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Introduction

Sliding mode control (SMC) has been developed since the seminal work of Utkin [START_REF] Utkin | Variable structure systems with sliding modes[END_REF] in the 70s, see for instance [START_REF] Shtessel | Sliding mode control and observation[END_REF] for more details. Recently, the problem of robust fixed-time SMC was treated in [START_REF] Corradini | Nonsingular terminal slidingmode control of nonlinear planar systems with global fixedtime stability guarantees[END_REF][START_REF] Zuo | Non-singular fixed-time terminal sliding mode control of non-linear systems[END_REF] where fixed-time stability developed in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF][START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF][START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF] ensures that all solutions converge to the equilibrium point in a fixed-time. However, the proposed controllers were rather complex to implement due to a problem of singularity avoidance coming from the fixed-time stability strategy. In [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF], simple robust controllers are proposed by using state-dependent variable exponent coefficient in the sliding surfaces and the controllers.

All the above mentioned articles deal with matched disturbances which are disturbances acting on the control input channel and are the most common disturbances encountered in control applications. Mismatched disturbances acting on other channels than the control channel also appear in automatic control for instance in [START_REF] Ginoya | Sliding mode control for mismatched uncertain systems using an extended disturbance observer[END_REF][START_REF] Han | Sliding-mode control of uncertain systems in the presence of unmatched disturbances with applications[END_REF][START_REF] Kayacan | Feedback linearization control for systems with mismatched uncertainties via disturbance observers[END_REF][START_REF] Li | Generalized extended state observer based control for systems with mismatched uncertainties[END_REF][START_REF] Li | Continuous finite-time output regulation for disturbed systems under mismatching condition[END_REF][START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF][START_REF] Sun | Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances[END_REF][START_REF] Sun | Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances[END_REF][START_REF] Tian | Fixed-time stabilization of high-order integrator systems with mismatched disturbances[END_REF][START_REF] Yang | Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties[END_REF][START_REF] Yang | Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[END_REF][START_REF] Zhang | Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances[END_REF][START_REF] Zhang | Disturbance rejection for nonlinear systems with mismatched disturbances based on disturbance observer[END_REF][START_REF] Zhang | A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental tests[END_REF][START_REF] Zuo | Robust fixedtime stabilization control of generic linear systems with mismatched disturbances[END_REF] Email addresses: emmanuel.moulay@univ-poitiers.fr (Emmanuel Moulay), vincent.lechappe@insa-lyon.fr (Vincent Léchappé), emmanuel.bernuau@agroparistech.fr (Emmanuel Bernuau), michael.defoort@uphf.fr (Michael Defoort), franck.plestan@ec-nantes.fr (Franck Plestan).

and it can model the DC-DC buck power converter systems [START_REF] Wang | Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances[END_REF]. In the previous works, the control problems are solved by using observers to estimate mismatched disturbances. In our article, we use a fixed-time SMC strategy adapted from [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF] which is known to be robust in order to reject the mismatched disturbance of a secondorder system without using disturbance observers. This renders this new strategy easier to tune. To the best of the authors' knowledge, this is the first time that a mismatched disturbance is rejected by using a fixed-time sliding surface known for its robustness properties. Thus, we adapt the sliding-mode controller developed in [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF] in order to be used with a mismatched disturbance. The results are tested in simulation on the double integrator in order to show the efficiency of the proposed method. Finally, the proposed control strategy is applied to develop a new fixed-time differentiator, the reader may refer to [START_REF] Zhang | Tracking Differentiator Algorithms: Theories, Implementations and Applications[END_REF] for more details on differentiators.

The article is organized as follows. After some preliminaries given in Section 2, the main results are presented in Section 3 and tested on the double integrator with matched and mismatched disturbances. They are also applied to develop a new fixed-time differentiator. Finally, a conclusion is addressed in Section 4.

Preliminaries

In the following, denote e the constant such that lnpeq " 1. Let us recall some results on finite-time stability and fixed-time stability. Consider the following ordinary differential equation

9 xptq " f pxptqq, xptq P R n (1) xp0q " x 0
with f a locally essentially bounded function.

Definition 1 [START_REF] Moulay | Finite time stability and stabilization of a class of continuous systems[END_REF][START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] The origin is globally finite-time stable for system (1) if it is Lyapunov stable and for all x 0 P R n there exists T px 0 q ě 0 such that, for any xp¨q solution of (1) with xp0q " x 0 , lim tÑT px0q }xptq} " 0, i.e. }xptq} " 0 for all t ě T px 0 q. Such a function T is called a settling-time function.

Definition 2 [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] System (1) is globally fixed-time stable if:

(1) it is globally finite-time stable;

(2) there exists a globally upper bounded settling-time function T , i.e. there a constant T ą 0, independent of the initial condition, such that for all x 0 P R n , T px 0 q ď T.

Main results

Consider the following uncertain nonlinear second-order system # 9

x 1 " x 2 `d1

9 x 2 " f pxq `gpxqu `d2 (2) 
with x " px 1 , x 2 q P R 2 the state, u P R the control input, f and g continuous functions such that f p0q " 0, gpxq ‰ 0 for all x P R 2 , d 1 a mismatched disturbance such that |d 1 ptq| ă δ 1 and d 2 a matched disturbance such that |d 2 ptq| ă δ 2 . The equilibrium trajectory of system (2) is given by p0, ´d1 ptqq. The second order systems with mismatched disturbances have been studied for instance in [START_REF] Yang | Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[END_REF].

The main objective of this subsection is to design a sliding variable leading to global robust fixed-time stabilization of system (2) towards the equilibrium trajectory. Consider the sliding variable with a state-dependent variable exponent coefficient given by

spxq " x 2 `β|x 1 | λ 1 x 2 1 1`µ 1 x 2 1 sgnpx 1 q (3) with λ 1 ą 0, µ 1 ą 0 such that θ 1 " λ1 1`µ1 ą 1, β ą δ 1 e λ 1 2e
and the following new controller inspired from Proposi-tion 2 in [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF] upxq " ´gpxq

´1" f pxq `k1 sgnpsq|s| λ 2 s 2 1`µ 2 s 2 `ϕp|x 1 |qpx 2 `k2 sgnpsqq ı (4)
with λ 2 ą 0, µ 2 ą 0 such that θ 2 " λ2 1`µ2 ą 1 and

ϕpzq " βλ 1 1 `µ1 z 2 ˆ2 lnpzq 1 `µ1 z 2 `1˙z λ 1 z 2 1`µ 1 z 2 `1.
Let us state a first technical lemma.

Lemma 1 For z ě 0, we have ϕpzq ą 0 when z ą 1 and |ϕpzq| ď 2βλ 1 p1 `µ1 q when 0 ď z ď 1.

Proof. The first statement is obvious. When 0 ď z ď 1, we write

ϕpzq " βλ 1 p1 `µ1 z 2 q 2 `2z lnpzq `z `µ1 z 3 ˘z λ 1 z 2 1`µ 1 z 2 .
We see that 0 ď βλ1 p1`µ1z 2 q 2 ď βλ 1 and 0 ď z

λ 1 z 2 1`µ 1 z 2 ď 1. Now denoting ψpzq " 2z lnpzq `z `µ1 z 3
we see that ψ 1 pzq " 2 lnpzq `3 `3µ 1 z 2 . Denoting z 0 the unique solution of ψ 1 pzq " 0, we see that ψ is decreasing on p0, z 0 q and increasing on pz 0 , 1q. Therefore it leads to |ψpzq| ď maxt1 `µ1 , |ψpz 0 q|u. But, given that ψ 1 pz 0 q " 0, we have

ψpz 0 q " z 0 `2 lnpz 0 q `1 `µ1 z 2 0 " z 0 `´3 ´3µ 1 z 2 0 `1 `µ1 z 2 0 " ´2z 0 p1 `µ1 z 0 q.
Finally, because 0 ď z 0 ď 1, we see that |ψpz 0 q| ď 2p1 μ1 q and we get the result.

We can now state the first theorem. 3)-( 4) reaches the equilibrium trajectory p0, ´d1 ptqq in a fixed time satisfying

Theorem 1 If k 1 ą δ 3 " δ 2 `2βλ 1 p1 `µ1 qpδ 1 `k2 q and k 2 ą δ 1 , the closed-loop system (2)-(
T px 0 q ď 1 pk 1 ´δ3 qpθ 2 ´1q `1 k 1 e ´λ2 2e ´δ3 `1 pβ ´δ1 qpθ 1 ´1q `1 βe ´λ1 2e ´δ1 . (5) s "f pxq `gpxqupxq `βλ 1 |x 1 | px 2 `d1 q 1 `µ1 x 2 1 ˆ2 ln |x 1 | 1 `µ1 x 2 1 `1˙| x 1 | λ 1 x 2 1 1`µ 1 x 2 1 `d2 " ´k1 |s| λ 2 s 2 1`µ 2 s 2 sgnpsq `d2 `ϕp|x 1 |qpd 1 ´k2 sgnpsqq (6)
Now, considering the Lyapunov function V psq " s 2 , we see that

9 V psq ď 2|s| ˆ´k 1 |s| λ 2 s 2 1`µ 2 s 2 `δ2 `ϕp|x 1 |qpsgnpsqd 1 ´k2 q ˙. (7) When |x 1 | ą 1, we have ϕp|x 1 |q ą 0, therefore 9 V psq ď 2|s| ˆ´k 1 |s| λ 2 s 2 1`µ 2 s 2 `δ2 `ϕp|x 1 |qpδ 1 ´k2 q ˙. ( 8 
)
But given that k 2 ą δ 1 , we get ϕp|x 1 |qpδ 1 ´k2 q ă 0 which in turn yields

9 V psq ď 2|s| ˆ´k 1 |s| λ 2 s 2 1`µ 2 s 2 `δ2 ˙. (9) 
When |x 1 | ď 1, we have |ϕp|x 1 |q| ď 2βλ 1 p1 `µ1 q and thus

9 V psq ď 2|s| ˆ´k 1 |s| λ 2 s 2 1`µ 2 s 2 `δ2 `2βλp1 `µ1 qpδ 1 `k2 q ˙.
(10) Finally, we see that

9 V psq ď 2|s| ˆ´k 1 |s| λ 2 s 2 1`µ 2 s 2 `δ3 ˙(11)
where δ 3 " δ 2 `2βλ 1 p1 `µ1 qpδ 1 `k2 q. By using Theorem 2 in [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF], one deduces that system (6) starting at sp0q " s 0 reaches the sliding surface ts " 0u in a fixedtime satisfying T ps 0 q ď

1 pk1´δ3qpθ2´1q `1 k1e ´λ2 2e ´δ3
. From

(3), one has

9 x 1 " ´β|x 1 | λ 1 x 2 1 1`µ 1 x 2 1 sgnpx 1 q `d1 . ( 12 
)
By using one more time Theorem 2 in [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF], it is deduced that x 1 ptq starting at x 1 p0q " x 10 reaches the origin in a fixed-time satisfying T px 10 q ď

1 pβ´δ1qpθ1´1q `1 βe ´λ1 2e ´δ1
.

Finally, the closed-loop system (2)-( 3)-( 4) reaches the equilibrium trajectory p0, ´d1 ptqq in a fixed time satisfying T px 0 q " T ps 0 q `T px 10 q.

Remark 1 Let us remark that if we want to use the controller given in Proposition 2 of [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF] upxq " ´gpxq

´1« f pxq `k|s| λ 2 s 2 1`µ 2 s 2 sgnpsq `βλ 1 |x 1 |x 2 1 `µ1 x 2 1 ˆ2 ln |x 1 | 1 `µ1 x 2 1 `1˙| x 1 | λ 1 x 2 1 1`µ 1 x 2 1 ff ( 13 
)
with θ 2 " λ2 1`µ2 ą 1, k ą δ 2 e λ 2
2e then we have to prove that βλ1|x1|d1

1`µ1x 2 1 ´2 ln |x1| 1`µ1x 2 1 `1¯| x 1 | λ 1 x 2 1 1`µ 1 x 2 1 is bounded, i.e. lim x1Ñ8 βλ 1 |x 1 |d 1 1 `µ1 x 2 1 ˆ2 ln |x 1 | 1 `µ1 x 2 1 `1˙| x 1 | λ 1 x 2 1 1`µ 1 x 2 1 ă `8. ( 14 
)
It leads to the condition λ 1 ď µ 1 because |x 1 | λ 1 x 2 1 1`µ 1 x 2
1 behaves as |x 1 | λ µ far from the origin x 1 " 0. However, we have the condition 1 `µ1 ă λ 1 coming from Theorem 2 in [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF] which is incompatible with the condition λ 1 ď µ 1 . This is the reason why we developed the new controller (4) which is discontinuous in the sliding variable but able to manage the mismatched disturbance.

Remark 2 With Theorem 1, we obtain that x 2 ptq tracks ´d1 ptq in a fixed time. Thus, we obtain a new fixed-time estimator of the mismatched disturbance without using observers.

Consider now the following new controller inspired from Proposition 3 in [START_REF] Moulay | Robust fixed-time stability: application to sliding mode control[END_REF] upxq " ´gpxq

´1" f pxq `k1 sgnpsq `k2 |s| α sgnpsq `ϕp|x 1 |qpx 2 `k3 sgnpsqq ı (15) 
with α ą 1.

Theorem 2 If k 1 ą δ 3 " δ 2 `2βλ 1 p1 `µ1 qpδ 1 `k3 q, k 2 ą δ 3 and k 3 ą δ 1 then the closed-loop system (2)-( 3)-( 15) reaches the equilibrium trajectory p0, ´d1 ptqq in a fixed time satisfying

T px 0 q ď 1 pk 2 ´δ3 qpα ´1q `1 k 1 ´δ3 `1 pβ ´δ1 qpθ 1 ´1q `1 βe ´λ1 2e ´δ1 . ( 16 
)
Proof. Similarly to the proof of Theorem 1, we get, with V psq " s 2 :

9 V psq ď 2|s| p´k 1 ´k2 |s| α `δ3 q ( 17 
)
where δ 3 " δ 2 `2βλ 1 p1 `µ1 qpδ 1 `k3 q. If |s| ą 1, we see that 9

V ď 2|s|pδ 3 ´k2 |s| α q. But given that |s| ą 1 and δ 3 ą 0, we get 9 V psq ď 2|s|pδ 3 |s| α ´k2 |s| α q (18)

ď 2pδ 3 ´k2 qV psq 1`α 2 (19)
which yields, as long as |sptq| ą 1, 1 ě V psptqq 1´α 2 ě p1 ´αqpδ 3 ´k2 qt. This inequality shows that sptq reaches the set tV ď 1u in a time T 1 ď

1 p1´αqpδ3´k2q . If |s| ď 1 we get 9 V psq ď 2|s|pδ 3 ´k1 q ď 2pδ 3 ´k1 qV 1 2 . ( 20 
)
Therefore, as long as sptq ą 0, V psptqq 1 2 ď 1 `pδ 3 ḱ1 qt, which yields that sptq reaches 0 in a time T 2 ď 1 k1´δ3 . Finally, we conclude that, regardless of its initial condition, sptq reaches 0 in a fixed-time T ps 0 q ď T 1 `T2 . The end of the proof is similar to the one of Theorem 1. Some guidelines are provided below in order to tune the parameters of controller ( 15): 1. choose δ 1 and δ 2 according to the maximum values of disturbances d 1 and d 2 ; 2. take λ 1 ą 0 and µ 1 ą 0 such that θ 1 " λ1 1`µ1 ą 1; 3. take β such that β ą δ 1 e λ 1 2e ; 4. take k 3 ą δ 1 ; 5. take k 1 ą δ 3 and k 2 ą δ 3 with δ 3 " δ 2 `2βλ 1 p1 `µ1 qpδ 1 `k3 q; 6. take α ą 1. The guidelines for the tuning of controller (4) can be obtained in a similar way.

Example 1 The results of Theorem 1 and Theorem 2 have been tested in simulation on a double integrator, i.e. taking f " 0 and g " 1 in system (2). The following disturbances have been chosen d 1 ptq " sinp5tq and d 2 ptq " 2 sinp10tq so δ 1 " 1 and δ 2 " 2. The Euler solver with a fixed step of 10 ´4s has been used. The parameters of both controllers are as follows: λ 1 " 3, µ 1 " 1, β " 5.5, k 1 " 30, λ 2 " 4, µ 2 " 1, k 2 " 2 for controller (4) and λ 1 " 3, µ 1 " 1, β " 5.5, k 1 " 39, k 2 " 20, k 3 " 2, α " 3 for controller [START_REF] Sun | Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances[END_REF]. This set of parameters verifies the conditions of Theorem 1 and Theorem 2. The results of the simulations with the initial condition xp0q " r1, 3s T are displayed on Figure 1(a)-(b). For comparison purpose, one has implemented the fixed-time controller given in [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF]. One can observe that after a reaching phase, the state x 1 converges to 0. Note that the dynamics of x 2 tracks the unknown mismatched disturbance ´d1 . The upper bound of the settling-time [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] given in Theorem 1 is equal to 30s and the upper bound of the settling-time [START_REF] Sun | Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances[END_REF] given in Theorem 2 is equal to 8.5s. One can see that this settling-time is much smaller in the simulation, around 1s for controller (4) and around 2s for controller [START_REF] Sun | Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances[END_REF]. Let us notice that the fixed-time controller for the second order system proposed in [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] and displayed on Figure 1(c) is Example 2 Let us consider a differentiable signal hptq defined on r0, 8q which is differentiable with bounded time derivative, i.e. | 9 hptq| ď δ 1 . The objective here is to estimate in fixed-time the time derivative of this signal. To achieve this objective, let us consider the following fixed-time differentiator:

9 x1 " x2 9 x2 " upx 1 ´h, x2 q (21)
where upx 1 ´h, x2 q is defined in (4) or (15) with f " 0 and g " 1. Defining the error e " x1 ´h, one obtains

9 e " x2 ´9 h 9 x2 " upe, x2 q (22)
It yields system (2) with d 2 " 0 and d 1 " ´9 h. In the following simulations, the signal has been chosen as hptq " 0.2 cosp 1 5 tq so δ 1 " 1 and δ 2 " 0. The Euler solver with a fixed step of 10 ´5s has been used. The parameters of u are as follows: λ 1 " 2.5, µ 1 " 1, β " 2, k 1 " 150, λ 2 " 2.2, µ 2 " 1, k 2 " 3 for scheme (4) and λ 1 " 2.5, µ 1 " 1, β " 2, k 1 " 150, k 2 " 45, k 3 " 1.1, α " 3 for scheme [START_REF] Sun | Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances[END_REF]. This set of parameters verifies the conditions of Theorem 1 and Theorem 2. Furthermore, an additional uniformly bounded random measurement noise of magnitude 10 ´2 is considered in the following simulations. The results of the simulations with the initial condition xp0q " r1, 1s T are displayed on Figure 2 and3. One can observe that after a reaching phase, the state x1 converges to h. Note that the dynamics of x2 converges to given in Theorem 1 is equal to 8s and the upper bound of the settling-time [START_REF] Sun | Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances[END_REF] given in Theorem 2 is equal to 8s.

One can see that this settling-time is much smaller in the simulation, around 0.9s for both schemes.

It is worth mentioning that there exist several finite time differentiators (see for instance [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF]). Nevertheless, the convergence time, grows unboundedly with respect to the initial differentiation error. Recently, an arbitrary order fixed-time differentiator, which can been seen as a generalization of the Levant's differentiator, has been introduced in [START_REF] Moreno | Arbitrary order fixed-time differentiators[END_REF]. For comparison purpose, the root mean square error (RMSE) after the reaching phase for our proposed differentiator [START_REF] Zhang | A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental tests[END_REF] and [START_REF] Moreno | Arbitrary order fixed-time differentiators[END_REF] is as follows: 2.84e0 5 when using [START_REF] Zhang | A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental tests[END_REF] with u given in Theorem 1, 3.06e´05 when using [START_REF] Zhang | A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental tests[END_REF] with u given in Theorem 2, 4.72e ´05 when uisng [START_REF] Moreno | Arbitrary order fixed-time differentiators[END_REF]. It can be seen that our proposed differentiators achieve better accuracy in the presence of measurement noise than the first order fixed-time differen-tiator proposed in [START_REF] Moreno | Arbitrary order fixed-time differentiators[END_REF].

Conclusion

A new sliding mode controller is proposed in order to get fixed time-convergence of second order systems in presence of unknown but bounded matched and mismatched perturbations. It is applied to develop a new fixed-time differentiator. The fixed-time controller is based on the design of a robust sliding surface and does not require any disturbance observer which simplifies the solution.

For future works, a high order SMC or implicit SMC strategy could be used for reducing the chattering when dealing with robust fixed-time stabilization.
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 1 Fig. 1. (a) Double integrator with sliding surface (3) and controller (4); (b) Double integrator with sliding surface (3) and controller (15); (c) Double integrator with controller [6]. not able to manage the mismatched disturbances d 1 , contrary to the proposed controllers (4) and (15) displayed on Figures 1(a)-(b) respectively.
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 2 Fig. 2. (a) Fixed-time observer with sliding surface (3) and scheme (4).
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 3 Fig.3. Fixed-time observer with sliding surface (3) and scheme[START_REF] Sun | Composite adaptive disturbance observer based control and back-stepping method for nonlinear system with multiple mismatched disturbances[END_REF] 9 h in fixed time. The upper bound of the settling-time[START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] given in Theorem 1 is equal to 8s and the upper bound of the settling-time[START_REF] Sun | Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances[END_REF] given in Theorem 2 is equal to 8s. One can see that this settling-time is much smaller in the simulation, around 0.9s for both schemes. It is worth mentioning that there exist several finite time differentiators (see for instance[START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF]). Nevertheless, the convergence time, grows unboundedly with respect to the initial differentiation error. Recently, an arbitrary order fixed-time differentiator, which can been seen as a generalization of the Levant's differentiator, has been introduced in[START_REF] Moreno | Arbitrary order fixed-time differentiators[END_REF]. For comparison purpose, the root mean square error (RMSE) after the reaching phase for our proposed differentiator[START_REF] Zhang | A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental tests[END_REF] and[START_REF] Moreno | Arbitrary order fixed-time differentiators[END_REF] is as follows: 2.84e0 5 when using[START_REF] Zhang | A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental tests[END_REF] with u given in Theorem 1, 3.06e´05 when using[START_REF] Zhang | A nonsmooth composite control design framework for nonlinear systems with mismatched disturbances: Algorithms and experimental tests[END_REF] with u given in Theorem 2, 4.72e ´05 when uisng[START_REF] Moreno | Arbitrary order fixed-time differentiators[END_REF]. It can be seen that our proposed differentiators achieve better accuracy in the presence of measurement noise than the first order fixed-time differen-