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Abstract
Biochar has been proposed as a promising negative CO2 emission technology to 
mitigate future climate change with the additional benefit of increasing agricul-
tural production. However, the spatial responses of soil organic carbon (SOC) 
to biochar addition in cropland are still uncertain, and the economic feasibility 
of large-scale biochar implementation remains unclear. Here, we analyzed the 
response of SOC to biochar addition using 389 paired field measurements. The 
results show that biochar addition significantly increased SOC by 45.8% on aver-
age with large regional variations. Using a random forest model trained with soil, 
climate, biotic, biochar, and management factors, we found that the response of 
SOC to biochar addition was mainly dependent on biochar application rates, ini-
tial SOC, edaphic (e.g., pH), and climatic (e.g., mean annual precipitation) varia-
bles. Combined with the predicted SOC changes to biochar addition on the global 
cropland, we assessed the revenue of the biochar system based on the current and 
potential pyrolysis plants in the world using the life-cycle analysis. Net revenue 
of the currently existing 144 pyrolysis plants increases with larger plant capac-
ity and higher carbon price. Potential revenue of building new plants is high in 
regions like America and Europe but low in regions with infertile soil, low crop 
residues availability, and inconvenient transportation. The global CO2 removal of 
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1   |   INTRODUCTION

To meet the Paris Agreement's goal of limiting global 
warming to below 2°C, negative emission technologies 
will be required (Minx et al., 2018; Smith, 2016; UNFCCC, 
2015), such as increasing soil carbon storage with the help 
of biochar. The production of biochar starts from carbon 
removed from the atmosphere and incorporated in plant 
material and transforms it via pyrolysis onto a very long-
lived product that remains in the soil, being recalcitrant to 
microbial decomposition (Smith, 2016; Woolf et al., 2010). 
The CO2 sequestration potential of biochar, when applied 
to soil, is estimated to be 0.5–2 GtCO2e year−1 (Minx et al., 
2018; Wu et al., 2019). In addition, biochar has potential 
co-benefits, such as increasing crop yield, reducing soil 
nutrient loss, and improving soil water-holding capacity 
(Jeffery et al., 2011; Jones et al., 2012; Liu et al., 2016).

Biochar amendments to soil affect the stability and 
turnover of SOC by changing pH, bulk density, and mois-
ture conditions, and these effects vary with soil proper-
ties, biochar application rate, biochar type, and pyrolysis 
temperature (Liu et al., 2016). For example, biochar ap-
plication may increase the priming of SOC by increas-
ing soil microbial activity, accompanied with a decrease 
of soil bulk density and increased soil pH, moisture, and 
porosity (Luo, Wang, et al., 2017; Luo, Zang, et al., 2017). 
Biochar can also enhance the formation of soil aggregates 
through the associations of soil minerals and biochar by 
blocking contacts between microorganisms and SOC par-
ticles (Zheng et al., 2018). A greater microbial carbon use 
efficiency and carbon sequestration potential were found 
with biochar amendment compared to crop straw (Liu 
et al., 2020). Liu et al. (2016) analyzed the responses of soil 
CO2 flux, SOC, and soil microbial biomass carbon (MBC) 
to biochar additions using 148 paired field SOC data 
from 50 publications and found that SOC was increased 
significantly by 40% (95% confidence interval [CI] = 32–
51) within 4 years compared to the non-biochar addition 
treatment. Bai et al. (2019) compared the effects of biochar 
on SOC sequestration with other climate-smart agricul-
ture management practices such as conservation tillage 
and cover crop and found that SOC content was increased 

by 28% (95% CI  =  23–32) with field biochar application 
(96.7% sites <5 years). These meta-analyses summarized 
the direction and magnitude of SOC change with biochar 
addition in different regions, soil types (e.g., pH, texture), 
applied biochar types (e.g., feedstock, pyrolysis tempera-
ture), and management practices (e.g., fertilization, resi-
due management). However, the spatial pattern of SOC 
change due to large-scale biochar implementation at the 
global scale remains unclear, which is valuable to identify 
the optimal regions for biochar application to gain the larg-
est SOC accumulation and assess the carbon removal po-
tential of biochar application as a natural climate solution.

In addition to the ecological benefits of SOC sequestra-
tion by biochar, the feasibility of biochar implementation 
depends on economic costs and revenues of the biochar 
supply chain. Cost-revenue analysis of the whole biochar 
system is thus required. The widely used method is life 
cycle analysis (LCA) that assesses the economic, ener-
getic, and greenhouse gases (GHGs) emissions from feed-
stock collection to biochar application in biochar system. 
Previous studies assessed the revenue or climate change 
mitigation potential in the full life cycle of biochar im-
plementation (Azzi et al., 2019; Hammond et al., 2011; 
Roberts et al., 2010) and showed that the economic feasi-
bility of biochar-pyrolysis system largely depends on the 
cost of biochar feedstock production, pyrolysis system, and 
carbon offset value (Homagain et al., 2016; Roberts et al., 
2010). However, these studies mainly focused on a small 
scale, such as a certain region or a single pyrolysis plant 
with specific conditions like energy structure, feedstock 
availability, and pyrolysis facility processing system on a 
small scale (Homagain et al., 2016; Roberts et al., 2010). In 
addition, biochar can not only increase SOC through the 
stable fraction of itself, but also change the original (native) 
SOC through changes, e.g., in soil properties and microbial 
activities. These processes of the native SOC changes with 
biochar addition were largely ignored in previous LCA 
analysis (Hammond et al., 2011). Therefore, it is important 
to analyze the native SOC changes with biochar addition 
at the global scale using the existing field observations, in 
order to fully assess the potential and feasibility of biochar 
application as a climate mitigation option.

biochar application is 6.6 Tg CO2e (CO2 equivalent) year−1 with a net revenue of 
$ 177 million dollars at a carbon price of $ 50 t−1 CO2 for current pyrolysis plants 
with a biomass-processing capacity of 20,000 t year−1. Our study provides a full 
economic assessment of idealized biochar addition scenarios and identifies the 
locations with maximal potential revenues with new pyrolysis plants.

K E Y W O R D S
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In this study, we first analyzed the responses of SOC 
and other soil variables to biochar application based on a 
meta-analysis of the 389 paired experiment data with and 
without biochar addition. We then trained a random forest 
(RF) model using the observation data of SOC responses to 
biochar addition and the corresponding edaphic, climatic, 
biotic, and management variables. The trained RF model 
was further used to predict SOC change due to biochar ad-
dition on the global cropland at 1 km × 1 km. Finally, we 
adopted the LCA method (Figures S1 and S2) to estimate 
the net revenue of the biochar system, in order to analyze 
the regional differences of cost-revenue contributions of 
current pyrolysis plants and to identify the potential lo-
cations with the maximum net revenue for building new 
plants.

2   |   MATERIALS AND METHODS

2.1  |  Data collection

We conducted a literature search in the Web of Science 
(http://apps.webof​knowl​edge.com/) and China Knowl
edge Resource Integrated (CNKI) databases (http://​www.​
cnki.net/) with the keywords of “soil organic carbon” or 
“SOC” and “biochar.” Publications were selected using 
the following criteria: (1) Biochar addition experiment 
must be conducted in the field cropland with explicit 
locations; (2) at least one pair of SOC data (control and 
biochar-amended treatment) is available. A total of 389 
paired field SOC data with control and biochar-amended 
treatments from 70 peer-reviewed publications were ex-
tracted, and their spatial locations are shown in Figure 
S3. The experiment duration for most data is short-term 
(83.8% sites within 3 years).

Six attributes were taken from the selected publica-
tions of biochar application experiments when available 
(Table S1): (1) SOC concentration (SOC with control 
[SOC_ini] and biochar addition) and soil properties, 
including clay (CLAY), sand (SAND), silt (SILT), bulk 
density (BD), base saturation (BS), pH, cation exchange 
capacity (CEC), average annual soil moisture (SM), total 
N (TN), total P (TP), total K (TK), and C/N ratio (Figure 
S4); (2) climate, including the mean annual temperature 
(MAT), mean annual precipitation (MAP), mean of the 
minimum temperature of each month (Tmin) and mean 
of the maximum temperature of each month (Tmax); (3) 
biological variable (net primary productivity [NPP] of the 
present field crop); (4) biochar characteristics, including 
biochar feedstock types (i.e., biomass source type for bio-
char production, FS), pyrolysis temperature (Temp_BC), 
biochar application rate (Rate_BC), and aging time of bio-
char (Age_BC, i.e., interval between biochar application 

and soil sampling); (5) management practices, including 
irrigation and fertilizer rate (Fertilizer) (Figure S5); (6) 
other auxiliary variables, including coordinates (latitude 
and longitude), experimental duration, crop types, rota-
tion (whether or not) and the month of crop harvested. 
Mean and standard deviation (or error) of SOC concen-
trations and soil properties variables in each treatment 
were also extracted from the contexts or Supplementary 
Materials for the meta-analysis (Section 2.2). Base fertil-
izer was widely applied to improve crop yield in the field 
experiments, and thus some studies explored the effects 
of the combination of biochar and fertilizer on SOC. Such 
data were documented as fertilizer treatment and “fertil-
izer + biochar”. For sites with more than one experiment 
available, each experiment was considered as indepen-
dent paired data.

2.2  |  Meta-analysis

Following the meta-analysis method described by Hedges 
et al. (1999), the natural log-transformed response ratio 
(RR) was used to calculate the effect size:

where Xt and Xc are the means in the treatment and control 
groups, respectively.

The variance (v) of each individual RR is estimated as:

where nt and nc refer to the number of replicates of the vari-
able in the treatment and control groups; St and Sc are the 
standard deviations in the treatment and control groups. 
The variance (v) of each RR was calculated based on the 
study of Hedges et al. (1999). The effect size of each obser-
vation is weighted by the inverse of v, and then it is used to 
calculate the 95% CI.

The mean effect size was quantified by the weighted 
RR (RR++), RR++, and 95% CI were generated from the 
random-effects model using the metacont package in R 
(Adams et al., 1997). If the 95% CI do not overlap with 
zero, biochar addition is considered to pose a significant 
effect on SOC change. The effect size was transformed 
into a percent relative change (RCSOC):

A significance level of p < 0.05 was used in all the sta-
tistical analyses.

(1)RR = ln
Xt
Xc

= ln
(

Xt
)

− ln(Xc)

(2)v =
S2
t

ntX
2
t

+
S2c

ncX
2
c

(3)RCSOC = %(RR++) = (eR++ − 1) ∗ 100%

http://apps.webofknowledge.com/
http://www.cnki.net/
http://www.cnki.net/


4  |      HAN et al.

2.3  |  Upscaling of SOC responses to 
biochar addition

2.3.1  |  Model training

We adopted RF to capture the complex nonlinear rela-
tionship between SOC changes and the biochar addi-
tion as well as the interactions with other explanatory 
variables. RF is a machine learning method with robust 
performance and low bias for prediction by building nu-
merous trees based on the original observation dataset 
(Breiman, 2001) and has been widely applied for pre-
dicting spatial-temporal variation of soil carbon stock 
(Zhou et al., 2019), soil respiration (Huang et al., 2020), 
GHGs emissions (Liu, Liu, et al., 2019), and crop yields 
(Everingham et al., 2016; Li et al., 2020). The observed 
paired data were randomly split into two parts in this 
study: 291 sites (75% of the total) as the training subset 
and 98 sites (25%) as the test subset. We used the scikit-
learn module in Python (Pedregosa et al., 2011) to per-
form the RF regression with bootstrapped 1000 trees and 
a maximum tree depth of 15.

In RF training, the natural logarithm-transformed 
RR (Equation 1) is used as the response variable, and the 
explanatory variables include edaphic variables (CLAY, 
SAND, SILT, BD, BS, pH, CEC, TN, TP and TK, SM, 
SOC_ini), climatic variables (MAT, MAP, Tmin, Tmax), bi-
ological variable (NPP), biochar-related variables (Rate_
BC, FS, Temp_BC, Age_BC), and management variable 
(Fertilizer), of which all variables are continuous vari-
ables except the biochar feedstock type. The detailed in-
formation of all variables is listed in Table S1. NPP, as the 
input of SOC, is the main biological factor that controls 
SOC, and other biological-related factors (e.g., microbial 
activity) were not included due to a lack of relevant data. 
Management practice-related variables only include the 
fertilizer rate because very limited information on irriga-
tion was available (Figure S5).

The coefficient of determination (R2) between predic-
tions and observations in the training data and test data 
were derived to evaluate the RF model performance. The 
corresponding R2 is 0.95 and 0.81 for the training and test 
data, respectively (Figure S6). As a comparison, we also 
tried linear regression models, including multiple linear 
regression (MLR) and the least absolute shrinkage and 
selection operator (LASSO) regression model, and the R2 
(0.53 and 0.46, respectively, Figures S7b and S8b) is lower 
than the R2 from the RF model.

The importance of variables can be directly obtained 
from the RF model training based on their contributions 
to the tree splits using the sklearn package in Python 
(Louppe et al., 2013). The partial dependence between the 
explanatory variables and a set of dependent features were 

conducted to analyze the response of SOC change with 
biochar addition to single important variables.

2.3.2  |  Model prediction

The trained RF model was then used to project SOC 
change with idealized biochar addition on the global crop-
land at 1 km × 1 km resolution (same biochar application 
rate on each cropland grid cell). The RCSOC with biochar 
addition is assumed consistent in topsoil (0–30 cm). The 
base SOC stock (soil depth = 28.9 cm) derived from the 
gridded global soil dataset for the use in earth system 
models (GSDE) (Shangguan et al., 2014) was used to cal-
culate SOC absolute change (ACSOC [t  ha−1]  =  SOC_ini 
[g kg−1] × BD [g cm−3] × soil depth [cm] × 0.1 × RCSOC) 
with biochar application for the LCA. Cropland distribu-
tion at 1 km × 1 km was derived from global land cover 
map database (GLCM) (Ramankutty et al., 2008). The 
global explanatory variables include 12 edaphic variables, 
4 climate variables, 1 biotic variable, 1 management vari-
able, and 4 user-specified biochar-related variables, and 
the detailed information (e.g., source and spatial resolu-
tion) of these variables are listed in Table S2. For the soil 
moisture and nitrogen fertilizer with coarser resolutions, 
nearest-neighbor resampling was used to obtain the data 
at 1  km  ×  1  km resolution. We made a total of 21 pre-
dictions (Table S3) by combining three biochar feedstock 
types (straw, wood, and manure) and seven biochar ap-
plication rates (5, 10, 20, 40, 60, 80, and 100 t ha−1). The 
seven application rates are within the range of application 
rates in the training dataset (1.5–120 t ha−1, Figure S9a). 
We also made four sensitivity tests using four pyrolysis 
temperatures with straw as the feedstock type and a bio-
char application rate of 20 t ha−1 (Table S3).

2.4  |  Life cycle analysis

Life cycle analysis is an assessment method based on 
processes from “cradle” to “grave,” which has been 
widely used for the assessment of environmental conse-
quences in a system in the field of energetic, economic, 
and carbon abasement (Guenet et al., 2021; Sykes et al., 
2020). In this study, LCA was modified from Roberts 
et al. (2010). The LCA (Figure S2) includes the processes 
of: (a) feedstock collection, (b) feedstock transportation 
from cropland to biochar pyrolysis plant, (c) biomass 
pyrolysis, (d) the return transportation from plant to 
cropland, (e) biochar applied, and its derivational in-
fluence; (f) energy generation from (c); (g) changes in 
SOC, N2O emissions and NPK fertilizer use efficiency 
from (e). Cost and revenue as well as carbon emission 
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and reduced emission in each process were calculated 
for the economic and carbon balance analysis. The SOC 
changes due to biochar addition (20 t ha−1) were taken 
from the RF projection outputs (i.e., ACSOC). Three car-
bon prices ($ 20, $ 50, $ 100 t−1 CO2) were used in the 
LCA for further analysis.

The transport distance between cropland and pyrol-
ysis plant is related to the plant capacity, the amount of 
available agricultural residue around the plant, and the 
transportation accessibility (Han et al., 2013). In this 
study, the plant capacity and the available agricultural 
residues were used to calculate the maximum base ser-
vice distance (Dmax) that satisfies the plant capacity based 
on the road network (https://www.natur​alear​thdata.
com/) with ArcGIS 12.0 (Figure S10). The distances thus 
varied with available agricultural feedstock and the plant 
capacity. Note different from the resolution for the RF 
(1 km × 1 km), the LCA analysis was conducted at a res-
olution of 10 km × 10 km due to the complexity in the 
road network and the corresponding computing cost of 
distance at a high resolution. The available residue on 
cropland within Dmax was first transported to the pyrol-
ysis plant for biochar production, and then the produced 
biochar was sent back to the corresponding cropland grid 
cell for application. Because the biochar application rate 
is 20  t  ha−1, much higher than the biomass density in 
the cropland, it means only a part of cropland in each 
10 km × 10 km grid cell is added with biochar. The net 
revenue of each biochar pyrolysis plant was summed up 
within Dmax (see Figure S10 for details). It should be noted 
that we did not explicitly consider the biomass competi-
tion between nearby plants.

We surveyed data from 144 companies in the world for 
biochar production in the State of the Biochar Industry 
2015 from International Biochar Initiative (IBI, https://
bioch​ar-inter​natio​nal.org/), and the coordinates of these 
plants were acquired using Google earth by relative infor-
mation (Figure S11). Due to the lack of information on 
the plant capacity, we tested three assumed biomass pro-
cessing capacities: 2000, 20,000, and 100,000 t dry biomass 
(DM)  year−1, representing small-, medium-, and large-
sized plants, respectively (Hammond et al., 2011). The 
agricultural residues were estimated from satellite-based 
NPP after removing the fraction of root, grain, and the 
other usage for poultry feed (Yang et al., 2010) (24%) and 
industrial materials (Yang et al., 2010) (3%) using the root 
fraction (Bolinder et al., 2007) (20%) and the ratio of res-
idue to grain (NDRC, 2015) (0.89). In addition, collection 
efficiency (Yang et al., 2010) (0.83) was used to account 
for the loss of uncollected parts of crop residues (default).

Finally, in order to identify possible locations for new 
pyrolysis plants, we estimated the revenues of plants 
with a biomass processing capacity of 2000, 20,000, or 

100,000  t  year−1 in each cropland grid cell at a carbon 
price of $ 20, $ 50, or $ 100  t−1 CO2. We thus provided 
global revenue maps to show the revenue if a new plant 
will be built in each grid cell.

3   |   RESULTS

3.1  |  Effects of biochar on SOC and other 
soil properties

Overall, the response of SOC to biochar addition is sig-
nificantly positive with an increase of 45.8% (Figure 1, 
95% CI  =  39.3–52.7). Biochar addition also significantly 
increases MBC (17.8%, 95% CI = 14.3–21.4), DOC (7.7%, 
95% CI  =  3.9–11.6), pH (4.8%, 95% CI  =  4.1–5.4), and 
TN (12.5%, 95% CI = 10.8–14.3%) but has a negative ef-
fect on soil BD (−8.0%, 95% CI  =  −9.4% to −6.5%) and 
C/N (−8.2%, 95% CI = −14.3% to −1.7%). The frequency 
distributions of biochar effect sizes (i.e., RR, Equation 1) 
on SOC and other soil properties (MBC, DOC, pH, BD, 
TN) are shown in Figure S12. The mean SOC concentra-
tions with and without biochar addition are 12.2 g kg−1 
(1.7–30.9 g kg−1) and 18.0 (2.2–68.0 g kg−1), respectively 
(Figure S4).

F I G U R E  1   The effect of biochar addition on soil organic 
carbon (SOC) and other soil properties in croplands. The circle and 
error bar indicate the mean value and 95% confidence interval (CI). 
The acronyms SOC, microbial biomass carbon (MBC), dissolved 
organic carbon (DOC), bulk density (BD), total N (TN), C/N (ratio 
of soil carbon to nitrogen). If the error bar does not overlap with 
zero, the response is considered significant (‘*’). The numbers of 
observations are also shown

https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://biochar-international.org/
https://biochar-international.org/
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3.2  |  Importance of explanatory variables

Among all the explanatory variables, Rate_BC is the 
most important variable that contributes more than half 
(51.3%) of the tree splits in the RF model (Figure 2a). SOC 
response to Rate_BC is positive as indicated by the partial 
dependence of the SOC RR on Rate_BC (Figure 2b). This 
is expected since most applied biochar stays stable in soils 
and contributes to the total soil carbon content. The other 
biochar-related variables (Age_BC, Temp_BC, and FS) 
make a contribution of 9.3% in total (Figure 2a). Especially 
for Age_BC (i.e., the interval between biochar application 
and soil sampling), SOC RR with Age_BC ≥5 year is lower 
than Age_BC <5 year (Figure S13). The acronym Temp_
BC (biochar pyrolysis temperature) is the third important 
variable and has a negative partial relation with SOC RR 
(Figure 2b). The total importance of biochar-related vari-
ables reaches 60.6%, which is the largest one among the 
five categories (Figure 2a, the inset pie plot).

The second most important variable is SOC_ini (initial 
SOC content) with a contribution of 18.7% (Figure 2a), and 
the SOC RR responds negatively to SOC_ini (Figure 2b).  
When SOC_ini <10 g kg−1, the decreasing trend of SOC 

RR is very sharp (Figure 2b). SOC RR is positively re-
lated to the other edaphic variable, pH (Figure 2b), with 
a contribution of 2.4% to the RF model (Figure 2a). The 
total contribution of edaphic variables (SOC_ini, CLAY, 
SAND, SILT, BD, BS, pH, CEC, SM, TN, TP, TK) is 31.4%, 
which is the second most important category next to the 
biochar-related variables (Figure 2a, the inset pie plot). 
The fourth important variable is MAP with a contribu-
tion of 2.8% (Figure 2a). However, it should be noted that 
the correlation between MAP and SM is high (R2 =0.97; 
Figure S14), and thus the contributions between these two 
variables may not be well separated. We found that MAP 
has a negative impact on the SOC RR, indicated as a lower 
MAP associated with a higher SOC RR (Figure 2b). The 
total climate-related variables (MAP, MAT, Tmin, and Tmax) 
contribute 5.0% of all explanatory variables (Figure 2a). 
Management (only fertilization included) has a minor con-
tribution of 1.8% (Figure 2a), probably due to the lack of 
other management information (e.g., irrigation, rotation) 
and difficulties in quantifying management practices. The 
biological variable (NPP of the present live crop on the ex-
perimental field, not NPP for the crop whose residue is 
used for biochar production) has minimum importance 

F I G U R E  2   Variables with an importance ≥1% in the trained random forest (RF) model (a) and partial dependence of soil organic carbon 
(SOC) changes with biochar addition (i.e., response ratio [RR] in Equation 1) to the six most important variables (b). Variables in (a) are 
further grouped into five broad categories in the inset pie plot (Biochar-, Edaphic-, Climate-, Management-, and Biological-related variable). 
Variables with an importance <1% in the trained RF model are shown in Figure S15



      |  7HAN et al.

of 1.1% of selected explanatory variables (Figure 2a). The 
response of RR to Age_BC is rather uncertain, due to the 
lack of long-term experiment data (Section 4.2).

3.3  |  Predicted global SOC change due to 
biochar addition

Using the RF model trained by field observations, we es-
timated SOC RR to biochar addition on global croplands 
at 1 km × 1 km and converted to the relative changes of 
SOC (RC) (Figure S16) using Equation (3). We further de-
rived the absolute changes of SOC (ACSOC) based on the 

present cropland SOC stock (Figure S17b). The spatial 
ACSOC patterns on global croplands with three biochar ap-
plication rates (20, 60, and 100 t ha−1), Temp_BC = 450°C 
(median value of all field data) and Age_BC = 1 year (i.e., 
biochar addition to soil for 1 year, the median value of all 
field data = 1.2 year, Table S3) are shown in Figure 3, and 
maps for other biochar addition rates and other biochar 
are shown in Figures S18–S20.

Globally, ACSOC with biochar addition ranges from 
12.6 to 63.8 t ha−1, and the response is generally linear 
to the biochar addition rate (Figure 3g). Larger ACSOC 
is predicted in the temperate regions, such as North 
America, Europe, and Northern China with larger 

F I G U R E  3   Predicted absolute soil organic carbon (SOC) changes (ACSOC) and absolute native SOC change (ACSOC-native) with different 
biochar application rates on the global croplands. Predicted absolute SOC changes (ACSOC) on the global croplands with (a) 20 t ha−1, 
(c) 60 t ha−1, (e) 100 t ha−1 straw biochar addition; and absolute native SOC change (ACSOC-native) with (b) 20 t ha−1, (d) 60 t ha−1, (f) 
100 t ha−1 straw biochar addition. (g) Predicted ACSOC (left y-axis) and ACSOC-native (right y-axis) across all cropland grid cells with seven 
different biochar application rates from different biochar types (straw-, wood-, and manure-derived; only straw biochar is shown in purple 
line for ACSOC-native). Error bars represent 95% confidence intervals
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initial SOC content (Figure 3a,c,e; Figure S17b). Smaller 
ACSOC response occurs in the tropical and subtropical 
regions (e.g., Latin America) with warm and moist cli-
mate, smaller initial SOC content, and lower pH (Figure 
3a,c,e; Figure S17b,e,g,h). The ACSOC with straw-, wood-, 
and manure-derived biochar addition have similar spa-
tial patterns (Figures S18–S20), but the ACSOC of manure 
biochar is greater than the other two types (Figure 3g).

The SOC changes due to biochar addition comprise 
two parts. The first part is the stable fraction of biochar 
with a long turnover time, and thus it increases SOC. 
The second part is changes in the native SOC due to the 
impacts of biochar addition, including direct impacts on 
soil properties and microbial activities and indirect im-
pacts on plant growth which further influence the return 
of plant residues into SOC. Therefore, we also represent 
the changes in the native SOC (ACSOC-native) after 1 year 
since the biochar addition by excluding the stable bio-
char (assuming a fixed fraction (91%) (Wang et al., 2016) 
of the application rate with a biochar carbon content of 
0.68 (Roberts et al., 2010) from the total SOC changes 
(Figure 3b,d,f). The global median ACSOC-native varies with 
the biochar application rates (an increase of 6.0 t ha−1 for 
20 t ha−1 biochar application rate, and a reduction of 6.1 
and 15.5 t ha−1 for 60 and 100 t ha−1 biochar application 
rates, respectively, Figure 3g). Spatially, biochar addition 
generally increases the native SOC in most regions at low 
addition levels but decreases native SOC at higher addi-
tion levels in some areas with lower initial SOC content, 

such as South Asia, southern Africa, and Australia (Figure 
3b,d,f; Figure S17b).

3.4  |  LCA of biochar systems

3.4.1  |  Revenue of current pyrolysis plants

Globally, the net revenue of a pyrolysis plant increases 
with the plant capacity and the carbon price (Figure 4a). 
After grouping current pyrolysis plants into different re-
gions (Figure S21), the regional average net revenue pat-
terns (Figure S22) are similar to the global one (Figure 
4a). We further calculated the threshold of carbon price 
at the global scale and in each region, above which the 
average net revenue changes from negative to positive. 
The thresholds decrease with the increase in plant capac-
ity (Figure 4b). High carbon price thresholds were found 
in Africa, East Asia, and Oceania, which are above the 
global level (Figure 4b). By contrast, Europe and Latin 
America show low carbon price thresholds (Figure 4b).

Take three-carbon prices ($ 20, $ 50, or $ 100 t−1 CO2) 
and three biomass-processing capacities of pyrolysis plants 
(2000, 20,000, or 100,000  t  year−1) as examples. Europe 
and Southeast Asia are profitable at a low carbon price of 
$ 20  t−1 CO2 in the case of medium and large biomass-
processing capacity (Figure S23a,d,g; red point, i.e., rev-
enue minus cost). At the carbon price of $ 50  t−1 CO2, 
most regions are profitable except East Asia, Oceania, and 

F I G U R E  4   Net revenues averaged over current pyrolysis plants with a range of plant sizes and carbon prices (a) and threshold of carbon 
prices for each region and at the global scale, beyond which the net revenue turns from negative to positive (b). Note that the contour line 
with zero net revenue in (a) is the black line in (b) for the global carbon price threshold. The calculation of net revenue is shown in Figure S2
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Africa in the case of 2000 t year−1 plant capacity (Figure 
S23b,e,h). At a carbon price of $ 100 t−1 CO2, all regions 
are profitable in three cases of biomass-processing capac-
ity (Figure S23c,f,i).

The regions with the largest average net revenue are 
Southeast Asia (Figure S23b) and Europe (Figure S23c–i) 
in nine cases. The revenue mainly comes from the carbon 
value (offsetting GHGs emissions by sequestrating carbon 
with biochar and renewable energy generated to replace 
fossil fuels, Figure S2) and energy generation (Figure S23). 
Africa, in most cases, has the lowest net revenue (Figure 
S23b–g), and Latin America (Figure S23a) and East Asia 
(Figure S23h,i) also show a lower revenue in some cases, 
as a result of high cost in operation, capital, and feedstock 
collection. The transport cost is relatively low (<16.1%, 
the ratio of transport cost to the sum of all four cost com-
ponents). The average Dmax is 33.9, 45.4, and 66.6 km for 
small-, medium-, and large-size plants, respectively (Figure 
S24), and it generally increases with the plant biomass-
processing capacities due to more feedstock fetched.

We also calculated the total net revenue of all pyrol-
ysis plants in each region (Figure S25), and the pattern 
is similar to the average net average shown above. North 
America and Europe have the highest total net revenues 
in most cases, not only due to the high carbon value and 
the efficient energy generation (Figure S26), but also due 
to the great (22.2% and 45.8% of global total plants) num-
ber of pyrolysis plants in these two regions (Figure S21). 
In contrast, Latin America, South Asia, and Africa with 
few plants (<2.8%) have relatively low total net revenues 
(Figures S26 and S27).

The carbon-dioxide removal (CDR) of current pyroly-
sis plants is greater than the CO2 emissions in the life cycle 
of the biochar system (Figures S28 and S29), indicating 
that the great CDR potential of biochar is used as a nega-
tive carbon emission technology. The CDR is mainly con-
tributed by the sequestrated stable carbon in the biochar 
and the byproducts of biomass pyrolysis (e.g., bio-oil) as 
substitutes of fossil fuels for combustion (Figure S28). The 
net CDR averaged over all plants in each region is high in 
Latin America, Europe, and Southeast Asia (Figure S28). 
Summing up the CDR of all plants in each region, how-
ever, the total CDR is high in North America, Europe, and 
Oceania (Figure S29a–c). As expected, the global total net 
CDR increases with plant biomass-processing capacities 
(Figure S29d). In a medium case with a plant capacity of 
20,000  t  year−1 and a carbon price of $ 50  t−1 CO2, the 
global net CDR potential is 6.6 Tg CO2e year−1 with a total 
net revenue of $ 177  million dollars (Figures S26j and 
S29d). The maximum global net CDR and revenue poten-
tial reach 25.5 Tg CO2e year−1 and 2.1 × 103 million dollars 
with a high carbon price of $ 100 t−1 CO2 and a large-size 
plant capacity (Figure S29d).

3.4.2  |  Potential revenue of building 
new plants

We further calculated the net revenue of a hypothetical 
pyrolysis plant in each cropland grid cell (10 km × 10 km) 
to identify the possible locations for new plants with maxi-
mum profits. The global average Dmax is increased with 
the increased plant capacities (20.0, 47.8, and 83.2 km for 
2000, 20,000, and 100,000  t  year−1 plant capacities, re-
spectively) (Figure S30). The nine potential revenue maps 
(3 biomass-processing capacities  ×  3 carbon prices) are 
shown in Figure S31. Obviously, the net revenue increases 
with carbon price since most revenues are from the car-
bon value (i.e., net mitigated CO2e amount  ×  carbon 
price; Figure S2). We choose a median scenario (i.e., car-
bon price = $ 50 t−1 CO2 and biomass-processing capac-
ity = 20,000 t year−1) as an example for further analysis 
(Figure 5, see all cases in Figure S31). Most land cells with 
larger profitable new plants are located in North America, 
Europe, Northeast China, and Southeast Asia, where a 
large area of cropland with the significant increase in SOC 
in response to biochar addition exists (Figures 3a and 5; 
Figure S17a). On the contrary, India has a large cropland 
area (Figure S17a), but the potential revenue of new py-
rolysis plants is low (Figure 5), because of the relatively 
small increase in ACSOC in response to biochar addition 
(Figure 3a). In most regions in Africa, South America, 
and Australia, the potential revenue is low due to the low 
availability of feedstock, a small increase in ACSOC, and 
the high cost of transportation (Figures 3a and 5; Figure 
S32).

4   |   DISCUSSION

4.1  |  Effects of biochar on SOC

Biochar can sequestrate carbon due to its recalcitrant car-
bon content, and it can also alter the SOC fate by influ-
encing native SOC formation and mineralization when 
applied to the soil. The effects of biochar on SOC were 
widely studied under different conditions in the field ex-
periments (Blanco-Canqui et al., 2020; Liu, Zhu, et al., 2019; 
Qi et al., 2020), which provided valuable field data for our 
meta-analysis here. 11.2% of our collected field data were 
also used in a previous meta-analysis by Liu et al. (2016), 
the RCSOC (45.8%) with biochar addition in this study is 
slightly larger than the RCSOC (40%, 95% CI = 32%–51%) 
from Liu et al. (2016). Our derived RCSOC, however, is 
larger than the RCSOC (28%, 95% CI = 23–32) from another 
meta-analysis by Bai et al. (2019). The response of MBC 
to biochar application (an increase of 17.8%, Figure 1) is 
consistent with an 18% (95% CI = 12–23) increase in MBC 
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in Liu et al. (2016), but lower than an average increase of 
29% (95% CI  =  21%–37) in the field experiments (Zhou 
et al., 2017).

The impact of biochar addition on SOC is affected by 
multiple factors (e.g., soil properties, climate conditions, 
and biochar characteristics) through complex mecha-
nisms. Stable carbon contained in biochar was a large 
contributor to the short-term SOC increase. In addition, 
biochar addition can trigger positive or negative prim-
ing effects on the native SOC mineralization through 
its impacts on soil properties (e.g., pH, Clay) indirectly 
(Sheng et al., 2016; Wang et al., 2016). Biochar can pro-
mote larger CO2 emission because of greater biochar 
degradation, through increasing bioavailability of SOC 
and copiotrophic bacteria abundance in acid soil, which 
is contrary to that in alkaline soil with negative priming 
effects (Sheng & Zhu, 2018). Native SOC mineralization 
may be also inhibited by biochar due to its porous struc-
ture (Purakayastha et al., 2019) and enhancing microag-
gregate formation (Purakayastha et al., 2019; Zheng et al., 
2018), which increases the physical protection of SOC 
and reduces the contact between microorganisms and 
SOC. These mechanisms may partly explain the negative 
ACSOC-native in the tropical regions like Africa, South Asia, 
and the positive ACSOC-native in North America, Europe 
(Figure 3b,d,f).

4.2  |  Sensitivity tests and uncertainties 
in the RF model

The distribution of global cropland input data is within 
the range of raining data of our RF model building, 

indicating that our extrapolation to global scale is robust 
(Figure S33). We used the absolute SOC change (experi-
mental – control) and the relative SOC change ([experi-
mental  –  control)/control] as the independent variable 
directly to train the RF model for sensitivity test, and 
the validation R2 are 0.85 and 0.74, respectively (Figure 
S34a,b). Since our datasets used for RF model training is 
experimental dependence (e.g., one or more experiments 
were conducted on one site), we considered the effects of 
sites index on SOC RR with biochar addition using the 
site name as a categorical variable for model training and 
predictions and found no improvement (same as Figure 
S6). We spilt data as training and test data with rates of 
8:2 and 9:1 for uncertainties analysis and the RF models 
developed could explain 82% and 78% of the variance in 
the biochar impacts on SOC change.

We also tested the cultivated crop type on the crop-
land as an explanatory variable in the RF model, but its 
contribution is low (<4%, Figure S35). However, differ-
ent microbial activities in the soil applied with biochar 
were reported among different crop types including soy-
bean, radish, and wheat crops (Van Zwieten et al., 2010). 
We thus trained one RF model for each individual main 
crop type (maize, rice, and wheat), but the validation R2 
is relatively low (0.29, 0.50, and 0.60 Figure S34c–e). We 
also made predictions using four pyrolysis temperatures 
(350°C, 450°C, 500°C, 600°C) for biochar production be-
cause of the relatively high importance of biochar pyrol-
ysis temperature (5.7%, Figure 2a) and the patterns are 
similar with mean change of 22.9–23.5 t ha−1 (Figure S36). 
The pyrolysis temperature can impact the biochar stabil-
ity. Higher pyrolysis temperature leads to a smaller O/C 
ratio, indicating higher stability (Ippolito et al., 2020). The 

F I G U R E  5   Revenue map for a medium scenario with a plant biomass-processing capacity of 20,000 t year−1 and a carbon price of $ 
50 t−1 CO2 by assuming a new plant existing in each cropland grid cell
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biochar yields from biomass, however, are lower under a 
higher pyrolysis temperature (Yang et al., 2021).

The interval between biochar application and soil 
sampling (Age_BC) explained a 2.2% variation in the RF 
model (Figure 2). Our meta-analysis results show a lower 
SOC increase with Age_BC ≥5 year than Age_BC <5 year 
on average (Figure S13). This may be caused by the con-
tinuous decomposition of biochar in the fields, and Dong 
et al. (2017) found that 40% of the biochar carbon was 
lost after 5 years since application. The mean decompo-
sition rate of 0.025% day−1 for crop-derived biochar was 
reported (Wang et al., 2016). The SOC changes to biochar 
application are, therefore, time-dependent. However, be-
cause most observations in this study were collected from 
short-term experiments with a median of 1.2 year (Figure 
S9c), our RF model may be less effective for predicting the 
long-term impacts of biochar on SOC changes and cap-
turing the SOC temporal dynamics. The long-term trials 
of biochar applications are thus needed to investigate the 
mechanism of long-term effects of biochar addition on 
SOC dynamics.

In addition, we also tried the recursive feature elim-
ination method with fivefold cross-validation (Figure 
S37) to distinguish the most important variables. The 
derived important feature number is eight, including 
Rate_BC, SOC_ini, Temp_BC, MAP, pH, BD, Fertilizer, 
Age_BC (Figure S37). We then trained a new RF model 
using these eight selected variables, and the variable 
importance (Figure S38) is very similar to that with all 
variables considered (Figure 2a). R2 in the new RF model 
(0.81, Figure S39b) is the same to the original R2 (0.81, 
Figure S6b).

4.3  |  Uncertainties in LCA

We calculated the revenue and identified potential loca-
tions for new plants based on available crop residues for 
biochar production. Instead of using the default fraction 
(23.1%, calculated from Section 2.4) of crop residues for bi-
ochar production, we used the theoretical maximum frac-
tion (37.7%, calculated from Section 2.4) by only removing 
the root and grain fraction from NPP. As expected, the 
estimated average transportation distance to collect crop 
residues for the pyrolysis plants (73.6 km) is smaller than 
the original value (83.2 km, Figure S30c) because of more 
biomass residue available around the plants. The spatial 
pattern of revenues for potential new plants is similar 
to the original result (Figure S40). More revenues were 
found in North America, Europe, and Southeast Asia than 
using the default biomass residue fraction (Figure S40), 
where a larger ACSOC increase with biochar application 
occurred (Figure 3).

In addition to the biochar technology with low-cost 
and great carbon sequestration potential, other usages 
of agricultural residues (e.g., return of residues to soil) 
were also adopted widely as soil sequestration options. 
Crop residue retention is considered as an economical 
method both increasing soil fertility and increasing SOC 
(Zhang et al., 2015). Zhao et al. (2020) and Liu et al. (2014) 
found that SOC increased by 12.3% and 7.6% with agri-
cultural residues retention to cropland, respectively. Liu 
et al. (2020) suggested that biochar can outperform straw 
retention to increase biological carbon sequestration po-
tential due to greater microbial carbon use efficiency in 
biochar-amended soil. Therefore, if the crop residues are 
used for biochar production, the SOC sequestration from 
crop residue retention will not be achieved. Taking an in-
crease of 10% SOC with crop residue retention (average of 
the values from Zhao et al., 2020 and Liu, He, et al., 2019) 
as a baseline, the global total net revenue of current py-
rolysis plants decreases by 45.4% in the medium scenario 
(Figure S41).

For the moment, the revenue from the LCA analysis 
is based on one year of biochar production and applica-
tion. When the pyrolysis plants are in operation, however, 
biochar would be produced and applied every year. The 
native SOC changes may respond differently to multiple 
applications year after year, and the soil carbon sink may 
saturate after many years. The carbon contained in biochar 
may also decay with time. Indeed, our analyses also show 
the importance of initial SOC to the RR (Figure 2b) and 
the lower SOC increase with biochar application ≥5 years 
than <5 years (Figure S13). The lack of long-term exper-
iment data and experiments with multiple biochar appli-
cations, however, precludes us from taking these aspects 
into account.

In this study, we provided a global-scale LCA of bio-
char system with spatially-explicit SOC changes with 
biochar addition and transportation distances, but there 
remain uncertainties. Some parameters were assumed to 
be spatially invariant, such as fractions of crop residues 
used for biochar production, prices of fertilizer, labor and 
transportation, and energy generation, which likely vary 
in space and time. For example, we used a constant reduc-
tion ratio of 25% in soil N2O emissions with biochar addi-
tion, but one study found that an inverted U-shaped curve 
of soil N2O emissions with increasing biochar application 
rates (Liu et al., 2014). Literature data show that biochar 
addition can inhibit N2O emissions by 20%–80% (Wang 
et al., 2014). Although most direct processes of the biochar 
systems were included in the LCA, some indirectly related 
processes are missing, such as the heat and energy con-
sumption of ancillary pyrolysis equipment, and other en-
vironmental benefits with biochar addition. In addition, 
the diverse usages of biochar other than applications in 
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cropland were not considered in this study. Further work 
is needed to spatialize parameters and to extend processes 
in the LCA, in order to comprehensively assess the feasi-
bility of global biochar application.

5   |   CONCLUSION

Our study explicitly estimated the SOC changes with 
biochar addition on the global cropland at 1 km × 1 km 
resolution and conducted a preliminary LCA of the 
biochar system for current pyrolysis plants and the po-
tential new plants. Long-term field experiments with 
biochar application will be valuable to improve the 
RF prediction of long-term effects and to understand 
the mechanisms of biochar on native SOC changes. It 
would also help implementing the biochar effects in 
process-based models [e.g., MIMICS (Wieder et al., 
2014)] that can be further coupled into a land surface 
model to simulate the interactions of biochar-induced 
SOC changes with future climate change. For the LCA, 
more spatially explicit parameters are needed to ac-
curately calculate the cost and revenue of the biochar 
system and evaluate the feasibility of biochar addition 
globally. The potential economic benefits of the biochar 
system are not high because of the high feedstock col-
lection and pyrolysis cost, and the low carbon trading 
prices (Laird et al., 2009) (Figure S22). The cost of feed-
stock supply will further increase with the diversified 
utilization of agricultural waste resources under vari-
ous climate mitigation options (e.g., using biomass resi-
due for bioenergy capture and storage). More research 
is thus needed to analyze the trade-off among these cli-
mate mitigation options.
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