , d}. (8)

We recall the definition of the hybrid copula estimator introduced by [Segers, 2015]

ĈHn (u) = F̂n(F̂←n,1(u1), . . . , F̂←n,d(ud)), u ∈ [0, 1]d,

where F̂←n,j denotes the generalized inverse function of F̂n,j for j ∈ {1, . . . , d}, i.e. F̂←n,j(u) = inf{x ∈ R|F̂n,j(x) ≥ u}
with 0 < u < 1. The normalized estimation error of the hybrid copula estimator is

CHn (u) =
√
n
(
ĈHn (u)− C(u)

)
, u ∈ [0, 1]d. (9)

On the condition that the first-order partial derivatives of the copula function C exists and are continuous on a

subset of the unit hypercube, [Segers, 2012] obtained weak convergence of the normalized estimation error of the
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classical empirical copula process (see [Deheuvels, 1979]). To satisfy this condition, we introduce the following

assumption as suggested in [Segers, 2012] (see Example 5.3).

Assumption A.

1. The distribution function F has continuous margins F1, . . . , Fd.

2. For every j ∈ {1, . . . , d}, the first-order partial derivative ˙̀
j of ` with respect to xj exists and is continuous

on the set {x ∈ [0,∞)d : xj > 0}.

The Assumption A1 guarantees that the representation F (x) = C(F1(x1), . . . , Fd(xd)) is unique on the range of

(F1, . . . , Fd). Under the Assumption A2, the first-order partial derivatives of C with respect to uj denoted as Ċj

exists and are continuous on the set {u ∈ [0, 1]d : 0 < uj < 1}. We now propose an estimator of the w-madogram

defined in Equation (4) under a general context with possible missing data.

Definition 1. Let (Ii, X̃i)
n
i=1 be a sample given by Equation (6), we define the hybrid nonparametric estimator of

the w-madogram in Equation (4) by

ν̂Hn (w) =
1∑n

i=1 Πd
j=1Ii,j

n∑
i=1

 d∨
j=1

Ũ
1/wj

i,j − 1

d

d∑
j=1

Ũ
1/wj

i,j

Πd
j=1Ii,j

 , (10)

where Ũi,j are scaled ranks defined as in Equation (8).

The intuitive idea here is to estimate the margins using all available data from the corresponding variables and

estimate ν(w) using only the overlapping data. Notice that in the complete data framework, i.e. when p = 1 we

retrieve a variation of the w-madogram such as defined in [Marcon et al., 2017], namely

ν̂n(w) =
1

n

n∑
i=1

 d∨
j=1

Ũ
1/wj

i,j − 1

d

d∑
j=1

Ũ
1/wj

i,j

 ,
with Ũi,j in {1/(n+ 1), . . . , n/(n+ 1)}.

Note that the theoretical quantity defined in (4) does verify endpoint constraints, i.e. ν(ej) = (d − 1)/2d for all

j ∈ {1, . . . , d} where ej is the jth vector of the canonical basis.

Remark 1. Unlike ν, the estimator defined in (10) does not verify the endpoints constraints. In addition, the

variance at ej does not equal 0. Indeed, suppose that we evaluate this statistic at w = ej as Ũi,j ∈ (0, 1) for every

i ∈ {1, . . . , n} and j ∈ {1, . . . , d} we obtain the following estimator

ν̂Hn (ej) =
1∑n

i=1 Πd
j=1Ii,j

n∑
i=1

[
Ũi,j −

1

d
Ũi,j

]
Πd
j=1Ii,j .
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In this situation, the sample
(
Ũi,1, . . . , Ũi,j−1, Ũi,j+1, . . . , Ũi,d

)n
i=1

is taken into account through the indicators se-

quence (Ii,1, . . . , Ii,j−1, Ii,j+1, . . . , Ii,d)
n
i=1 and induces a supplementary variance when estimating.

Proceeding as in [Naveau et al., 2009] for the bivariate case and complete data framework, we propose below a

modified estimator which satisfies the endpoint constraints in the general multivariate framework with possible

missing data.

Definition 2. Let (Ii, X̃i)
n
i=1 be a sample given by Equation (6) and ν̂Hn (w) be as in (10). Given continuous

functions λ1, . . . , λd : ∆d−1 → R verifying λj(ek) = δjk (the Kronecker delta) for j, k ∈ {1, . . . , d}, we define the

hybrid corrected estimator of the w-madogram by

ν̂H∗n (w) = ν̂Hn (w)−
d∑
j=1

λj(w)(d− 1)

d

[
1∑n

i=1 Πd
j=1Ii,j

n∑
i=1

(
Ũ

1/wj

i,j Πd
j=1Ii,j

)
− wj

1 + wj

]
. (11)

Remark 2. One has often that endpoint corrections do not have an impact to the asymptotic behavior with complete

data framework and unknown margins (see Section 2.3 and 2.4 of [Genest and Segers, 2009]). That is not always

the case in the missing data framework and this feature is of interest as discussed in Remark 1.

In the following we prove a functional central limit theorem (see Theorem 1) concerning the weak convergence of

the following processes

√
n
(
ν̂Hn (w)− ν(w)

)
w∈∆d−1 ,

√
n
(
ν̂H∗n (w)− ν(w)

)
w∈∆d−1 . (12)

Before presenting this result, we introduce below a specific assumption on the missing mechanism.

Assumption B. We suppose that for all i ∈ {1, . . . , n}, the vector Ii and Xi are independent, i.e. the data are

missing completely at random (MCAR).

Without missing data, the weak convergence of the normalized estimation error of the empirical copula process has

been proved by [Fermanian et al., 2004] under a more restrictive condition than Assumption A. The difference being

that C should be continuously differentiable on the closed hypercube. Denoting by D([0, 1]2) the Skorohod space,

this statement makes use of previous results on the Hadamard differentiability of the map φ : D([0, 1]2)→ `∞([0, 1]2)

which transforms the cumulative distribution function F into its copula function C (see also Lemma 3.9.28 from

[van der Vaart and Wellner, 1996]). With the hybrid copula estimator, we need a technical assumption in order to

guarantee the weak convergence of the process CHn in (9) (see [Segers, 2015]). We note for convenience marginal

distributions and quantile functions into vector valued functions Fd and F←d :

Fd(x) = (F1(x1), . . . , Fd(xd)), x ∈ Rd, F←d (u) = (F←1 (u1), . . . , F←d (ud)), u ∈ [0, 1]d.

Assumption C. In the space `∞(Rd)⊗ (`∞(R), . . . , `∞(R)) equipped with the topology of uniform convergence, we
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have the joint weak convergence(√
n(F̂n − F );

√
n(F̂n,1 − F1), . . . ,

√
n(F̂n,d − Fd)

)
 (α ◦ Fd, β1 ◦ F1, . . . , βd ◦ Fd) ,

where the stochastic processes α and βj , j ∈ {1, . . . , d} take values in `∞([0, 1]d) and `∞([0, 1]) respectively, and are

such that α ◦ F and βj ◦ Fj have continuous trajectories on [−∞,∞]d and [−∞,∞] almost surely.

Under Assumptions A and C, the stochastic process CHn in (9) converges weakly to the tight Gaussian process SC

defined by

SC(u) = α(u)−
d∑
j=1

Ċj(u)βj(uj), ∀u ∈ [0, 1]d. (13)

Lemma 1 in A states that the estimator F̂n of the joint distribution and estimators of margins F̂n,j defined in

Equation (7) verify Assumption C (see A for details). We now have all tools in hand to consider the weak convergence

of the stochastic processes in Equation (12). We note by {X ≤ F←d (u)} = {X1 ≤ F←1 (u1), . . . , Xd ≤ F←d (ud)}.

Theorem 1. Let G a tight Gaussian process and continuous functions λ1, . . . , λd : ∆d−1 → R verifying λj(ek) = δjk.

If C is an extreme value copula with Pickands dependence function A and under Assumptions A and B, we have

the weak convergence in `∞(∆d−1) for hybrid estimators defined in Equations (10) and (11), as n→∞,

√
n
(
ν̂Hn (w)− ν(w)

)
w∈∆d−1  

(
1

d

d∑
j=1

∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx−

∫
[0,1]

SC(xw1 , . . . , xwd)dx

)
w∈∆d−1

,

√
n
(
ν̂H∗n (w)− ν(w)

)
w∈∆d−1  

(
1

d

d∑
j=1

(1 + λj(w)(d− 1))

∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx

−
∫

[0,1]

SC(xw1 , . . . , xwd)dx

)
w∈∆d−1

,

where SC is defined in (13), α(u) = p−1G(1{X≤F←d (u),I=1}−C(u)1{I=1}) and βj(uj) = p−1
j G(1{Xj≤F←j (uj),Ij=1}−

uj1{Ij=1}) for j ∈ {1, . . . , d} and u ∈ [0, 1]d. For (u,v, vk) ∈ [0, 1]2d+1, for j ∈ {1, . . . , d} and j < k the covariance

functions of the processes α and βj are given by

cov (βj(uj), βj(vj)) = p−1
j (uj ∧ vj − ujvj) ,

cov (βj(uj), βk(vk)) =
pjk
pjpk

(C(1j,k(uj , vk))− ujvk) ,

and

cov (α(u), α(v)) = p−1 (C(u ∧ v)− C(u)C(u)) ,

cov (α(u), βj(vj)) = p−1
j (C(uj(uj ∧ vj))− C(u)vj) ,

where u ∧ v denotes the vector of componentwise minima and pjk = P(Ij = 1, Ik = 1).

We use empirical process arguments formulated in [van der Vaart and Wellner, 1996] to establish such a result.
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Details can be found in A.1. The following proposition states the asymptotic distribution of the estimators and

gives explicit formula for the asymptotic variances for a fixed element of the unit simplex ∆d−1.

Proposition 1. Let p = (p1, . . . , pd, p) and w ∈ ∆d−1, under the framework of Theorem 1, we have

√
n
(
ν̂Hn (w)− ν(w)

) d→
n→∞

N
(
0,SH(p,w)

)
,
√
n
(
ν̂H∗n (w)− ν(w)

) d→
n→∞

N
(
0,SH∗(p,w)

)
.

Moreover the asymptotic variances are given by

SH(p,w) =
1

d2

d∑
j=1

(p−1 − p−1
j )σ2

j (w) + σ2
d+1(p,w) +

2

d2

∑
j<k

(
p−1 − p−1

j − p
−1
k +

pjk
pjpk

)
σjk(w)

− 2

d

d∑
j=1

(p−1 − p−1
j )σ

(1)
j (w) +

2

d

d∑
j=1

d∑
k=1

(
p−1
k −

pjk
pjpk

)
σ

(2)
jk (w),

and

SH∗(p,w) =
1

d2

d∑
j=1

(p−1 − p−1
j )(1 + λj(w)(d− 1))2σ2

j (w) + σ2
d+1(p,w)

+
2

d2

∑
j<k

(
p−1 − p−1

j − p
−1
k +

pjk
pjpk

)
(1 + λj(w)(d− 1))(1 + λk(w)(d− 1))σjk(w)

− 2

d

d∑
j=1

(p−1 − p−1
j )(1 + λj(w)(d− 1))σ

(1)
j (w)

+
2

d

d∑
j=1

d∑
k=1

(
p−1
k −

pjk
pjpk

)
(1 + λj(w)(d− 1))σ

(2)
jk (w),

where explicit expressions of the functions σ2
j for j ∈ {1, . . . , d}, σ2

d+1, σjk with j < k, σ
(1)
j with j ∈ {1, . . . , d}, σ(2)

jk

for j, k ∈ {1, . . . , d} are detailed in the proof for the sake of readibility.

Considering the special case of independent copula, Corollary 1 below gives a closed form of the limit variance

which no longer depends on the Pickands dependence function.

Corollary 1. In the framework of Theorem 1 and if C(u) = Πd
j=1uj, then the functions σ2

d+1, σ
(1)
j with j ∈

{1, . . . , d}, have the following forms, for w ∈ ∆d−1 :

σ2
d+1(p,w) =

1

4

 1

3p
−

d∑
j=1

p−1
j

wj
4− wj

 ,

σ
(1)
j (w) =

1

2

[
1

3
− 1

1 + wj

]
+

wj
3(1 + wj)(3 + wj)

,

and σjk for j < k, σ
(2)
jk for j < k and σ

(2)
kj with k < j are constants and equal to 0.
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Remark 3. From our knowledge, only [Guillou et al., 2014] gave an explicit value of the variance for the madogram

of a bivariate random vector considering the independent copula. The result stated in Corollary 1 is not an extension

of this result because the hypothesis w ∈ ∆d−1 is crucial. Nevertheless, the same techniques used to prove Proposition

1 can be applied to show a similar explicit formula of the asymptotic variance for an extension of the madogram in

[Guillou et al., 2014] for d ≥ 2.

Weak consistency of our estimators directly comes down from Proposition 1. We are nonetheless able to state the

strong consistency only under Assumption B.

Proposition 2 (Strong consistency). Let (Ii, X̃i)
n
i=1 an i.i.d sample given by Equation (6). Under Assumption

B for a fixed w ∈ ∆d−1, it holds that

ν̂Hn (w)
a.s.→
n→∞

ν(w), ν̂H∗n (w)
a.s.→
n→∞

ν(w).

For the rest of this section, we use our previous results to state some properties of the Pickands estimator in the

missing data framework.

It is a common knowledge that the w-madogram is of main interest to construct of the Pickands dependence function.

Indeed, given Equation (5), one can define an estimator of the Pickands dependence function by estimating the

w-madogram and using it as a plug-in estimator. Most interesting properties of the w-madogram such as strong

consistency and the weak convergence are thus translated for the Pickands estimator using continuous mapping

theorem and the Delta method. In the missing data framework we define the following estimator.

Definition 3. Let (Ii, X̃i)
n
i=1 be a samble given by (6), the hybrid nonparametric estimator of the Pickands de-

pendence function is defined as

ÂH∗n (w) =
ν̂H∗n (w) + c(w)

1− ν̂H∗n (w)− c(w)
, (14)

where ν̂H∗n (w) defined in Equation (11) and c(w) = d−1
∑d
j=1 wj/(1 + wj).

Using the results of [Marcon et al., 2017] (namely, Theorem 2.4), Proposition 1 and Proposition 2 of this paper, we

state the following corollary.

Corollary 2. Let p = (p1, . . . , pd, p) and (Ii, X̃i)
n
i=1 be a samble given by (6). For w ∈ ∆d−1, if C is an extreme

value copula with Pickands dependence function and under Assumption B, it holds that

ÂH∗n (w)
a.s.→
n→∞

A(w).

Furthermore, if C additionally verifies Assumptions A.1 and A.2, we obtain

√
n
(
ÂH∗n (w)−A(w)

)
d→

n→∞
N (0,V(p,w)) ,

where the closed formula of the asymptoptic variance is given by V(p,w) = (1 +A(w))4SH∗(p,w), with SH∗(p,w)

9



as in Proposition 1.

3 Numerical results

In this section we verify our findings concerning the closed formula of the asymptotic variances through a simulation

study. To do so, we compare empirical counterparts of the asymptotic variances computed out with Monte Carlo

simulations with the explicit asymptotic variances given by Proposition 1. Our simulation studies are implemented

using Python programming language and all the codes are available online in this github repository.

3.1 Presentation of the models

We present here the six models (M1 to M6) used for this simulation study. The d-dimensional Gumbel and the

asymmetric logistic models are considered in models M1 and M2 below, the remaining ones (models M3 to M6)

concern only the bivariate case.

M1 The symmetric logistic, or Gumbel model [Gumbel, 1960] is defined by the following Pickands dependence

function

A(w1, . . . , wd) =

 d∑
j=1

wθj

1/θ

,

with θ ∈ [1,∞). We retrieve the independent case when θ = 1 and the dependence between the variables is

stronger as θ goes to infinity. The restriction to d = 2 is immediate from the definition.

M2 Let B be the set of all nonempty subsets of {1, . . . , d} and B1 = {b ∈ B, |b| = 1}, where |b| denotes the

number of elements in the set b. The asymmetric logistic model in [Tawn, 1990] is defined by the following

Pickands dependence function

A(w1, . . . , wd) =
∑
b∈B

∑
j∈b

(θj,bwj)
θb

1/θb

,

where θb ∈ [1,∞) for all b ∈ B \ B1, and the asymmetry parameters θj,b ∈ [0, 1] for all b ∈ B and j ∈ b. The

model should verify the following constrains
∑
b∈B(j) θj,b = 1 for j ∈ {1, . . . , d} where B(j) = {b ∈ B, j ∈ b}

and if θb = 1 for every b ∈ B \B1, then θj,b = 0 ∀j ∈ b. The model contains 2d− d− 1 dependence parameters

and d(2d−1 − 1) asymmetry parameters. In case of d = 2, we go back to the asymmetric logistic model in

[Tawn, 1988], namely

A(w) = (1− ψ1)w + (1− ψ2)(1− w) +
[
(ψ1w)θ + (ψ2(1− w))θ

]1/θ
,

with θ ∈ [1,∞), ψ1, ψ2 ∈ [0, 1]. For d = 3, the Pickands dependence function is expressed as

A(w) =α1w1 + ψ1w2 + φ1w3 +
(
(α2w1)θ1 + (ψ2w2)θ1

)1/θ1
+
(
(α3w2)θ2 + (φ2w3)θ2

)1/θ2
+
(
(ψ3w2)θ3 + (φ3w3)θ3

)1/θ3
+
(
(α4w1)θ4 + (ψ4w2)θ4 + (φ4w3)θ4

)1/θ4
,

10
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where α = (α1, . . . , α4),ψ = (ψ1, . . . , ψ4),φ = (φ1, . . . , φ4) are all elements of ∆3.

M3 The asymmetric negative logistic model in [Joe, 1990] is defined via

A(w) = 1−
[
(ψ1(1− w))−θ + (ψ2w)−θ

]−1/θ
,

with parameters θ ∈ (0,∞), ψ1, ψ2 ∈ (0, 1]. The special case ψ1 = ψ2 = 1 returns the Galambos model

[Oliveira and Galambos, 1977].

M4 The asymmetric mixed model in [Tawn, 1988] corresponds to

A(w) = 1− (θ + κ)w + θw2 + κw3,

with parameters θ and κ satisfying θ ≥ 0, θ + 3κ ≥ 0, θ + κ ≤ 1, θ + 2κ ≤ 1. The special case κ = 0 and

θ ∈ [0, 1] yields the symmetric mixed model. In the symmetric mixed model, when θ = 0, we recover the

independent copula.

M5 The model of Hüsler and Reiss in [Hüsler and Reiss, 1989] is given by the Pickands dependence function

A(t) = (1− t)Φ
(
θ +

1

2θ
log

(
1− t
t

))
+ tΦ

(
θ +

1

2θ
log

(
t

1− t

))
,

where θ ∈ (0,∞) and Φ is the standard normal distribution function. As θ goes to 0+, the dependence between

the two variables increases. When θ goes to infinity, we are in case of near independence.

M6 The Student t-EV model in [Demarta and McNeil, 2005] is given by

A(w) = wtν+1(zw) + (1− w)tν+1(z1−w),

with zw = (1 + ν)1/2[{w/(1− w)}1/ν − θ](1− θ2)−1/2,

and parameters ν > 0, and θ ∈ (−1, 1), where tν+1 is the distribution function of a Student-t random variable

with ν + 1 degrees of freedom.

3.2 Description of numerical experiments

For each numerical experiment, the endpoint-corrected w-madogram estimator in (11) is computed using λj(w) =

wj . The study consists in three different experiments (E1, E2 and E3). For all experiments, the empirical

counterpart of the asymptotic variance given by Proposition 1 is computed out through a given grid of the simplex

∆d−1. For a given element w of this grid, niter ∈ N \ {0} random samples of size n are generated from the models

M1 to M6 given above. By using these samples we estimate the associated w-madogram. We thus compute the

empirical variance of the normalized estimation error namely,

EHn (w) , V̂ ar
(√
n
(
ν̂Hn (w)− ν(w)

))
, EH∗n (w) , V̂ ar

(√
n
(
ν̂H∗n (w)− ν(w)

))
, (15)
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where ν̂Hn and ν̂H∗n are the vectors composed out of the niter hybrid and corrected estimators (see Equations (10)

and (11)) of the w-madogram, respectively. We also define the Mean Integrated Squared Error (MISE) between

EHn and SH the asymptotic variance computed in Proposition 1 (resp. between EH∗n and SH∗), that is

MISEH , E
[∫

∆d−1

(
EHn (w)− SH(p,w)

)2
dw

]
, MISEH∗ , E

[∫
∆d−1

(
EH∗n (w)− SH∗(p,w)

)2
dw

]
. (16)

E1 We set d = 2. A Monte Carlo study is implemented here to illustrate Proposition 1 in finite-sample setting

with missing data. We consider M2, M3, M4, M5 and M6 where we fix niter = 300 and n = 1024. The

chosen grid is {1/200, . . . , 199/200} and we take p1 = p2 = 0.75. We estimate MISEH in (16) by

M̂ISE
H
n =

1

10

10∑
l=1

1

199

199∑
k=1

(
EHn,l

(
k

200

)
− SH

(
p,

k

200

))2

,

with EHn,l, l ∈ {1, . . . , 10} is the empirical counterpart of SH taking the empirical variance of 30 estimators

ν̂Hn (w) where w = (k/200, 1− k/200) and k ∈ {1, . . . , 199}. Each estimator of the w-madogram is computed

out through a random sample with n = 1024. By using the second equation in (16), the estimator M̂ISE
H∗
n

is defined similarly.

E2 We fix d = 3 and we consider M1 and M2 with niter = 100 and n = 512. We set the dependence parameter as

θ = 1 and θ = 2 for the first model. For the second one we take α = (0.4, 0.3, 0.1, 0.2), ψ = (0.1, 0.2, 0.4, 0.3),

φ = (0.6, 0.1, 0.1, 0.2) and θ = (θ1, . . . , θ4) = (0.6, 0.5, 0.8, 0.3) as the dependence parameter. We take

p1 = p2 = p3 = 0.9 and thus p = 0.729, pij = 0.81 with i, j ∈ {1, 2, 3} and i < j. We grid the [0, 1]2 cube into

10000 points at same distance from each other and we only keep those with w2 + w3 < 1.0 where w2 and w3

are in the grid of the cube, we set w1 = 1−w2−w3. Let ∆d−1
n be 199 points uniformly sampled from ∆2 and

niter = 300, Equation (16) is estimated with

M̂ISE
H
n =

1

10

10∑
l=1

1

199

∑
k∈∆d−1

n

(
EHn,l (k)− SH (p, k)

)2
,

where EHn,l, l ∈ {1, . . . , 10} is the empirical counterpart of SH taking the empirical variance of 30 estimators

ν̂Hn (w) with w ∈ ∆d−1
n . Each estimator of the w-madogram is computed out through a random sample with

n = 512. Again, M̂ISE
H∗
n is defined in a similar way.

E3 In this experiment, we aim to show that our conclusions are verified in a high dimension setting. We compute

empirical counterpart of the asymptotic variance for a varying dimension d and we compare its value to the

theoretical one given by Proposition 1. Furthermore, as the probability of observing a complete row decrease

quickly with respect to the dimension d, i.e. p = p−d1 , we set that there is no missing data. We consider the

symmetric logistic model with dependence parameter θ = 2. We sample 300 points from the unit simplex

∆d−1 and we compute the following quantity

δHn (w) ,

∣∣EHn (w)− SH(1,w)
∣∣

SH(1,w)
, (17)
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where EHn is computed from niter = 100 estimators of the w-madogram with sample size n ∈ {216, 512, 1024}.
The results are collected for several values of d ∈ {5, 10, . . . , 40}.

Note that for Experiments E1 and E2, the missing mechanism is such as I1, . . . , Id are pairwise independent and

pj = p1,∀j ∈ {1, . . . , d}. The independence setup corresponds to the worst scenario where the missingness of one

variable does not influence the missingness of the other variables. A contrario, if we suppose that I1, . . . , Id are

strongly dependent, i.e. none or all entries are missing, we then estimate a statistic on a sample of average length

p× n and we are turning back to inference in a complete data framework with a reduced sample size. This is also

readily seen from the closed formula in Proposition 1, indeed in a strongly dependent setting we have p = p1, so

the asymptotic variance is reduced to the complete data framework up to a multiplicative factor.

3.3 Results of experiments

Results of Experiment E1 are depicted in Figure 1. For all panels, empirical counterparts given by Equation (15)

(points) fit the theoretical values exhibited from Proposition 1 (solid lines). For the hybrid estimator, as discussed

in Remark 1, both empirical and theoretical values of the asymptotic variance are different from zero for each

w ∈ {{0}, {1}}. The corrected version provides this feature and also modifies the shape of the curve (see Remark

2). Indeed the asymptotic behavior of the hybrid and the corrected estimators are different in the missing data

framework. Notice that, in terms of variance, we do not have a strict dominance from one estimator to another.

Results for Experiment E2 are depicted in Figures 2 and 3. In Figure 2, empirical counterparts given by Equation

(15) are depicted with points and closed expressions of the asymptotic variance given by Proposition 1 are drawn

by a surface. Figure 3 presents the same studies differently by showing the level sets associated to the surfaces of

Figure 2. As in Experiment E1, empirical counterparts given by the points fits the surface. Also, for the first row

of Figure 2, we see that if w ∈ {{e1}, {e2}, {e3}} then both theoretical and empirical counterparts are different

from zero while this feature no longer applies in the second row with the introduction of the corrected version. In

this two figures, we see that EHn and EH∗n and their empirical counterparts are close.

In order to quantify errors in Figures 1 and 2, in Table 1 are displayed M̂ISE
H
n and M̂ISE

H∗
n for the corresponding

models in Experiments E1 and E2 to appreciate the proximity between the terms EHn and SH (respectively for the

corrected terms EH∗n and SH∗). As indicated by Figures 1 and 2, errors in Table 1 are close to zero.

E1 E2

MISE (×10−5) GAL ANL ASL ASM HR tEV IND LOG ASL

M̂ISE
H
n 2.49 8.10 2.43 1.85 1.89 1.93 2.93 1.31 3.40

M̂ISE
H∗
n 2.77 7.02 2.04 1.94 1.96 1.93 1.95 1.57 2.91

Table 1: Estimation of MISEH and MISEH∗ (×10−5) defined in (16) for Experiment E1 in the sixth first columns
and E2 in the last three columns.

Figure 4 illustrates the results of Experiment E3 where we have drawn boxplots for Equation (17). Not surprisingly,

we observe that both the size of the boxplots and the median value are increasing with d. However, this augmentation

drops as the sample size n increases and seems to appear as reasonable and able to handle the case of rather high
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Figure 1: EHn in red and EH∗n in green (see (15)) as a function of w, of the asymptotic variances of the estimators
of the w-madogram for six extreme-value copula models. The empirical variances are based on 300 samples of size
n = 1024. Solid lines are the theoretical value given by Proposition 1.
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Figure 2: EHn (first row) and EH∗n (second row) given by (15) as a function of w-madogram. The empirical variances
are based on 100 samples of size n = 512. Empirical counterparts are represented with points and theoretical values
given by Proposition 1 are drawn by a surface.
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Figure 3: Level sets of EHn and EH∗n , as a function of w, of the asymptotic variances of the estimators of the
w-madogram. We present the level sets corresponding to sufaces of Fig 2. On the left panel is represented the
theoretical value given by Proposition 1 while on the right the empirical counterpart is given.

15



dimensional data. A limitation (due to computation time issues) of this figure is that the number of points on the

simplex is constant (= 300) as a function of the dimension.
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Figure 4: Boxplots for δHn for different values of d and n.

4 Extremal dependence rainfall analysis via hybrid madogram

In climate studies, extreme events such as heavy precipitations represent major challenge since damages from

extreme weather events may have heavy consequences in both economic and human terms. Their spatial charac-

teristics are of a prime interest and w-madogram and its estimator studied in this paper (see Equation (10)) are

able to capture those characteristics. A seminal application which bridges extreme value theory and geostatistics is

the study of extreme rainfall since we expect spatial dependence among the recording weather stations. Precisely,

we observe daily precipitation at station j ∈ {1, . . . , d} over n years. Concerning extreme events, one cannot use

directly the observation for inference and we focus on block maxima. The block maxima approach is based on

the observation of a sample of block maxima Xi = (Xi,1, . . . , Xi,d) where Xi,j corresponds to the maximum at

station j ∈ {1, . . . , d} within the ith disjoint block of observation. A block could be either hourly, daily or annual

for example. Consistent to our approach, we do not observe Xi but an incomplete vector X̃i ∈
⊗d

j=1(R+ ∪ NA).

Our main goal is to estimate the extremal dependence between maxima of groups of station. This will be done for

several clusters within which similar climate characteristics are envisaged leading to dependence among extremes.

For each cluster, we compute the corrected hybrid madogram in Equation (10). This quantity is used to estimate

the extremal coefficient (see for instance [Smith, 1990]), using the relation between the Pickands and the madogram

given in Equation (5), defined by

θ = dA

(
1

d
, . . . ,

1

d

)
. (18)
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This satisfies the condition 1 ≤ θ ≤ d, where the lower and upper bounds represent the case of complete positive

dependence and independence among the extremes, respectively. Since its upper bound depends on d, the extremal

coefficient can, alas, only be used to compare clusters of the same size. In each cluster, the extremal coefficient in

(18) is estimated by θ̂n = d ÂH∗n where ÂH∗n is given in Definition 3.

We illustrate the proposed methodology on rainfall data measured in millimimeter registred in 95 stations in

Center Eastern Canada for a duration of 24 hours publicly available in the section engineering climate datasets

of the Government of Canada website. Annual maxima precipitations for a 24-hour duration are recorded from

1914 to 2017. The location of stations in Fig. 5 are given in the WGS84 coordinate space in order to have

Euclidean distance between the stations and taking account of the geodesic geometry of the Earth. A specific

characteristic of the considered rainfall data is the sparsity of the recorded data, i.e. a lot of recordings are missing

(see [Palacios-Rodriguez et al., 2021] for details). Four stations were removed of the analysis due to a tiny coverage

of the observation period. As the measurements are maxima over a long period of time, it is reasonable to assume

that they come from a multivariate extreme value distribution see Equation (1). The dataset we consider in this

section and codes are available in the github repository.

With the remaining 91 stations, we compare the extremal dependence between several groups of stations as it

has been done by [Marcon et al., 2017] (see Section 5) for France using a dataset with complete observations. We

emphasize that the comparison of the extremal coefficient is solely relevant when clusters are of the same size. Thus,

clusters were obtained by running the constrained k-means algorithm on the station coordinates (see for instance

[Bradley et al., 2000]) by forcing clusters of the same size : d = 7 or d = 13, i.e. 13 groups of 7 stations and vice

versa. As overlapping data naturally decrease as the size of clusters increases, the case of cluster size d = 13 cannot

be considered here. Among the 13 clusters of size d = 7, we only keep those having at least 10 overlapping annual

maxima within the cluster which results on 7 remaining clusters depicted in Figure 5a. The estimated coefficient

range is between 3.88, indicating strong dependence, and 5.07, indicating medium dependence (see Figure 5b).
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(a) Resulting clusters using constrained k-means
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(b) Values of the extremal coefficient for each cluster

Figure 5: Analysis of Canadian annual rainfall maxima in the period 1914-2017. (a) Spatial representation of the
7 selected clusters obtained via the constrained k-means algorithm. (b) Clusters of 49 weather stations and their
estimated extremal coefficients (with d = 7) obtained with the corrected version of the hybrid madogram.
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Our estimations suggest an acute dependence among extremes in clusters 1-3 in Figure 5a. We can observe in Figure

5b that extreme precipitations are more likely to be dependent in the central coastal Atlantic region, a contrario,

one can notice a weak dependence among extreme values in the scattered clusters in the north of the region.

5 Conclusions

A method based on madograms to estimate multivariate extremal dependencies with allowing missing data has

been developed in this paper. Under the MCAR hypothesis, we studied the asymptotic behaviour for the proposed

estimators. This approach is of interest to study spatio-temporal process ponctually observed as observations may

not overlap. Moreover, we have derived closed expressions of their respective asymptotic variances for a fixed

element in the simplex. Numerical results in a finite sample setting give further evidences to our theoretical results

and on performances of the proposed estimators of the madogram in the missing data setting. Finally, we applied

our approach to the study of extremal dependencies of annual maxima of daily rainfall in Central Eastern Canada.

As for future work, an interesting improvement could be to lower the MCAR assumption on the misssing data.

Indeed, estimating nonparametrically the empirical copula process with missing data outside this framework is

still unexplored. As a starting point, semiparametric inference for copula and copula based-regression allowing

missing data under Missing At Random (MAR) mechanism have been studied by [Hamori et al., 2019] and

[Hamori et al., 2020].

Another interesting direction could also be to build a dissimiliraty measure based on the bivariate w-madogram for

clustering. This approach was already tackled by [Bernard et al., 2013], [Bador et al., 2015] and [Saunders et al., 2021]

to partition respectively France, Europe and Australia with respect to extreme observations using the sole mado-

gram. The idea here could be to use the infimum or the integral over w ∈ (0, 1) of the bivariate w-madogram as a

dissimilarity measure and to show its strong consistency in the sense formulated by [Pollard, 1981]. One limitation

of our application is that clusters of same size is mandatory to compare the estimated extremal coefficient between

clusters in Equation (18). This feature stems from the bounds of the Pickands dependence function which depends

on the dimension of the extremal random vector. Further investigations are thus needed to interpret extremal

coefficient between clusters of different sizes, e.g. to assess asymptotic independence between two extremal random

vectors.
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A Proofs

A.1 Proofs of main results

For the rest of this section, we will write, for notational convenience, ni = Πd
j=1Ii,j and N =

∑n
i=1 ni. The following

proof gives arguments used to establish the functional central limit theorem of our processes defined in Equation

(12). Before going into details, we need an intermediary lemma to assert that the empirical cumulative distribution

functions in case of missing data verify Assumption C and give covariance functions of the asymptotic processes

α and βj with j ∈ {1, . . . , d}. This result comes down from [Segers, 2015] (see Example 3.5) where the result was

proved for bivariate random variables but the higher dimension is directly obtained using same arguments.

Lemma 1. Let (
√
n(F̂n − F );

√
n(F̂n,1 − F1), . . . ,

√
n(F̂n,d − Fd)) with F̂n and F̂n,j for j ∈ {1, . . . , d} as in (7).

Then Assumption C is satisfied with

βj(uj) = p−1
j G

(
1{Xj≤F←j (uj),Ij=1} − uj1{Ij=1}

)
, j ∈ {1, . . . , d},

α(u) = p−1G
(
1{X≤F←d (u),I=1} − C(u)1{I=1}

)
,

where G is a tight Gaussian process. Furthermore the covariance functions of the processes βj(uj), α(u), for

(u,v, vk) ∈ [0, 1]2d+1, j ∈ {1, . . . , d} and j < k, are given by

cov (βj(uj), βj(vj)) = p−1
j (uj ∧ vj − ujvj) ,

cov (βj(uj), βk(vk)) =
pjk
pjpk

(C(1j,k(uj , vk))− ujvk) ,

cov (α(u), α(v)) = p−1 (C(u ∧ v)− C(u)C(u)) ,

cov (α(u), βj(vj)) = p−1
j (C(uj(uj ∧ vj))− C(u)vj) ,

where u ∧ v denotes the vector of componentwise minima and pjk = P(Ij = 1, Ik = 1).

Proof of Lemma 1 is postponed to A.2.

Proof of Theorem 1 First, let us define the rank-corrected hybrid copula process suited with our estimator and

its associated empirical copula process by

ĈRn (u) =
1∑n

i=1 Πd
j=1Ii,j

n∑
i=1

Πd
j=11{Ũi,j≤uj}Ii,j , CRn =

√
n
(
ĈRn − C

)
.

One can show that

sup
u∈[0,1]d

∣∣∣ĈHn (u)− CRn (u)
∣∣∣ ≤ 2d

np̂n
,

with p̂n = n−1
∑n
i=1 Πd

j=1Ii,j . Note that p̂n converges in probability to p ∈]0, 1] which implies that the difference

between ĈHn and ĈRn is asymptotically negligible. Details for the proof are given solely for the estimator ν̂H∗n as the

weak convergence for ν̂Hn is obtained similarly via an adequate continuous transformation of ν̂Hn with ĈRn . Using
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that E[Fj(Xj)
α] = (1 + α)−1 for α 6= −1, we can write ν(w) as :

ν(w) =E

 d∨
j=1

{Fj(Xj)}1/wj − 1

d

d∑
j=1

{Fj(Xj)}1/wj

+

d∑
j=1

λj(w)(d− 1)

d

(
wj

1 + wj
− E

[
{Fj(Xj)}1/wj

])

=E

 d∨
j=1

{Fj(Xj)}1/wj

− 1

d

d∑
j=1

(1 + λj(w)(d− 1))E
[
{Fj(Xj)}1/wj

]
+ a(w),

with a(w) = (d− 1)d−1
∑d
j=1 λj(w)wj/(1 + wj). Let us note by gw the function defined as

gw : [0, 1]d → [0, 1], u 7→
d∨
j=1

u
1/wj

j − 1

d

d∑
j=1

(1 + λj(w)(d− 1))u
1/wj

j .

One can write our estimator of the w-madogram and the theoretical w-madogram in missing data framework as an

integral with respect to the rank-corrected hybrid copula estimator and the copula function, respectively. We thus

have:

ν̂H∗n (w) =
1

N

n∑
i=1

gw

(
Ũi,1, . . . , Ũi,d)

)
Πd
j=1Ii,j + a(w) =

∫
[0,1]d

gw (u) dĈRn (u) + a(w),

ν(w) =

∫
[0,1]d

gw (u) dC(u) + a(w).

We obtain, proceeding as in Theorem 2.4 of [Marcon et al., 2017] :

√
n
(
ν̂H∗n (w)− ν(w)

)
=

1

d

d∑
j=1

(1 + λj(w)(d− 1))

∫
[0,1]

CRn (1j(x
wj ))dx−

∫
[0,1]

CRn (xw1 , . . . , xwd) dx,

where 1j(u) denotes the vector composed out of 1 except for the jth component where u does stand and with CHn
in (9). Consider the function φ : `∞([0, 1]d)→ `∞(∆d−1), f 7→ φ(f), defined by

(φ)(f)(w) =
1

d

d∑
j=1

(1 + λj(w)(d− 1))

∫
[0,1]

f(1j(x
wj ))dx−

∫
[0,1]

f(xw1 , . . . , xwd)dx.

This function is linear and bounded thus continuous. The continous mapping theorem (see, e.g., Theorem 1.3.6 of

[van der Vaart and Wellner, 1996]) implies, as n→∞

√
n(ν̂H∗n − ν) = φ(CRn ) φ(SC),

in `∞(∆d−1). Recall that SC is the asymptotic process where CHn does converge in the sense of the weak convergence

in `∞(∆d−1) and is defined by SC(u) = α(u)−
∑d
j=1 βj(uj)Ċj(u) with u ∈ [0, 1]d and α and βj are processes defined

in Lemma 1. We note that SC(1j(x
wj )) = α(1j(x

wj ))− βj(uj) and we obtain our statement.

The asymptotic normality of our estimators directly comes down from being a linear transformation of a tight

Gaussian process for w ∈ ∆d−1. The proof below uses technical arguments to exhibit the closed expressions of the
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asymptotic variances of the Gaussian limit distributions of our estimators in Equation (10) and (11). Furthermore,

this proof strengthen our choice of the definition of the corrected estimator. Indeed, the chosen form of the corrected

estimator makes computations more tractable as we only have to compute terms for the hybrid estimator and to

multiply those by different factors. Two tools make the computation feasible. The first one is the form exhibited by

Equation (2) which transforms a double integral with respect to the trajectory of the copula function as the double

integral of a power function. When this trick is not possible, again the expression of the extreme value copula with

respect to the Pickands dependence function is of main interest. Indeed, with some substitutions, we are able to

express the double integrals as the integral with respect to the Pickands dependence function using the following

equality :

−
∫

[0,1]

wα ln(w) dw =
1

(α+ 1)2
,

where α 6= −1.

Proof of Proposition 1 Recall that p = (p1, . . . , pd, p). By definition the asymptotic variance SH(p,w) for a

fixed w ∈ ∆d−1 is given by

SH(p,w) := V ar

1

d

d∑
j=1

∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx−

∫
[0,1]

SC(xw1 , . . . , xwd)dx

 .

Using properties of the variance operator, we thus obtain

SH(p,w) =
1

d2

d∑
j=1

V ar

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx

)
+ V ar

(∫
[0,1]

SC(xw1 , . . . , xwd)dx

)

+
2

d2

∑
j<k

cov

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx,

∫
[0,1]

α(1k(xwk))− βk(xwk)dx

)

− 2

d

d∑
j=1

cov

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx,

∫
[0,1]

α(xw1 , . . . , xwd)dx

)

+
2

d

d∑
j=1

d∑
k=1

cov

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx,

∫
[0,1]

βk(xwk)Ċk(xw1 , . . . , xwd)dx

)
.

By definition of the covariance functions of α , βj with j ∈ {1, . . . , d} given in Lemma 1, we have for the variance

terms

V ar

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx

)
=
(
p−1 − p−1

j

)
σ2
j (w),

V ar

(∫
[0,1]

SC(xw1 , . . . , xwd)dx

)
= σ2

d+1(p,w).
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We obtain similarly for the covariance terms

cov

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx,

∫
[0,1]

α(1k(xwk))− βk(xwk)dx

)
=

(
p−1 − p−1

j − p
−1
k +

pjk
pjpk

)
σjk(w),

cov

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx,

∫
[0,1]

α(xw1 , . . . , xwd)dx

)
=
(
p−1 − p−1

j

)
σ

(1)
j (w),

cov

(∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx,

∫
[0,1]

βk(xwk)Ċk(xw1 , . . . , xwd)dx

)
=

(
p−1
k −

pjk
pjpk

)
σ

(2)
jk (w).

We first show in details the closed form for σ2
d+1, the other forms are given without explanations as the technical

tools used are those used for σ2
d+1. Proceding as before, we decompose this quantity as a linear combination of

the variance (the squared term γ2
1 and γ2

j for j ∈ {1, . . . , d}) and the covariance terms (γ1j and τjk) with the

probabilities of missing. The explicit formula of these quantities will be defined below. We set

σ2
d+1(p,w) = p−1γ2

1(w) +

d∑
j=1

p−1
j γ2

j (w)− 2

d∑
j=1

p−1
j γ1j(w) + 2

∑
j<k

pjk
pjpk

τjk(w). (19)

Let us exhibit a useful form of the partial derivatives of the extreme value copula. We have ∀j ∈ {1, . . . , d} :

Ċj(u) =
C(u)

uj
˙̀
j(− ln(u1), . . . ,− ln(ud)).

Furthermore, as `(x1, . . . , xd) is homogeneous of degree 1, the partial derivative ˙̀
j(x1, . . . , xd) is homogeneous of

degree 0 for j ∈ {1, . . . , d}. We thus obtain a suitable form of the partial derivatives of the extreme value copula

for u ∈]0, 1[ and w ∈ ∆d−1 :

Ċj(u
w1 , . . . , uwd) =

uA(w)

uwj

˙̀
j(−w1 ln(u), . . . ,−wd ln(u)) =

uA(w)

uwj

˙̀
j(−w1, . . . ,−wd) =

uA(w)

uwj
µj(w),

where µj(w) , ˙̀
j(−w1, . . . ,−wd). Now, using linearity of the integral and the definition of the covariance function

of α, we obtain

p−1γ2
1(w) , E

[∫
[0,1]

α(uw1 , . . . , uwd)du

∫
[0,1]

α(vw1 , . . . , vwd)dv

]

=
2

p

∫
[0,1]

∫
[0,v]

uA(w)(1− vA(w))duv.

Let us compute

γ2
1(w) = 2

∫
[0,1]

∫
[0,v]

uA(w)(1− vA(w))duv =
1

(1 +A(w))2

A(w)

2 +A(w)
.
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The quantity γ2
j (w) is defined by the following

p−1
j γ2

j (w) , E
[ ∫

[0,1]

βj(u
wj )Ċj(u

w1 , . . . , uwd)du

∫
[0,1]

βj(u
wj )Ċj(v

w1 , . . . , vwd)dv

]
=

2

pj

∫
[0,1]

∫
[0,v]

uwj (1− vwj )µj(w)µj(w)uA(w)−wjvA(w)−wjduv.

It is clear that

γ2
j (w) = 2

∫
[0,1]

∫
[0,v]

uwj (1− vwj )µj(w)µj(w)uA(w)−wjvA(w)−wjduv =

(
µj(w)

1 +A(w)

)2
wj

2A(w) + 1 + 1− wj
.

We now deal with cross product terms, the first we define is

p−1
j γ1j(w) , E

[ ∫
[0,1]

α(uw1 , . . . , uwd)du

∫
[0,1]

βj(v
wj )Ċj(v

w1 , . . . , vwd)dv

]
= p−1

j

∫
[0,1]2

(
C(uw1 , . . . , (u ∧ v)wj , . . . , uwd)− uA(w)vwj

)
Ċj(v

w1 , . . . , vwd)duv.

Under the rectangle [0, 1]× [0, v], we have

γ1j(w) =

∫
[0,1]×[0,v]

(
C(uw1 , . . . , uwj , . . . , uwd)− uA(w)vwj

)
Ċj(v

w1 , . . . , vwd)duv

=

∫
[0,1]×[0,v]

uA(w)(1− vwj )vA(w)−wjµj(w)duv =
µj(w)

2(1 +A(w))2

wj
2A(w) + 1 + (1− wj)

.

Under the rectangle [0, 1]× [0, u], we have for the right term∫
[0,1]×[0,u]

uA(w)vwjvA(w)−wjµj(w)dvu =
µj(w)

2(1 +A(w))2
.

For the left term, by definition, we have∫
[0,1]×[0,u]

C(uw1 , . . . , vwj , . . . , uwd)Ċj(v
w1 , . . . , vwd)dvu.

Let us consider the substitution x = vwj and y = u1−wj , we obtain

1

wj(1− wj)

∫
[0,1]

∫
[0,ywj/(1−wj)]

C
(
yw1/(1−wj), . . . , x, . . . , ywd/(1−wj)

)
×

Ċj

(
xw1/wj , . . . , xwd/wj

)
x(1−wj)/wjywj/(1−wj)dxy.

Let us compute the quantity

Ċj(x
w1/wj , . . . , xwd/wj ) =

C(xw1/wj , . . . , xwd/wj )

x
µj(w).
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Using Equation (1), we have

C(xw1/wj , . . . , xwd/wj ) = exp

(
−`
(
− ln(x)

wj
w1, . . . ,

ln(x)

wj
wd

))
= exp

(
− ln(x)

wj
` (−w1, . . . ,−wd)

)
= xA(w)/wj = xAj(w),

where we use the homogeneity of order one of ` and that −`(−w1, . . . ,−wd) = A(w) as stated by the identity of

Equation (2) and that w ∈ ∆d−1. Now, consider the substitution x = w1−s and y = ws, the jacobian of this

transformation is given by − ln(w), we have

− µj(w)

wj(1− wj)

∫
[0,1]

∫
[0,1−wj ]

C
(
wsw1/(1−wj), . . . , w1−s, . . . , wswd/(1−wj)

)
w

(1−s)
[
Aj(w)+

1−wj
wj
−1
]
+s

wj
1−wj ln(w)dsw,

where we note by Aj(w) := A(w)/wj with j ∈ {1, . . . , d}. We now compute the quantity

C
(
wsw1/(1−wj), . . . , w1−s, . . . , wswd/(1−wj)

)
.

Using the same techniques as above, we have

C
(
wsw1/(1−wj), . . . , w1−s, . . . , wswd/(1−wj)

)
= exp

(
−`
(
− sw1

1− wj
ln(w), . . . ,−(1− s) ln(w), . . . ,− swd

1− wj
ln(w)

))
= exp

(
− ln(w)`

(
− sw1

1− wj
, . . . ,−(1− s), . . . ,− swd

1− wj

))
.

Now, using that w ∈ ∆d−1, remark that s
∑
i 6=j wi/(1− wj) = s, we have, using Equation (2)

−`
(
− sw1

1− wj
, . . . ,−(1− s), . . . ,− swd

1− wj

)
= A (zj(1− s)) ,

where z = (sw1/(1− wj), . . . , swd/(1− wj)). So we have

γ1j(w) = − µj(w)

wj(1− wj)

∫
[0,1−wj ]

∫
[0,1]

w
A(zj(1−s))+(1−s)

(
Aj(w)+

1−wj
wj
−1
)

+s
wj

1−wj ln(w)dws

=
µj(w)

wj(1− wj)

∫
[0,1−wj ]

[
A (zj(1− s)) + (1− s)

(
Aj(w) +

1− wj
wj

− 1

)
+ s

wj
1− wj

+ 1

]−2

ds.

No further simplifications can be obtained. For j < k, let us define the quantity τjk such as

pjk
pjpk

τjk(w) , E
[ ∫

[0,1]

βj(u
wj )Ċj(u

w1 , . . . , uwd)du

∫
[0,1]

βk(vwk)Ċk(vw1 , . . . , vwd)dv

]
. (20)

Again, we have

τjk(w) =

∫
[0,1]2

(C(1jk(uwj , vwj ))− uwjvwj ) Ċj(u
w1 , . . . , uwd)Ċk(vw1 , . . . , vwd)duv.
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We set x = uwj and y = vwk , the left side becomes

τjk(w) =
1

wjwk

∫
[0,1]2

C(1jk(x, y))Ċj(x
w1/wj , . . . , xwd/wj )Ċk(yw1/wk , . . . , ywd/wk)x(1−wj)/wjy(1−wk)/wkdxy

=
µj(w)µk(w)

wjwk

∫
[0,1]2

C(1jk(x, y))xAj(w)+(1−wj)/wj−1yAk(w)+(1−wk)/wk−1dxy.

Now, we set x = w1−s and y = ws and we obtain

τjk(w) =

µj(w)µk(w)

wjwk

∫
[0,1]

[
A(0jk(1− s, s)) + (1− s)

(
Aj(w) +

1− wj
wj

− 1

)
+ s

(
Ak(w) +

1− wk
wk

− 1

)
+ 1

]−2

ds.

The right side of Equation (20) is given by∫
[0,1]2

uwjvwk Ċj(u
w1 , . . . , uwd)Ċk(vw1 , . . . , vwd)duv =

µj(w)µk(w)

(1 +A(w))2
.

Hence the result for σ2
d+1(w). Using the same techniques, we show that for j ∈ {1, . . . , d}

σ2
j (w) =

∫
[0,1]2

(u ∧ v)wj − uwjvwjduv =
1

(1 + wj)2

wj
2 + wj

.

For j < k, we compute

σjk(w) =

∫
[0,1]2

C(1jk(uwj , vwk))− uwjvwkduv

=
1

wjwk

∫
[0,1]

[
A(0jk(1− s, s)) + (1− s)1− wj

wj
+ s

1− wk
wk

+ 1

]−2

ds− 1

1 + wj

1

1 + wk
.

Let j ∈ {1, . . . , d}, thus

σ
(1)
j (w) =

∫
[0,1]2

C (uw1 , . . . , (u ∧ v)wj , . . . , uwd)− C(uw1 , . . . , uwd)vwjds

=
1

wj(1− wj)

∫
[0,1]

[
A(zj(1− s) + (1− s)1− wj

wj
+ s

wj
1− wj

+ 1

]−2

ds+
1

1 +A(w)

[
1

2 +A(w)
− 1

1 + wj

]
.

Now, for σ
(2)
jk , we have to consider three cases :

� if j = k, we directly have

σ
(2)
jk (w) = 0,
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� if j < k, we obtain

σ
(2)
jk (w)

=
µk(w)

wjwk

∫
[0,1]

[
A(0jk(1− s, s)) + (1− s)1− wj

wj
+ s

(
Ak(w) +

1− wk
wk

− 1

)
+ 1

]−2

ds− µk(w)

1 +A(w)

1

1 + wj
,

� if j > k, we have

σ
(2)
jk (w)

=
µk(w)

wjwk

∫
[0,1]

[
A(0kj(1− s, s)) + s

1− wj
wj

+ (1− s)
(
Ak(w) +

1− wk
wk

− 1

)
+ 1

]−2

ds− µk(w)

1 +A(w)

1

1 + wj
.

Hence the statement.

The following lines will give some details to establish the explicit formula of the asymptotic variance when we

suppose that components of the random vector X are independent. In this framework, we have that µj(w) = 1

for every j ∈ {1, . . . , d} and thus Ċj(u
w1 , . . . , uwd) = u1−wj . Furthermore, in the independent case, most of the

integrals are reduced to zero.

Proof of Corollary 1 In the term σ2
d+1 given in Equation (19), only the terms γ2

1 , γ2
j and γ1j matter because,

in the independent case :

τjk(w) =

∫
[0,1]2

(uwjvwk − uwjvwk) Ċj(u
w1 , . . . , uwd)Ċk(vw1 , . . . , vwd)duv = 0.

For γ1j , we have to compute

γ1j(w) = 2

∫
[0,1]×[0,v]

u(1− vwj )v1−wjduv =
1

4

wj
4− wj

.

For γ2
1 and γ2

j , we just have to set A(w) = 1 in their respective expressions to obtain :

γ2
1(w) =

1

12
, γ2

j =
1

4

wj
4− wj

.

We thus have

σ2
d+1(p,w) =

1

4

 1

3p
−

d∑
j=1

p−1
j

wj
4− wj

 .

Other computations follow from the same arguments.

We are now going to prove Proposition 2. The strong consistency of the our estimators will be established in a two-

step process : first, we prove the strong consistency of the estimator νn(w) which is the nonparametric estimator
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of the w-madogram with known margins and, second, we show that the limit of

sup
j∈{1,...,d}

sup
i∈{1,...,n}

∣∣∣∣Ũ1/wj

i,j −
{
Fj(X̃i,j)

}1/wj

∣∣∣∣ ,
is zero almost surely. Before going into the main arguments, we need the following lemma.

Lemma 2. We have, ∀i ∈ {1, . . . , n}∣∣∣∣∣∣
d∨
j=1

Ũ
1/wj

i,j −
d∨
j=1

{
Fj(Xj)

}1/wj

∣∣∣∣∣∣ ≤ sup
j∈{1,...,d}

∣∣∣Ũ1/wj

i,j −
{
Fj(Xj)

}1/wj

∣∣∣ .

The proof of Lemma 2 is postponed to A.2.

Proof of Proposition 2 We prove it for ν̂Hn (w) as the strong consistency for ν̂H∗n (w) uses the same arguments.

The estimator ν̂Hn (w) in (10) is strongly consistent since it holds

∣∣ν̂Hn (w)− ν(w)
∣∣ =

∣∣ν̂Hn (w)− νn(w) + νn(w)− ν(w)
∣∣ ≤ ∣∣ν̂Hn (w)− νn(w)

∣∣+ |νn(w)− ν(w)| ,

where

νn(w) =
1

N

n∑
i=1

 d∨
j=1

{
Fj(X̃i,j)

}1/wj

− 1

d

d∑
j=1

{
Fj(X̃i,j)

}1/wj

ni

 .
By direct application of Assumption B and the law of large number, we have that

|νn(w)− ν(w)| a.s.→
n→∞

0

For the second term, we write :

∣∣ν̂Hn (w)− ν(w)
∣∣ ≤ 1

N

n∑
i=1

∣∣∣∣∣∣
d∨
j=1

{
F̂n,j(X̃i,j)

}1/wj

−
d∨
j=1

{Fj(Xj)}1/wj

∣∣∣∣∣∣ni
+

1

Nd

n∑
i=1

d∑
j=1

∣∣∣∣{F̂n,j(X̃i,j)
}1/wj

−
{
Fj(X̃i,j)

}1/wj

∣∣∣∣ni
≤2 sup

j∈{1,...,d}
sup

i∈{1,...,n}

∣∣∣∣{F̂n,j(X̃i,j)
}1/wj

−
{
Fj(X̃i,j)

}1/wj

∣∣∣∣ ,
where we used Lemma 2 to obtain the second inequality. The right term converges almost surely to zero by

Glivencko-Cantelli Theorem and the uniform continuity of x 7→ x1/wj on [0, 1].

Finally, we give some elements to establish Corollary 2. The strong consistency follows directly from the stability of

the almost surely convergence through a continuous fuction. The weak convergence comes down from the functional

Delta method (see, e.g., Theorem 3.9.4 of [van der Vaart and Wellner, 1996]) and from result in Proposition 1.

27



Proof of Corollary 2 Applying the functional Delta method, we have as n→∞,

√
n
(
ÂH∗n (w)−A(w)

)
 − (1 +A(w))

2

{
1

d

d∑
j=1

(1 + λj(w)(d− 1))

∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx

−
∫

[0,1]

SC(xw1 , . . . , xwddx)

}
w∈∆d−1

.

For a fixed w ∈ ∆d−1, as a linear transformation of a tight Gaussian process, it follows that

√
n
(
ÂH∗n (w)−A(w)

)
d→

n→∞
N (0,V(p,w)) ,

with, V(p,w) equals by definition

V ar

− (1 +A(w))
2

{
1

d

d∑
j=1

(1 + λj(w)(d− 1))

∫
[0,1]

α(1j(x
wj ))− βj(xwj )dx−

∫
[0,1]

SC(xw1 , . . . , xwd)

}
dx


= (1 +A(w))4SH∗(p,w),

where we used Proposition 1 to conclude.

A.2 Proofs of auxiliary results

Proof of Lemma 1 Following [Segers, 2015] Example 3.5, we consider the functions from {0, 1}d × Rd into R :

for x ∈ Rd, and j ∈ {1, . . . , d}

fj(I,X) = 1{Ij=1}, gj,xj (I,X) = 1{Xj≤xj ,Ij=1}, fd+1 = Πd
j=1fj , gd+1,x = Πd

j=1gj,xj .

Let P denote the common distribution of the tuple (I,X). The collection of functions

F = {f1, . . . , fd, fd+1} ∪
d⋃
j=1

{gj,xj , xj ∈ R} ∪ {gd+1,x,x ∈ Rd}

is a finite union of VC-classes and thus P -Donsker (see Chapter 2.6 of [van der Vaart and Wellner, 1996]). The

empirical process Gn defined by

Gn(f) =
√
n

(
1

n

n∑
i=1

f(Ii,Xi)− E[f(Ii,Xi)]

)
, f ∈ F ,

converges in `∞(F) to a P -brownian bridge G. For x ∈ Rd,

F̂n,j(xj) =
pjFj(xj) + n−1/2Gngj,xj

pj + n−1/2Gnfj
,

F̂n(x) =
pF (x) + n−1/2Gngd+1,x

p+ n−1/2Gnfd+1
.
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We obtain for the second one

p
(
F̂n(x)− F (x)

)
= n−1/2

(
Gn(gd+1,x)− F̂n(x)Gn(fd+1)

)
= n−1/2 (Gn(gd+1,x − F (x)fd+1))− n−1/2Gn(fd+1)(F̂n(x)− F (x)).

We thus have

√
n
(
F̂n(x)− F (x)

)
= p−1 (Gn(gd+1,x − F (x)fd+1))− p−1Gn(fd+1)(F̂n(x)− F (x)).

Applying the central limit theorem and Assumption B gives that Gn(fd+1)
d→ N (0,P(fd+1 − Pfd+1)2), the law of

large numbers gives also F̂n(x)− F (x) = ◦P(1). Using Slutsky’s lemma gives us

√
n
(
F̂n(x)− F (x)

)
= p−1 (Gn(gd+1,x − F (x)fd+1)) + ◦P(1).

Similar reasoning might be applied to the margins, as a consequence, Assumption C is fulfilled with for u ∈ [0, 1]d,

βj(uj) = p−1
j G

(
gj,F←j (uj) − ujfj

)
,

α(u) = p−1G
(
gd+1,F←d (u) − C(u)fd+1

)
.

Let us compute one covariance function, the method still the same for the others, without loss of generality, suppose

that j < k, we have for uj , vk ∈ [0, 1]

cov(βj(uj), βk(vk)) = E
[
p−1
j G

(
gj,F←j (uj) − ujfj

)
p−1
k G

(
gk,F←k (vk) − vkfk

)]
=

1

pjpk
E
[
G
(
gj,F←j (ui) − ujfj

)
G
(
gk,F←k (vj) − vkfk

)]
=

1

pjpk
P
{
Xj ≤ F←j (uj), Xk ≤ F←k (vk), Ij = 1, Ik = 1

}
− pjk
pjpk

ujvk

=
1

pjpk
P
{
Xj ≤ F←j (uj), Xk ≤ F←k (vk)

}
P {Ij = 1, Ik = 1} − pjk

pjpk
ujvk

=
pjk
pjpk

(C(1jk(uj , vk))− ujvk) .

Hence the result.

Proof of Lemma 2 The lemma becomes trivial once we write, ∀i ∈ {1, . . . , n} and j ∈ {1, . . . , d}

Ũ
1/wj

i,j = {Fj(Xj)}1/wj + Ũ
1/wj

i,j − {Fj(Xj)}1/wj

≤ {Fj(Xj)}1/wj + sup
j∈{1,...,d}

∣∣∣Ũ1/wj

i,j − {Fj(Xj)}1/wj

∣∣∣
≤

d∨
j=1

{Fj(Xj)}1/wj + sup
j∈{1,...,d}

∣∣∣Ũ1/wj

i,j − {Fj(Xj)}1/wj

∣∣∣ .
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Taking the max over j ∈ {1, . . . , d} gives

d∨
j=1

Ũ
1/wj

i,j −
d∨
j=1

{Fj(Xj)}1/wj ≤ sup
j∈{1,...,d}

∣∣∣Ũ1/wj

i,j − {Fj(Xj)}1/wj

∣∣∣ .
Moreover, by symmetry of Ũi,j and Fj , the second one follows similarly.
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[Capéraà et al., 1997] Capéraà, P., Fougères, A.-L., and Genest, C. (1997). A nonparametric estimation procedure

for bivariate extreme value copulas. Biometrika, 84:567–577.

[Deheuvels, 1979] Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. un test non
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