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INTRODUCTION

Black carbon (BC) refers to the carbonaceous
 products of incomplete combustion of vegetation and
fossil fuels, and is defined as a continuum of com-
pounds from partly charred plant material to highly
condensed soot aerosols (Goldberg 1985, Schmidt &

Noack 2000, Mannino & Harvey 2004). These ther-
mogenic compounds are chemically heterogeneous
and are all characterized by high carbon content and
aromatic structures, which are particularly resistant
to biodegradation (Goldberg 1985, Schmidt & Noack
2000). BC particles constitute aggregates of small
carbon spheres (Cattaneo et al. 2010), whose fractal
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ABSTRACT: Black carbon (BC) is the carbonaceous residue of the incomplete combustion of fossil
fuels and biomass and encompasses a range of chemically heterogeneous substances from partly
charred plant material to highly condensed soot aerosols. We addressed the potential role of BC
aerosol deposition on marine microbial processes in the ocean by investigating the effects of BC
reference material (and its exposure to simulated solar radiation) on viral and bacterial activity in
batch cultures with aged seawater. Viruses and bacteria were rapidly adsorbed to BC. No differ-
ence between the effect of irradiated and non-irradiated BC on free viral parameters was
observed. Bacterial leucine incorporation was higher in the BC treatments than in the BC-free
controls. The stimulated bacterial production in the dark BC treatments might be caused by the
reduction of viral infection due to adsorption of organic material or by direct use of BC material.
Viral production was significantly lower in BC-amended treatments than in BC-free controls, and
the estimated fraction of infected cells decreased with increasing BC concentration. Moreover,
bacterial activity in the solar-radiation-exposed BC treatments was higher than in the dark BC
treatments, indicating that radiation made BC more accessible to bacteria. Our data reveal that BC
has the potential to stimulate bacterial activity in the water column, particularly after exposure to
solar radiation. Rising BC levels in the atmosphere due to increasing anthropogenic emissions
could have far-reaching effects, including potential stimulation of seawater heterotrophy and CO2

production, through its effects on bacteria and viruses.
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morphology, i.e. their high porosity, offers an impor-
tant surface area for the adsorption of organic matter
(Cornelissen et al. 2005, Koelmans et al. 2006). BC
particles occur in a wide size range, and small soot
particles (<1 µm) easily become airborne and can
remain in the atmosphere for weeks and spread over
remote areas including the open ocean (Masiello
2004, Hadley et al. 2007). During atmospheric trans-
port, BC aerosols efficiently absorb solar radiation
and are the second strongest contributor to current
global warming (Ramanathan & Carmichael 2008).

BC is introduced into the ocean by atmospheric
deposition of land-derived aerosols (Jurado et al.
2008), via river estuarine systems (Mitra et al. 2002,
Kim et al. 2004, Elmquist et al. 2008, Stubbins et al.
2010), and by marine diesel engine exhausts (Lack et
al. 2008). Dry and wet deposition of BC to the global
ocean is estimated to be 2 and 10 Tg C yr−1, respec-
tively, with higher fluxes over the northern hemi-
sphere (Jurado et al. 2008). A portion of BC becomes
soluble over time and enters the dissolved organic
matter (DOM) pool (Kim et al. 2004). Dissolved BC
has been observed throughout different domains of
the ocean accounting for 1 to 9% of the DOM pool
with a strong coastal to open ocean concentration
gradient (Mannino & Harvey 2004, Dittmar & Koch
2006, Dittmar & Paeng 2009, Ziolkowski & Druffel
2010, Dittmar et al. 2012). In open ocean sediments,
BC is up to 14 000 yr older than the co-deposited bulk
organic carbon, suggesting that the small and light
BC particles are not used but are retained in the dis-
solved organic carbon (DOC) pool before being
deposited in marine sediments (Masiello & Druffel
1998). However, isotopic analysis revealed the petro-
genic origin of BC in marine sediments and sug-
gested a significant overestimation of combustion-
derived BC burial in sediments and underestimation
of degradation processes in the water column (Dick-
ens et al. 2004). Additionally, the low contribution of
BC to marine DOC in the open ocean, i.e. less than
3.5% (Dittmar & Paeng 2009, Ziolkowski & Druffel
2010), suggests that BC is more labile than formerly
believed. Recent studies on the photochemical (Stub-
bins et al. 2012) and microbial degradation of BC
(Zimmerman 2010) indeed challenge the previous
assumption on the refractory character of BC.

Despite the ubiquitous presence of BC in the
oceanic particulate organic matter (POM) (Flores-
Cervantes et al. 2009) and DOM pools, its effect on
marine systems and its role in the marine carbon
cycle remain largely enigmatic. It has been demon-
strated that BC reference material rapidly adsorbs
viruses and bacteria (Cattaneo et al. 2010) and stim-

ulates the aggregation of organic particles and bacte-
rial production (Mari et al. 2014). Also, there is evi-
dence that BC can have an influence on viral and
bacterial diversity (Cattaneo et al. 2010, Weinbauer
et al. 2012).

Viruses are important mortality agents in the
ocean, structuring microbial communities and influ-
encing biogeochemical cycles (Fuhrman 1999, Suttle
2007) by converting cells into DOM and increasing
the recycling and retention of nutrients in the photic
zone (Wilhelm & Suttle 1999). Organic particles, in
turn, may provide shelter to bacteria from viral infec-
tion, although experimental results are controversial
(Suttle & Chen 1992, Noble & Fuhrman 1997, Rie-
mann & Grossart 2008, Sheik et al. 2014). As BC par-
ticles are a relevant type of organic particle, knowl-
edge on the potential impact of BC-rich aerosols on
production and viral-mediated loss of microorgan-
isms and the consequences for biogeochemical
cycles in the sea is needed.

To explore the potential mechanisms playing a role
in the response of prokaryotes and associated viruses
to BC, we set up 2 experiments in which we added
various concentrations of standard BC to a standard-
ized equilibrated community from aged seawater
from the North Sea. Exposure of BC to solar radia-
tion, a phenomenon that commonly occurs during
atmospheric transport, was simulated, and its effect
on BC bioavailability to bacteria was also investi-
gated.

Our experiments provide insight into the potential
effects of BC on the microbial community, such as: (1)
a stimulating effect of BC on bacterial heterotrophic
production, as BC is ultimately a carbon source, (2)
an increased bioavailability of BC due to previous
solar radiation mimicking atmospheric transport, (3)
attachment of bacteria and viruses, as BC are organic
particles with a high surface area, and (4) a deleteri-
ous effect on viral infectivity due to attachment and
loss of activity.

MATERIALS AND METHODS

Experimental set-up

Two experiments were performed in May 2005
with aged surface seawater from the open North Sea
collected in August 2004 from onboard the RV ‘Pela-
gia’ at the North Sea Oyster Grounds (54° 30’ N, 04°
30’ E) and kept in the dark at 20°C.

Aged seawater was chosen because it is not limited
in inorganic nutrients, but instead in organic carbon.
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During aging, more degradable organic matter is
eliminated which otherwise would obstruct the use of
a more refractory carbon source such as BC. Also,
other organic particles present in un-aged seawater
might adsorb viruses and bacteria and bias the inter-
action between BC particles and viruses or bacteria.
Additionally, aged seawater was used to ensure that
the microbial community was in a steady state.
Steady-state conditions were assessed prior to the
experiments by measuring selected bacterial param-
eters for 3 consecutive days; these parameters were
sampled every 13 ± 3 h and exhibited variations of
≤4% (data not shown). The rationale of the present
study was to explore the potential mechanisms play-
ing a role in the response of the microbial food web to
BC rather than studying the effect of BC on any spe-
cific planktonic community. Therefore we used a
standardized equilibrated community.

The first experiment was designed to assess the
effect of a defined concentration of BC and consisted
of duplicate incubations of seawater with and with-
out receiving BC (experiment BC-fix). In the second
experiment, a gradient of BC concentrations was
tested in non-replicated incubations (experiment BC-
grad). In both experiments, BC reference material
(SRM 2975, Diesel Particulate Matter from the US
Department of Commerce, National Institute of Stan-
dards and Technology [NIST], Gaithersburg, MD)
was used. Soot carbon represents 95% of NIST diesel
particulate matter (versus 5% organic carbon,
Gustafsson et al. 1997), and the trace metal content of
SRM 2975 is low (0.22 wt.%, Jensen 2006). The
majority of BC reference material particles are within
the size range of 1.5 to 4 µm equivalent spherical
diameter (ESD). Details on the size distribution of
SRM 2975 are given by Cattaneo et al. (2010).

Before being employed in the experiments, BC
stock solutions (BC added to ultrapure [MilliQ, Milli-
pore] water at concentrations of 20 mg l−1 in experi-
ment BC-fix and 100 mg l−1 in experiment BC-grad)
were either kept in the dark or exposed to artificial
solar radiation in quartz tubes (2.8 cm inner diame-
ter) for 15 h and 23 h, in BC-fix and BC-grad, respec-
tively. Artificial solar radiation was supplied by 3 dif-
ferent types of light sources. Two HQI-T Powerstar
(Osram) lamps provided photosynthetically active
radiation (400−700 nm wavelength range), 2 TL
100W/10R fluorescent light tubes (Philips) were used
to provide UV-A (320−400 nm), and 3 UVA-340 fluo-
rescent light tubes (Q-Panel) supplied UV-A and UV-
B (300−320 nm). The solar simulator was adjusted to
30−60% of the local maximum radiation intensity in
late spring measured on a cloudless day (Pausz &

Herndl 2002). Thus, the dose rate received was simi-
lar to that expected in the top surface layer of the
North Sea water column. For the dark control (unex-
posed) treatment, the BC stock was kept in the dark
in glass tubes wrapped in aluminum foil in the same
incubator. During the exposure to artificial solar radi-
ation, BC stocks were kept in a flow-through water
bath connected to a temperature control unit
(LAUDA RCS/RC-6).

In experiment BC-fix, 10 ml of the light-exposed
(BC-light treatment) and unexposed BC stock (BC-
dark treatment) were added to 1 l of unfiltered aged
seawater in duplicate acid-rinsed borosilicate bottles
to obtain a final BC concentration of 200 µg l−1. For
experiment BC-grad, the BC stock solution was
added to 1 l of aged seawater to obtain the following
concentration gradient: 200, 500, 1000, and 2000 µg
light-exposed BC l−1 (BC-light treatments) and 500
and 2000 µg unexposed BC l−1 (BC-dark treatments).
The highest BC concentration measured to date in
coastal seawater is 162 µg l−1 (Mannino & Harvey
2004), i.e. similar to the concentrations added in
experiment BC-fix (200 µg l−1). Experiment BC-grad
with up to 10-fold higher additions of BC than has
been found in marine environments was designed to
unveil the basic effects of BC on microbes, rather
than simulating scenarios at ecologically relevant
concentrations. Elevated concentrations of BC should
also amplify the sorption dynamics and potentiate
the interaction between particles and cells or viruses,
respectively.

In both experiments, 10 ml of ultrapure water were
added to the BC-free controls, and all bottles were
incubated in the dark at 20°C for 4 d and sampled
every 13 ± 6 h. We started sampling (t0) approxi-
mately 10 min after adding the BC material. The
incubation bottles were thoroughly mixed prior to
sampling.

Determination of DOC and inorganic nutrients

Samples for the measurement of dissolved inor-
ganic nutrient concentrations (NH4

+, NO3
−, NO2

−,
PO4

3−) were pre-filtered through 0.2 µm polycarbon-
ate filters (GTTP, Millipore), and subsequently ana-
lyzed in a TRAACS 800 autoanalyzer system. NH4

+

was detected with the indo-phenol blue method (pH
10.5) at 630 nm (Helder & De Vries 1979). NO2

−,
NO3

−, and PO4
3− were determined following the Joint

Global Ocean Fluxes Study recommendations (Gor-
don et al. 1993). NO2

− was detected after diazotation
with sulfanilamide and N-(1-naphtyl)-ethylene
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 diam monium-dichloride as the reddish-purple dye
complex at 540 nm. NO3

− was reduced in a copper
cadmium coil to nitrite and then measured as nitrite.
PO4

3− was determined via the molybdenum blue
complex at 880 nm.

Samples for DOC measurements were filtered
through Whatman GF/F filters using a glass filtra-
tion system. The Whatman GF/F filters and all of the
glassware were combusted (450°C for 4 h) prior to
the filtration. Eight ml of filtered samples were
transferred to combusted glass ampoules, and 50 µl
of 40% phosphoric acid were added to each sample.
Afterwards, the ampoules were sealed and stored at
4°C in the dark and analyzed within 1 mo. DOC
concentrations were determined in triplicate using a
Shimadzu TOC-5000 analyzer (Benner & Strom
1993).

Determination of total bacterial abundance,
 respiring bacteria, and ‘live’ versus ‘dead’ bacteria

Water samples for total bacterial abundance
(1.8 ml) were fixed with paraformaldehyde (1%) and
glutaraldehyde (0.05%), kept at room temperature
for ca. 10 min, and then flash-frozen in liquid nitro-
gen. Within a few days, the samples were thawed,
stained with SYBR Green I (Molecular Probes, Invit-
rogen) at 10× dilution for 10 min, amended with
Fluores brite® Yellow Green (YG) beads of 0.98 µm
diameter (Polysciences) as an internal standard, and
analyzed in a Becton Dickinson FACSCalibur flow
cytometer as described previously (Gasol & del
 Giorgio 2000).

Bacteria were detected in plots of 90° light scatter
(SSC) and green DNA fluorescence (Fig. 1). Differ-
ences in the green fluorescence and SSC signature in
the cytometric plot allowed us to separate different
bacterial populations according to their nucleic acid
content, i.e. low (LNA) and high nucleic acid (HNA)
content, as previously described (Gasol et al. 1999).

In the samples with BC additions, we detected an
additional population with a SYBR Green derived
fluorescence comparable to HNA bacteria, yet with a
much higher SSC (Fig. 1). The bacteria in that gate
were operationally considered to be particle-associ-
ated bacteria (PAB) assuming that the increase in
SSC without parallel increase in nucleic acid-derived
fluorescence had to be due to the association of bac-
teria with particles.

The numbers of actively respiring bacteria were
determined by the fluorogenic tetrazolium dye CTC
(5-cyano-2,3-ditolyl tetrazolium chloride) labeling of

highly active cells (del Giorgio et al. 1997, Sherr et al.
1999, Sieracki et al. 1999). Five mM CTC of a daily
prepared batch was added to water samples and
incubated at 20°C for 3 h. After incubation, the sam-
ples were analyzed with a Becton Dickinson FAC-
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Fig. 1. Flow cytometric plot of side scatter (SSC) versus
green florescence (FL1) of SYBR-Green-stained bacteria
from experiment BC-grad. Examples are given of bacteria
that had received black carbon (BC; lower panel) and bacte-
ria from the BC-free control (upper panel). A secondary pop-
ulation of particle-associated bacteria (P+NA) with higher
SSC and similar fluorescence to high nucleic acid (HNA)
bacteria is evident in the lower panel. B: beads; LNA: low 

nucleic acid bacteria
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SCalibur flow cytometer as described in detail else-
where (Gasol & Arístegui 2007).

We also discriminated ‘live’ or membrane-intact
from ‘dead’ or membrane-damaged bacteria using
the nucleic-acid double staining protocol (Gregori et
al. 2001) as explained in detail elsewhere (Falcioni et
al. 2008). In brief, samples were dually stained with
propidium iodine (10 µg ml−1), a membrane-imper-
meable red dye, and SYBR Green I (Molecular
Probes, Invitrogen), a membrane-permeable green
dye, for 15 min, and then analyzed in a Becton Dick-
inson FACSCalibur flow cytometer at a low speed
(ca. 15 µl min−1). A dot plot of red (FL3 cytometric
channel) versus green fluorescence (FL1 cytometric
channel) allowed distinction of the ‘live’ cells from
the ‘dead’ cells. ‘Live’ cells were considered those
having more green than red staining, while ‘dead’
cells had more red than green.

Bacterial heterotrophic production

Subsamples for the measurement of bulk leucine
incorporation by bacteria were taken from the differ-
ent treatments and treated using the method as out-
lined by Simon & Azam (1989). Two 5 ml samples and
one 5 ml formaldehyde-killed blank per treatment
were inoculated with 3H-leucine (20 nM final con-
centration, Amersham, specific activity 160 Ci
mmol−1) and incubated in the dark at 20°C for 2 h.
Subsequently, the samples were fixed with formalde-
hyde (2% final concentration), filtered onto 0.2 µm
Millipore GTTP polycarbonate filters, and rinsed 3
times with 10 ml of 5% ice-cold trichloroacetic acid.
The filters were then transferred to scintillation vials
and dried at room temperature. One ml of ethyl
acetate and 8 ml of scintillation cocktail (Packard
Gold Insta Gel) were added to each vial. The vials
were counted in an LKB liquid scintillation counter
after 18 h. The obtained disintegrations per minute
(DPMs) were converted to leucine incorporation
rates. Leucine incorporated into bacterial biomass
was converted to bacterial carbon production using
the empirical conversion factor 0.07 × 1018 cells mol−1

Leu (Riemann et al. 1990) and assuming a C content
of bacteria of 20 fg C cell−1 (Lee & Fuhrman 1987).
The application of this conversion factor resulted in
similar bacterial heterotrophic production (BHP) esti-
mates as with the theoretical factor of 1.55 kg C mol−1

Leu that assumes no isotope dilution (Simon & Azam
1989). BHP divided by bacterial biomass provided
estimates of the specific growth rate of bacteria (d−1).

Viral abundance

Viral abundance was enumerated by flow cytome-
try (FC), which currently cannot be combined with
virus-aggregate disruption agents such as methanol,
since it interferes with the staining dye (Weinbauer
et al. 2009). Thus, bulk measurements represent
likely free viral abundance (FVA). In specific sam-
ples, viruses attached to BC particles were enumer-
ated by epifluorescence microscopy (see below).

For viral counts by FC, we followed the optimized
protocol by Brussaard (2004). Subsamples (2 ml)
were fixed with glutaraldehyde (0.5% final concen-
tration), incubated at 4°C for 15 to 30 min, and subse-
quently frozen in liquid nitrogen and stored at −80°C.
Upon thawing, viruses were stained with SYBR
Green I (Molecular Probes, Invitrogen) at a final con-
centration of 0.5 × 10−4 of the commercial stock at
80°C for 10 min and quantified using a FACSCalibur
(Becton and Dickinson) flow cytometer after dilution
with TE buffer (10 mM Tris, 1 mM EDTA, pH 8).

Viral production

Viral production (VP) was estimated for selected
samples using the virus reduction technique (Wein-
bauer et al. 2010). The rationale behind the virus re-
duction approach is to reduce virus abundance and
thereby essentially prevent new viral infection. Thus,
the viruses produced originate from already infected
cells. Bacteria from 200 ml of raw seawater were con-
centrated using a 0.2 µm pore size tangential flow sys-
tem (VIVAFLOW 50). To obtain virus-free seawater,
the 0.2 µm pore-size ultrafiltrate was passed through
a 100 kDa cartridge (VIVAFLOW 50). The bacterial
concentrates were brought up to the original volume
with virus-free seawater and incubated in duplicate
50 ml Falcon tubes (BD Biosciences) at 20 ± 2°C for
24 h. At t0 of the experiments, 2 additional tubes were
amended with mitomycin C (Sigma) at a final concen-
tration of 1 µg ml−1 in order to induce the lytic cycle in
prophages. Subsamples (2 ml) for viral abundance
were taken every 3 to 4 h from each incubation, fixed
with glutaraldehyde (0.5% final concentration), incu-
bated at 4°C for 15 to 30 min, subsequently frozen in
liquid nitrogen and stored at −80°C until counted by
flow cytometry. Lytic VP was calculated as the in-
crease in viral abundance over short time intervals
(~4 h). An increase in viral abundance in the mito-
mycin C treatments represents lytic + lysogenic pro-
duction (Paul & Weinbauer 2010, Weinbauer et al.
2010). VP was corrected for the changes in bacterial
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abundance in the VP assays. Dividing the number of
produced phages by an assumed burst size (BS) of 50
(Parada et al. 2006) yields the number of lysed cells
and gives an estimate of the fraction of infected cells
(FIC) when  divided by the bacterial abundance at the
start of the experiment (Weinbauer et al. 2002). Lysis
rates were calculated by dividing VP by BS and were
used to calculate virus-mediated mortality (VMM) as
a percentage of bacterial standing stock (BSS) per day
or as a fraction of BHP. Alternatively, VMM was re-
lated to FIC using the model by Binder (1999).

BC particle size and attachment of viruses and
bacteria

Associations between BC particles, bacteria, and
viruses were investigated by epifluorescence and
confocal laser scanning microscopy (CLSM), respec-
tively, in experiment BC-grad following the protocol
of Cattaneo et al. (2010). The size and number of col-
onized particles were high enough to allow enumer-
ation only in the treatment with the addition of BC at
the highest concentration (2000 µg l−1). Slides were
prepared using a slightly modified version of the
Noble and Fuhrman procedure (Noble & Fuhrman
1998). Subsamples of 2 ml were fixed with glu-
taraldehyde (0.5% final concentration) at 4°C for 15
to 30 min, frozen in liquid nitrogen, and stored at
−80°C until analysis. Thawed samples were filtered
onto 0.02 µm pore size AlO3 filters (25 mm diameter,
Anodisc, Whatman) by low-pressure filtration and
stained with SYBR Gold (Molecular Probes, Invitro-
gen) diluted 1000-fold in autoclaved and 0.2 µm fil-
tered MilliQ water. The filters were transferred onto
slides with a mounting solution (0.1% p-phenylendi-
amine; freshly made from a frozen 10% aqueous
stock Sigma-Aldrich, P-1519) in 50% glycerol-50%
phosphate-buffered saline (PBS, 0.05 M Na2PO4,
0.85% NaCl, pH 7.5) and Vectashield (1:6 v:v; Vector,
Burlingame). The slides were stored at −20°C until
examined under the CLSM.

Initially, abundances of free and BC-attached
viruses and bacteria were assessed at 1200-fold mag-
nification with an epifluorescence microscope (Axio-
phot, Carl Zeiss). At least 25 microscopic fields were
inspected. Colonized BC particles were then investi-
gated with a CLSM (Leica SP2) equipped with an
argon neon laser (excitation: 488 nm; emission spec-
trum: 530−550 nm). For each particle, stacks of
images were acquired and 3-dimensional surfaces
were measured for each particle as previously
described (Cattaneo et al. 2010). The surface area of

particles was converted into ESD (i.e. the diameter of
spheres with equivalent volume to nonspherical-
shaped particles; Peduzzi & Weinbauer 1993). We
quantified the abundance of attached viruses and
bacteria, and manual counting was preferentially
used over automated counting to ensure the required
accuracy of the measurements (Luef et al. 2009,
 Cattaneo et al. 2010).

Statistics

All statistical analyses were performed with JMP
7.0 (SAS). The Shapiro-Wilk W-test was used to
check for normal distribution of data. Analysis of
covariance (ANCOVA) and 1-way ANOVA for nor-
mal distributions and Kruskal-Wallis tests for non-
normal distributions were used to evaluate the
 differences between treatments. Spearman rank cor-
relation for nonparametric data was performed to
determine the relationships between the various
parameters measured.

RESULTS

Effects of BC on nutrients and DOC

The addition of BC resulted in differences in inor-
ganic nutrients and DOC concentrations between
treatments already at t0: light-exposed BC additions
produced a significant increase in DOC concentra-
tion in experiment BC-fix (ANCOVA, p < 0.05) com-
pared to the BC-free control. Phosphate concentra-
tions were higher in BC incubations than in the
BC-free control, although the differences were only
significant in experiment BC-grad. In both experi-
ments, average ammonium concentrations were 5- to
6-fold higher with BC additions than in the controls
(ANCOVA, p < 0.05, Table 1). In most cases, nutrient
concentrations did not change significantly over the
course of the experiments, but ammonium and ni -
trate concentrations in experiment BC-fix and nitrite
concentration in experiment BC-grad increased
(ANCOVA, Table 1).

Total BA and the number of active bacteria

In both experiments, BA did not vary significantly
with time in the BC-free control nor in the treatment
with the addition of 200 µg BC l−1 (ANCOVA, Table 2,
Fig. 2). However, BA increased with time and BC con-
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centration in the other treatments (ANCOVA, p <
0.0001, Table 2, Fig. 2B), reaching 78% higher BA in
the light-exposed and 68% higher BA in the dark-
 exposed BC treatment at 2000 µg BC l−1 with respect
to initial values. The percentage of actively respiring
cells that reduced 5-cyano-2,3-ditolyl tetrazolium
chloride (CTC) was significantly lower in the BC-light
treatment than in all other treatments in experiment
BC-fix (ANCOVA, p < 0.05, Table 2). The percentage
of membrane-intact cells (LIVE) was significantly
lower in the BC treatments than in the control in BC-
fix, but increased slightly with BC concentration and
time in BC-grad (ANCOVA, p < 0.0001, Table 2).

Abundance of free viruses

Initial free viral abundance (FVA) as measured
by flow cytometry was 1.26 × 107 and 1.16 × 107

viruses ml−1 in experiments BC-fix and BC-grad,
respectively. In the BC-free controls, these values
remained roughly stable from t0 throughout the
experiment BC-fix (Fig. 3A) while in BC-grad they
increased by 8% until t8h and then stayed approxi-
mately unchanged until the end (Fig. 3B). Upon
BC amendment, FVA decreased from t0 in both
experiments and remained roughly constant after
the first sampling 8 h later (Fig. 3). In BC-fix, this
decrease amounted to 13% with respect to the BC-
free controls. After 80 h, FVA increased in all
treatments and finally leveled off at ca. 1.34 ± 0.09
(range) × 107 viruses ml−1 in the controls, and at
1.27 ± 0.03 × 107 and 1.29 ± 0.03 × 107 viruses ml−1

in the light and dark BC treatments, respectively.
Average FVA was significantly lower in the BC
treatments than in the BC-free controls and was
not influenced by BC light exposure (Table 1,
Fig. 3A, ANCOVA, p < 0.05).
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Experiment Treatment PO4
3− NH4

+ NO2
− NO3

− DOC

BC-fix BC-free 0.11 ± 0.02 0.14 ± 0.03** 0.01 ± 0.005 0.08 ± 0.02 81.3 ± 3.4
BC-dark 0.16 ± 0.03 0.87 ± 0.23 0.02 ± 0.003 0.09 ± 0.03 80.9 ± 4.7
BC-light 0.15 ± 0.03 0.93 ± 0.42 0.02 ± 0.01   0.11 ± 0.04 91.1 ± 13.6*

Covariate Time ns * ns * ns
BC-grad BC-free 0.10 ± 0.00* 0.17 ± 0.10* 0.02 ± 0.02 0.07 ± 0.02 80.3 ± 3.8

BC-dark 0.14 ± 0.02 0.76 ± 0.50 0.04 ± 0.01 0.12 ± 0.05 83.0 ± 6.1
BC-light 0.16 ± 0.03 0.90 ± 0.59 0.04 ± 0.01 0.10 ± 0.03 83.6 ± 9.0

Covariate Time ns ns * ns ns
BC concentration ns ns ns ns ns

Table 1. Mean ± SD values of the nutrient and dissolved organic carbon (DOC) concentrations (µM) analyzed in each of the
different treatments as well as results of analyses of covariance with time (BC-fix) and with time and black carbon (BC) con-
centration (BC-grad) as covariates. Values are averaged over the experimental time (n = 24). Significantly different values are
highlighted in bold: **p < 0.001, *p < 0.05; ns: not significant. Treatments are as follows: BC-free: BC-free control; BC-dark:
with 200 (BC-fix) or 500 and 2000 (BC-grad) µg BC l−1 maintained in the dark; BC-light: with 200 (BC-fix) or 200, 500, 1000, 

and 2000 (BC-grad) µg BC l−1 exposed to light

Experiment Treatment BHP µg C l−1 d−1 BA × 105 ml−1 PAB % CTC % LIVE % FVA × 106 ml−1

BC-fix BC-free 1.7 ± 0.2 2.0 ± 0.2 - 62 ± 11 83 ± 4*** 12.7 ± 0.5*
BC-dark 1.9 ± 0.1 2.2 ± 0.2 - 64 ± 13 78 ± 6 11.3 ± 0.8
BC-light 3.0 ± 0.8*** 2.2 ± 0.2 - 56 ± 13* 75 ± 6 11.5 ± 0.7

Covariate Time * ns - * ns ns

BC-grad BC-free 1.7 ± 0.4 1.5 ± 0.1 6 ± 1*** 49 ± 23 72 ± 4 12.7 ± 0.7**
BC-dark 2.4 ± 1.2 1.8 ± 0.4 49 ± 10 54 ± 11 76 ± 6 7.3 ± 1.7
BC-light 2.6 ± 1.5 1.8 ± 0.3 47 ± 10 54 ± 16 75 ± 5 8.2 ± 2.2

Covariate Time * ** * *** *** ns
BC concentration *** *** *** ns * ***

Table 2. Mean ± SD values of organism abundance and activity analyzed in each of the different treatments as well as results
of analyses of covariance with time (BC-fix) and time and black carbon (BC) concentration (BC-grad) as covariates. Values are
averaged over experimental time. Significantly different values are highlighted in bold: ***p < 0.0001, **p < 0.001, *p < 0.05.
Treatments as in Table 1. BHP: bacterial heterotrophic production; BA: total bacterial abundance; PAB: particle-attached
 bacteria; CTC: 5-cyano-2,3-ditolyl tetrazolium chloride reducing cells; LIVE: membrane-intact cells using the nucleic acid 

double staining protocol (see Materials and Methods); FVA: free viral abundance
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In experiment BC-grad, FVA averaged over the
experimental time decreased with increasing BC
concentrations (ANCOVA, p < 0.0001) but was
not influenced by BC light exposure (Table 2,
Fig. 4B).

The virus-to-bacteria ratio (VBR) ranged from
21 to 109 and averaged 56 ± 16 without differ-
ences between experiments. VBR was signifi-
cantly lower with BC addition only in the experi-
ment BC-grad (47 vs. 88, ANCOVA, p < 0.05,
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covariates: BC concentration: p < 0.0001, time:
non-significant).

BC-attached viruses and bacteria and size of 
the  BC particles

In BC-grad, the size of BC particles with attached
bacteria and viruses as analyzed by CLSM ranged
from 4.6 to 22.4 µm ESD (average: 9.5 ± 5.4 µm), but
58% of the particles were smaller than 10 µm ESD
throughout the experiment except t0 (details not
shown). Fifty-six percent of the particles had fewer
than 10 attached bacteria. The abundance of
attached bacteria was positively related to BC parti-
cle size (BA = −0.03 + 0.94 ESD, n = 16, R2 = 0.38,
Table 3), and the average number of bacteria per
ESD was 0.9 ± 0.7 µm−1. The number of BC-attached
viruses ranged between 4 and 64 viruses per particle.
A positive correlation was observed between the
abundance of BC-attached viruses and BC particle
size, while the number of BC-attached viruses per
µm2 was negatively correlated with BC particle size
(Table 3).

At the end of the incubation, in the treatment
with the addition of BC at the highest concentration

(2000 µg l−1), BC-attached viruses assessed by epiflu-
orescence microscopy accounted for 40% of total
viral abundance, and attached bacteria accounted for
50% of the total bacterial abundance. The percent-
age of particle-attached bacteria measured using the
FC approach was only recorded in BC-grad and
ranged from 4−8% in the BC-free controls (average
6 ± 1%, considered to be the background counts 
of the technique), to 44−63% (average 57 ± 6%) at
2000 µg BC l−1. The percentage of particle-attached
bacteria increased significantly with increasing BC
concentration (Fig. 4A, Table 2). Furthermore, per-
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ρ n p

Abundance of attached:
viruses particle−1 0.640 18 <0.05
viruses µm−2 −0.612 18 <0.05
bacteria particle−1 0.715 16 <0.05
bacteria µm−2 −0.441 16 ns

VBR µm−2 −0.738 16 <0.05

Table 3. Spearman rank correlation analysis of microbial
abundances with black carbon (BC) particle size from the
treatments with the addition of 2000 µg BC l−1 kept in the
dark in experiment BC-grad. VBR: virus-to-bacteria ratio; 

ns: not significant
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centage of particle-attached bacteria correlated
 positively and significantly with bacterial production
(ρ = 0.335, n = 55, p < 0.05) and with the % HNA (ρ =
0.310, n = 55, p < 0.05). No effect of exposure to
 artificial solar radiation of BC on the percentage of
 particle-attached bacteria was detected.

Bacterial heterotrophic production

In BC-fix, the addition of irradiated BC led to a sig-
nificant increase in BHP with respect to the other
treatments after 24 h (ANCOVA, p < 0.0001), and this
level of activity was maintained throughout the
experiment (Fig. 5A). In contrast, BHP in the BC-dark
treatment was not significantly different from the
BC-free controls and increased by only 32% (vs.
148% in treatment BC-light, Fig. 5A).

In BC-grad, BHP increased significantly with
increasing BC concentrations in all BC treatments
(Table 2, Fig. 5B). BHP amended with light-exposed
BC was up to 12 times higher than the initial BHP of
0.7 µg C l−1 d−1, whereas BHP in the dark BC treat-
ment was only higher than the BC-free control at the
highest BC concentration (2000 µg BC l−1), reaching
5 µg C l−1 d−1. Time-averaged BHP for the time inter-
val of 2 to 3 d was significantly higher with the addi-
tion of light-exposed BC than in the other treatments

(ANCOVA, p < 0.05). The specific growth rate of bac-
teria showed the same trend as BHP in both experi-
ments (details not shown).

Viral production and infection

VP was measured at t0 and after 2 d in all treat-
ments of experiment BC-fix. In BC-grad, VP was
measured only in some of the treatments (Table 4).
Tangential flow filtration through a 100 kDa car-
tridge removed viruses efficiently, resulting in <1%
of the original viral abundance. At t0, viral abun-
dance in the VP incubations ranged between 9 and
40% of the original viral abundance. These viruses
were introduced along with the bacterial concentrate
into the incubations for estimating VP.

In BC-fix, lytic VP increased from 1.3 ± 0.3 × 106

viruses ml−1 d−1 at t0 to 2.7−24.3 × 106 viruses ml−1 d−1

after 2 d of incubation (Table 4). VP was significantly
lower in the dark BC treatments compared to the BC
control and the light-exposed BC treatments (Table 4,
Kruskal-Wallis test, p < 0.05). At t0, 12 ± 2% bacteria
were infected, corresponding to an estimated viral
 lysis rate of 2.5 ± 0.6 × 104 bacteria ml−1 d−1. At t2d, sig-
nificantly fewer bacteria were infected in the dark BC
treatment than in the BC control and in the light BC
treatment, and estimated viral lysis rates were signifi-
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cantly lower in BC-dark (7.2 ± 1.8 × 104 bacteria ml−1

d−1) than in the other treatments (26.0 ± 15.1 × 104 bac-
teria ml−1 d−1, Table 4, Kruskal-Wallis test, p < 0.05).
Virus-mediated mortality of bacterial standing stock
per day (VMMSS) varied between 12% d−1 at t0 and
>100% d−1 in the light-exposed BC treatment at t2d

and was significantly lower in the dark BC treatment
than in the light-exposed BC treatment and the BC
control (Table 4, Kruskal-Wallis test, p < 0.05). The
 estimated virally mediated loss of BHP ranged from
33% at t0 to >100% in the light-exposed BC treatment
and BC-free control without significant differences
between treatments. Following the model by Binder
(1999), VMM ranged from 7% in the dark-exposed
BC treatment to >100% in the light-exposed BC treat-
ment without differences between treatments.

In BC-grad, lytic VP increased from 2.0 ± 0.9 × 106

at t0 to 15.2 ± 1.8 × 106 viruses ml−1 d−1 at t2d in the BC-
free control and was significantly higher than in the
BC-amended treatments (3.2 ± 2.8 × 106 viruses ml−1

d−1, Table 4, Fig. 6, Kruskal-Wallis test, p < 0.05). At
t0, 8 ± 3% of bacteria were infected. At t2d, FIC was
significantly higher in the BC-free control than in the
BC-amended treatments (Table 4, Kruskal-Wallis
test, p < 0.05). Consequently, estimated viral lysis
rates were, on average, lower with BC addition (6.5 ±
5.7 × 107 bacteria ml−1 d−1) than in the BC-free control
(Table 4, Kruskal-Wallis test, p < 0.05). The resulting
VMMSS values were significantly lower in the pres-
ence of BC (on average 36 ± 33% d−1) compared to
the control (>100% d−1, Table 4, Kruskal-Wallis test,
p < 0.05). According to the model by Binder (1999)
VMM was significantly lower with BC addition (9 ±
9%) than in the BC-free control (63 ± 8% Table 4,
Kruskal-Wallis test, p < 0.05). No lysogens could be
induced by mitomycin C in any of the experiments.

DISCUSSION

The effects of BC on bacterial abundance, produc-
tion, and viral-mediated loss of bacterial production
were assessed in this study using BC reference mate-
rial and aged marine microbial communities. The
main findings were that (1) BC addition increased
bacterial biomass accumulation and reduced VP and
infection and (2) exposure of BC to UV light in -
creased bacterial production. These results suggest a
stimulating effect of BC on aggregation processes
and bacterial production and a suppressing effect on
the viral shunt and associated nutrient regeneration
with the potential to increase system heterotrophy.
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Experiment Time Treatment VP × FIC % Lysis rate × VMMSS VMM %
(d) 106 ml−1 d−1 104 ml−1 d−1 % d−1

BC-fix 0 1.3 ± 0.2 12 ± 2 2.5 ± 0.4 12 ± 2 25 ± 4
2 BC-free 9.9 ± 2.9 20 ± 5 19.7 ± 5.8 101 ± 26 46 ± 17

BC-dark 3.6 ± 0.9 10 ± 3 7.2 ± 1.8 34 ± 9 21 ± 8
BC-light 15.4 ± 9.5 27 ± 16 30.8 ± 19.1 140 ± 85 88 ± 68

BC-grad 0 2.0 ± 0.9 8 ± 3 4.0 ± 1.8 28 ± 12 16 ± 7
2 BC-free 15.2 ± 1.8 25 ± 2 30.5 ± 3.5 183 ± 21 63 ± 8

BC-dark 500 2.2 ± 2.2 3 ± 3 4.4 ± 4.4 24 ± 24 6 ± 6
BC-light 500 6.2 ± 0.6 9 ± 1 12.3 ± 1.2 71 ± 7 19 ± 2
BC-light 2000 1.3 ± 1.3 2 ± 2 2.7 ± 2.7 14 ± 14 3 ± 3

Table 4. Viral production (VP, viruses ml–1 d–1), frequency of infected cells (FIC, %), bacterial lysis rates and virally mediated
loss of bacterial standing stock (VMMSS, % d–1) and viral mediated mortality related to FIC (VMM, %) by a model (Binder
1999). Data are given as means ± range of duplicate measurements. Significantly different values for treatments are high-

lighted in bold (p < 0.05, Kruskal-Wallis test). Treatments as in Table 1
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Interaction between microorganisms and 
BC particles

With the help of flow cytometry, we detected an
 additional bacterial population characterized by high
SSC (Fig. 1). Since this population with high SSC but
comparable SYBR green derived  fluorescence to
HNA bacteria was not observed in the BC-free con-
trols, it is likely that it consisted of bacteria associated
with particles. The strong correlation between this
bacterial FC population and BC concentration
(Fig. 4A) supports the notion that these were BC-
associated bacteria. Also, the similarity of the data on
the fraction of particle-associated bacteria data
obtained by FC and by epifluorescence micros copy
supports this idea. The values of the side scatter in
the FC cytograms for this type of particle increased
during the course of the experiment (data not
shown). Assuming that light scatter is proportional to
the size of the particles (Koch et al. 1996), the data
indicate that particles were increasing in size. Hence,
a progressive aggregation of BC including colloids
and bacterial cells into larger particles might have
taken place. Different stages of association between
bacteria and BC material, which range from small BC
colloids attached to bacteria to bacteria completely
entrapped in BC have been shown previously (Catta-
neo et al. 2010), suggesting BC-driven aggregation
and particle formation. This is supported by findings
that BC reference material stimulated the formation
of a specific class of organic aggregates, the transpar-
ent exopolymeric particles (Weinbauer et al. 2012,
Mari et al. 2014). Also, in situ evidence suggests that
soot deposition can increase coagulation and aggre-
gation of organic matter (Mari et al. 2014).

Viral abundance per unit surface of BC decreased
with BC particle size similarly to patterns previously
observed in BC reference material (Cattaneo et al.
2010) and in other suspended material (Simon et al.
2002, Luef et al. 2007, Mari et al. 2007). The decreas-
ing concentration of attached viruses with increasing
particle size can be assigned to the fractal structure
of BC particles (Slowik et al. 2007) which translates
into increasing porosity with increasing particle
size. Increasing porosity implies a higher content of
pore water with potentially lower microbial and viral
densities.

Effect of BC on viral production and infection

Free viral abundance was significantly lower in the
BC treatments than in the controls (Table 2) and de-

creased with BC concentrations (Fig. 4B). Viruses
were found attached to BC particles as in ex -
periments performed with water from the Mediter-
ranean Sea (Cattaneo et al. 2010). VP and the fraction
of infected cells were also significantly lower in the
BC-amended treatments (Table 4, Fig. 6) except for
the BC-light treatment in BC-fix. In this treatment,
the negative effects of BC on VP as experienced in
the dark BC treatment (see discussion below) could
have been compensated by an increased viral infec-
tion due to the stimulated bacterial production in BC-
light (see below) with the net outcome of no de-
tectable effect of BC at a concentration of 200 µg l−1.

Our data suggest that adsorption onto BC particles
inactivated viruses and prevented infection of
attached cells, or reduced infection by reducing the
abundance of free viruses and thus encounter rates.
Similarly, in a study with water from the Danube
River, free viruses were scavenged on particles
(Kernegger et al. 2009). Such a mechanism could
have resulted in the increased BHP in the BC treat-
ments as also observed for suspended material in the
Danube River. Interestingly, particle quality was a
determining factor for microbial attachment in these
freshwater experiments, and significantly fewer
viruses attached to mineral than to organic particles
(Kernegger et al. 2009). In accordance, the addition
of mineral particles, such as Saharan dust (Wein-
bauer et al. 2009, Pulido-Villena et al. 2014) or clay
particles (Salter et al. 2011) to marine coastal waters
led to a negligible sorption of viruses to particles and
increased VP rates in contrast to the response of the
microbial community to BC addition in the present
study.

VP in solar radiation-exposed BC treatments was
significantly stimulated with respect to the non-
exposed BC (Table 4). This could be traced to the
stimulation of bacterial production in BC-light treat-
ments, since viral infection and production are
related to bacterial activity and production (Wom-
mack & Colwell 2000). Also, viral adsorption or inac-
tivation by BC could have been reduced due to UV-
exposure, thus allowing for higher infection rates.

Effect of BC on bacterial production

The addition of BC stimulated bacterial production
in both experiments (Table 2). The positive corre -
lation found between particle-associated bacteria
and heterotrophic bacterial production as well as
HNA bacteria, which are often the more active bacte-
rial fraction (e.g. Gasol et al. 1999), suggests that
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 attached bacteria were particularly active and
 contributed significantly to the measured bacterial
production. Such an increased metabolic activity of
attached bacteria has been found following the up-
regulation of enzyme activity upon colonization of
 organic aggregates (Riemann et al. 2000, Simon et al.
2002, Grossart et al. 2007). Historically, BC was as-
sumed to be highly refractory (Schmidt & Noack
2000), but an increasing body of literature shows abi-
otic (Decesari et al. 2002, Lehmann et al. 2005, Cheng
et al. 2006, Stubbins et al. 2010, 2012) and biotic oxi-
dation of BC in soils (Potter 1908, Shneour 1966,
Cheng et al. 2006, 2008, Zimmerman 2010) and sedi-
ments (Middelburg et al. 1999). For example, oxida-
tion of turbidite in the Madeira Abyssal Plain
removed about 77% and 64% of organic and soot
carbon, respectively, thus challenging the assumption
that BC is biologically and chemically recalcitrant
(Middelburg et al. 1999). However, since the quantifi-
cation of BC was beyond the scope of this study, there
is no direct evidence of BC decomposition or its use as
a carbon source during our experiments. The addition
of ammonium along with the BC material (Table 1)
could have stimulated bacterial production, since the
simultaneous addition of ammonium and organic car-
bon can stimulate bacterial production (Kirchman &
Rich 1997). However, the use of aged seawater and
the finding that ammonium concentrations did not
decrease with incubation time argues against such 
a mechanism. Another mechanism explaining in-
creased bacterial activity could be the adsorption of
DOC to BC particles, which could create hot spots of
microbial activity similar to those observed in marine
snow particles (Azam & Malfatti 2007). It is well
known that soot particles can interact with organic
compounds (Rockne et al. 2000, Slowik et al. 2007)
and redistribute them in the environment (Ahrens &
Morrisey 2005). There is additional evidence (Catta-
neo et al. 2010, this study) that viruses, which are by
definition part of the DOC pool, are rapidly adsorbed
to BC. Overall, it is well known that organic com-
pounds adsorb very efficiently to materials such as
BC, generally exceeding adsorption for typical amor-
phous organic matter by a factor of 10 to 100 (Cor-
nelissen & Gustafsson 2005, Cornelissen et al. 2005).

In both experiments, heterotrophic bacterial pro-
duction was significantly higher after exposing BC
to solar radiation. Photo-oxidation can induce chemi-
cal changes in the highly aromatic structure of BC-
like molecules (Stubbins et al. 2010), thus offering
sites for degradation and increasing BC bioavailabil-
ity. Stubbins et al. (2012) reported a 20-fold de crease
in marine dissolved BC concentration after exposure

of North Atlantic Deep Water to simulated solar radi-
ation confirming the high photo-lability of dissolved
BC. Maki et al. (2001) found that the ex posure of
biodegraded crude oil to sunlight significantly
decreased the aromatic fraction and that this material
favored the growth of seawater microbes as com-
pared to non-irradiated material (Maki et al. 2001).
Our data suggest that light exposure of BC in surface
waters can alter BHP. As aerosols are normally
exposed to solar radiation during atmospheric trans-
port with radiation levels potentially exceeding those
observed in surface waters, our results also suggest
that the distance from the BC source and its resi-
dence time in the atmosphere prior to the deposition
on the ocean surface could be an important para -
meter modulating the effect of BC on the marine
 ecosystem.

CONCLUSIONS

Our study indicates that BC deposition in the ocean
can stimulate heterotrophic bacterial production
either by reducing the impact of viral lysis, by serv-
ing as a carbon source to bacteria, and/or by serving
as hotspots due to organic matter adsorption. Our
experiments also indicate that atmospheric transport
of BC, and the residence time in surface waters, will
likely influence the effect on the microbial commu-
nity, since exposure to solar radiation increased BC
availability. Fossil-fuel and biomass burning will
probably further increase in the future (Novakov et
al. 2003), and the impact of BC on the functioning of
the marine microbial food web is likely to become
more important, particularly in coastal oceans. One
of the potential consequences could be a shift in 
the metabolic balance of the planktonic ecosystem
towards a more heterotrophic ocean.
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