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INTRODUCTION

Found at frequently high abundances, the mauve
stinger Pelagia noctiluca is a holoplanktonic scypho-
zoan jellyfish with a wide distribution. Populations
occur in both the North and South Atlantic (Miller et
al. 2012), as well as in all the major oceans (Mayer

1910). The species has a negative impact on tourism
(Bernard et al. 2011) because of its painful stings
(Maretic et al. 1991, Mariottini et al. 2008), on aqua-
culture by overwhelming fish farms and killing fish
(Doyle et al. 2008, Delannoy et al. 2011), and poten-
tially on the success of fish stocks such as tuna (Gor-
doa et al. 2013). In the Mediterranean Sea, P. noc-
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ABSTRACT: Four cohorts of the scyphozoan jellyfish Pelagia noctiluca were grown in the labora-
tory. For the first time, P. noctiluca was grown from eggs through to reproductive adults. The max-
imum life span in the laboratory was 17 mo. Pelagia noctiluca were first observed to release
gametes at an umbrella diameter of 2.4 cm. Laboratory growth under steady feeding conditions
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ephyrae stages compared with zooplankton, but good survival and ephyrae growth were only
obtained with a high-energy sea urchin egg diet. Maximal growth rates were up to 30% d−1 for
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observations would suggest that 230 d of continuous growth are required to reach the largest
mean size observed in the wild (June 2013, mean ± SD = 15.6 ± 2.8 cm, range = 12−21 cm). We sug-
gest that 90−120 d of continuous growth from planula larvae would yield reproductive individuals
under ideal growing conditions. We discuss the daily prey abundances required by each individ-
ual to sustain basal metabolism and the observed growth rates.
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tiluca has been a recurrent problem for centuries
(Goy et al. 1989). It has historically been observed to
be present or absent for several consecutive years,
with a periodicity of 10−12 yr (Goy et al. 1989, Kogov-
šek et al. 2010) attributed to climatic forcing. How-
ever, since 1994 this species has been present almost
continuously in the Ligurian Sea, NW Mediterranean
(Bernard et al. 2011, L. Berline & F. Lombard pers.
obs.), suggesting a prolonged period of more favour-
able environmental con ditions. Pelagia noctiluca is a
holoplanktonic species, developing directly from
planula larvae (Russell 1970, Rottini Sandrini &
Avian 1983), and therefore cannot rely on polyps to
survive through un favour able conditions.

Pelagia noctiluca has been repeatedly studied be -
cause of its high abundances and impact on the hu-
man environment. Seasonal and spatial abundance
estimates have been made (e.g. Bastian et al. 2011,
Ferraris et al. 2012, Rosa et al. 2013), including lo-
calised predictions of blooms (Berline et al. 2013). The
developmental stages have been well studied (Rottini
Sandrini & Avian 1983, Avian 1986), along with gut
contents and isotopic analyses (e.g. Giorgi et al. 1991,
Malej et al. 1993, Sabatés et al. 2010), but the quanti-
tative needs to sustain growth are still unknown.

Estimates of basal metabolic costs confirm that P.
noctiluca is able to withstand periods of starvation
(Larson 1987). Importantly though, the duration of
the life cycle, the size at maturation and whether
there are resting stages or adaptations to aid survival
as a holoplanktonic species are all unknown. Like-
wise, the rate of growth has only been observed in
short-term studies (Larson 1987, Malej & Malej 1992),
while the energy requirements to sustain growth have
not been quantified.

The objective of this study was to obtain reproduc-
tively viable P. noctiluca in the laboratory in order to
estimate the duration of the life cycle and to compare
growth rates between laboratory and in situ popula-
tions. We hypothesised that growth rates would allow
a life cycle of approximately 1 yr, to allow a direct
connection between successive generations.

MATERIALS AND METHODS

Jellyfish collection

Adult Pelagia noctiluca were collected individually
from the sea surface using a hand net during night
surveys in the Ligurian Sea (for details, see Ferraris
et al. 2012) or by kayak in the bay of Villefranche-
sur-Mer, France (43.696° N, 7.307° E). Fed P. nocti -

luca spawned daily, with fertilised eggs used to initi-
ate new growth experiments. Gametes and ephyrae
were transferred between culture containers using
a 0.5 cm wide glass pipette. On one occasion, wild
ephyrae were collected by plankton net (Regent net,
1 m diameter, 680 µm mesh size).

During 2013, all collected individuals were meas-
ured (bell diameter including lappets), sexed and
weighed (wet weight, precision 0.1 g) on return to
the laboratory. Mature male individuals have purple
gonads with parallel transverse lines of tissue; female
gonads are browner in colour, in a bunched, cauli-
flower-like form, and eggs are usually visible.

Experimental trials

Four cohorts of P. noctiluca were cultured in the lab-
oratory and measured repeatedly to obtain growth
rates for this species. One cohort was obtained from
wild-caught young ephyrae of 5 mm in diameter,
while the remaining larvae were obtained by mixing
the gametes of fertile wild adult P. noctiluca and cul-
turing the resulting planula larvae. All experiments
were performed at 18°C using 1 µm filtered seawater
in 5−15 l containers, depending on the organism size.
Younger individuals required maintenance in suspen-
sion using motorised PVC paddles rotating at 6 rpm
(Table 1). Individuals were fed ad libitum and as co-
horts grew larger, larger prey items were offered, al-
though selective ingestion and digestion were subject
to individual variation. The prey offered was changed
whenever growth within the experiment stagnated
(Table 1). Non-motile prey items were offered initially
in Runs 3 and 4 to improve survivorship.

Food organisms mostly originated from daily zoo-
plankton samples collected every morning by oblique
(50−0 m) net tows in the bay of Villefranche-sur-Mer,
using nets with 50, 200 or 680 µm mesh. For organ-
isms caught with the smallest mesh size (50 µm), only
swimming zooplankton were used. Other natural
prey sources offered to ephyrae were fragments of
jellyfish bells (frozen Cotylorhiza tuberculata; fresh
Aurelia aurita and Leucothea multicornis) and fresh
Paracentrotus lividus sea urchin eggs (~90 µm in dia -
meter). Arti ficial diets offered included freshly
hatched brine shrimp nauplii (Artemia sp., some en -
riched with S. presso from Selco), frozen mysid
shrimp, and a larval fish diet made up of fish and
yeast extracts (50−100 or 100−200 µm Golden Pearls,
Brine Shrimp Direct; see Table 1 for details).

Bell diameter was measured between opposite rho -
palia (RD; cm), with the aboral surface upwards, from
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calibrated microscope images (≤3 cm RD). Larger
jelly fish were flattened in a Petri dish with a small
amount of water, and bell diameter was measured
with a ruler to the nearest millimetre. To transform
our measured bell diameters between opposite
rhopalia to the more commonly used bell diameter
across the lappets (LD; cm), we used the following
equation (M. Ferraris & M. K. S. Lilley unpubl. data):

LD = 1.29±1.0043 RD0.93±0.0025 (1)

where the numbers represent parameter estimates
(±SE) (n = 200 individuals, size range 0.11−11.6 cm
RD, r2 = 0.998; data not shown).

Growth rate estimates

Growth rates were calculated from carbon weight
(CW) using an equation of the relationship between
CW and LD for adult P. noctiluca (M. Ferraris & M. K.
S. Lilley unpubl. data):

CW = 0.24±0.098 LD3.11±0.202 (2)

where CW (mg) and LD (cm) were measured over a
size range of 4−10 cm (data not shown) and numbers
are parameter estimates (±SE). This equation overes-

timates carbon weights of the smallest individuals by
20−50% compared with Morand et al. (1987). How-
ever, using the equation of Morand et al. would over-
estimate adult carbon weights by 60%; therefore, the
equation with the least error was chosen rather than
switching equations at a specific size.

Instantaneous growth rates (μ; d−1) were calculated
between 2 observations using the change in carbon
weight over consecutive time periods (t1, t2):

μ = ln(CW2/CW1)/(t2 − t1) (3)

RESULTS

Varying rates of growth were obtained both be -
tween and within the 4 cohorts of young Pelagia noc-
tiluca. Growth typically increased rapidly for a period
before stagnating and, in many cases, shrinking
slowly. Only once the prey offered were changed did
medusa growth restart (Fig. 1A,D). Changes in car-
bon weight were predominantly positive, with
greater instantaneous growth rates in the early
stages of the life cycle (e.g. the smallest individuals;
Fig. 2). Considering successful growth periods only,
growth rates were 10−30% d−1 for ephyrae below
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Run Ephyrae source Initial Start date Duration Tank Tank Food offered
numbers (dd-mm-yy) (d) volume (l) stirring

Laboratory growth
1 Eggs (lab) ~1000 26-05-10 45 15 Yes Mixed zooplankton (35−50 µm)a

4 10-07-10 117 5 No Mixed zooplankton (>200 µm)b

4 04-11-10 64 5 No Mixed zooplankton
4 07-01-11 129 5 No Mixed zooplankton + Cotylorhiza

tuberculata
4 16-05-11 148 5 No Mixed zooplankton + enriched 

Artemia sp.
2 Ephyrae (field) 13 01-11-11 119 15 Yes Artemia sp., Aurelia aurita, frozen 

mysid shrimp
3 Eggs (lab) >1000 03-09-12 184 15 Yes Golden Pearls
4 Eggs (lab) >1000 29-03-13 46 15 Yes Paracentrotus lividus eggs ~90 µm

− 14-05-13 38 15 Yes Artemia sp.
− 21-06-13 26 15 Yes Mixed zooplankton
33 17-07-13 97 15 No Mixed zooplankton
24 22-10-13 10 15 No Mixed zooplankton + Leucothea 

multicornis
24 01-11-13 16 15 No Mixed zooplankton

Field population (adults)
– Ligurian Sea (1968−1969) − 01-12-68 274 − − −
– Ligurian Sea (2013) − 01-02-13 180 − − −

aA 0.5 m diameter net with 50 µm mesh was used; ba WP2 net with 200 µm mesh was used

Table 1. Experimental details of Runs 1−4 in the laboratory and wild populations sampled in 1968−1969 (Franqueville 1971)
and 2013. Zooplankton offered to laboratory-grown juvenile Pelagia noctiluca was collected daily from the field with a verti-
cally towed Regent net (1 m diameter, 680 µm), with 2 exceptions (a,b). All animals were fed daily, but prey composition and
assimilation efficiency were not recorded. Water was changed 2−3 times per week and individuals were measured every 

1−2 wk. −: no data recorded
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Fig. 1. (A−D) Growth observations (mean ± SD bell diameter over the lappets) of Pelagia noctiluca from the laboratory (Runs 1−4,
respectively) and (E,F) in situ Ligurian Sea observations of population growth during (E) 1968−1969 (Franqueville 1971) and (F)
2013; (*) n = 1. Arrows represent observed spawning events (Run 1: Days 259−275, 329, 333, 383, 385, 389, 405, 410, 462; Run 4:
Days 218−219, 221-222, 237, 242); dashed vertical lines show changes in feeding detailed in Table 1. Filled symbols are 

sequences of positive growth used in Fig. 3. Note different scales of y-axes
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0.5 cm diameter, while adults (>5 cm) grew at 1.5−
6% d−1. Negative growth (shrinking) rarely ex ceeded
5% d−1, with a slight trend for greater reductions by
the biggest individuals. This decrease in growth rate
with bell diameter was equally consistent between
laboratory and in situ observations.

Development of oral arms and tentacles was
observed at a size of approximately 1 cm in both
Runs 1 and 4. These 2 cohorts also grew sufficiently
for some individuals to become reproductively active
adults, 7 to 8 mo after metamorphosing from eggs
(Day 231, Run 1; Day 207, Run 4). Both sexes were
observed to develop, but  individuals in Run 1 grew to
twice the dia meter of those in Run 4 before they be -
came reproductively active. Eggs were subsequently
spawned on several occasions (denoted by arrows
in Fig. 1) starting from Day 259 (4 Feb 2011) in Run 1
and Day 218 (2 Nov 2013) in Run 4. In both cases,
eggs were viable and developed into planula larvae
after the addition of adult male spawn. The number
of eggs produced by each female was variable, re -
ducing from 345 to 680 per spawn initially to 35 to
100 in later spawns during Run 1.

High mortality events affected several of the exper-
imental runs, with the smallest ephyrae struggling to
develop, particularly in Runs 1 and 3. Although sur-
vivorship was much better in Run 3 using a commer-
cial particulate fish food, growth was minimal and

stagnated. The best initial rate of growth and sur-
vivorship was obtained with a fresh, high-energy,
non-motile prey (sea urchin eggs) in Run 4, with
growth only stagnating when eggs became unavail-
able at the end of the sea urchin reproductive season.
Throughout the experiments, the supplementation of
gelatinous material (both frozen and fresh) to the
prey offered was synchronous with en hanced growth
and, in some cases, the development of gonads.

In situ observations

Regular field sampling of P. noctiluca during 2013
observed a growing population from mid-March
(6.9 cm LD, n = 1) to the be ginning of June (mean =
15.6 cm, range = 12−21 cm, n = 19; Fig. 1F), assuming
the presence of a single population in the Ligurian
Sea. Estimated growth was approximately 3% d−1.
During summer (June−August), the mean size of the
population decreased sharply to approximately
9−10 cm diameter with the arrival of a new genera-
tion and shrinking or death of the largest individuals.
Franqueville (1971) observed another in situ growth
event in the same region (western Ligurian Sea) in
1969 (Fig. 1E) using an Isaac-Kidd midwater trawl for
sampling. While sizes were generally smaller in 1969
than in 2013, the timing of growth was similar (April
to July), with a decrease in size from July onwards.
Mean size grew from 3 to 8 cm between April and
July, thereby growing at approximately 3.4% d−1

(inverted triangles, Fig. 2).

DISCUSSION

Culturing Pelagia noctiluca

In the present study, Pelagia noctiluca was cul-
tured for the first time for considerable periods in the
laboratory and reproductive adults were successfully
obtained (Runs 1 and 4). Previous studies observed
mature adults in the wild at 3−6 cm bell diameter
(Franqueville 1971, Rottini Sandrini & Avian 1991),
which is in accordance with our laboratory results
(2.5−5 cm bell diameter). Malej & Malej (1992) pre-
dicted maturity at 150 d of growth, which is in
advance of our observed time scales of 218−260 d.
Maturity and egg release were observed in both
Runs 1 and 4 immediately after the introduction of
abundant gelatinous prey to the diet. In addition, P.
noctiluca has also been observed to consume the
ctenophore Mnemiopsis leidyi when it was offered in
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laboratory experiments (Tilves et al. 2013). There-
fore, rather than a threshold size for gamete produc-
tion, maturation of gonads may depend on an abun-
dant source of prey, possibly of gelatinous origin.
Salps and siphonophores are among the more
numerous gelatinous prey available in the Ligurian
Sea, typically blooming in spring (Licandro et al.
2010, Garcia-Comas et al. 2011), and may serve as a
signal to synchronise the growth observed in popula-
tions of P. noctiluca.

High mortality of young ephyrae has been re -
corded previously for P. noctiluca (Malej & Malej
1992, Rosa et al. 2013), and we also observed this in
Run 1. Repeated trials confirmed high mortality rates
(~25% after 21 d; 85−100% after 60 d; data not shown)
using fresh, small (~50−100 µm) zoo plank ton, inde-
pendent of feeding frequency, ephy rae density and
food density. Young ephyrae have been shown to use
their lappets to collect prey items (Sullivan et al.
1997, Gordoa et al. 2013); therefore, motile prey may
inhibit growth unless they are abundant or have slow
escape responses. For example, we observed Arte mia
spp. nauplii frequently escaping from ephyrae on a
number of occasions, which may explain the growth
stagnation observed when Artemia spp. were the
only food available. The ephyrae of Aurelia labiata
were able to take up dissolved organic matter to in -
crease their carbon content when otherwise starved
(Skikne et al. 2009); however, it is unknown whether
P. noctiluca is able to use this mechanism to mitigate
against starvation. In the present study, only non-
motile prey appeared to promote survival by the
ephyrae stages, and the high-protein sea urchin eggs
supported both growth and survival of ephyrae, until
oral arms and tentacles were developed to assist in
prey capture. At this developmental stage, ephyrae
could feed  successfully on fresh zooplankton and
gradually on larger prey, improving growth. Unfortu-
nately, ephyrae did not grow when offered the non-
motile fish food in Run 3, although their survival was
improved. It is not known whether the eggs (of fish or
sea urchins) are a key part of the nutrition of P. noc-
tiluca, but the ephyrae are certainly capable of
ingesting fish eggs if they are captured (Gordoa et al.
2013), and sea urchin eggs resulted in growth during
our study.

Our study did not produce jellyfish of a comparable
size, within the laboratory environment, to those
observed in the field (Fig. 1E,F). In the laboratory,
individuals were confined in relatively small tanks,
and were unable to undertake the large vertical
migrations seen in the field (Franqueville 1971), both
of which may have inhibited growth. Limited prey

availability may also have restricted the maximum
size of individuals if the basal metabolic costs for P.
noctiluca (of 6.63−7.13% d−1; M. K. S. Lilley et al.
unpubl. data) were not met. Finally, conditions
within the tanks may also have further inhibited
growth when a stirring motion was in place, occa-
sionally entangling organisms with long tentacles or
oral arms, but these conditions were required to
maintain vitality in young ephyrae; in addition, colli-
sions with container walls may have increased the
rate of nematocyst discharge and the need to renew
tissue rather than growing.

We also assumed that the regular sampling of in
situ animals was representative of a single simulta-
neously growing population, despite the knowledge
of their presence in, and transport by, the Ligurian
current (Ferraris et al. 2012, Berline et al. 2013).
 Nevertheless, the similarity between laboratory and
in situ growth (Figs. 2 & 3) appears to confirm
the hypothesis of a basin-scale population growing
simultaneously.

Growth

Growth rates of P. noctiluca decreased with indi-
vidual size under both laboratory and field condi-
tions, varying from up to 30% d−1 weight increase
for the youngest ephyral stages to approximately
1.5− 6% d−1 for large individuals (>5 cm; Fig. 2).
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Decreases in growth rates with size have been
widely observed in marine organisms, including
copepods and jellyfish (e.g. Hirst et al. 2003). The
range of growth rates observed is in agreement with
that of other scyphozoan jellyfish (2−24% d−1;
reviewed by Hirst et al. 2003), except for Chrysaora
quinquecirrha ephyrae (≤70% d−1; Olesen et al.
1996). Comparing these with published data sets of
P. noctiluca, our young ephyrae growth rates were
slightly higher than the 7% d−1 observed by Malej &
Malej (0.5−7.5 mm; Malej & Malej 1992); the growth
rates of larger individuals (2−11% d−1, 3−8 cm dia -
meter) were comparable to those of similarly sized
freshly collected animals (6−10% d−1; Larson 1987).

Successful periods of growth have previously been
attributed to the seasonal influences of food avail-
ability and temperature (Malej & Malej 1992). In the
Ligurian Sea, after negative winter growth, growth
periods have been observed during spring (March−
June/July) followed by a strong and abrupt decrease
in the size of individuals during summer months
(Fig. 1E,F). Previous studies also reported spring as
favourable (Rosa et al. 2013) and the time when
larger individuals were observed (Malej & Malej
1992). Laboratory individuals, grown at a fixed water
temperature, also decreased in size during the sum-
mer period (Runs 1 and 4). These seasonal changes
may be linked to the annual reduction in the plank-
ton density after the spring bloom and, consequently,
the food available, provided by from a regular plank-
ton tow. Therefore, if the bloom period is weak or cli-
matically shortened (Vandromme et al. 2011), growth
may be inhibited and the probability of survival of
the P. noctiluca population reduced, leading to the
presence−absence periods observed in the past (Goy
et al. 1989, Kogovšek et al. 2010).

Similar rates of growth were observed between
laboratory-raised individuals and the in situ popula-
tions. This is surprising because in situ conditions are
more variable (Béthoux et al. 1990), cooler in the
 winter and warmer in the summer, than laboratory
temperatures. However, the vertical migration of P.
noctiluca to the surface at night (Franqueville 1971,
Ferraris et al. 2012) may mitigate the effect of tem-
perature on growth costs. To allow for growth, a food
source should provide more than 6.63−7.13% d−1 of
P. noctiluca body mass (M. K. S. Lilley et al. unpubl.
data) to cover basal metabolic requirements. Addi-
tionally, growth rates of 6−10 cm sized P. noctiluca
are approximately 3−4% d−1. Therefore, assuming an
assimilation rate of 0.8 (Møller & Riisgård 2007), a P.
noctiluca population would need to capture around
13% of their own carbon weight per day to sustain

the observed growth at a constant temperature of
18°C. If all material was assimilated, the carbon re -
quired daily for an 8 cm P. noctiluca would be equiv-
alent to 31 salps (0.65 mgC for a 2 cm Salpa fusi -
formis; Madin & Deibel 1998), 828 doliolids (24 µgC
for a Dolioletta sp.; Deibel 1985) or 5519 copepods
(3.6 µgC for a 102 µm Clausocalanus furcatus; Maz-
zocchi & Paffenhöfer 1998). For a 6 cm medusa, only
40% of these prey items would be required, or 200%
at 10 cm bell dia meter. The metabolic requirements
should increase exponentially with both jellyfish size
and water temperature (Morand et al. 1987, Malej
1989), possibly explaining the minimal growth in the
warmer summer months (Fig. 1E,F).

Life span

To our knowledge, the present study is the first to
report the growth of P. noctiluca under laboratory
conditions throughout the entire life cycle, from eggs
to fertile reproductive individuals. Malej & Malej
(1992) estimated the life span at approximately 1 yr,
but our study would suggest that the survival could
be much longer than this. By comparison, other
scyphozoan species typically have medusa stages of
4−6 mo, and meroplanktonic hydrozoans weeks to
months (Hosia & Båmstedt 2007, Pitt et al. 2013), with
few species having an overwintering medusae stage.
Holoplanktonic hydromedusae such as Aglantha digi -
tale may persist year round with 1−6 generations in
the year (reviewed by Hosia & Båmstedt 2007).
Under laboratory conditions, we succeeded in main-
taining some individuals for 17 mo in captivity (Fig. 1A)
although they did not reach the size of adults
observed offshore in this region, despite maturing
and reproducing successfully. Since P. noctiluca can
shrink in size (Larson 1987), and thereby minimise
the effects of poor nutritional periods or starvation, it
is important to consider what might happen under
ideal growing conditions. Ten sequences of consecu-
tive growth (n = 3–11 consecutive measurements)
were identified from the available data (filled sym-
bols, Fig. 1) and plotted together without the time
delay caused by stagnation events (Fig. 3). The
resulting figure gives an uninterrupted growth curve
for P. noctiluca from eggs to large adults, assuming
sufficient prey availability, space and therefore con-
stant growth. Given that laboratory and wild growth
rates were comparable, including in the years 1969
and 2013, we assume that the rates observed were
equivalent to maximal growth rates, constrained by
metabolic processes rather than food availability.
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Assuming no stagnation or shrinkage, P. noctiluca
would develop oral arms and tentacles (~1 cm) 50 d
after hatching. The maturation of gonads and the
first release of gametes could be predicted between
Day 90 (2.5 cm) and 120 (5 cm), before that predicted
by Malej & Malej (Malej & Malej 1992) in the Adri-
atic. The mean bell size of the largest individuals that
we observed in situ (15.6 cm) would be reached after
230 d of continuous growth (Fig. 3), more than dou-
bling in diameter in the final 86 d, as observed in
2013 (6.9−15.6 cm, Fig. 1F). Therefore, the life cycle
could be completed in a single season with suitable
food conditions. However, growth rates are rarely
constant and 200−300 d were required under labora-
tory conditions to obtain reproductively active and
viable medusae (Fig. 1A−D). Finally, the largest indi-
viduals, unless subjected to ideal growing conditions,
will be over 1 yr old, the oldest individuals over -
lapping with subsequent year classes in a mixed
 population.
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