

Growth and gonad development of the tropical black-lip pearl oyster, Pinctada margaritifera (L.), in the Gambier archipelago (French Polynesia)

Gilles Le Moullac, Jerome Tiapari, Hinano Teissier, Elodie Martinez, Jean-Claude Cochard

▶ To cite this version:

Gilles Le Moullac, Jerome Tiapari, Hinano Teissier, Elodie Martinez, Jean-Claude Cochard. Growth and gonad development of the tropical black-lip pearl oyster, Pinctada margaritifera (L.), in the Gambier archipelago (French Polynesia). AQUACULTURE INTERNATIONAL, 2012, 20 (2), pp.305-315. 10.1007/s10499-011-9460-x. hal-03502672

HAL Id: hal-03502672

https://hal.science/hal-03502672

Submitted on 26 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Aquaculture International

April 2012, Volume 20, Issue 2, Pages 305-315 http://dx.doi.org/10.1007/s10499-011-9460-x © Springer Science+Business Media B.V. 2011 Archimer http://archimer.ifremer.fr

The original publication is available at http://www.springerlink.com

Growth and gonad development of the tropical black-lip pearl oyster, *Pinctada margaritifera* (L.), in the Gambier archipelago (French Polynesia)

Gilles Le Moullac^{1,*}, Jérôme Tiapari¹, Hinano Teissier¹, Elodie Martinez² and Jean-Claude Cochard³

Abstract:

The growth and reproductive cycle of cultured black-lipped pearl oysters, *Pinctada margaritifera* (L.), were studied in the Gambier Islands (134°52' W, 23°07' S) from September 2002 to August 2003. Temperatures were recorded throughout the year, revealing seasonal temperature variations between 22.3 and 27.8°C. The mean annual chlorophyll a value, as computed from satellite data, was $0.188 \pm 0.075 \,\mu g \,L^{-1}$. To study growth and reproduction, 720 two-year-old individuals were ear hung on long-lines suspended at a depth of 7 m. Samples were taken twice a month to obtain the following measurements: shell height; wet weight of flesh and total oyster; dry weight of adductor muscle, mantle and visceral mass; and glycogen content. Gonad development was also studied by histology on parallel samples. Growth was relatively fast during the first 6 months of the study: average shell height increased from 89.1 ± 9.1 to 119.7 ± 10.8 mm and total weight from 93.4 ± 24.5 to 155.1 ± 33.6 g, between September and the end of March. Subsequently, from April to August, no significant growth was observed for shell and flesh, while the muscle weight decreased significantly. Condition index (CI), defined as the ratio of wet weight of the visceral mass to shell weight, and histological changes in the gonad revealed 3 significant reproductive events of different intensities. The analysis of correlations revealed a specific effect of the chlorophyll a concentration on the growth of shell and soma, and one of the temperature on tissue glycogen content. This study also showed also that CI could be an efficient indicator of reproductive events in pearl oyster. It thus appears that the development of gonads goes on throughout the year in the Gambier Islands, without any detectable phase of sexual rest.

Keywords: Pearl oyster – *Pinctada margaritifera* – Growth – Reproduction – Temperature – Chlorophyll – Seasonality – Gambier archipelago

 ¹ Laboratoire Domestication de l'Huître perlière, Département Lagon Environnement Aquaculture Durable en Polynésie Française, Centre du Pacifique, IFREMER, BP 7004, 98719 Taravao, French Polynesia
² Laboratoire d'Océanographie de Villefranche, Observatoire Océanologique de Villefranche, Quai de La Darse, BP 8, 06238 Villefranche sur Mer Cedex, France

³ Département Environnement Littoral et Ressources aquacoles, Centre de Brest, IFREMER, BP 70, 29280 Plouzané, France

^{*:} Corresponding author : G. Le Moullac : tel : + 689 54 60 06, fax : + 689 54 60 99, email address : Gilles.Le.Moullac@ifremer.fr

Introduction

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Pearl oyster farming in French Polynesia is spread over a large geographical area. Environmental conditions vary between islands in this part of the South Pacific, particularly due to differences in their latitudinal position. Seasonal cycles are more marked in southern Polynesia than further north. The annual reproductive cycle of *Pinctada margaritifera* was studied in the Takapoto atoll of the northern Tuamotu Islands, showing that reproduction occurs throughout the year due to a high average temperature with low seasonal variation (Thielley 1993, Pouvreau et al. 2000a). Adequate data on the marine environment and the reproduction of pearl oysters are, however, not yet available for other islands with pearl oyster farming. The largest thermal amplitude in French Polynesia (Salvat et al. 2008) is observed in the Gambier Islands (134°52' W, 23°07' S). Although reproduction of P. margaritifera still occurs in these islands, its reproductive cycle has not yet been described. In the southern part of its distribution (Australia), the reproductive cycle of *Pinctada albina* has been observed to be modulated by seasonal temperature variations (O'Connor 2002). The reproductive cycle of the pearl oyster Pinctada mazatlanica is also affected by seasonal variations in temperature in Baja California (Saucedo et al. 2002), where a period of intense sexual activity is observed in September when water temperature is high. Temperature changes due to El Nino and La Nina events have also been reported to affect the reproductive cycle of *P. mazatlanica* (Garcia-Cuellar et al. 2004). The trophic environment is also known to act on the reproductive status of *P. margaritifera* (Pouvreau, et al. 2000b). In French Polynesia, due to low chlorophyll a concentrations, the trophic environment is considered oligotrophic. Data on phytoplanktonic pigments have been obtained in the Takapoto atoll in northern Tuamotu (southern hemisphere), where concentration in chlorophyll a ranged between 0.05 and 0.46 µg ·L⁻¹ (Delesalle et al. 2001).

- 69 Very little information on these parameters has been collected for the southern islands
- 70 (Gambier Islands).
- 71 The objective of the present study was to examine the effect of the annual cycle of
- temperature and chlorophyll a concentration on the reproductive cycle of P. margaritifera, to
- determine whether local environmental conditions in the Gambier Islands induce any marked
- seasonality in the reproductive cycle of this tropical pearl oyster species.

75 Material and methods.

Gambier Islands

76

- Pearl culture has developed in several sites in the Gambier Islands (134°52' W & 23°07' S), an
- 78 Archipelago located in southeast French Polynesia (South Pacific).

79 Environmental data

- 80 Temperature was recorded hourly in situ using an automatic sensor (TidbiT temp Logger-
- 81 Onset[®]). Chlorophyll a concentration (*Chl a*) data were derived from radiometric ocean
- 82 colour provided by the Sea viewing Wide Field of view Sensor (SeaWiFS) onboard the
- 83 SeaStar spacecraft (McClain et al., 2004). *Chl a* data were provided weekly from September
- 84 2002 to August 2003.

85 Sampling

- 86 Growth and reproduction of *P. margaritifera* were studied in pearl oysters reared in the
- 87 Gambier lagoon (134°52' W, 23°07' S). The cultivation technique was similar to that
- commonly used in commercial farms. Suspended long-lines were immersed at a depth of 7 m
- and pearl oysters were 'ear hung' on downlines in groups of ten. The reproductive cycle was
- 90 studied over a year (from September 2002 to August 2003) by systematic sampling of 30
- 91 randomly selected individuals every 15 days. These pearl oysters were collected, cleaned of
- 92 fouling organisms and sent by air to the Ifremer laboratory on Tahiti Island.

Biometry

For all specimens (n = 720), total weight and height of the shell were measured prior to dissection, weighing, sexing and histology. Sex was determined by rapid microscopic observation of fresh gonad smears. Glycogen content was then measured on 5 dried oysters for each sampling and the visceral mass of 15 other oysters was placed in Davidson's fixative for gonad histology.

Total wet flesh weights were obtained after 15 min of draining. After flesh dissection, the same operation was conducted separately on adductor muscle, gills + mantle and the visceral mass (gonad + digestive gland). Condition index (CI) was computed as the ratio of visceral mass weight to shell weight.

Glycogen measurement

Dry tissues of oyster were powdered and a 10-mg sample was then homogenized in 1 ml of de-ionized water. Changes in the glycogen composition of tissue over the year were quantified using the phenol-sulphuric acid method of Dubois *et al.* (1956).

Histology

After dissection, gonadal tissue samples were placed in Davidson's fixative for five days, after which they were preserved in 70 % ethanol. Samples were then dehydrated through a graded ethanol series, embedded in paraffin, sectioned at 3–4 µm on a rotary microtome, stained with Giemsa dye and, finally, mounted on microscope slides. Sections were made in the gonad area, between the proximal end of the gut loop and the base of the foot. Slide preparations were examined with a light microscope to scan the entire gonadal area and assess follicle stages. Reproductive stages of gonad development are based on the description by Pouvreau *et al.* (2000a) shown in table 1.

117 Statistics

The growth parameters shell height, total weight, flesh and tissue weights and glycogen content in dried tissue are presented on the figures, with vertical bars representing the 95 % confidence intervals. Correlations between environmental and physiological variables were tested using the critical value table for Pearson's correlation coefficient at the 5 % alpha level and 108 df. The null hypothesis was rejected when r < 0.195.

Results

Environmental data

Water temperature gradually increased from the end of September up to a peak in March and then declined to its lowest value in August. Mean annual water temperature was 25.42 ± 1.75 °C, with a minimum of 22.3 °C and a maximum of 27.8 °C (Fig. 1a). The annual mean value of *Chl a* was $0.188 \pm 0.075 \,\mu g \, L^{-1}$, while the maximum value of $0.436 \,\mu g \, L^{-1}$ was reached in August 2003 (Fig. 1b). The gaps in the data are due to cloud cover.

130 Pearl oyster growth

Shell height and total weight increased regularly over the sampling period (Fig. 2a, 2b). The growth rates in terms of shell height and total weight were 87.40 µm.d⁻¹ and 176.1 g.d⁻¹, respectively. From September 2002 to February 2003, flesh dry weight remained stable (Fig. 2c). A rapid increase then occurred from February 2003 to mid March 2003, followed by a period during which mean flesh dry weight stabilised once more. Muscle dry weight showed large variations over the year, with the highest value in mid-March (Fig. 3). Changes in weight of the visceral mass were recorded twice, in mid-April and mid-August. (Fig. 3).

Gametogenic cycle

The condition index (CI) showed three significant decreases, the first in December, the second in March and the third in June, while two non-significant changes of CI occurred in May and

August (Fig. 4). Three significant increases of CI were recorded during this study; the first time was in October, one month before the first significant decrease, the second time was in April, just after the second significant decrease, and the third in July, just after the third significant decrease (Fig. 4).

The temporal distribution of maturity stages over the year is shown in Figure 5. The three significant CI decreases coincided with increases in the frequency of inactive (0) and early gametogenic (1) stages, and the decrease in frequency of stages 2 to 5, thus meaning that three significant spawning events had occurred. The first spawning event in December was smallest, since the frequency of the stage 0 and 1 was low. The spawning event in March affected > 70 % of oysters, since these were found to be at stage 1 of the maturity index, while in May and June, spawning only affected > 30 %. In August, the non-significant decrease of CI coincided with a 7 % frequency of stage 1.

Sex ratio

The sex of all individuals was determined during this study. Figure 6a illustrates the change in of this protandrous alternate hermaphrodite sex ratio over the year, while figure 6b represents the change in sex ratio according to the size of individuals. On average, 7 % of individuals were female, the highest value being 14 %. Only animals larger than 80 mm were female. The proportion of females increased up to 22 % for individuals larger than 140 mm.

Glycogen content

Glycogen content in muscles significantly increased to 200 mg. g⁻¹ between February and May. In February, glycogen content increased significantly in the mantle, while it remained unchanged in the visceral mass (Fig. 7).

Regression analysis

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Growth parameters (shell, flesh and tissue) were positively (p < 0.05) correlated with Chl a (Table 2). Glycogen content in VM and gill-mantle were negatively with Chl a, but glycogen content in all tissues was positively correlated with water temperature (Table 2). Data related to reproductive processes (CI) were not correlated with either chlorophyll or water temperature (Table 2).

Discussion

Environmental data

Temperature recordings during this study (2002-2003) revealed an annual thermal amplitude (6 °C) that was smaller than the one observed in 1998-1999 (8 °C) during the strong El Niño-La Niña events. In comparison, the thermal amplitudes observed in the atolls of northern French Polynesia were 2 °C in 1990-1991 (Buestel and Pouvreau, 2000) and 4 °C in 1998-1999 (Pouvreau, 1999). Radiometric ocean colour derived from satellite observations was extracted for the eastern part of the Gambier archipelago in 2002 and 2003. Two difficulties arose. One was due to cloud cover, which interrupted the continuity of the time series. The second was related to the fact that ocean color is derived from radiance leaving the water, which may be influenced by water depth and bottom albedo (Maritorena et al., 1994). Interpretation of Chl a variability must therefore to be considered with caution. However, the annual mean (0.19 µg. L⁻¹) and amplitude range of Chl a reported here are in agreement with values and seasonal patterns reported in several atolls in French Polynesia from in situ measurements (Charpy 1996; Intes et al. 1990). When considering the Chl a time series extended to the beginning of 2002 (data not shown), the maximum value of Chl a that we report here in August appears to be related to the Chl a seasonal cycle. This Chl a maximum in austral winter is also a typical seasonal pattern of Chl a in Polynesian lagoons (Charpy 1996; Charpy et al, 2009). The large variations of Chl a recorded during this study are also

consistent with those measured in water samples from another Polynesian lagoon, Takapoto (Buestel and Pouvreau, 2000). These previous authors attributed this high variability to local meteorology (wind and precipitation), which had short-term, and night/day rhythms affecting some parameters (temperature and chlorophyll *a*).

Growth

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

Growth rate of pearl oysters seemed to be faster during the first six months of this study since the shell height and the total weight increased by 25 mm and 63 g, respectively, in this period. No further significant changes in growth were then observed from April to August. In the size class considered (2-year-old oysters), shell growth was equivalent to that of oysters studied by Buestel and Pouvreau (1994) in Takapoto, where shell growth was found to be 30 mm over a whole year. Shell growth dynamics of pearl oysters observed in the present work were similar to those found in a study conducted in 1998-1999 in the Gambier Islands (Pouvreau and Prasil 2001). Our results showed that pearl oyster growth in the Gambier Islands was correlated with Chl a resources, which correspond to food supply, but not with temperature. The comparison of P. margaritifera growth between ovsters reared in Gambier (this study; Pouvreau and Prasil 2001) and those reared in Pioneer Bay, north Queensland (18°37' S, 146°30' E), Australia (Yukihira et al. 2006), reveals a similar annual growth pattern. The two sites have similar temperatures, and a similar conclusion was drawn: that temperature had no significant effect on growth rates of *P. margaritifera* over the annual cycle. Somatic growth pattern showed two phases. From September 2002 to February 2003, the flesh dry weight did not change significantly, but in March 2003 it doubled. Flesh dry weight then remained stable until August 2003. This change was mainly due to muscle increase, with visceral mass and mantle accounting for less. This growth event coincided with the maximum temperature observed during the study, but the examination of correlations only indicated a significant relationship with chlorophyll a.

Reproductive activity

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

Pearl oyster reproduction was studied by Thielley (1993), and the reproductive cycle was described by Pouvreau et al. (2000a) in the Takapoto atoll, northern Tuamotu. These authors showed that, in a fairly stable tropical environment, P. margaritifera is a multiple spawner with an opportunistic reproductive strategy that allows investment of any surplus energy into gamete production throughout the year. CI variations in the present study were related to quantitative losses of weight caused by gamete releases, while the histological analysis revealed a degree of synchronicity within the population. Three spawning periods were characterized by significant decreases of CI; these occurred in December 2002, March 2003 and June 2003. The decreases of CI corresponded precisely to periods of gamete release, as confirmed by histological examination of gonadic stages. The first gamete emissions can be regarded as resulting from the accumulation of gametes during winter. The second spawning, which occurred when temperature was maximal, involved most of the oysters since histological analysis showed that 80 % of them were at stage 1 or 2. This spawning was followed by rematuration. A third spawning occurred in June, when the temperature descended below 24 °C, as shown by a significant decrease in CI and the stages shown in the histological analysis. After this event, however, 30-40 % of individuals remained at histological stage 1 of maturity and a similar proportion remained at stage 2 until the beginning of August. At the end of August, a non-significant decrease in CI occurred when 7 % of the pearl oysters were at histological stage 1; these observations could indicate a spawning event, despite the fact the temperature reached 22 °C. Histology validated the interest of CI as spawning indicator for the pearl oyster. Spawnings were triggered when CI was around 0.08 %. Before each significant spawning event, the CI values were 0.084, 0.070 and 0.076 respectively in December, March and June. This study has shown that CI was not correlated with temperature and did not offer any new evidence to support the hypothesis that spawnings were influenced by temperature. The greatest variations in CI corresponded to the spawning in December, when temperature increased up to 25 °C; the one in March, when the temperature was maximal (28 °C); and the one in June, when the temperature decreased below 24 °C.

Sex ratio

The proportion of females (7 %) did not differ from the observations made by Pouvreau *et al*. (2000a) in Takapoto. Indeed, for the age/size class considered here (2-year-old oysters, 100-110 mm height), the sex-ratio in Takapoto was 0.1 female/1 male. The evolution noted over the year of our study was typical of this age group, in which the first inversions of sex are normally known to occur (Thielley 1993). The population raised in the Gambier Islands, therefore, did not differ from populations grown elsewhere in this respect.

Glycogen storage

Marine bivalves show cycles of energy storage and utilization that are closely related to gametogenic cycles. Most species are able to store nutrient reserves during periods of food abundance. These reserves are mobilized during periods of food depletion and high energy demand (Bayne 1976; Barber and Blake 1981; Heude-Berthelin *et al.* 2000). During gametogenesis, high-energy demands are made due to maintenance costs and gamete synthesis; these have to be met by the food supply and/or stored reserves. In *P. mazatlanica*, growing on the west coast of the Gulf of California, glycogen stored in the muscle and digestive gland were actively used for gametogenesis (Saucedo *et al.* 2002). In *P. margaritifera*, our results show that glycogen obtained from ingested food was mainly stored in the adductor muscle and secondarily in the digestive gland, to be later used for ATP needs and to produce gametes. We studied the relationship between the glycogen storage cycle and

gametogenesis of the pearl oyster *P. margaritifera* over the annual cycle (September 2002 to August 2003). Glycogen content increased drastically, showing a 20-fold increase in muscle from February 2003 to May 2003. The energy stored in the muscle could also be used at the time of spawning to achieve vigorous valve movement and to increase the pressure on the gonad to expel the gametes. Our result shows that the maximum glycogen content in the muscle corresponded to the spawning period from March to June. Changes in glycogen content were correlated with temperature in the muscle, mantle and visceral mass (digestive gland and gonad), and with chlorophyll in the visceral mass. Our study confirms that mantle tissue has a negligible role in storage of nutrients during reproduction in *P. margaritifera*. Few changes were observed in the visceral mass over the study period. The digestive gland considered as a short term storage organ (Saucedo *et al.* 2002; Vite-Garcia *et al.* 2008) did not accumulate glycogen over a long period.

Conclusion

The main goal of this work was to examine the hypothesis that the highest thermal amplitude recorded in southern French Polynesia could generate seasonal variation of reproduction in *P. margaritifera*. This study was conducted in the Gambier Islands, where pearl farming is an important industry, and has shown that a seasonal cycle in the reproduction of the pearl oysters does not exist in this area. This study showed that CI (wet weight of gonad/shell weight) could be a good indicator of reproductive events in the pearl oyster. It thus appears that the development of gonads goes on throughout the year in the Gambier Islands, without any detectable phase of sexual rest.

Acknowledgments

This work was supported by logistic and financial aid from the Service de la Perliculture (Grant N°021435: Reproduction of the black-lip pearl oyster *Pinctada margaritifera* in the

Gambier Islands). We also thank Helen McCombie-Boudry for improving the English in this

paper.

288

References

- 289 Bayne BL (1976) Aspects of the reproduction in bivalve mollusks of reproduction. In: M.
- Wiley, editor. Estuarine Processes, Vol. 1. London, UK: Academic Press. pp. 432-448.
- 291 Barber BJ, Blake NJ (1981) Energy storage and utilization in relation to gametogenesis in
- 292 Argopecten irradians concentricus (Say). J Exp Mar Biol Ecol 52: 121-134.
- Buestel D, Pouvreau S (1994) Ecophysiologie de l'huître perlière. Approche des relations
- 294 entre la croissance de l'huître *Pinctada margaritifera* et le milieu dans le lagon de
- 295 Takapoto. Programme Général de Recherche sur la Nacre. Action de recherche N° 7:
- 296 Croissance Milieu, 64pp.
- 297 Buestel D, Pouvreau S (2000) La matière particulaire des eaux du lagon de Takapoto :
- 298 nourriture potentielle pour les élevages d'huîtres perlières. Oceanologica acta, 23:193-210.
- 299 Charpy L (1996) Phytoplankton biomass and production in two Tuamotu atoll lagoons
- 300 (French Polynesia). Mar Ecol Prog Ser 145: 133-142.
- 301 Charpy L, Bonin P, Boeuf D, Bouvy M, Champalbert G, Claquin P, Dupuy C, Durieux B,
- Fournier J, Guasco S, Lefebvre S, Michotey V, Orvain F, Pagano M, Thomas Y, Veron B,
- Lo-Yat A (2009) Quality and quantity of available food for pearl oyster: a key parameter
- for a successful culture. 11th Pacific Science Inter-congress, Tahiti, 2-6 March, 2009. ISBN
- 305 978-2-11-098964-2.
- 306 Delesalle B, Sakka A, Legendre L, Pages J, Charpy L, Loret P (2001) The phytoplankton of
- 307 Takapoto Atoll (Tuamotu Archipelago, French Polynesia): time and space variability of
- biomass, primary production and composition over 24 years. Aquat Living Resour 14, 175-
- 309 182.

- 310 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956)
- 311 Colorimetric method for determination of sugars and related substances
- 312 Anal Chem 28:350 356.
- 313 Garcia-Cuellar JA, Garcia-Dominguez F, Lluch-Belda D, Hernandez-Vasquez S (2004) El
- Nino and La Nina effects on reproductive cycle of the pearl oyster *Pinctada mazatlanica*
- 315 (Hanley, 1856) (Pteriidae) at Isla Espiritu Santo in the Gulf of California. J Shellfish Res
- 316 23:113-120.
- Heude Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the pacific oyster
- 318 (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of
- France). Comp Biochem Physiol B 125: 359-369.
- 320 Intes A., Charpy-Roubaud C, Charpy L, Lemasson L, Morize E (1990). "Les lagons d'atoll en
- Polynésie française: Bilan des travaux du programme "Atoll"." Océanographie-notes et
- 322 documents n°43: 136 p.
- Maritorena, S., A. Morel, B. Gentili (1994) Diffuse reflectance of oceanic shallow waters:
- Influence of water depth and bottom albedo. Limnology Oceanography, 39, 1689-1703.
- 325 McClain CR, Feldman GC, Hooker SB (2004) An overview of the SeaWiFS project and
- 326 strategies for producing a climate research quality global ocean bio-optical time series.
- 327 Deep Sea Research Part II, 51, 5-42.
- 328 O'Connor WA (2002) Latitudinal variation in reproductive behaviour in the pearl oyster,
- 329 *Pinctada albina sugillata*. Aquaculture 209 :333-345.
- Pouvreau S (1999) Étude et modélisation des mécanismes impliqués dans la croissance de
- 331 l'huître perlière, *Pinctada margaritifera*, au sein de l'écosystème conchylicole du lagon de
- l'atoll de Takapoto (Polynésie Française). Thèse Univ Rennes.

- Pouvreau S, Gangnery A, Tiapari J, Lagarde F, Garnier M, Bodoy A (2000a) Gametogenic
- 334 cycle and reproductive effort of the tropical blacklip pearl oyster, *Pinctada margaritifera*
- 335 (Bivalvia: Pteriidae), cultivated in Takapoto atoll (French Polynesia). Aquat Living Resour
- 336 13: 37-48.
- Pouvreau S, Bacher C, Héral M. (2000b) Ecophysiological model of growth and reproduction
- of the black pearl oyster, *Pinctada margaritifera*: potential applications for pearl farming in
- French Polynesia. Aquaculture 186:117-144.
- Pouvreau, S., Prasil, V., 2001. Growth of the black-lip pearl oyster, *Pinctada margaritifera*, at
- 341 nine culture sites of French Polynesia: synthesis of several sampling designs conducted
- 342 between 1994 and 1999. Aquat Living Resour 14, 155-163.
- 343 Salvat B, A Aubanel, M Adjeroud, P Bouisset, D Calmet, Y Chancerelle, N Cochennec-
- Laureau, N Davies, A Fougerousse, R Galzin, E Lagouy, C Lo, C Monier, C Ponsonnet, G
- Remoissenet, D Schneider, A Stein, M Tatarata, L Villiers (2008). Le suivi de l'état des
- récifs coralliens de Polynésie française et leur récente évolution. Rev. Écol. (Terre Vie), 63
- 347 : 145-177.
- 348 Saucedo P, Racotta I, Villarreal H, Monteforte M (2002) Seasonal change in the histological
- and biochemical profile of the gonad, digestive gland and muscle of the calafia mother-of-
- pearl oyster, *Pinctada mazatlanica* (Hanley, 1856) associated with gametogenesis. J
- 351 Shellfish Res 21:127-135.
- 352 Thielley M (1993) Etude cytologique de la gamétogenèse, de la sex-ratio et du cycle de
- reproduction chez l'huître perlière *Pinctada margaritifera* (L) var cumingii (Jameson),
- 354 (Mollusques, bivalves). Comparaison avec le cycle de *Pinctada maculata* (Gould). Thèse
- 355 Univ. Polynésie Française.

Figures

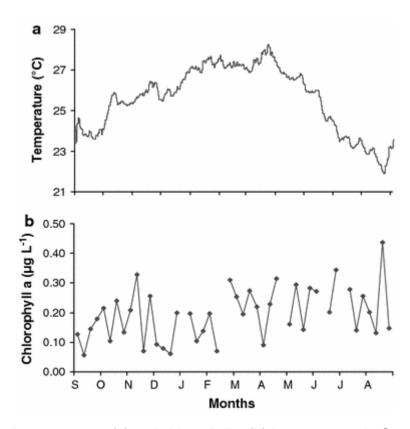


Fig. 1 Variations in temperature (a) and chlorophyll a (b) in 2002–2003 in Gambier Island. Chl a concentrations of Gambier Island (134°52′ W & 23°07′ S) were derived from available ocean colour data (SeaWiFS project)

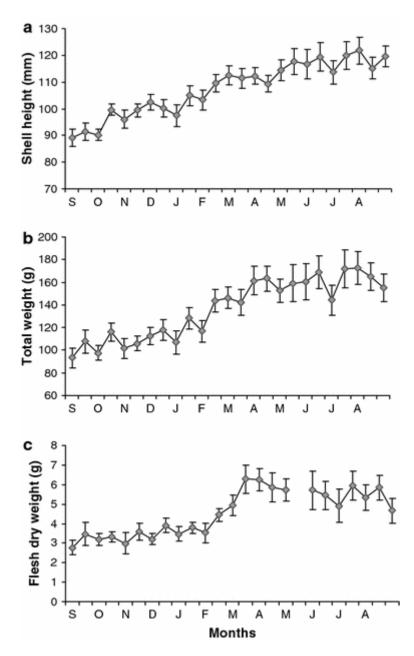


Fig. 2 Shell height (**a**), total weight (**b**) and flesh dry weight (**c**) (mean and confidence interval, $\alpha = 5\%$, n = 30) in 2002–2003 in Gambier Island

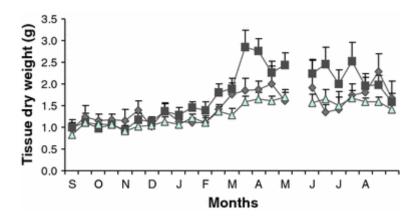


Fig. 3 Tissue dry weight (mean and confidence interval, α = 5%, n = 15) in 2002–2003 in Gambier Island: muscle (grey circles), visceral mass (black rhombuses) and gill-mantle (grey squares)

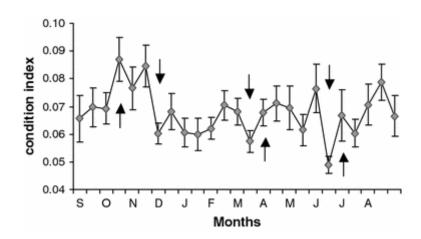


Fig. 4 Condition index (CI) (mean and confidence interval, $\alpha = 5\%$, n = 30) in 2002–2003 in Gambier Island (CI = visceral mass/shell weight). *Arrows* indicate significant increase and reduction in conditioning indexes

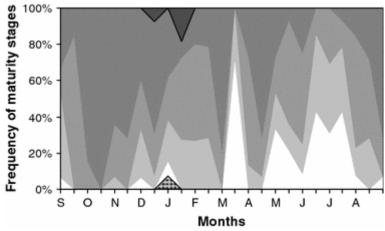


Fig. 5 Histological analysis of the evolution in the frequency of gonadal development stages in 2002–2003 in Gambier Island. *Dotted white on black* = stage 0 (undetermined or inactive), *white* = stage 1 (spawning ripe, distended and confluent follicles, entirely filled), *clear*

grey = stage 2 (actively developing without mature gametes), mid-grey = stage 3 (near ripe follicles with mature gametes), $dark \ grey$ = stage 4 (spawning ripe, distended and confluent follicles, entirely filled), black = stage 5 (partially spawned, partially empty lumen), (n = 15)

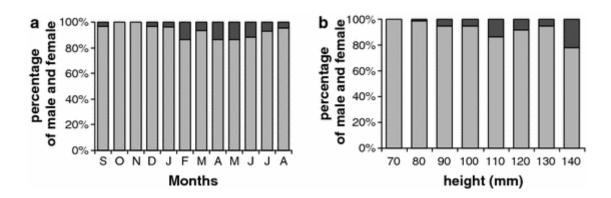


Fig. 6 Sex ratio of *P. margaritifera* in 2002–2003 in Gambier Island (**a**) and according to shell height (**b**). Female = black, male = grey(n = 15)

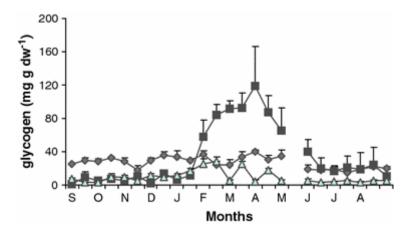


Fig. 7 Glycogen content (mean and confidence interval, $\alpha = 5\%$, n = 5) in 2002–2003 in Gambier Island: muscle (*grey circles*), visceral mass (*black rhombuses*), gill-mantle (*dark rhombuses*)

Tables

Table 1 Criteria for histological scoring of gametogenic stages according to Pouvreau et al. (2000a)

Histological criteria	Score	
Undetermined or inactive	0	
Early gametogenesis, numerous gonia, small follicles		
Actively developing without mature gametes	2	
Near ripe follicles with mature gametes		
Spawning ripe, distended and confluent follicles, entirely filled		
Partially spawned, partially empty lumen	5	

Table 2 Correlations of chlorophyll *a* or water temperature (WT) with growth parameters, glycogen content and condition index of *Pinctada margaritifera* off Gambier Island with Pearson correlation analysis (N = 110, $\alpha = 0.05$)

	Chlorophyll	Temperature	
Shell height	0.433	-0.159	
Total weight	0.351	-0.107	
Flesh weight	0.239	-0.138	
Tissue weight			
Visceral mass	0.215	-0.098	
Add. muscle	0.306	0.023	
Gill-mantle	0.334	-0.363	
Glycogen			
Visceral mass	-0.310	0.602	
Add. muscle	0.113	0.588	
Gill-mantle	-0.267	0.623	
Condition index	-0.134	-0.043	

The significant correlation values are in bold