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Detecting senescence in wild populations and estimating its strength raises three challenges.

First, in the presence of individual heterogeneity in survival probability, the proportion of high-survival individuals increases with age. This increase can mask a senescence-related decrease in survival probability when the probability is estimated at the population level. To accommodate individual heterogeneity we use a mixture model structure (discrete classes of individuals). Second, the study individuals can elude the observers in the field, and their detection rate can be heterogeneous. To account for detectability issues we use capture-markrecapture (CMR) methodology, mixture models and data that provide information on individuals' detectability. Last, emigration to non-monitored sites can bias survival estimates, because it can occur at the end of the individuals' histories and mimic earlier death. To model emigration we use Markovian transitions to and from an unobservable state. These different model structures are merged together using hidden Markov chain CMR models, or multievent models. Simulation studies illustrate that reliable evidence for survival senescence can be obtained using highly heterogeneous data from non site-faithful individuals. We then design a tailored application for a dataset from a colony of black-headed gull Chroicocephalus ridibundus. Survival probabilities do not appear individually variable, but evidence for survival senescence becomes significant only when accounting for other sources of heterogeneity. This result suggests that not accounting for heterogeneity leads to flawed inference and/or that emigration heterogeneity mimics survival heterogeneity and bias senescence estimates.

Introduction

Senescence, the decline in fitness components with age due to internal physiological deterioration [START_REF] Medawar | An unsolved problem of biology[END_REF], has been evidenced in several life-history traits in a variety of wild vertebrates (e.g. Loison et al. 1999;[START_REF] Crespin | Increased adult mortality and reduced breeding success with age in a population of Common guillemot Uria aalge using marked birds of unknown age[END_REF][START_REF] Nussey | The rate of senescence in maternal performance increases with early-life fecundity in red deer[END_REF] and is thought to be the rule for most (or all) vertebrate species (see [START_REF] Finch | Longevity, senescence, and the genome[END_REF][START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF]).

Yet, several demographic studies of wild populations found no decline in individuals' performance with age (Nichols et al. 1997;[START_REF] Miller | Escaping senescence: demographic data from the Three-toed box turtle (Terrapene carolina triunguis)[END_REF][START_REF] Pistorius | A longitudinal study of senescence in a pinniped[END_REF][START_REF] Congdon | Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta)[END_REF], fuelling a debate over the validity of their results.

Among the potential flaws of demographic studies of senescence, the non-modelled effect of individual heterogeneity is recurrent [START_REF] Vaupel | Heterogeneity's ruses: some surprising effects of selection on population dynamics[END_REF][START_REF] Cam | Individual covariation in life-history traits: seeing the trees despite the forest[END_REF][START_REF] Zens | Dealing with death data: individual hazards, mortality and bias[END_REF][START_REF] Van De Pol | Age-dependant traits: a new statistical model to separate within-and between-individual traits[END_REF]. Individual heterogeneity can be defined as the occurrence of systematic variation among individuals in demographic parameters. It can originate from genetic differences or differences in the conditions experienced during development [START_REF] Fox | Consequences of heterogeneity in survival probability in a population of Florida scrub-jays[END_REF], variation in individual strategies or quality (e.g. covariation between reproductive effort and survival: [START_REF] Hamel | Individual variation in reproductive costs of reproduction: high-quality females always do better[END_REF], sex-bias in dispersal or behaviour or the interplay of behavioural differences and study design (e.g. social status-or body condition-dependent detectability: [START_REF] Whitehead | Heterogeneity and the mark-recapture assessment of the Scotian Shelf population of northern bottlenose whales (Hyperoodon ampullatus). -Can[END_REF][START_REF] Regehr | Effects of earlier sea ice breakup on survival and population size of Polar Bear in Western Hudson Bay[END_REF][START_REF] Crespin | Is heterogeneity of catchability in capture-recapture studies a mere sampling artefact or a biologically relevant feature of the population?[END_REF]. Individual heterogeneity can lead to population-level patterns that are not always representative of the actual relationship at the individual level [START_REF] Vaupel | Heterogeneity's ruses: some surprising effects of selection on population dynamics[END_REF]. In the case of senescence studies, since the proportion of individuals with high survival probability will tend to increase with age, the age-specific population average of survival probability, which is used in most studies of survival senescence, might not decrease or might even increase with age [START_REF] Vaupel | Heterogeneity's ruses: some surprising effects of selection on population dynamics[END_REF]Fig. 1).

Heterogeneity can be modelled with known individual covariates: [START_REF] Regehr | Effects of earlier sea ice breakup on survival and population size of Polar Bear in Western Hudson Bay[END_REF] modelled a gender effect combined with an effect of the observation method; Fox et al. (2006) Péron et al. p. 4 modelled an effect of the year of birth and family structure. Yet, the precise cause of heterogeneity is often not identified, or not measured. Two ways to accommodate individual variation of unknown origin have been proposed: continuous random effects (e.g. [START_REF] Cam | Individual covariation in life-history traits: seeing the trees despite the forest[END_REF][START_REF] Royle | Modeling individual effects in the Cormack-Jolly-Seber model: a statespace formulation[END_REF]) and mixture models that consider discrete classes of heterogeneity (Pledger et al. 2003;Pradel 2009).

In addition, it is well known that analysing data on marked individuals with models that do not formally estimate detection probabilities together with other demographic parameters [START_REF] Lebreton | Modelling survival and testing biological hypotheses using marked animals -a unified approach with case-studies[END_REF]) can bias estimations of demographic parameters, including the rate of senescence [START_REF] Gimenez | The risk of flawed inference in evolutionary studies when detectability is less than one[END_REF]. Individual heterogeneity in detection rate also biases survival estimates downwards if not accounted for [START_REF] Pradel | Capture-recapture survival models taking account of transients[END_REF]Prévot-Julliard et al. 1998a) and it violates the fundamental assumption of parameter homogeneity in CMR models [START_REF] Lebreton | Modelling survival and testing biological hypotheses using marked animals -a unified approach with case-studies[END_REF], which can lead to flawed inference [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF].

Last, temporary emigration to non-monitored sites, such that individuals missing during several capture occasions might still be alive elsewhere [START_REF] Burnham | A theory for combined analysis of ring recovery and recapture data[END_REF]Fujiwara and Caswell 2002), evidently impacts on the estimation of "true" (as opposed to "local") survival probability. If emigration probability is subject to individual heterogeneity, patterns similar to heterogeneity in survival might appear in the data. Consequently, heterogeneity in temporary emigration can affect the detection of survival senescence as well. In short, we identified three features of population studies (individual heterogeneity, imperfect detectability, temporary emigration out of the study area) which, when not included in the population models, can bias estimates of senescence and/or cause a lack of fit that leads to flawed inference.

Multievent models have been introduced as a unified framework by Pradel (2005). They extend multistate models, in which individuals move between states or die and can at each occasion be detected or not, by considering that the state of an individual is imperfectly determined when it is observed. Their structure rests on the more general framework of Péron et al. p. 5 hidden Markov chain models (McDonald and Zucchini 1997). The introduction of this model structure in the field of CMR data analysis was initially motivated by capture heterogeneity as reviewed by [START_REF] Pledger | Unified maximum likelihood estimates for closed capture-recapture models using mixtures[END_REF]. The use of hidden Markov chains in cases not related to individual heterogeneity was to our knowledge initiated by [START_REF] Nichols | Estimation of sex-specific survival from capture-recapture data when sex is not always known[END_REF]. These authors modelled a situation where males and females had different survival probabilities, but could not always be separated in the field because of reduced sexual dimorphism. Since then, following the development of the software E-SURGE (Choquet et al. 2009a) numerous applications have been proposed (see Pradel 2009). Among others, the implementation of memory models (where demographic parameters depend on the states occupied during the two preceding time steps) is made more straightforward through the use of hidden states [START_REF] Rouan | A general framework for modeling memory in Capture-Recapture data[END_REF], and epidemiology models can be fitted to data where health status determination is uncertain or incomplete [START_REF] Conn | Multistate capture-recapture under imperfect state observation: an application to disease models[END_REF].

In this paper we show how this recently developed modelling framework can be used to overcome the types of heterogeneity that typically plague senescence studies. Although these developments are quite general and can be applied to other study situations and taxa, we specifically tailor our example to a study of black-headed gulls Chroicocephalus ridibundus. This is a species for which survival senescence is likely to occur (Pugesek et al. 1995;[START_REF] Cam | Individual covariation in life-history traits: seeing the trees despite the forest[END_REF] in related species), but a population in which strong heterogeneities are expected (see "Study site and population" in the method section). After presenting the dataset and the features that suggested the need for this new development in CMR models, we present this development and provide simulations that illustrate their performance. 

Methods

Study site and population

Black-headed Gull (Chroicocephalus ridibundus) are long-lived Charadriiform birds (maximum longevity recorded in our study area: 30 years) and breed colonially, often on vegetated ponds. The data come from a long-term monitoring program of Black-headed Gulls breeding in La Ronze (noted LR) pond, a large (more than 4000 pairs in recent years) colony located in the Forez basin, at Craintilleux, central France (45°35′N 4°14′E). In this population, detection is known to vary between individuals because nests are built within vegetation or at its edge and because a large proportion of the re-sightings are made on the nests (Prévot-Julliard et al. 1998a). Note that some re-sightings are made on other perches so that all birds are potentially detectable even if their nests are not visible. Additionally, preliminary results in the same population indicated that dispersal rates were individually variable, in particular because of differences between males and females [START_REF] Grosbois | La dispersion : trait d'histoire de vie et paramètre démographique : étude empirique dans une population de mouette rieuse[END_REF], as is commonplace in birds [START_REF] Greenwood | Mating systems, philopatry and dispersal in birds and mammals[END_REF]). Yet, for both detection and emigration, we only had very partial information on the characteristics of the birds in the field. Detectability cannot be assessed for nests which are not visible of course and can't be evaluated for birds seen on other perches. Furthermore, Black-headed Gulls are only weakly sexually dimorphic, which precludes sexing of most birds in the field. It was thus clear that accounting for unknown or unmeasured sources of variation between individuals would be very useful if we were to assess survival senescence in this population.

Previous work in the same population indicated that time effects on survival probabilities were reduced or absent (Prévot-Julliard et al. 1998a;[START_REF] Grosbois | La dispersion : trait d'histoire de vie et paramètre démographique : étude empirique dans une population de mouette rieuse[END_REF]. We were thus confident that, despite most observations of old individuals occurred at the end of the time series, unaccounted time effects could not confound age effects. Péron et al. p. 7 

Data collection

Chicks were ringed before fledging with stainless steel rings. The use of stainless rings is particularly appropriate for the study of senescence since they almost do not wear with age (in all occasions when a known-age adult was physically recaptured at age >14, the code was perfectly readable and the ring could not be removed even with the use of pliers).

Observations of ringed adults were conducted using a floating blind from which metal ring codes could be read with a telescope [START_REF] Lebreton | Régulation par le recrutement chez la Mouette rieuse Larus ridibundus[END_REF]. At each observation of a ringed adult, we recorded whether it attended a nest or was feeding chicks, which would confirm its status as breeder. Now, an individual nesting in an accessible location had a high probability to be confirmed as breeder, whereas an individual breeding in a less accessible part of the colony was more often observed on roosts or other perches and was more likely to end up with an unconfirmed breeding status. The confirmation of breeding status thus potentially yielded information on the detection probability.

We analyzed the survival of 1556 stainless-ringed adults, for a period of 28 years (from 1978 to 2006), starting from their first re-observation in LR, which occurred from age two to age 23 (mean 5.5; SD 4.1). The large range of age at first resighting is partly due to the fact that black-headed gulls are not present on the colony before starting to reproduce between two and six year-old [START_REF] Clobert | The estimation of age-specific breeding probabilities from recaptures or resightings in vertebrate populations.2. Longitudinal models[END_REF], partly due to the non-exhaustiveness of detection and partly due to the fact that some birds start breeding on other colonies and disperse toward LR after several breeding attempts (Péron et al. submitted). The data were coded with one digit per year: '0' (not observed), '1' (confirmed breeder) or '2' (non-confirmed breeder) Péron et al.

p. 8

Model description

1) Multievent models for the study of black-headed gull senescence

As introduced above, our approach was based upon multievent CMR models (Pradel 2005).

The observer records "events" (here "not seen", "confirmed breeder", "non-confirmed breeder") that carry uncertain information on the state that the individual occupies at the current sampling occasion (see below and Appendix S1 for state description). The relationship between states and events is thus probabilistic (Pradel 2005).

All models were fully described by first considering the vector of probabilities of initial presence in the various states (Π-vector), then linking states at successive sampling occasions by the matrix of survival/transition probabilities (Φ-matrix), exactly like in multistate models, while the events were linked to states by the matrix of event probabilities (B-matrix). For convenience we separated Φ in two steps (S-matrix for survival probabilities and Ψ-matrix for dispersal probabilities), and B (P-matrix for detection probabilities and Rmatrix for probabilities to confirm breeding status when detected). Full details on the model structure and examples of these matrices are presented in Appendix S1.

2) Individual heterogeneity

Discrete classes of individuals were built to accommodate heterogeneity, each class being associated with a distinct value of the parameter(s) (Pradel 2009); these classes were the actual states of the multievent model. For a simple example, in a model with a two-class heterogeneity structure for survival probability and no possibility to emigrate [model {φ(h 2 ), p(.)} of Pledger et al. (2003)], there will be a state "low survival" and a state "high survival".

In this model, the probability of the five first events in the first example history is:
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Superscripts H and L refer to high and low survival classes respectively; subscripts refer to time-dependence. π, s, p stand respectively for the probabilities of initial state, survival, and detection. The situation is similar to having two possible paths at first observation: one lowsurvival and one high-survival path (Fig. 2). The "low survival" path has the greatest probability in "short" histories like '1101000000000' and the lowest in "long" histories like '1000001000001' (Fig. 2).

In a more complex model, there are a larger number of possibilities when individuals are not encountered. In the presence of several kinds of heterogeneity (survival, emigration, and detection), an individual can be in the low or the high-value class for each type of heterogeneity. There is up to 8 "classes of heterogeneity" (see Appendix S1 part 4) in the models, which greatly complicates the computation of history probabilities. The need for an algorithm to calculate history probabilities should therefore be apparent. We used program E-SURGE 1.1.1 (Choquet et al. 2009a) to obtain maximum likelihood estimates of the parameters and perform model selection. A more rigorous and general development of the likelihood using matrix notation is presented in Appendix S1.

In the following, survival is time-independent and detection is time-dependent, based on results of Prévot-Julliard et al. (1998a) and [START_REF] Grosbois | La dispersion : trait d'histoire de vie et paramètre démographique : étude empirique dans une population de mouette rieuse[END_REF].

3) Temporary emigration

We modelled temporary emigration as Markovian or state-dependent transitions to and from a site where detection probability is zero (Fujiwara and Caswell 2002;[START_REF] Schaub | Estimating survival and temporary emigration in the multistate capture-recapture framework[END_REF]Fig 2;Appendix S1 part 2). Colonies that were not searched for marked individuals were grouped in a single non-observable "site" denoted "alive elsewhere" (AE hereafter). This site was included in the usual multisite CMR models formulation [START_REF] Arnason | Parameter estimates from mark-recapture experiments on two populations subject to migration and death[END_REF][START_REF] Arnason | The estimation of population size, migration rates and survival in a stratified population[END_REF][START_REF] Schwarz | Estimating migration rates using tag-recovery data[END_REF] with the only difference that the detection rate was zero. Once in the state AE, individuals lost their classification as low/high detection and low/high emigration. Therefore, Péron et al. p. 10 upon returning to the study site, they could become more/less detectable, or more/less sitefaithful, than what they were before emigrating (see Appendix S1 part 2 for justification).

4) Modelling age-effects on survival when individuals enter the dataset at various ages

The straightforward implementation of age effects in the sense of CMR models [START_REF] Lebreton | Modelling survival and testing biological hypotheses using marked animals -a unified approach with case-studies[END_REF]) corresponds to the effect of time elapsed since first occurrence in the dataset (hereafter TFC to match a previous acronym: [START_REF] Crespin | Increased adult mortality and reduced breeding success with age in a population of Common guillemot Uria aalge using marked birds of unknown age[END_REF]). In our case gulls were marked as chicks and were thus of known age, but they entered the dataset as adults in the colony at a varying age [START_REF] Clobert | The estimation of age-specific breeding probabilities from recaptures or resightings in vertebrate populations.2. Longitudinal models[END_REF]. TFC did thereby not correspond to true age. To model the effect of true age, we had to constrain survival to vary with time across as many groups as there were ages at first occurrence in the dataset (hereafter "group approach"; described in details in Appendix S1 part 2). This procedure was computer-time-hungry [around 24h were needed to fit such a model using an Intel Pentium 4HT, 2.6GHz (3.25 x 800) processor with 512 Mb of system memory, vs. less than 1h for a TFC model] and was thus impractical for model selection which required running many models sequentially.

Yet using TFC as a proxy for true age in a similar study design does not prevent the detection of survival senescence as shown by [START_REF] Crespin | Increased adult mortality and reduced breeding success with age in a population of Common guillemot Uria aalge using marked birds of unknown age[END_REF]. A test of power [START_REF] Crespin | Increased adult mortality and reduced breeding success with age in a population of Common guillemot Uria aalge using marked birds of unknown age[END_REF]) indicated that sample size rather than the use of TFC vs. true age is the most critical factor preventing the detection of senescence. The main drawback of using TFC is that individuals of various true ages are mixed in a same TFC-class, thus creating noise and increasing the standard error on the estimation of the strength of senescence. Model selection using TFC was therefore considered conservative for what concerns the detection of senescence. We thus used TFC instead of age to select for the best model, and then confirmed our results by running the preferred model with true age instead of TFC.

To represent a biologically sound relationship between age (or TFC) and survival we used a constrained piecewise relationship; we modelled a separate survival probability at age Péron et al. p. 11 1, a plateau lasting until 14-years old and a log-linear decrease in survival with age afterwards (see Appendix S1 part 2 for justification).

5) Modelling observations that provide information on detectability

As described in the "data collection" section, the confirmation of breeding status conveyed information on the detectability of individuals. Models accommodating such data structure were introduced by [START_REF] Nichols | Estimation of sex-specific survival from capture-recapture data when sex is not always known[END_REF] the individual status was the gender, documented by behaviour) and [START_REF] Conn | Multistate capture-recapture under imperfect state observation: an application to disease models[END_REF] the individual status was the state of health, documented by visible symptoms). In the present paper, the class of detection heterogeneity was documented by the breeding status (Appendix S1 for practical implementation).

Model selection

There were 16 models in our candidate set representing every combination of presence/absence of the four considered effects: age-effect on survival, heterogeneity in survival, detection and emigration probabilities. The most general model we considered included heterogeneity in survival, emigration and detection probabilities as well as age-effect and had 11 states (model denoted {S H+a ;D H ;E H }; Appendix S1 part 4). Subscripts H and 0 referred to models with and without heterogeneity in survival (denoted S), detection (denoted D) and emigration (denoted E) probabilities, while subscripts +a and +ā referred to models with and without age-effect on survival. The lowest AIC-model (with a two AIC-points difference) was preferred (Akaike's Information Criterion; [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF]. However, all models in which a given effect was included could be considered as "redundant". Therefore, the importance value of each effect was computed as the sum of the AIC-weights of the models including the considered effect, and it was interpreted as the probability that the effect was present in the data [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF].

Péron et al.
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Goodness-of-fit

Goodness-of-fit (GOF) tests were performed on raw capture/non capture histories (formed of '0' and '1' thus discarding the details about age at first detection and breeding status; note that all the data concerned a single site). One of the main consequences of heterogeneity in detection probability is an excess (when compared to homogeneous datasets) of encounter histories with consecutive "captures" (i.e. runs of '1') and consecutive "non-captures" (i.e. runs of '0'). Such histories indicate the presence of highly and poorly detectable individuals, respectively. Some of the runs of '0' will occur at the end of the capture history. As a consequence detection heterogeneity tends to induce both "transience" (i.e. lower chance of recapture of first-encountered individuals than already encountered ones; [START_REF] Pradel | Capture-recapture survival models taking account of transients[END_REF] and "trap-happiness" (i.e. higher probability to encounter at time t+1 the individuals encountered at time t than the individuals not encountered at time t but known to be alive because of previous and future recaptures ;[START_REF] Pradel | Flexibility in survival analysis from recapture data: handling trapdependence[END_REF]).

One-sided directional test statistics are the signed square roots of the chi-squared statistics for the corresponding tests: Test3.SR for transience and Test2.CT for trapdependence [START_REF] Pradel | Flexibility in survival analysis from recapture data: handling trapdependence[END_REF][START_REF] Pradel | Capture-recapture survival models taking account of transients[END_REF]Pradel et al. 2005; practical implementation detail in [START_REF] Choquet | U-CARE 2.2 User's Manual -CEFE[END_REF]. They are the most relevant statistics for the detection of transience and trap-happiness respectively (Pradel et al. 2005) and are inflated by individual heterogeneity.

We used techniques for partitioning chi-squares variables (Rao, 1973 pp. 185 and following) to approximate a GOF test for a time-dependent model with capture heterogeneity as follow: (i) we computed the overall GOF chi-squared statistics for transience and trapdependence, from Test3 and Test2 respectively [START_REF] Pradel | Flexibility in survival analysis from recapture data: handling trapdependence[END_REF][START_REF] Pradel | Capture-recapture survival models taking account of transients[END_REF][START_REF] Choquet | U-CARE 2.2 User's Manual -CEFE[END_REF]) (ii) we computed the directional statistics, from Test3.SR and Test2.CT respectively (iii) we removed from the overall statistics the corresponding squared directional statistics Péron et al. p. 13 (which are asymptotically distributed as χ² 1 ), and we obtained non-directional components with one degree of freedom less. These components corresponded to a GOF test for a model where sources of transience and trap-happiness (here, individual heterogeneity) were accounted for. If this corrected test still proved statistically significant, we used an overdispersion coefficient ĉ, computed as the ratio between the chi-squared statistic and the degree of freedom, in the model selection procedure [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF]. All the GOF test components were computed using U-CARE [START_REF] Choquet | U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data[END_REF])

Simulation study

To judge whether the results provided by the proposed methodology were reliable in a complex but known case (three kinds of heterogeneity and a decrease in survival probability with age), we carried out Monte Carlo simulation studies (Appendix S2). Very briefly, these exercises illustrated that the multievent framework allowed (i) detecting simultaneously and using AIC all three kinds of heterogeneities when present, and (ii) obtaining reliable evidence and precise estimates for survival senescence by accounting for these heterogeneities.

More precisely the simulation study indicated (i) that the magnitude of the age-effect on survival was very precisely retrieved when the heterogeneity structure in the model exactly matched the simulated structure, and (ii) that bringing additional information on detectability of individuals was sufficient (and necessary) to separate detectability and emigration heterogeneities. In our case, such information was provided by the confirmation of breeding status. The main drawbacks of the method were the non-reliability of emigration probability estimates (the presence of emigration heterogeneity was retrieved, but the actual values of the parameters were not), and the fact that, most probably because the data on them were sparse, estimates for parameters associated to low-survival individuals were often inaccurate.

Péron et al.
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Results

Black-headed gull dataset: Goodness-of-fit

As expected, the directional tests for transience and trap-happiness were statistically significant, which is a cue for heterogeneity in detection (Table 1). The corrected Test3.SR and Test2.CT were statistically non significant, and the overall corrected GOF test indicated that there was no need to account for any overdispersion (Table 1). This test indicated that a time-dependent model with heterogeneity in detection probability fitted the data. Thus, accounting for other sources of heterogeneity could only improve the fit.

Modelling age-dependence and testing for senescence

1) Model selection using TFC

There was strong support for a model with individual heterogeneity in both detection and emigration probabilities, along with TFC-effect on survival (Table 2: model {S 0+a ;D H ;E H }). This model was nearly four AIC-points lower and three times more likely than the next model (as indicated by the ratio of AIC-weights). The importance value (computed as the sum of the AIC-weights of the models in which the considered effects occurred) of the TFC-effect on survival probability was 0.83, which we interpret as a high probability for a decrease in survival with age. These results supported the existence of survival senescence in the population, although the slope of the TFC-effect was statistically not different from zero: -0.16 (95% CI: -0.49; 0.17); see next section.

Importance values of heterogeneity in survival, detection and emigration were 0.09, 0.94, and 0.78, respectively. We interpret these values as high probability that two-class heterogeneity structure was present in detection and emigration probabilities, and low probability that such heterogeneity was present in survival probability. As discussed later, we Péron et al. p. 15 do not exclude that the discrete-class heterogeneity models were unable to detect small, continuous individual variation in survival probability.

The second best model (Table 2: model {S 0+ā ; D H ; E 0 }), as opposed to the best model, did not account for heterogeneity in emigration probability and, most importantly, did not include any variation in survival probability with TFC. This result means that, when not accounting for heterogeneity in emigration probabilities, the selection procedure discarded TFC-effect on survival, in other words the detection of survival senescence was prevented.

2) Parameter estimates in the true age formulation

Parameter estimates are from the preferred model {S 0+a ;D H ;E H }, ran using true age instead of TFC. Prime age survival (between 2 and 14 years old) was 0.84 (95% CI: 0.79; 0.88) and the slope of the decrease in survival after age 14 was -0.16 (-0.30; -0.02) on a logit scale (Fig. 3). Thus, when comparing true age-(this model) and TFC-models (previous section), we observed that the use of TFC increased the error on the estimated slope of the decrease in survival with age, as expected, but did not modify the value of the estimate.

The estimated temporary emigration probabilities to state AE were 0.17 (0.03; 0.54) in stayers and 0.67 (0.28; 0.91) in movers. The estimated detection probabilities (averaged over time) were 0.08 (0.05; 0.10) and 0.48 (0.41; 0.55) in the low-and high-detectability classes.

The estimated proportion of sightings on the nest or with chicks was 0.53 (0.44; 0.63) for the low-detectability class and 0.61 (0.56; 0.66) for the high-detectability class.

Discussion

Detecting senescence in wild populations

We used multievent framework to combine three pre-existing types of CMR models that were potentially required to fit the gull data: heterogeneity models with discrete classes (Pledger et al. 2003;Pradel 2009), temporary emigration models (Fujiwara and Caswell 2002;Schaub et Péron et al. p. 16 al. 2004), and models accommodating partial information on individual status [START_REF] Nichols | Estimation of sex-specific survival from capture-recapture data when sex is not always known[END_REF][START_REF] Conn | Multistate capture-recapture under imperfect state observation: an application to disease models[END_REF]. The framework was flexible enough to combine these model structures which had only been used separately until now. Survival senescence in our population was only detected after accounting for heterogeneity in temporary emigration in the models (Table 2), which illustrates the interest of complex models mixing several possible causes of heterogeneity. This result was perhaps not unexpected since temporary emigration events occurring at the end of an individual's life, when not followed by a detection event, could mimic earlier death. Thereby, emigration heterogeneity might have created patterns in the data similar to heterogeneity in survival, and prevented the detection of survival senescence when not accounted for. However, our simulation studies only weakly supported this purported effect of non modelled heterogeneity in temporary emigration on the detection of survival senescence. The result that senescence was discarded when not accounting for emigration heterogeneity might therefore originate from a lack-of-fit impairing the model selection when models did not include the appropriate heterogeneity structure.

Definitive emigration has evidently an even greater impact on survival estimates than temporary emigration, but it can only be modelled if recoveries data (i.e. rings recovered on birds shot or found dead throughout the year) are available [START_REF] Burnham | A theory for combined analysis of ring recovery and recapture data[END_REF].

In senescence studies, we thus recommend that (i) emigration is modelled when field observations indicate its presence and (ii) either individual heterogeneity is explicitly considered or evidence for its absence is provided by GOF tests or biological considerations.

In particular, empirical support for the absence of senescence in animals (e.g. Nichols et al. 1997;[START_REF] Miller | Escaping senescence: demographic data from the Three-toed box turtle (Terrapene carolina triunguis)[END_REF][START_REF] Pistorius | A longitudinal study of senescence in a pinniped[END_REF][START_REF] Congdon | Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta)[END_REF]) should be considered with caution until the results are verified with analyses accounting for heterogeneity. Péron et al. p. 17

Sources of heterogeneity in the gull dataset: emigration, detectability

Although there was a strong support for the existence of low-and high-emigration classes in our population, biological explanations are not straightforward. Emigration heterogeneity might also include the skipping of breeding attempts and the effect of early nest failures.

These two phenomena result in an absence of the individuals from the colonies during fieldwork (thereby mimicking temporary emigration), and they are influenced by individual quality [START_REF] Calladine | Intermittent breeding in the Herring gull Larus argentatus and the Lesser black-backed gull Larus fuscus[END_REF], a well known source of heterogeneity in demographic parameters (Hamel et al. 2008 and references therein). Moreover, true temporary emigration, reproduction failures and reproduction skipping do not occur at the same frequency which might create individual heterogeneity when they are modelled using a same transition probability. Alternatively, individual heterogeneity in true temporary emigration rate could stem from sex-biased dispersal [START_REF] Greenwood | Mating systems, philopatry and dispersal in birds and mammals[END_REF] or from heterogeneity in individual quality and/or the conditions experienced during early life or previous reproduction attempts, both of which are known to affect habitat choice and dispersal behaviours [START_REF] Switzer | Past reproductive success affects future habitat selection[END_REF][START_REF] Clobert | Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations[END_REF]. Last, and perhaps more speculatively, heterogeneity in dispersal behaviour can result from genetically determined differences in "personalities" or other behavioural syndromes (see e.g. [START_REF] Cote | Social personalities influence natal dispersal in a lizard[END_REF][START_REF] Clobert | Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations[END_REF]. Tradeoffs between investment in exploration-dispersal and in other traits [START_REF] Wolf | Life-history trade-offs favour the evolution of animal personalities[END_REF] or frequency-dependent selection acting through environmental stochasticity (see [START_REF] Dingemanse | Fitness consequences of avian personalities in a fluctuating environment[END_REF]) can maintain stable polymorphism in dispersal tendencies.

Heterogeneity in detection probability was probably related to the fact that high vegetation density hindered the detection of birds breeding far inside the vegetation. These are likely to have strongly contributed to the class with a low detection probability and a low proportion of sightings on a nest. Such heterogeneity in detection induced by habitat Péron et al. p. 18 heterogeneity in the study site is supposedly common, and we recommend it be explicitly incorporated.

Individual heterogeneity of unknown origin: modelling approach

As in most modelling exercises, our study relied on some untested assumptions. Modelling individual heterogeneity using discrete classes was a priori appropriate in our study: birds could breed inside vegetation vs. outside vegetation, their movements could occur within vs. outside of the colony. However, we do not claim that the discrete-class model represented individual variation in survival probabilities better than a continuous individual random effect could (e.g. [START_REF] Royle | Modeling individual effects in the Cormack-Jolly-Seber model: a statespace formulation[END_REF], but see Pledger 2005). Concerning the number of heterogeneity classes, [START_REF] Pledger | The performance of mixture models in heterogeneous closed population capture-recapture[END_REF] indicated that, as a theoretic and approximated representation of individual heterogeneity, the two-class models were more parsimonious than models with more classes, excepted in the presence of strong multimodality in the true distribution of the parameters of interest. Standard quantitative tools such as AIC generally fail to separate different forms of heterogeneity models (own results not shown; [START_REF] Pledger | The performance of mixture models in heterogeneous closed population capture-recapture[END_REF]. We suggest that information on the study system from the field might be the most reliable cue when deciding which form of individual heterogeneity to incorporate in CMR models.

Performance and identifiability issues

The simulation studies illustrated that reliable evidence for survival senescence could be obtained in the simultaneous presence of three kinds of heterogeneity. When the data included events whose frequency depended on detectability, the three sources of heterogeneity were separately identifiable, although in most cases only the structure and not the actual values of emigration probabilities were retrieved. The magnitude of the age-effect was very precisely retrieved when the heterogeneity structure in the model exactly matched the way data was simulated. In the gull application we did not detect any parameter redundancy issue using the Péron et al. p. 19 rank of the models' numeric derivative matrix (Rouan et al. 2009 Appendix A;Choquet et al. 2009a pp. 56-57). Overall our results are therefore encouraging for the application of multievent models to the study of population dynamics of species with complex life-histories, weak or variable site-fidelity, or inhabiting very heterogeneous habitats. Table 1: Components of an approximate goodness-of-fit (GOF) test for a model with heterogeneity, obtained by removing from the components of the standard GOF test for the time-dependent model the squared directional test statistics (see methods). The overall GOF test shows no sign of lack-of-fit for a model correcting transience and trap-happiness. df is the degree of freedom. ĉ is the overdispersion coefficient computed as the ratio between the chisquared statistic and the degree of freedom. probability; dead), while grey boxes represent the 3 possible observations following initial release (0: not seen, 1: seen and breeding status confirmed; 2: seen but breeding status not confirmed). The probability for observing a particular encounter history is obtained by summing the probability of all possible paths leading to a given encounter history (for the sake of clarity at time t+1 only the states "AE" are represented; paths from states "S" are the same as at time t and the state "dead" is absorbing, i.e. there is no path out of it). The probability of a given path can be obtained by multiplying the probabilities appearing alongside its component arrows. These probabilities consist of functions of π, the initial state probabilities; φ, apparent survival probabilities; ψ, state transition probabilities; p, detection 

Tables

Figure legend

1-φ 1 φ 1 ψ' AE2 S2 AE2 dead 1-φ 2 φ 2 ψ' φ 2 (1-ψ') 0 1 2 0 1 2 1-p p r p (1-r) p r p (1-r)
Event recording

Event at time t+2 The 5-state model with heterogeneity in survival only (Fig. 2 in the main text) is described in Table S1. As all models considered in this study, it includes the possibility to emigrate temporarily, and also to record information on the breeding status; otherwise it reduces to Pledger et al.'s (2003) two-class finite mixture model {Φ(h 2 ), p(t)} (see also Pradel 2009). If the two survival-classes and the two "status confirmation events" are merged together this model becomes the temporary emigration model of Fujiwara and Caswell (2002).
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Matrix description of a multievent model accounting for survival heterogeneity using two classes, while allowing for temporary emigration and detailed observation structure. (a)

Survival probabilities (S-matrix): φ 1 and φ 2 are the two survival probabilities (high and low).

(b) Transition probabilities (Ψ-matrix): ψ and ψ' are the emigration and return transition probabilities respectively. The product Φ=SΨ constitutes the survival/transition matrix that is common to multistate and multievent models. (c) Event probabilities (B-matrix): p and r are respectively detection and breeding status assignment probabilities. There is no heterogeneity in detection in this example model.

States S1 and S2 code for the two survival classes in the study site, while AE1 and AE2 code for them in the "Alive Elsewhere" site. There were three possible observations following initial release (0: not seen, 1: seen and breeding status confirmed; 2: seen but breeding status not confirmed), which correspond to the three columns of the B-matrix. Pradel, 2008). If the eight heterogeneity classes and the two "status confirmation events" are merged together this model becomes the temporary emigration model of Fujiwara and Caswell (2002).

(a) S S1 S2 AE1 AE2 Dead S1 φ 1 0 0 0 1-φ 1 S2 0 φ 2 0 0 1-φ 2 AE1 0 0 φ 1 0 1-φ 1 AE2 0 0 0 φ 2 1-φ 2 dead 0 0 0 0 1 (b) Ψ S1 S2 AE1 AE2 Dead S1 1-ψ 0 ψ 0 0 S2 0 1-ψ 0 ψ 0 AE1 ψ' 0 1-ψ' 0 0 AE2 0 ψ' 0 1-ψ' 0 dead 0 0 0 0 1 (c) B=PR 0 1 2 S1 1-p pr p (1-r) S2 1-p pr p (1-r) AE1 1 0 0 AE2 1 0 0 dead 1 0 0
There are 11 states in this model which is the most detailed we considered. A bird breeding in LR can be in one of the 8 states denoted S i D j E k , where i, j, k can be "low" or "high". An individual in state S low D high E high for example has low survival, high capture and high emigration probabilities. Alternatively, the bird can be "Alive elsewhere" in states AES low and AES high , or it can be dead, a state that is explicitly included in the model. The recorded events are '0' for "not seen", '1' for "seen as confirmed breeder", and '2' for "seen as unconfirmed breeder".

In addition to the matrix description we provide for this model more detail of the practical implementation, in the form of the GEPAT/GEMACO instructions. These are the interfaces of E-SURGE that are used to constrain multievent models (Choquet et al. 2009a). 

0 0 0 0 0 0 0 0 0 1-φ 1 SlowDhighElow 0 φ 1 0 0 0 0 0 0 0 0 1-φ 1 SlowDlowEhigh 0 0 φ 1 0 0 0 0 0 0 0 1-φ 1 SlowDhighEhigh 0 0 0 φ 1 0 0 0 0 0 0 1-φ 1 ShighDlowElow 0 0 0 0 φ 2 0 0 0 0 0 1-φ 2 ShighDhighElow 0 0 0 0 0 φ 2 0 0 0 0 1-φ 2 ShighDlowEhigh 0 0 0 0 0 0 φ 2 0 0 0 1-φ 2 ShighDhighEhigh 0 0 0 0 0 0 0 φ 2 0 0 1-φ 2 AESlow 0 0 0 0 0 0 0 0 φ 1 0 1-φ 1 AEShigh 0 0 0 0 0 0 0 0 0 φ 2 1-φ 2 dead 0 0 0 0 0 0 0 0 0 0 1
The modelling of survival as in Table S2 is done through GEPAT and GEMACO as follow:

GEPAT instruction:

φ ---------* -φ --------* --φ -------* ---φ ------* ----φ -----* -----φ ----* ------φ ---* -------φ --* --------φ -* ---------φ * ----------*
GEMACO instruction (for the TFC-effect):

f(1:4;9,5:8;10).a(1,2:24)+a(14_24)*x(1)+a(20:24)+others Dispersal probabilities (Ψ-matrix) of multievent model accounting for survival, detection and emigration heterogeneity using two classes, while allowing for temporary emigration and detailed observation structure. The product Φ=SΨ constitutes the survival/transition matrix that is common to multistate and multievent models. ψ 1 and ψ 2 are the two probabilities of transition from the study site to states "Alive Elsewhere", corresponding to high and low emigration rates. After a temporary emigration, gulls could completely change the location of their nest, thus change of detectability class. Similarly, after an emigration event, gulls could be more site-faithful (if emigration aims at sparing energy for subsequent breeding) or less site faithful (if the first emigration event is the symptom of a decrease in health status). Therefore our model did not constraint the way individual behaved after a temporary emigration: four different probabilities to return to the study site were implemented. The probabilities of coming back to the study colony are four: ψ 3 , ψ 4 , ψ The modelling of dispersal as in Table S3 is done through GEPAT and GEMACO as follow:

GEPAT instruction: * 0 0 0 0 0 0 0 ψ 0 0 0 * 0 0 0 0 0 0 ψ 0 0 0 0 * 0 0 0 0 0 ψ 0 0 0 0 0 * 0 0 0 0 ψ 0 0 0 0 0 0 * 0 0 0 0 ψ 0 0 0 0 0 0 * 0 0 0 ψ 0 0 0 0 0 0 0 * 0 0 ψ 0 0 0 0 0 0 0 0 * 0 ψ 0 ψ ψ ψ ψ 0 0 0 0 * 0 0 0 0 0 0 ψ ψ ψ ψ 0 * 0 0 0 0 0 0 0 0 0 0 0 * GEMACO instruction:

f(1 3 5 7,2 4 6 8)+f(9 10).to

TABLE S4

Detection probabilities (P-matrix) and breeding status confirmation probabilities (Rmatrix) of multievent model accounting for survival, detection and emigration heterogeneity using two classes, while allowing for temporary emigration and detailed observation structure. Product PR constitutes the matrix of event probabilities (B-matrix), which represents the probabilities of recording the events conditional on the occupied state. The "observation status" ["not seen", "seen 1" (seen with a high detection probability), "seen 2" Péron et al.
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(seen with a low detection probability)] corresponds to transitory states. Then there were three possible events (0: not seen, 1: seen and breeding status confirmed; 2: seen but breeding status not confirmed), which correspond to the three columns of R. p low and p high are the two detection probabilities; r low and r high are the corresponding probabilities of confirming breeding status. States denominations are described above. The modelling of event recording as in Table S4 is done through GEPAT and GEMACO as follow:

GEPAT instruction for detection:

Fig. 1 :

 1 Fig. 1: Example heterogeneous population where the average survival rate is not

Fig. 2 :

 2 Fig. 2: A tree diagram describing the hidden Markov chain probability structure for a

  FIGURE

  Figure3

Table 2 :

 2 Model selection. The 16 candidate models vary in the presence/absence (Y/N) 528 of heterogeneity and of the age-effect on survival. For each model the number of parameters 529 (np), deviance (Dev), AIC and AIC-weight are given. Subscripts H and 0 referred to models 530 with and without heterogeneity in survival (denoted S), detection (denoted D) and emigration 531(denoted E) probabilities, while subscripts a and ā referred to models with and without age-532 effect on survival. The models are sorted by AIC.

		Test3: transience	Test2: trap dependence Total
		Chi-	Squared	Chi-	Squared	Chi-
		squared	directional	squared	directional	squared
		statistic	statistic	statistic	statistic	statistic
	Time-dependent model	64.19	38.67	25.88	9.21	164.39
	df 22	1	22	1	131
	P-level < 0.0001 < 0.0001	0.26	0.002	0.02
	ĉ 2.92		1.18		1.25
	Time-dependent model with	25.52		16.67		116.52
	heterogeneity of detection					
	df	21		21		129
	P-level	0.23		0.73		0.78
	ĉ	1.22		0.79		0.90

EXAMPLE 2: Matrix description of the most complex model

  The multievent model S H ;D H ;E H has three kinds of heterogeneity. As all models considered in this study, it includes the possibility to emigrate temporarily, and also to record

	Péron et al.	p. 41
	Part 4. information on the breeding status; otherwise it reduces to Pledger et al.'s (2003) two-class
	finite mixture model {Φ(h 2 ), p(h 2 +t)} (see also	

time t To\from SlowDlowElow SlowDhighElow SlowDlowEhigh SlowDhighEhigh ShighDowElow ShighDhighElow ShighDlowEhigh ShighDhighEhigh AESlow AEShigh dead State before dispersal
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	TABLE S2	
	Survival probabilities (S-matrix) of multievent model accounting for survival,
	detection and emigration heterogeneity using two classes, while allowing for temporary
	emigration and detailed observation structure. φ 1 and φ 2 are the two survival probabilities.
	States denominations are described above.
	SlowDlowElow	φ 1

State at

  .txt file is to be entered as an external covariable and codes for the linear effect of age varying between 14 and 24 (11 age classes):

	Péron et al.	p. 43
	A 1	
	11	
	0.090909091 0.181818182 0.272727273 0.363636364 0.454545455 0.545454545	
	0.636363636 0.727272727 0.818181818 0.909090909 1	

TABLE S3

 S3 

  5 , ψ 6 respectively the transitions, from the corresponding "Alive Elsewhere" states, to states S low D low E low and S high D low E low , S low D high E low and S high D high E low , S low D low E high and S high D low E high , S low D high E high and S high D high E high . Σψ stands for ψ 3 + ψ 4 + ψ 5 + ψ 6 .States denominations are described above.

		State before dispersal								
	To\from	SlowDlowElow	SlowDhighElow	SlowDlowEhigh	SlowDhighEhigh	ShighDowElow	ShighDhighElow	ShighDlowEhigh	ShighDhighEhigh	AESlow	AEShigh	dead

Supplementary material

The following supplementary material is available for this article.

Appendix S1. Model description

Appendix S2. Simulation study Péron et al. p. 26 

Appendix S1: Model description Part 1. Individual heterogeneity in multievent models

There were 2 k observable states (k being the number of parameters types affected by heterogeneity in the model), plus one or two AE-states depending on the presence of survival heterogeneity in the model, and the state dead. We describe in this appendix two of the considered models: (i) the model {S H ; E 0 ; D 0 } including heterogeneity in survival probabilities only (2 1 +2+1=5 states; part 3) and (ii) the model {S H ; E H ; D H } including the three kinds of heterogeneity (survival, detection and emigration: 2 3 +2+1=11 states; part 4).

When considering detection heterogeneity, we did not allow individuals to move between high-and low-detection classes, based on the finding that individuals tend to be sitefaithful on a small scale when breeding in LR (Prévot-Julliard et al. 1998b). However, when a bird emigrated, the model did not keep memory of its previous classes of detection and emigration, letting it free to change either of these classes upon return. The model permitted returning individuals to settle in a different zone of the pond or to change of dispersal behaviour. Péron et al. p. 34 

Part 2. Parameterisation

The complex model structure rendered necessary the use of some constraints on the parameters. These and the effects that were considered in the model selection procedure are presented below:

1) -Initial proportions

The Π-vector represents the probability of being in the different classes of heterogeneity at first detection. We assumed that Π was constant over time, hence assuming that the proportions of the different classes of heterogeneity did not vary over time.

Preliminary results (not shown) indicated a poor fit of a model in which Π varied with age, probably because the small number of individuals entering the dataset after age 14 (onset of senescence) rendered some Π-parameters non-estimable. Moreover, when Π varied with age, there might have been identifiabilities issues because high-survival individuals entering the dataset at old age do have a low survival indeed.

2) -Dispersal probabilities

Dispersal probabilities were modelled as constant over time, for parsimony and because parameter identifiability required that the probability of returning from the unobservable state to the study colony was kept constant over time and that the survival probabilities were the same in the states AE and in the states available for detection (Fujiwara and Caswell 2002). Heterogeneity in emigration probability was modelled in a fashion similar to "mover-stayer models" that consider a class with high site-tenacity and a "volatile" class [START_REF] Goodman | Statistical methods for the mover-stayer model[END_REF]. Once in the state AE, individual lost their classification as low/high detection and low/high emigration. Therefore, after emigration, they could become more detectable, or more site-faithful, and reversely (see Table S3) Péron et al. p. 35 

3) -Detection probabilities

The matrix of the probabilities of being detected when alive and present on the study site (P) was modelled as time-dependent to fit with the known variation in resighting effort over years (Prévot-Julliard et al. 1998a). Heterogeneity was modelled in a fashion additive to time. Given the high small-scale site fidelity exhibited by breeders within the study colony (Prévot-Julliard et al. 1998b), exchanges between detection classes were expected to be low and we chose not to allow for direct transitions between heterogeneity classes. Indirect transitions were possible after temporary emigration.

4) -Breeding status confirmation probabilities

They were modelled as constant over time in order to keep parsimonious. Indeed, if detection probabilities varied with time because of between-year variation in detection effort, breeding status confirmation probabilities were supposedly more related to the configuration of the colony (distribution of the roost sites, density of the vegetation), and could be considered time-invariant in a first approach. If there was heterogeneity in detection probabilities in the model considered, breeding status confirmation probability was modelled as depending on detectability.

5) -Survival probabilities: modelling age-effect

We considered the age-effect on survival as being additive (on a logit scale) to the heterogeneity level, if any.

Models with a complete age-effect (age or TFC treated as categorical variables: 29 levels in our case) are the straightforward way to model age-dependency on survival because they make no hypothesis on the shape of that dependency. However, studying the strength of senescence requires the estimation of a slope describing the decrease in survival probabilities with age [START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF], something that can be computed using age or TFC as a Péron et al. p. 36 continuous variable in a constrained log-linear relationship that moreover reduces the number of parameters in the model (e.g. Loison et al. 1999;Nichols et al. 1997).

However, the sparseness of data at old ages (only 14 individuals were observed at an age ≥ 22, of which none was seen after age 25) renders maximum likelihood estimators unstable, and produces boundary survival estimates (boundary estimates are age-specific survival probabilities that are estimated at 0 or 1 because of low sample size). For example, the occasional individual who will survive 1 year after the others will induce a survival probability of 1 at that age. These boundary estimates are likely to hamper the accurate detection and estimation of the strength of survival senescence, particularly when using constrained regressions [START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF]. We first ran a model with complete age-effect, and it appeared that the age-threshold after which boundary estimates were an issue was 22.

Boundary estimates were excluded from the constrained relationship presented below.

From age 1 to 22, age-dependency was modelled using a three-parameter piecewise relationship. Age one had a separate survival estimate (because we expected it to be lower; e.g. Pugesek et al. 1995 in a related species). Then, we modelled a plateau that lasted up to an age-threshold (which is species-specific: [START_REF] Jones | Senescence rates are determined by ranking on the fast-slow life-history continuum[END_REF]. It was estimated to be 14-year old in black-headed gull by mean of life-history comparisons (G.P. et al. unpublished results); in other Larid species, the threshold was found around 14 years in Larus californicus (Pugesek et al. 1995) and between 13 and 16 in Rissa tridactyla [START_REF] Aebischer | Survival of the Kittiwake in relation to sex, year, breeding experience and position in the colony[END_REF]Frederiksen et al. 2004). Afterwards we modelled a logit-linear decline in survival probabilities (Loison et al. 1999).

6) -Implementation of true age in CMR models when first capture occurs at a varying age

True age (as opposed to TFC, see main text) was implemented with a computer intensive procedure. E-SURGE uses the GEMACO syntax to constrain the parameters. The phrase required for modelling the dependency of CMR parameters on true age, when Péron et al. p. 37 individuals enter the dataset at various ages, was based upon the use of groups. Individuals entering the dataset at age A were in the A th group. In the A th group at the t th session after their first observation, individuals had the age A+t. The syntax for this relationship, to be entered in GEMACO, is started below: Further details can be found in (Choquet 2008). We provide below a short and flexible R-program (R Project Core Team 2008) that generates this syntax for any number of age classes:

RES<-"" #maximum age at first entry in the dataset: Amax=23 for (A in 2:Amax) { for (i in 2:A) { RES=paste(RES,"g(",as.character(i-1),").a(",as.character(A+1-i),")&",sep = "") } RES=paste(RES,"+",sep="") } #maximum potential age: Apot=29 for (A in (Amax+1):Apot) { for (i in 2:Amax) { RES=paste(RES,"g(",as.character(i-1),").a(",as.character(A+1-i),")&",sep = "") } RES=paste(RES,"+",sep="") } RES<-gsub("(\\+) (\\})"," }", paste("{",gsub("(\\)&(\\+)",")+",RES),"}") )

RES

With the values 23 and 29 for Amax and Apot (these values correspond to the blackheaded gull dataset), we obtained the following sentence to be entered as a shortcut for True Age in GEMACO:

{g(1).a(1)+g(1).a(2)&g(2).a(1)+g(1).a(3)&g(2).a(2)&g(3).a(1)+g(1).a(4)&g(2).a(3)&g(3).a(2)&g(4).a(1)+g(1).a

(5)&g(2).a(4)&g(3).a(3)&g(4).a(2)&g [START_REF]a(4)&g(6).a(3)&g(7).a(2)&g(8).a(1)+g(1).a(9)&g(2).a(8)&g(3).a(7)&g(4).a(6)&g(5).a(5)&g(6).a(4)&g( 7).a(3)&g(8).a(2)&g(9).a(1)+g(1).a(10)&g(2).a(9)[END_REF].a(1)+g(1).a(6)&g(2).a( 5)&g(3).a(4)&g(4).a(3)&g [START_REF]a(4)&g(6).a(3)&g(7).a(2)&g(8).a(1)+g(1).a(9)&g(2).a(8)&g(3).a(7)&g(4).a(6)&g(5).a(5)&g(6).a(4)&g( 7).a(3)&g(8).a(2)&g(9).a(1)+g(1).a(10)&g(2).a(9)[END_REF].a(2)&g(6).a(1)+g

(1).a(7)&g(2).a(6)&g(3).a( 5)&g(4).a(4)&g [START_REF]a(4)&g(6).a(3)&g(7).a(2)&g(8).a(1)+g(1).a(9)&g(2).a(8)&g(3).a(7)&g(4).a(6)&g(5).a(5)&g(6).a(4)&g( 7).a(3)&g(8).a(2)&g(9).a(1)+g(1).a(10)&g(2).a(9)[END_REF].a(3)&g(6).a(2)&g(7).a(1)+g(1).a(8)&g(2).a(7)&g(3).a(6)&g(4).a(

Appendix S2: Simulation study

Because the performances of multievent CMR models have never been formally tested in the presence of several sources of heterogeneity, we carried out three simulation studies.

-The first simulated situation was the absence of senescence and the presence of three kinds of heterogeneity (survival, detection, emigration). It aimed at evaluating the performance of our information-theoretic approach concerning type II errors (i.e. the probability to falsely detect the presence of senescence).

-The second simulated case was the presence of senescence and of the three kinds of heterogeneity, but without the detailed information on detectability, i.e. there was only two events possible ("seen" / "not seen"). It aimed at illustrating potential issues related to the mixing of detection and emigration heterogeneity.

-The third simulated case was the presence of senescence, three sources of heterogeneity, and detailed data structure (i.e. the frequency of the observed events depended on the detection probability; see "data simulation" below). There were three events possible ("seen 1", "seen 2", "not seen").

Data simulation

The simulation studies were based on 30 simulated datasets (except for case #2 where we used 60 datasets). The time needed to perform each of these exercises exceeded 10 days each with an Intel Pentium 4HT, 2.6GHz (3.25 x 800) processor with 512 Mb of system memory. When present in the simulated case, the detailed observation structure was simulated as follows. In the high-detectability class, at each session 80% of the detected individuals produced the event "seen 1" and 20% the event "seen 2". In the low-detectability class the frequency of "seen1" was 20% and the frequency of "seen2" was 80%.

Datasets

When present in the simulated case, senescence was simulated as a linear decrease in survival with age starting at age 1 and with a slope of -0.033 and -0.021 year -1 in the high and low survival classes respectively (Fig. S1), i.e. survival probability was zero at age 25. We deliberately chose to simulate a linear effect (and not a logit-linear effect), so that, as is supposedly the case in real datasets, the logit-linear relationship between age and survival that was used in the CMR model was only approximating the underlying process.

Data analysis

Ten models were fitted on each simulated datasets: {S 0+ā ;D 0 ;E 0 }, {S 0+a To spare computer time we did not estimate the rank of the models and therefore did not formally detect identifiability problems if they occurred [START_REF] Rouan | A general framework for modeling memory in Capture-Recapture data[END_REF]Choquet et al. 2009a), nor did we compute standard errors on the estimates.
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RESULTS

CASE #1: ABSENCE OF SENESCENCE, DETAILED DATA -Model selection

The three kinds of heterogeneity were unambiguously selected. Their importance values were 1. Among the 30 datasets, and using the 2-point AIC threshold, model {S H+a ;D H ;E H } was selected 18 times and model {S H+ā ;D H ;E H } (i.e. the model used to simulate the data) 16 times. Thus, despite its absence, the age-effect on survival was selected in more than half the cases.

-Slope of the age-effect where it should have been absent

We computed the average estimated slope of the age-effect (on a logit scale) over the 30 models {S H+a ;D H ;E H }. In the low-survival class, the slope estimate was always very positive (average ± SD over the 30 datasets: +0.26 ± 0.05), i.e. not compatible with senescence. Why the models included this strong increase from a low survival at age 1 to a high survival at old age in the low-survival class is not known, but supposedly stems from the quick decrease with age in sample size of low-survival individuals (see discussion).

In the high-survival class, the estimated slope was on average positive and closer to zero (average ± SD over the 30 datasets: +0.042 ± 0.059). Type II errors for senescence (i.e.

negative slopes) occurred in 9 out of 30 cases. Over these 9 cases, the slope was still on average close to zero (-0.027 ± 0.022 on a logit scale, compared to the value obtained in the gull application: -0.16). In short, even if the age effect was selected in more than half of the datasets, the estimated slope in the high-survival class was small and most of the time positive and thus did not provide strong evidence for senescence. S5),

with the only exception of heterogeneity in detection probability. This issue is discussed under "potential identifiability issues".

When neglecting heterogeneity in survival, in 45 out of 60 cases the age-effect was discarded (by AIC); this confirmed the strong bias due to neglecting survival heterogeneity.

When neglecting heterogeneity in detection or emigration the age-effect was always selected except for 3 cases. Therefore, under the simulated scenario, these sources of heterogeneity had a reduced impact on the detection of survival senescence.

-Slope of senescence

In the high-survival class the estimated slope of -0.11±0.02 on a logit scale (average ± SD over the 60 datasets) translated into a -0.023 year -1 (expected value: -0.033 year -1 ).

The slope was of slightly lower magnitude in the model without emigration heterogeneity than in the model with it (it was the case in 49 cases out of 60; average slope -0.09 ± 0.02 instead of -0.11 ± 0.02). Therefore, the impact of emigration heterogeneity on the estimation of senescence received some support.

CASE #3: PRESENCE OF SENESCENCE, DETAILED DATA (3 EVENTS)

-Model selection S5). Emigration heterogeneity was slightly less frequently detected. The three preferred models often ended up very close to one another.

-Slope of senescence

In the high-survival class the estimated slope of -0.16 ± 0.02 (average ± SD over the 30 datasets) on a logit scale translated into -0.0329 year -1 on a linear scale (expected value: -0.033 year -1 ).

The slope was not of lower magnitude in the model without emigration heterogeneity than in the model with it (all cases), and discarding emigration heterogeneity did not prevent to detect senescence (all cases). Therefore, the impact of emigration heterogeneity on senescence was not supported in Case #3.

DISCUSSION

-Type-II errors

In Case #1 the selection of an age-effect when there was none in the data was quite frequent. However, in most cases the estimated slope of the age-effect in the high-survival class was small and positive; if we had computed confidence intervals (not performed due to computer time constraints), we believe these slopes would moreover have appeared nonsignificantly different from zero. The risk of type-II errors for senescence per se therefore appeared low. Further investigation concerning the surprising find that the low-survival class was impacted by a strong increase in estimated survival probability is required; for low- -Potential identifiability issues

In Case #2, emigration and detection heterogeneity proved difficult to detect.

Moreover when the importance value of emigration heterogeneity was low, it tended to be negatively correlated to the importance value of detection heterogeneity (Fig. S2).

Identifiability problems might thus have occurred in some of the simulated cases, between heterogeneity in detection and in emigration. In other words, the model might have difficulties separating individuals not seen because emigrated from those not seen because not detected, hence the large SD on the corresponding importance values in Table S5.

Case #3 however illustrated how the use of detailed observation data (three events instead of two, the frequency of each event depending on detectability) made the separation between detection and emigration processes possible. We thereby suggest that in the study we present in the main text, our use of the information about breeding status confirmation did overcome the issue of parameter identifiability raised by Case #2. Furthermore the tool implemented in E-SURGE did not detect any problem of parameter redundancy in the gull study (see main text).
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Table S5: Importance value (IV; see method in main text) of the four considered effects in three simulation studies. See "data simulation" for the description of the considered cases.

Mean and SD were computed on 30 (Case #1 and 3) or 60 (Case #2) simulated datasets.