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Anthropogenic carbon dioxide (CO2) emissions to the

atmosphere and subsequent uptake by the ocean are changing

seawater chemistry, a process known as ocean acidification.

Research indicates that as ocean acidification continues,

reflecting increasing CO2 emissions, it is likely that although

some species will be tolerant it will impact many marine

organisms and processes, including composition of

communities and food webs. Whilst there may be local actions

to limit acidification from local sources the root cause of ocean

acidification, CO2 emissions, is a global issue requiring global

action through United Nations bodies.
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Introduction
The acidity of the surface ocean has been remarkably

stable for the 800 000 years until the 18th century: ocean

pH (the total scale is used throughout this paper) varied

between 8.2 and 8.3 depending on the glacial–interglacial

cycles [1�]. Beginning at the industrial revolution, human

activities (combustion of fossil fuel emissions, production

of cement and changes in land use) have released increas-

ing amounts of carbon dioxide (CO2) in the atmosphere.

Of the 10 Pg C released in 2010 [2�], only half remained

in the atmosphere thanks to two efficient sinks: the land

biosphere (2.6 Pg C) and the oceans (2.4 Pg C). As a

result, average ocean pH has already decreased to 8.1

and could reach 7.7–7.9 in 2100, depending on the CO2

emissions considered (see Box 1 for the chemical reac-

tions involved and Figure 1 for future projections).
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Furthermore, the volume of water corrosive to calcium

carbonate will greatly increase, especially in the polar

regions, the deep-sea and some coastal areas (also see

Box 1). There is a high degree of certainty on these

changes in the seawater chemistry (Table 1) [3��].

The situation is not as straightforward for the effects of

ocean acidification on biological, ecological and biogeo-

chemical processes. The number of studies looking at

these impacts has increased considerably since 2003 [4��].
This review provides a brief summary of the current

understanding of the impacts that ongoing ocean acid-

ification might bring to marine systems this century, how

this might impact society and the policy options currently

available to take action on ocean acidification.

The impacts of ocean acidification on
marine systems
Whilst there is a high degree of certainty on future

changes in the seawater chemistry based on CO2 emis-

sions to the atmosphere (Figure 1) [3��] the impacts of

these changes on the marine species physiology and

development, foodwebs, biodiversity, biogeochemistry

and ecosystems are less clear (Table 1) [3��]. Over the

past 8 years a number of different approaches have been

undertaken to reduce this uncertainty. Perturbation

experiments were performed in the laboratory and in

field mesocosms and observations were made in regions

naturally acidified, such as CO2 vents [e.g. [5�,6�]].
Beyond traditional narrative reviews [e.g. [7]], several

approaches have been used to synthesize the information:

meta-analyses [8,9,10��] and expert surveys [3��].

The precipitation and dissolution of calcium carbonate

(CaCO3) are the processes (see Box 1) which have been

investigated most in the context of ocean acidification,

both in the fossil record and in perturbation experiments.

Several events in the geological past bear the fingerprint of

ocean acidification, global warming, and expanding

hypoxia (low oxygen, usually less than 2 mg/L dissolved

oxygen) and anoxia (an absence of dissolved oxygen),

which led to devastating changes in the abundance, diver-

sity, and evolution of calcifying organisms [11,12�].
Despite the fact that some perturbation experiments

reported no effect or a positive effect of ocean acidification

on the rate of calcification of a few organisms, meta-

analyses reveal an overall significant negative

effect [8,10��]. The mean effect is negative and significant

on corals, negative but non-significant on calcifying algae,

coccolithophores, and molluscs, positive and significant on
www.sciencedirect.com
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Box 1 What is ocean acidification and what are the processes potentially affected?

Anthropogenic ocean acidification refers to changes in the seawater chemistry that are caused by human activities. Once dissolved in seawater,

CO2 is a weak acid that generates a number of changes in seawater chemistry [44,45��]. It increases the concentrations of bicarbonate ions

ð½HCO
�
3 �Þ and dissolved inorganic carbon, and lowers the pH, the concentration of carbonate ions ð½CO

2�
3 �Þ:

CO2 þ CO
2�
3 ! H2O þ 2HCO

�
3

The concentration of protons ([H+]), which is proportional to the ratio ½HCO
�
3 �=½CO

2�
3 �, increases and pH decreases, hence the increase in acidity.

The expression ‘ocean acidification’ refers to the decrease in pH, but does not imply that the pH of surface-ocean waters will become acidic (below

7) any time soon.

Changes in pH can have a wide range of effects because it plays a key role in many physiological processes such as ion transport, enzyme activity,

and protein function [4��]. Other direct effects of ocean acidification could occur when one or several reactant(s) in a physiological process is a

carbon species, such as photosynthesis and the precipitation and dissolution of calcium carbonate [4��].

The decrease in carbonate ions increases the rate of dissolution of CaCO3 minerals in the ocean. The saturation state (V) is the degree of CaCO3

saturation in seawater:

V ¼ ½Ca
2þ�½CO

2�
3 �=K sp

where [Ca2+] and CO
2�
3

h i
are the in situ calcium and carbonate ion concentrations, respectively, and Ksp is the solubility product for CaCO3

(concentrations when at equilibrium, neither dissolving nor forming). Values of Ksp depend on the crystalline form of CaCO3; they also vary with

temperature and pressure, with CaCO3 being unusual in that it is more soluble in cold water than warm water [28].

Environments with high saturation states are potentially more suitable for calcifying organisms (plants and animals that produce shells, plates and

skeletons of CaCO3), since high V values reduce the energy required for calcification, involving active intracellular regulation of Ca2+, H+ and

inorganic carbon, and also help maintain the integrity of mineral CaCO3 after its formation. Currently, V is >1 for the vast majority of the surface

ocean, that is, seawater is supersaturated with respect to CaCO3 [28].

However, most of the deep ocean is unsaturated, V < 1, due to changes in temperature, pressure and the accumulation of biologically produced

CO2; it is therefore corrosive to unprotected CaCO3 structures, and calcareous (micro-)fossils are absent from sediments below the level at which

the rate of CaCO3 dissolution exceeds the rate of its supply [28,30��].

The three main mineral forms of CaCO3, in order of least to most soluble, are calcite, aragonite and magnesium-calcite; their differences in Ksp

result in each form having different saturation state profiles and saturation horizons, with the aragonite saturation horizon (ASH) shallower than the

calcite saturation horizon (CSH). V varies with latitude (mostly due to temperature effects), with lowest surface Varagonite in the Arctic and Southern

Oceans currently mostly below 1.5, although with large spatial and seasonal variability. The ASH depth in the North Pacific is �600 m but in the

North Atlantic can be >2000 m, this difference is due to global circulation patterns affecting CO2 values at depth. Increasing atmospheric CO2 will

cause V to decrease, and the ASH and CSH levels to move towards the sea surface, as has already occurred in the past 200 years. Most of the

Arctic is projected to be undersaturated with respect to aragonite and calcite by around 2030 and 2080 respectively, with equivalent values for the

Southern Ocean being around 2060 and 2100 [28,46].
crustaceans, and positive but non-significant on echino-

derms [10��]. Some organisms may therefore have the

capacity to upregulate their metabolism and calcification

to compensate for lower availability of carbonate ions

(CO2�
3 ; Box 1), key building blocks for calcifiers. However,

this would have energetic costs that would divert energy

from other essential processes, and thus would not be

sustainable in the long term [see, e.g. [13�]]. Full or partial

compensation may be possible in certain organisms if the

additional energy demand required to calcify under elev-

ated CO2 can be supplied as food, nutrients, and/or light

(for those organisms dependent on photosynthesis). Cal-

cifying organisms are more susceptible overall to ocean

acidification than non-calcifying organisms also for pro-

cesses other than calcification [10��].

Marine primary producers encompass phylogenetically

very diverse groups, from prokaryotes to angiosperms,

differing widely in their photosynthetic apparatus and use

of dissolved inorganic carbon for photosynthesis. The

species that possess effective carbon concentrating mech-

anisms are likely to be less sensitive to increased CO2
www.sciencedirect.com 
levels than those lacking it. Stimulating effects of

elevated CO2 on photosynthesis and carbon fixation have

been observed in a variety of phytoplankton taxa, in-

cluding diatoms, coccolithophores, cyanobacteria, and

dinoflagellates [14]. Modest increases of 10–30% in

photosynthetic carbon fixation in response to elevated

CO2 were also observed in bioassay studies with oceanic

plankton assemblages and in mesocosm experiments with

coastal plankton communities. Seagrasses are also likely

to benefit from the future increases in CO2 [e.g. [15]].

These differences are likely to alter competitive relation-

ships among phytoplankton groups and result in shifts in

species composition as the oceanic CO2 concentration

continues to rise. The level of confidence of this stimu-

lating effect is medium and its magnitude must be better

constrained, especially at community level under in situ
conditions (Table 1).

Nitrogen fixation, the production of ammonium readily

available to the biota from atmospheric nitrogen gas, is a

key process because primary production is limited by the
Current Opinion in Environmental Sustainability 2012, 4:278–286
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Figure 1
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Atmospheric CO2 stabilization pathways (A), used in the Bern2.5CC model to estimate future global mean surface air temperature change (B); annual

and cumulative carbon emissions (C) and (D); global mean surface ocean saturation for aragonite (E), see Box 1 for explanation of aragonite saturation;

and global mean surface pH (F). Dotted lines labelled OSP (Overshoot Stabilization Profile) show pathways requiring negative CO2 emissions (i.e. CDR

geoengineering) to achieve atmospheric CO2 stabilization at 350 and 450 ppm; dashed lines labelled DSP (Delayed Stabilization Profile) show delayed

approach to emissions reductions to achieve stabilization at 450 and 550 ppm.

From Joos et al. [46]; reproduced by permission of Oxford University Press. p. 286, Fig. 14.10 from ‘Ocean Acidification’ edited by Gattuso and

Hansson [4��].
availability of nitrogen in large areas of the global ocean. It

is primarily carried out by a small group of cyanobacteria

and is stimulated by elevated CO2 in a two key species

but information is still very scarce. The level of confi-
Current Opinion in Environmental Sustainability 2012, 4:278–286 
dence (Table 1) that ocean acidification will stimulate

nitrogen fixation is medium because, considering the

small number of species tested so far and the potential

phylogenetic and metabolic diversity of nitrogen fixers,
www.sciencedirect.com
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Table 1

Summary of the knowns and unknown. The recommendations of Mastrandrea et al. [47] were used for the levels of evidence (‘limited’,

‘medium’, or ‘robust’), agreement among the expert coauthors (‘low’, ‘medium’, or ‘high’) and confidence (‘very low’, ‘low’, ‘medium’,

‘high’, and ‘very high’). Question marks indicate that the effect is unknown. From Gattuso et al. [3��]

Statement Level of

evidence

Level of

agreement

Level of

confidence

Chemical aspects

Ocean acidification occurred in the past Robust High Very high

Ocean acidification is in progress Robust High Very high

Ocean acidification will continue at a rate never encountered in the past 55 Myr Robust High Very high

Future ocean acidification depends on emission pathways Robust High Very high

The legacy of historical fossil fuel emissions on ocean acidification

will be felt for centuries

Robust High Very high

Biological and biogeochemical responses

Ocean acidification will adversely affect calcification Medium High High

Ocean acidification will stimulate primary production Medium High High

Ocean acidification will stimulate nitrogen fixation Medium High Medium

Some species or strains are tolerant Robust High Very high

Some taxonomic groups will be able to adapt Low Medium ?

Ocean acidification will change the composition of communities Robust Medium High

Ocean acidification will impact food webs and higher trophic levels Limited High ?

Ocean acidification will have biogeochemical consequences at the global scale Medium High Medium

Policy and socio-economic aspects

There will be socio-economic consequences Limited Medium ?

An ocean acidification threshold that must not be exceeded can be defined Limited High ?
and the little information available on the synergistic

effects of CO2, light, and iron, it is too early to assess

the global significance of a stimulating effect of rising

CO2 on oceanic nitrogen fixation.

Until recently, it was widely thought that ocean acidifica-

tion would have little effect on high-level organisms

because they have efficient mechanisms to maintain their

internal pH relatively constant [16�]. It was shown

recently, however, that the larval stages of some species

may not be able to maintain their acid-base balance. For

example, exposure of cod larvae to elevated CO2 (1800–
4200 matm; pCO2 is 1200–2300 matm in their natural

habitat) results in severe to lethal tissue damage in many

internal organs [17�]. The avoidance of acidosis also

interferes with neurotransmitter function in fish [18],

thereby affecting behaviour and causing dramatic shifts

in sensory preferences such attraction to odours they

normally avoid, including ones from predators [19].

There remain numerous unknowns on the impact of

ocean acidification on marine organisms and ecosystems

[3��]. Among the key ones are the interactive effects of

ocean acidification and other stressors such as warming

and deoxygenation (oxygen loss). These three stressors

share the same origin, anthropogenic CO2 emissions, and

therefore occur concurrently. They could have synergistic

effects, amplifying or dampening their impact. For

example, it is well established that ocean acidification

decreases the thermal window of some marine organisms,

thereby decreasing their metabolic performance [16�]. It

is critical to better understand the response of marine
www.sciencedirect.com 
organisms and ecosystems to multiple stressors to inform

policy makers.

The risk of ocean acidification to society and
avenues for international policy
What the ocean provides society

The ocean provides enormous, often forgotten, diverse

resources. It provides �96% of the living space on Earth,

providing diverse habitats for 80% of the planet’s organ-

isms. It produces �50% of the oxygen (O2) in the atmos-

phere, fixes �50% of global primary production and

�80% of world trade is carried across it. The ocean is

also an important recycler of waste and an enormous store

of carbon, substantially greater than on land or in the

atmosphere. It plays a key role in the global carbon cycle,

especially climate change through the regulation of the

amount of CO2 in the atmosphere. Currently, the ocean

has taken up �30% of anthropogenic CO2 emissions and

�90% of the heat generated by warming of the Earth

system over recent decades [20].

Many of these invaluable roles are literally priceless and

are performed by a series of biogeochemical processes

regulated by marine organisms as well as the important

physical processes of ocean mixing, tides, currents, and

air–sea exchange.

The ocean also provides food and livelihoods for millions

and its coastal ecosystems, such as coral reefs, mangroves,

salt marshes, seagrass and kelp beds, protects shorelines

and also stores carbon [21]. The substantial alteration

in basic ocean chemistry associated with future ocean
Current Opinion in Environmental Sustainability 2012, 4:278–286
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acidification is likely to have wide implications for life in

the ocean with socio-economic consequences, including

food security [22�].

Tropical coral reef ecosystems, for example, provide food,

income, and coastal protection for around 500 million

people throughout tropical coastal areas of the world [23].

They have an estimated annual value of US$30 billion

with the protective function of reefs to shorelines valued

at US$9 billion per annum [24]. The annual economic

damage of ocean-acidification-induced coral reef loss by

2100 has been estimated to be US$500 to 870 billion

depending on the level of CO2 emissions scenarios [25].

Polar, subpolar, and deep-sea ecosystems and shallow

productive seas including those associated with upwelling

of CO2-rich seawater are also at risk as ocean acidification

will be most severe there and will start occurring within a

decade or two [Box 1, [26–29,30��]]. As many of these ‘hot

spots’ support considerable fin and shell fisheries there

may be a risk to food security [31,32�]. In 2004 global fish

production was valued at US$150 billion per annum [33],

providing 16% of annual protein consumption for around

3 billion people worldwide [34], the primary protein source

for about 1 billion people and employment for 38 million

people, 95% of whom live in developing countries. Ocean

acidification is not the only climate related threat to the

oceans, with ocean warming and oxygen loss also of great

concern. World fisheries already face multiple challenges

[35] but some are now further subject to the combined

global scale stressors of ocean acidification, warming and

deoxygenation [22�,32�,36,37�].

Avenues available for international policy action on

ocean acidification

Opportunities to raise awareness and highlight options on

ocean acidification are via the United Nations (UN)

(Figure 2). These include the United Nations Framework

Convention for Climate Change (UNFCCC), the Con-

vention on Biological Diversity (CBD), the Intergovern-

mental Oceanographic Commission (IOC), the United

Nations Environment Programme (UNEP) Governing

Council, and the UN Commission on Sustainable De-

velopment. The UN General Assembly is charged with

undertaking an annual review and evaluation of the

implementation of the UN Convention on the Law of

the Sea and other developments relating to ocean affairs

and legislation, including in relation to the ocean and

climate change.

Ocean acidification was first recognized by the Intergo-

vernmental Panel on Climate Change (IPCC) in its 4th

Assessment Report as a risk caused by increasing CO2

emissions [38] and its assessment in this area will be even

more substantial in its 5th Assessment Report due in

2013–2014. CBD has also considered the issue with

respect to its impacts on marine biodiversity and will
Current Opinion in Environmental Sustainability 2012, 4:278–286 
report in 2012. The Commission on Sustainable Devel-

opment will consider the issues of oceans and seas and

Small Island Developing States in 2014 and 2015. A

further UN aim is to carry out an assessment for ecosys-

tem services through the creation of the Intergovernmen-

tal Science-Policy Platform on Biodiversity and

Ecosystem Services (IPBES). IPBES, like the IPCC, will

not recommend specific policies, rather it will conduct

periodic biodiversity and ecosystem services assessments

on global, regional and subregional scales.

Ocean acidification is relevant to all these intergovern-

mental bodies and they each offer opportunities to inform

policy-makers of this threat to the largest ecosystem on

the planet. However, as the only policy option for miti-

gating ocean acidification on a global scale is to reduce

fossil fuel CO2 emissions to the atmosphere it is important

that policy-makers consider impacts of CO2 on the ocean

as well as on climate change. It is for this reason that the

UNFCCC Conference of the Parties (COP) climate

change discussions currently offer the best chance for

the mitigation of ocean acidification particularly as ocean

acidification and climate change together give a compel-

ling rationale for CO2 emissions reduction. However, the

ocean has not figured on the agenda of the UNFCCC

until very recently despite substantial activities by

numerous stakeholders in bringing this to the attention

of policy-makers [summarized in [39]]. At the UNFCCC

COP17, Durban in late 2011, there were a number of side-

events on the ocean, one of which was a collaboration

between a number of national and international research

programmes and organizations which brought their con-

cerns of the risk of ocean acidification, warming and

oxygen loss to the delegates and other participants in

the policy document ‘‘Hot, Sour and Breathless: Ocean

Under Stress’’ [40].

The UN Conference on Sustainable Development

(Rio+20) in 20–22 June 2012 in Rio de Janeiro, Brazil

offers a further opportunity. There are encouraging sig-

nals of consideration of ocean acidification by its inclusion

in the zero-draft declaration for Rio+20 released on 10

January 2012 by the UN and the organization of a number

of side events on ocean acidification during the lead up to

and at the Rio summit.

IOC/UNESCO and other UN agencies launched ‘‘A

Blueprint for Ocean and Coastal Sustainability’’ [41] a

proposal to implement a number of urgent actions to

mitigate and adapt to ocean acidification which have since

been tabled for consideration by UN delegates negotiat-

ing the outcome document at the Rio+20. One of these

actions is to launch a global inter-disciplinary program on

ocean acidification risk assessment, which would assist

countries in formulating mitigation responses and to

identify regions most at risk of impact from ocean acid-

ification as it progresses. In addition, a call has been made
www.sciencedirect.com
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Figure 2
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Showing the direct cause of ocean acidification, the impacts on ocean chemistry, ecosystems and socio-economics and the interaction with climate

change through ocean warming and oxygen loss. Note the decreasing certainty from chemistry, through life and social science. The policy options for

mitigating ocean acidification are also shown.
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to the UNFCCC negotiations to include atmospheric

CO2 impacts on ocean chemistry and ecosystems in their

deliberations.

The Global Ocean Forum has also been active at recent

UNFCCC COPs and the lead up to Rio+20, holding

Oceans Day side-events at each conference. The forum

gives a platform to scientists, policy makers and other

stakeholders from a wide range of concerned organiz-

ations, coastal nations and islands. The forum submitted

‘‘Oceans at Rio+20: How well are we doing on the major

ocean commitments from the 1992 Earth Summit and the

2002 World Summit on sustainable development?’’ [42]

to the compilation documents for Rio+20 and contains

specific recommendations on achieving a strong oceans

outcome.

Avenues available for regional and local policy action on

ocean acidification

There are a number of local drivers that may contribute to

the acidification of coastal waters [43]. Some of these

drivers, such as fertilizers and emissions of nitrogen

oxides and sulfur oxides, are weak acids that directly

lower the pH of the coastal ocean. Others such as erosion

and point-source nutrient pollution act indirectly by

increasing the productivity in coastal waters, which ulti-

mately results in higher CO2 concentrations as phyto-

plankton are broken down by bacteria.

There are multiple options for regional, state, and local

jurisdictions to begin to address these local drivers. Var-

ious national Clean Water Acts or equivalents, local land

use, coastal zone management and local coastal devel-

opment plans, laws and policies (Figure 2) can direct

agencies to ensure that discharge and runoff of pollutants,

urban sprawl, coastal erosion and water quality are mon-

itored, limited and consistent with sustainable function of

aquatic ecosystems. Similarly, Clean Air Acts and equiva-

lents can be enforced to reduce the amount of short-lived

atmospheric pollutants that are deposited in coastal

waters close to the site of emission. However, upwelled

waters are one of the few local drivers that do require

action on a larger scale. It should be noted however, that

regional and local actions are not an alternative to the

implementation of a global solution; rather it may buy

time until this occurs.

Conclusions
Ocean acidification is happening now at a speed not

experienced by planet Earth for �60 million years, is

caused by anthropogenic CO2 emissions and will con-

tinue as emissions continue. If unabated it will change the

chemistry of the oceans for 10 000 years and many marine

organisms, ecosystem and biogeochemical processes are

likely to be affected (Figure 2). At the same time the

ocean is warming and loosing oxygen. Research capacity

needs to grow globally, including in vulnerable countries,
Current Opinion in Environmental Sustainability 2012, 4:278–286 
in order to understand the impacts of these three con-

nected stressors on ecosystems and feedbacks to climate

change. Research will increasingly need to follow a multi-

disciplinary approach across the physical, life, chemical,

Earth, social and economic sciences. Such research and

capacity building will need international coordination to

be most effective.

These studies will need to be policy relevant, with a rapid

exchange of knowledge between researchers and policy-

makers. It is also essential that the role of the ocean in

sustaining life on Earth and the threat it is under from

ocean acidification, warming and deoxygenation are

urgently recognized in the UN process to prevent irre-

versible change in ocean physics, chemistry and biology

and the goods and services it provides all inhabitants of

planet Earth.
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