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Abstract :  
 
Truss analysis and length measurements were made on 168 striped red mullet Mullus surmuletus. 
Multivariate statistical analyses with principal component analysis and partial redundancy analysis 
(pRDA) were used on these measurements to evaluate the influence of maturity, sex and geographical 
area distribution on body shape. Truss measurements were important to quantify and discriminate 
changing body shape, presumably due to changing environmental conditions. Sexual dimorphism was 
not observed and juveniles could be distinguished from adults based on their body shape. More 
importantly, M. surmuletus occurring in different geographical areas could be differentiated using this 
method. Based on pRDA, a significant difference of head morphological dimensions was observed 
between populations occurring in the eastern English Channel and those occurring in the Bay of 
Biscay, suggesting that fish from these areas could represent two subpopulations. 
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Introduction 57 

Striped red mullet Mullus surmuletus (L. 1758) is an economically important species in the 58 

Mediterranean Sea and in the northern Atlantic Ocean, where it is exploited from the Bay of 59 

Biscay to the southern North Sea (ICES, 2010). In Atlantic waters there are two main areas 60 

where this species is caught, the Bay of Biscay and the Eastern English Channel. This species 61 

was initially exploited by the Spanish fleets along the Spanish coast inside the Bay of Biscay. 62 

Originally considered as valuable by-catch (Marchal, 2008), the growing exploitation of M. 63 

surmuletus and a conspicuous increase in landings in the English Channel and the southern 64 

North Sea by French, English and Dutch fleets have been observed from the 1990s onwards. 65 

This was attributed to an increase in the migratory distribution and abundance of this species 66 

in these areas, which is largely heightened by the decline of traditionally targeted species and 67 

the trend for sea-water warming (Poulard & Blanchard, 2005; Marchal, 2008; ICES, 2010). 68 

Reports indicate a steady increase in Eastern English Channel landings, now reaching ten 69 

times the recorded landing levels of 1990 (Marchal, 2008; Carpentier et al., 2009). Mullus 70 

surmuletus is still considered as a non-quota species in the Northeast Atlantic and the 71 

evaluation of the level of exploitation only began seven years ago (ICES, 2010). 72 

A stock corresponds to all the individuals that both belong to the same species and live in the 73 

same geographical area. The population within a stock is such that breeding is both possible 74 

and more likely between any pair within its distribution area than with individuals from other 75 

areas. A part or subdivision of a population, often based on geographical consideration, is a 76 

subpopulation. Fish stocks may be considered as subpopulations of a particular species of 77 

fish, for which intrinsic parameters (growth, recruitment, mortality and fishing mortality) are 78 

the only significant factors in determining stock dynamics, while other factors, in particular 79 

immigration and emigration, are considered to have limited effect. Information on stock 80 

identity and spatial structure provide the basis for understanding fish population dynamics and 81 
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enable reliable resource assessment for fisheries management (Reiss et al., 2009). Each stock 82 

may have unique demographic properties and responses or rebuilding capabilities when faced 83 

with exploitation. The biological attributes and productivity of the species may be affected if 84 

the stock structure considered by fisheries managers is erroneous (Smith et al., 1991).  85 

Stock identification aims to identify these subpopulations and several techniques may be used 86 

to this end. For example, tagging experiments, analyses of spatial variation in genetic and 87 

morphometric markers, life-history parameters, parasite abundance and contaminants can be 88 

used to interpret distribution and relative abundance (Pawson & Jennings, 1996; Cadrin et al., 89 

2005). Each method offers a unique view of population structure that relates to different 90 

definitions of the term “stock” (Begg et al., 1999). Despite a range of difficulties detailed in 91 

Jennings et al. (2001), morphological analysis has been useful for fish stock identification. 92 

Environmentally induced phenotypic variation provides rapid information on stock or sub-93 

population identity (Clayton, 1981). This is especially useful when the time at which stock 94 

separation occurred is too recent to have allowed considerable accumulation of genetic 95 

differentiation among populations.  96 

In the case of M. surmuletus, genetic studies have only been carried out in the Mediterranean 97 

Sea (Mamuris et al., 1998a,b, 1999; Apostolidis et al., 2009; Galarza et al., 2009). In the Gulf 98 

of Pagasitikos (western Aegean Sea), analyses on three molecular markers revealed panmixia 99 

(Apostolidis et al., 2009). In the Mediterranean basin, the Siculo-Tunisian Strait seems to be 100 

the transition zone between the Mediterranean's eastern and western populations (Galarza et 101 

al., 2009). A sharp genetic division was detected when comparing populations of M. 102 

surmuletus originating from the Atlantic Ocean or Mediterranean Sea (Galarza et al., 2009).  103 

Otolith microchemistry has also been used to discriminate between subpopulations at 104 

different growth stages. However, results are difficult to interpret as trace element deposition 105 

can be due to combined effects of physiological, ontogenetic and environmental influences. 106 
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As a result, morphological analysis offers a rapid and inexpensive method for population or 107 

subpopulation structure identification. 108 

To date, very few studies dealing with otolith shape have been conducted on stock structure of 109 

M. surmuletus in the north-eastern Atlantic Ocean (Mahé et al., 2005; Benzinou et al., 2013). 110 

This region is nevertheless divided into two areas by the International Council for the 111 

Exploration of the Sea (ICES) as distinct areas of stock management. The objective of this 112 

paper is to evaluate if morphological variations may discriminate populations of M. 113 

surmuletus sampled in two different ICES areas using geometric morphometric tools.  114 

 115 

Materials and methods 116 

Study sites and sampling 117 

Two ICES areas within the northeast Atlantic are considered in this study: the Bay of Biscay 118 

and the Eastern English Channel (Fig. 1) where annual research surveys are conducted to 119 

evaluate commercial fish abundance. The Bay of Biscay (ICES areas VIIIa and b) has a large 120 

continental shelf with water depth reaching down to 200 m. Average annual water 121 

temperature increases from the northern part (11.2 °C at 48 °N) to the southern part (15.6 °C 122 

at 36°N) of the North-eastern Atlantic region. The substrate varies from a muddy bottom 123 

along the shelf break to rocky or sandy substrates along the inner shelf (depth < 100 m). The 124 

eastern English Channel (ICES area VIId) is an epicontinental area characterized by a strong 125 

tidal regime. Water depth declines from 70 m off Cherbourg to 40 m in the centre of the 126 

Dover Strait. Seabed sediment types vary from west to east and are strongly influenced by the 127 

tidal currents. Pebbly bottoms occur in open waters off Cherbourg followed by a progression 128 

towards gravel, then coarse to fine sands toward the eastern coasts and even mud in the 129 

sheltered estuarine bays. Pebbles and rocks are found again in the narrows of the Dover strait 130 
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where tidal currents are very strong. Average annual water temperature is 13.3 °C (Carpentier 131 

et al., 2009).   132 

Mullus surmuletus were sampled during two annual scientific surveys using GOV bottom 133 

trawls (very high vertical opening, square mesh size in the cod end: 10 mm side). In the Bay 134 

of Biscay, fish were collected during the Western Europe fisheries resources evaluation 135 

(EValuation des resources Halieutiques de l’Ouest de l’Europe, EVHOE) survey in October-136 

November 2003 onboard the research vessel (RV) “Thalassa”. In the Eastern English 137 

Channel, samples were collected during the Channel Ground Fish Survey (CGFS) during 138 

October-November 2002 and 2003 onboard the RV “Gwen-Drez.”   139 

A total of 168 individuals were sampled: 111 in the Eastern English Channel and 57 in the 140 

Bay of Biscay. All fresh M. surmuletus were measured for total length (LT±1mm), mass 141 

(W±1g) and sexed. The total length ranged from 82 to 345 mm for individuals collected in the 142 

Bay of Biscay, and from 90 to 372 mm for those sampled in the Eastern English Channel 143 

(Table I). The total mass (W) varied from 10 to 625 g and 6 to 692 g for individuals collected 144 

in the Bay of Biscay and in the eastern English Channel respectively. Macroscopic 145 

observation of gonads based on scale proposed by Mahé et al. (2005) was used to determine 146 

individual sex and maturity. In the Bay of Biscay, this species principally occurs along the 147 

northern area close to the Loire estuary (Fig. 1) while in the eastern English Channel this 148 

species is mainly found in the Dover Strait and Bay of Seine areas. 149 

Image analyses 150 

Each individual was photographed using a digital camera. A calibrated image of each 151 

individual (positioned head on the left and deployed fins) was obtained using the Optimas 6 152 

software (Anonymous, 1996). This software was used to enable identification of homologous 153 

points or landmarks and to calculate distances between these points.  154 
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The Truss network method (Strauss & Bookstein, 1982) was used and 10 landmark points 155 

were identified on the outline of the body (head: 1-2; dorsal fin: 3; adipose fin: 4-5; caudal 156 

fin: 6-7; anal fin: 8-9; pelvic fin: 10; see Fig. 2). Three categories of clearly defined 157 

landmarks are identified: Type 1 is a mathematical point such as a local juxtaposition of two 158 

different tissues (3-7, 9-10), Type 2 is a point marking the geometrical structure of the 159 

individual (1-2) and Type 3 is based on another structure or point (8) (Slice et al., 1996). 160 

Consequently from these 10 selected points, 21 segments (or distances) are established and 161 

measured with a precision of 0.001 mm (Fig. 2).  162 

Data processing 163 

To investigate possible variations of fish shape according to five explanatory variables 164 

(geographical area, maturity, body length, body mass and sex), the normal distribution of 165 

segments was checked using kurtosis and skewness coefficients. Principal component 166 

analysis (PCA) was applied to truss size variables to outline groups of samples and to identify 167 

influential variables. Principal components were extracted from the covariance matrix. 168 

Allometric analyses and PCAs showed that these distances are related to the overall length of 169 

individuals. Partial redundancy analysis (pRDA) was primarily carried out using CANOCO 170 

by extracting the variance explained by total length used as a covariate (ter Braak & Smilauer, 171 

2002). In the resulting partial analysis, it is possible to test and extract the relevant 172 

explanatory variables related to the variation in fish morphology independently from the 173 

individual total length. The pRDA was used in combination with Monte Carlo permutation 174 

tests to explore the multi-linear relationships between morphometric data and un-biased 175 

geographical and sex descriptors. 176 

 177 
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Results 178 

Principal component analysis of truss variables reveals that the first principal component 179 

accounts for 96.7% of the total variance. There is an unbiased correlation between segments, 180 

body size and body mass which is directly related to individual size (Fig. 3). 181 

The strong correlation with the fish size potentially masks morphological differences between 182 

sexes and geographical sectors. A pRDA was therefore carried out (Fig. 4) to remove the 183 

observed effect of fish size. No significant morphological differences are observed from inter-184 

annual (2002-2003) individual samples analysed in the Eastern English Channel (Fig. 4). 185 

Likewise, the pRDA does not reveal any significant sexual dimorphism (p=0.134). However, 186 

this analysis clearly separates individuals from the Bay of Biscay (EVHOE) from those of the 187 

Eastern English Channel (CGFS). Segments D1-2, D1-3, D1-10, D2-3 and D4-5 are 188 

associated to the EVHOE survey (Fig. 2). All these segments are on the head, except for D4-5 189 

(adipose fin).  190 

The individuals collected from the Bay of Biscay appear to have a more ventrally positioned 191 

mouth than those captured in the Eastern English Channel and this significant difference 192 

indicates two stock components (Fig. 5). Shape divergences are also observed between 193 

juvenile (smaller bodied) and adult (larger bodied) stages collected within the Eastern English 194 

Channel. Multivariate analyses were also performed on body mass data, but results show that 195 

this factor does not discriminate between populations of M. surmuletus from different areas.   196 

 197 

Discussion 198 

The truss network analysis identifies two distinct subpopulations of M. surmuletus from the 199 

Bay of Biscay and the Eastern English Channel. This study demonstrates that populations in 200 

the two areas can be discriminated based on morphology, even when fish size effect is 201 

removed. These results corroborate those obtained from a study of otolith shape (Benzinou et 202 
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al., 2013). Little morphological variability was observed between sexes. This weak sexual 203 

dimorphism may be attributed to the sampling period, which did not coincide with spawning 204 

period. All samples were collected in October and November, whereas the reproductive 205 

season of M. surmuletus occurs between May and September in the North-Eastern Atlantic 206 

(N'Da & Deniel, 1993).  207 

In general, morphological variability may result from genetic variation (Griffiths et al., 2010) 208 

or phenotypic plasticity (Schlichting & Pigliucci, 1998; Moe et al., 2004) induced by different 209 

environmental conditions prevailing in each geographic area (Corti et al., 1996; Clabaut et al., 210 

2007). In particular, morphological variability may reflect local food availability and feeding 211 

conditions prevailing in each area; a relatively low rate of egg and larval transportation or 212 

migration for the adult fish; limited swimming performance or geographical constraints 213 

imposed on the subpopulations; and last but not least, the differential impact of fisheries (i.e. 214 

different fishing patterns), which might determine different selection effects (for example, 215 

smaller lengths at maturity).  216 

External shape and internal anatomical development are affected by the environmental 217 

conditions of growth (e.g., climate, food limitation, interaction, exploitation, other stressors), 218 

especially during juvenile (developmental) stages (Loy et al., 2000; Moe et al., 2004). Food 219 

availability has been observed in other studies as a factor affecting fish morphology and 220 

behaviour (Moe et al., 2004; Borcherding & Magnhagen, 2008). Consumption of more energy 221 

rich prey may also contribute to change in body shape development.  222 

Mullus surmuletus exhibits an opportunistic and benthivorous feeding habit on sandy and 223 

rocky bottoms (Lombarte & Aguirre, 1997; Mazzola et al., 1999). In our study, M. surmuletus 224 

from the Bay of Biscay were found mainly over sandy and rocky bottoms. In the eastern 225 

English Channel, the habitats of M. surmuletus also include rocky and sandy substrates but 226 

are dominated by coarse sands, gravels and pebbles. Species that can occupy several habitat 227 
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(substrate) types may develop a wider dietary breadth and morphological variation, which 228 

may have resulted in head shape modifications of M. surmuletus in the eastern English 229 

Channel.  230 

Previous studies have investigated the diet of M. surmuletus. In these studies, juveniles 231 

consume large quantities of polychaetes and other prey such as copepods, harpacticoids, 232 

amphipods and Tanaidacea (N'Da, 1992; Labropoulou et al., 1997; Mazzola et al., 1999; 233 

Bautista-Vega et al., 2008). Adults fed mainly on crustaceans (shrimps and crabs) and other 234 

benthic organisms such as polychaetes, molluscs and echinoderms, as well as on small forage 235 

fish (Badalamenti & Riggio, 1989; Golani & Galil, 1991; N'Da, 1992; Mazzola et al., 1999; 236 

Bautista-Vega et al., 2008). The observed ontogenetic changes in feeding habits may explain 237 

shape divergences between juvenile and adult of M. surmuletus. 238 

The truss network has been a useful tool to discriminate subpopulations of M. surmuletus 239 

from two different ecosystems based on fish shape and directly comparable with the results 240 

obtained by the study of otolith shape (Benzinou et al., 2013). Similar patterns of 241 

differentiation have been observed for others species, based on morphological, otolith and 242 

genetic characters (Cadrin et al., 2005; Kristoffersen & Magoulas, 2008). Morphological 243 

variation may be greater than the differentiation found at the genetic level (Stepien et al., 244 

1994). These morphological differences between habitats, could, to some extent, reflect 245 

phenotypic plasticity (Mamuris et al., 1998b; Uiblein et al., 1998). In this study, the 246 

significant morphometric divergence observed could indicate isolation between these two 247 

populations. Fage (1909) distinguished a southern and a northern form of M. surmuletus 248 

based mainly on head shape. Moreover, the strong increase in numbers of individuals of M. 249 

surmuletus reported in landings from the English Channel and the southern North Sea since 250 

the 1990s has also been observed in the northern North Sea (Beare et al., 2005; Engelhard et 251 

al., 2011). Beare et al. (2005) observed that the increased abundance of M. surmuletus  in the 252 
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northern North Sea could be due to a winter migration of a larger resident population in the 253 

southern North Sea, when water temperatures in the northern part of the North Sea are higher 254 

than in the southern part. There is a positive relationship between the abundance of this 255 

species and water temperature (Cushing, 1982; Vaz et al., 2004; Beare et al., 2005). Hence, 256 

the increasing presence of M. surmuletus in northern parts of its distribution range could be in 257 

response to warming climate (Engelhard et al., 2011). Recently, Mahé et al. (2013) showed 258 

that growth rate of M. surmuletus in the eastern English Channel and southern North Sea is 259 

higher than those observed in southern areas. Feeding behaviour is a well-known factor that 260 

influences head morphology (Hyndes et al., 1997; Delariva & Agostinho, 2001; Palma & 261 

Andrade, 2002; Silva, 2003; Janhuen et al., 2009) and an organism’s (somatic) growth (Loy et 262 

al., 2000). Thus, fish trophic ecology might be one of the principal explanatory factors for 263 

morphological divergences observed in the current study. Unfortunately, the effects of trophic 264 

ecology on variation of the morphology of M. surmuletus cannot be quantitatively accounted 265 

for because food and feeding patterns of M. surmuletus have not been considered on samples 266 

collected for this study. Spline values observed on head dimensions of M. surmuletus are 267 

likely to be related to trophic differences and exposure to various environmental conditions in 268 

different habitats during important developmental periods. Genetic, otolith and trophic 269 

characterisation studies are future research programs that can be combined to this method to 270 

achieve a more reliable determination of stock structure, which is critically relevant to its 271 

successful management. 272 

 273 
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 431 

Figure 1 :  Map showing location of sampling areas with ICES divisions (IVc, VIId, VIIe, 432 

VIIIa & VIIIb). 433 



 19 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 



 20 

Figure 2 : The 10 homologous landmarks used to calculate the truss networks (lines) on M. 443 

surmuletus.  444 
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Figure 3: Main results of the principal components analysis. Open squares and circles 460 

represent individual fish specimens analyzed from the Eastern English Channel and the Bay 461 

of Biscay, respectively.  462 
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Figure 4: Main results of the Redundancy Partial Analyses. Squares (black: 2002 & open: 475 
2003) and circles represent individual fish specimens analyzed from the Eastern English 476 
Channel and the Bay of Biscay respectively. Body segments are identified by the vectors.  477 
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Figure 5: Averaged forms of M. surmuletus in the Bay of Biscay and in the Eastern English 487 

Channel. Reconstructed forms are scaled in centimetres and represent body total length of 20 488 

cm. 489 
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Table I: Number, total length (mean+s.d.; mm) and total mass (mean+s.d.; g) of samples of 497 

M. surmuletus used in groundfish surveys according to the stage of sexual maturity and sex. 498 

CGFS: Channel Ground Fish Survey; EVHOE: Evaluation des ressources halieutiques de 499 

l’ouest de l’Europe. 500 

Groundfish surveys Juveniles Females Males 

CGFS 2002 

Number 0 20 30 
mean total length (s.d.)  250 (41) 223 (22) 

mean total mass (s.d.)  236 (140) 145 (49) 

CGFS 2003 
Number 16 28 17 

mean total length (s.d.) 122 (22) 251 (51) 204 (44) 
mean total mass (s.d.) 17 (8) 219 (120) 109 (53) 

EVHOE 2003 
Number 24 19 14 

mean total length (s.d.) 120 (13) 214 (51) 241 (50 ) 
mean total mass (s.d.) 22 (8) 200 (142) 160 (108) 
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