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Random subsequences of {αn} with
asymptotically independent successive terms

Bruno Massé 1

November 18, 2021

Abstract

Fix an irrational number α and let Yn be the number of attempts needed
to get the nth success in a non-stationary sequence of independent Bernoulli
trials. It is known that the law of the fractional part of αYn converges weakly
to the uniform distribution on [0, 1) , as n → +∞, when the probabilities
of success decrease to 0 and sum to +∞. We provide sufficient conditions
on the probabilities of success ensuring that the fractional parts of αYn and
αYn+1 are asymptotically independent. We extend our results to any number
of successive terms, compute upper bounds of the convergence rates depending
on a measure of irrationality of α and on the probabilities of success and apply
our results to discuss the mantissae of 2Yn and 2Yn+1 .

1 Introduction
We denote by Uk the uniform distribution on [0, 1)k and by {y} the fractional part
of a real y. Since we deal with fractional parts, we identify [0, 1)k to the the k-
dimensional torus equipped with its natural topology. That allows us to use Lemmas
1 and 5 below on which our proofs rely.

The uniform probability measure (u.p.m. in the sequel) on the set
{
{αn} : n =

1, . . . , N
}
converges weakly to U1 as N → +∞ when α is irrational [9, p. 8]. In

other words, the sequences (αn)n with irrational α are uniformly distributed modulo
1 in the sense of the natural density.

If we are given α and the value x of {αn} (but not the value of n), then we know
that {α(n+ 1)} =

{
{αn}+ {α}

}
=
{
x+ {α}

}
. By contrast, it is proved in [5] that

the u.p.m. on the set
{(
{αnγ}, {α(n+ 1)γ}

)
: n = 1, 2, . . . , N

}
converges weakly to

U2 when γ > 1. This can be interpreted in the following manner: if γ > 1 and if
we are given the values of α and {αnγ} (but not the value of n), that does not give
us any information on the value of {α(n + 1)γ}; the possible values of {α(n + 1)γ}
are still uniformly distributed in [0, 1). Another example of a sequence uniformly
distributed in [0, 1)2 is

(
{α1n}, {α2n}

)
n
where α1 and α2 are linearly independent

over the rationals [9, p. 48–49].
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Consider an irrational number α and a sequence of independent Bernoulli trials
whose probabilities of success sum to +∞ and are either all equal or decrease to
zero as the process moves forward. For all n, denote by Yn the number of attempts
needed to get the n-th success. We are interested in the present paper in the sequence
({αYn})n which is the random subsequence of ({αn})n obtained by removing from
({αn})n all the points {αj} for which the j-th trial fails. See [2] and [15] for the
investigation of random subsequences of ({αn})n of another kind.

It is proved in [11] that, as n→ +∞, the law of {αYn} converges weakly to U1

whenever α is irrational. As shown at the beginning of Section 2 below, {αYn} and
{αYn+1} are not asymptotically independent (the law of

(
{αYn}, {αYn+1}

)
n
does

not converge weakly to U2) when qj = q ∈ (0, 1) for all j. Moreover, some computer
simulations we have made on the mantissa in base 10 of 2Yn when qj = 1/ log j
(log j denotes the natural logarithm of j) suggest that this is still true for {αYn}
and {αYn+1} if qj = 1/ log j and α is the logarithm of 2 in base 10 (these simulations
were motivated by the fact that Yn is the n-th Cramér’s random pseudo-primes [7]
when qj = 1/ log j). See Section 4 for the definition of the mantissa of a positive real
number and for the link between distribution modulo 1 and mantissa distribution.

We prove below that, when qj = 1/jβ with 1/3 < β ≤ 1, the law of the random
vector

(
{αYn}, {αYn+1}

)
n
converges weakly, as n → +∞, to U2, thus that the

random variables {αYn} and {αYn+1} are asymptotically independent. This can be
interpreted in the following manner: if qj = 1/jβ with 1/3 < β ≤ 1 and if we are
given the values of α, n0 and {αYn0(ω)}, that gives us almost no information on the
value of {αYn0+1(ω)} when n0 is large; the possible values of {αYn0+1(ω)} are still
almost uniformly distributed in [0, 1).

We then extend this result to the case of any number of successive terms and
compute some bounds of the convergence rates depending on the type (see Section 3)
of α and the qj. We finally use our results to investigate the asymptotic independence
of the mantissae (see Section 4) of 2Yn and 2Yn+1 . Note that the bounds obtained in
[2] and [15] depend on the type of α too.

1.1 Definitions and notation

In all the present paper, independent will mean mutually independent. We will use
the standard notation: logb a for the logarithm to the base b of a and e(x) for
exp(2iπx) with i2 = −1. The type of an irrational number and the mantissa of a
positive real are defined respectively in Sections 3 and 4.

Let (Xj)j≥1 be a sequence of independent Bernoulli random variables. We
suppose that the probabilities of success qj = P (Xj = 1) sum to +∞. Ac-
cording to Borel-Cantelli Lemma, this is necessary and sufficient to ensure that
SN =

∑N
j=1Xj → +∞ almost surely as N → +∞ and so that the number of trials

needed to get the n-th success Yn = min{N : SN = n} is almost surely well defined
for all n. The qj are all equal in Proposition 1 and Corollary 2 and decrease to zero
and sum to +∞ in our other results.

1.2 Content

After demonstrating that {αYn} and {αYn+1} are not asymptotically independent
when the qj are all equal, we prove in Section 2 that Condition (1) below ensures
that {αYn}, . . . , {αYn+k} are asymptotically independent for all k ≥ 1 when the qj
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decrease to zero and sum to +∞. Section 3 is devoted to the convergence rates of
the law of the random vector

(
{αYn}, . . . , {αYn+k}

)
to Uk+1. In Section 4, we apply

the results of Sections 2 and 3 to the case α = logb 2, where b is not a power of 2,
in order to investigate the random subsequence of (2n)n generated by our Bernoulli
trials.

2 Main result
We begin with a situation where {αYn} and {αYn+1} are not asymptotically inde-
pendent.

Proposition 1. Fix q ∈ (0, 1) and suppose that qj = q for all j. Then {αYn} and
{αYn+1} are not asymptotically independent.

Proof. In situations where the law of
(
{αYn}, {αYn+1}

)
converges weakly to U2, the

law of
{
{αYn+1} − {αYn}

}
converges weakly to U (see [3, p. 379]) since U is the

probability distribution of {Z2−Z1} where the random vector (Z1, Z2) is distributed
following U2. We suppose now that qj = q ∈ (0, 1) for all j and prove that then the
law of

{
{αYn+1} − {αYn}

}
does not converge weakly to an absolutely continuous

probability distribution.
The Xn being independent, for all (n,m) satisfying n ≤ m,

P
(
(Yn+1 − Yn = 1)|(Yn = m)

)
=
P
(
(Yn = m) ∩ (Yn+1 = m+ 1)

)
P (Yn = m)

=
qP (Sm−1 = n− 1)q

qP (Sm−1 = n− 1)
= q

does not depend on m and so P (Yn+1 − Yn = 1) = q for all n. Hence

P
({
{αYn+1} − {αYn}

}
= {α}

)
= q > 0

for all n because
{
x − y} = {{x} − {y}

}
and because the values of {αk} for

k = 1, 2, . . . are distinct from one another when α is irrational. So the law of{
{αYn+1} − {αYn}

}
does not converge weakly to an absolutely continuous proba-

bility distribution and Proposition 1 is proved.

When the probabilities of success qj decrease to zero and sum to +∞, the laws
of {αYn}, . . . and {αYn+k} converge weakly to U1 whenever α is irrational [11].
Therefore {αYn}, . . . and {αYn+k} are asymptotically independent if and only if the
law of

(
{αYn}, . . . , {αYn+k}

)
converges weakly to Uk+1. The condition

+∞∑
m=2

(q1 + · · ·+ qm−1)
−1/2qmqm+1 < +∞ (1)

will be called Condition (1) in the sequel.
Note that Condition (1) is not satisfied in Proposition 1. Here are our main

result and a direct consequence of it.
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Theorem 1. Suppose that the qj decrease to zero and sum to +∞. For any k ≥ 1,
the k+1 consecutive terms {αYn}, . . . , {αYn+k} are asymptotically independent when
Condition (1) is satisfied.

If qj ≤ 1/j, then (q1 + · · · + qm−1)
−1/2qmqm+1 ≤ 1/(q

1/2
1 m2) and Condition 1 is

satisfied. Set now qj = 1/jβ with 0 < β < 1. Then (q1+ · · ·+qm−1) ∼ (1−β)−1m1−β

and qmqm+1 ∼ 1/m2β and thus (q1 + · · · + qm−1)
−1/2qmqm+1 = O

(
1/m

3
2
β+ 1

2

)
. This

shows that Condition 1 is satisfied if β > 1/3. This demonstrates the following
corollary.

Corollary 1. The random variables {αYn}, . . . , {αYn+k} are asymptotically inde-
pendent in particular when qj = 1/jβ with 1/3 < β < 1 and when qj = 1/j or
qj = 1/j log j and so on.

Theorem 1 is demonstrated below. Before that, we present the main lemmas
used in our proofs.

2.1 Lemmas

We collect here the main tools used in our proofs. The weak convergence of a
sequence of probability measures on the k-dimensional torus [0, 1)k is characterized
by the convergence of the corresponding Fourier coefficients. We present here the
case where the limit distribution is Uk (Weyl criterion). A direct proof can be
obtained by extending the arguments in [9, p. 7] to the k-dimensional case and
general sequences of probability measures. It is also a simple consequence of Lemma
5 below. Let A1, A2, . . . be some random vectors taking their values in the k-
dimensional torus and denote by Z the set of integers.

Lemma 1. In order that the law of An converges weakly to Uk as n → +∞ it is
necessary and sufficient that, for every h ∈ Zk satisfying h 6= (0, . . . , 0),

lim
n→+∞

E(e(h · An)) = 0

where h · An designates the dot product of h and An.

Lemma 2 is a particular case of the Kolmogorov-Rogozin inequality on the Lévy
concentration function (Theorem 4 in [13, p. 44]). It will avoid us to upper-bound
roughly P (Sm−1 = n− 1) by 1 in the proofs of Theorems 1 and 2.

Lemma 2. When the qj decrease to 0,

max
0≤l≤N

P (SN = l) = O
(
(q1 + · · ·+ qN)−1/2

)
where O denotes the Landau big O.

The next lemma is elementary but we do not have a reference.

Lemma 3. If qj ∈ (0, 1) for all j and
∑
qj = +∞, then, for all fixed m,

+∞∑
n=m+1

qn

n−1∏
j=m+1

(1− qj) = 1

with the value of an empty product is one.
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Proof. By induction on N ,

m+N∑
n=m+1

qn

n−1∏
j=m+1

(1− qj) = 1−
m+N∏
n=m+1

(1− qn).

Now

lim
N→+∞

m+N∏
n=m+1

(1− qn) = 0

when 0 < qn < 1 and
∑
qn = +∞.

Another argument is that

qn

n−1∏
j=m+1

(1− qj) = P (Zm = n)

where Zm is the rank of the first success beyond the m-th attempt (Zm is almost
surely well defined when

∑
qn = +∞).

The next lemma is demonstrated in the proof of Theorem 1 in [11].

Lemma 4. Let α be any irrational. For any non-nul integer h,

|E(e(hαYn))| ≤ 3qn
| sin(πhα)|

max
0≤j≤n−1

P (Sn−1 = j). (2)

2.2 Proof of Teorem 1 for k = 1

In this section, we show that Condition (1) ensures the asymptotic independence of
two consecutive terms.

Let α be any irrational. By Lemma 4, if h1 = 0 and h 6= 0, then∣∣E(e(hαYn + h1αYn+1)
)∣∣ =

∣∣E(e(hαYn)
)∣∣

tends to 0 as n→ +∞ because limn qn = 0 (see also Lemma 2).
Having Lemma 1 in mind, we verify now that, for all (h, h1) such that h1 6= 0,

E
(
e(hαYn + h1αYn+1)

)
=

+∞∑
m=n

+∞∑
m1=m+1

e(hαm+ h1αm1)P ((Yn = m) ∩ (Yn+1 = m1))

tends to 0 as n→ +∞ when condition (1) is satisfied.
The random variables Xn being independent,

P
(
(Yn = m) ∩ (Yn+1 = m+ 1)

)
= P (Sm−1 = n− 1)qmqm+1

for all m ≥ n and

P
(
(Yn = m) ∩ (Yn+1 = m1)

)
= P (Sm−1 = n− 1)qmqm1

m1−1∏
j=m+1

(1− qj)

for all m1 > m+ 1. Hence, since |e(hαm)| = 1,

∣∣E(e(hαYn + h1αYn+1)
)∣∣ ≤ +∞∑

m=n

qmP (Sm−1 = n− 1)

∣∣∣∣∣
+∞∑

m1=m+1

e(h1αm1)Qm1(m)

∣∣∣∣∣ (3)
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where Qm+1(m) = qm+1 and, for m1 > m+ 1,

Qm1(m) = qm1

m1−1∏
j=m+1

(1− qj).

For all m1 ≥ m, ∣∣∣∣∣
m1∑

l=m+1

e(h1αl)

∣∣∣∣∣ ≤ 2

|e(h1α)− 1|
=

1

| sin(πh1α)|
.

So a summation by parts leads to∣∣∣∣∣
+∞∑

m1=m+1

e(h1αm1)Qm1(m)

∣∣∣∣∣ ≤ 1

| sin(πh1α)|

+∞∑
m1=m+1

|Qm1+1(m)−Qm1(m)|. (4)

For all m, the sequence (Qm1(m))m1 is decreasing (recall that (qn)n is decreasing).
Therefore

+∞∑
m1=m+1

|Qm1+1(m)−Qm1(m)| = Qm+1(m) = qm+1.

Combining this with (3) and (4) gives

∣∣E(e(hαYn + h1αYn+1)
)∣∣ ≤ 1

| sin(πh1α)|

+∞∑
m=n

qmqm+1P (Sm−1 = n− 1).

By Lemma 2, P (Sm−1 = n − 1) = O
(
(q1 + · · ·+ qm−1)

−1/2) where the constant
implied by O is independent of m. The proof is completed.

2.3 Proof of Teorem 1 for k = 2

In this section, we show that Condition (1) ensures the asymptotic independence of
three consecutive terms.

If h2 = 0 and (h, h1) 6= (0, 0) and if condition (1) is satisfied, the k = 1 case of
Theorem 1 indicates that

|E(e(hαYn + h1αYn+1 + h2αYn+2))| = |E(e(hαYn + h1αYn+1))|

tends to 0 as n→ +∞.
Fix h2 6= 0 and (h, h1). We are going to verify that

An := E
(
e(hαYn + h1αYn+1 + h2αYn+2)

)
tends to 0 as n→ +∞ when condition (1) is satisfied.

The random variables Xn being independent, for all m2 > m1 > m ≥ n,

P
(
(Yn = m) ∩ (Yn+1 = m1) ∩ (Yn+2 = m2)

)
= qmP (Sm−1 = n− 1)Qm1(m)Qm2(m1)
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where Qt(s) = qt
∏t−1

j=s+1(1− qj). This leads to

|An| =

∣∣∣∣∣∣∣
+∞∑
m=n

qmP (Sm−1 = n− 1)e(hαm)
∑

m1≥m+1
m2≥m1+1

Qm1(m)Qm2(m1)e(h1αm1 + h2αm2)

∣∣∣∣∣∣∣
≤

+∞∑
m=n

qmP (Sm−1 = n− 1)

∣∣∣∣∣
+∞∑

m1=m+1

Qm1(m)e(h1αm1)
+∞∑

m2=m1+1

Qm2(m1)e(h2αm2)

∣∣∣∣∣
≤

+∞∑
m=n

qmP (Sm−1 = n− 1)
+∞∑

m1=m+1

Qm1(m)

∣∣∣∣∣
+∞∑

m2=m1+1

Qm2(m1)e(h2αm2)

∣∣∣∣∣ .
Using similar arguments to those above, we get∣∣∣∣∣

+∞∑
m2=m1+1

Qm2(m1)e(h2αm2)

∣∣∣∣∣ ≤ qm1+1

| sin(πh2α)|
.

Therefore

|An| ≤
1

| sin(πh2α)|

+∞∑
m=n

qmP (Sm−1 = n− 1)
+∞∑

m1=m+1

Qm1(m)qm1+1

≤ 1

| sin(πh2α)|

+∞∑
m=n

qmP (Sm−1 = n− 1)qm+1

+∞∑
m1=m+1

Qm1(m)

because (qn) is non-increasing.
This and Lemmas 2 and 3 conclude our proof.

2.4 Proof of Teorem 1 for k ≥ 3

We proceed by induction. Fix (h, h1, . . . , hk) 6= (0, 0, . . . , 0) and suppose that

lim
n→+∞

E(e(hαYn + h1αYn+1 + · · ·+ hk−1αYn+k−1)) = 0

for all (h, h1, . . . , hk−1) 6= (0, 0, . . . , 0). It remains to verify that

Akn := E
(
e(hαYn + h1αYn+1 + · · ·+ hkαYn+k)

)
tends to 0 as n → +∞ when condition (1) is satisfied and hk 6= 0. Set again
Qt(s) = qt

∏t−1
j=s+1(1− qj). Then, using similar arguments to those above, we get

|Akn| ≤
+∞∑
m=n

qmP (Sm−1 = n− 1)
+∞∑

m1=m+1

Qm1(m) · · ·
+∞∑

mk−1=mk−2+1

Qmk−1
(mk−2)Bmk−1

where

Bmk−1
:=

∣∣∣∣∣∣
+∞∑

mk=mk−1+1

Qmk
(mk−1)e(hkαmk)

∣∣∣∣∣∣ ≤ qmk−1+1

| sin(πhkα)|
.

We get

|Akn| ≤
1

| sin(πhkα)|

+∞∑
m=n

qmqm+1P (Sm−1 = n−1)
+∞∑

m1=m+1

Qm1(m) · · ·
+∞∑

mk−1=mk−2+1

Qmk−1
(mk−2)
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since qmk−1+1 ≤ qm+1.
Indeed P (Sm−1 = n− 1) = O

(
(q1 + · · ·+ qm−1)

−1/2) by Lemma 2 and

+∞∑
m1=m+1

Qm1(m) = · · · =
+∞∑

mk−1=mk−2+1

Qmk−1
(mk−2) = 1

by Lemma 3. Thus

|Akn| =
1

| sin(πhkα)|
O

(
+∞∑
m=n

qmqm+1(q1 + · · ·+ qm−1)
−1/2

)
and this shows that limn→+∞A

k
n = 0 when condition (1) is satisfied. Our proof is

completed.

3 Rates of convergence
Aiming at clarity, we treat only the case of two consecutive terms and of qn = 1/nβ

with 1/3 < β < 1, qn = 1/n and qn = 1/n log n and so on. However our methods
can easily be extended (at the cost of less and less readable computations as the
number of terms grows).

Let Qn designates the law of ({αYn}, {αYn+1}). We are now concerned with the
Kolmogorov-Smirnov distance between Qn and U2

∆(Qn, U
2) := sup

(s,t)∈[0,1)2
|Qn

(
[0, s)× [0, t)

)
− st|.

We have no reasons to think that the bounds presented below are sharp, but
their proofs have the merit to show why the convergence rates of the probability
distribution of ({αYn}, . . . , {αYn+k}) to Uk+1 depend most likely on the values of
the qn and on a measure of irrationality of α which is defined in [9, p. 161] by

η(α) = sup{γ : lim inf
h→+∞

hγ〈hα〉 = 0}.

It measures the closeness of α to the rationals with reasonable denominators. The
Liouville numbers [14, p. 310] are of infinite type; they are very well approximated
by rationals. The algebraic numbers are of type 1 [4, p. 169]; they are badly
approximated by rationals. Here is what is known on the type (rounded to one
decimal place) of some common transcendental numbers:

η(e) = 1 , η(π) < 6.2 , η(π2) < 4.5 , η(log 2) < 2.6 and η(log 3) < 4.2.

See Section 4 for some bounds of η(logb a) where a and b are positive integers
and see [11] for references and more information about η(α).

The main result of the present section is the following theorem. It can be slightly
improved for quadratic irrationals α because they are of of constant type (they are
in a way more badly approximated by rationals than e and that the other irrational
algebraic numbers). See [9, p. 161] and [11] for the definition and more details.
Aiming at lighten the present text, we will only use the fact that these numbers are
of type 1 like the other algebraic numbers and like e.
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Theorem 2. Set qn = 1/nβ with 1/3 < β ≤ 1. Then, for all η > η(α),

∆(Qn, U
2) = O

(
n−(3β−1)/2η

)
Here are four direct consequences of Theorem 2 and of the information about

η(α) given above. If α = e or α is an irrational algebraic number, then

∆(Qn, U
2) = O

(
n−γ
)

for all γ < 1/4,

when qn = 1/
√
n and

∆(Qn, U
2) = O

(
n−γ
)

for all γ < 1

when qn = 1/n. If α = π, then

∆(Qn, U
2) = O

(
n−1/24.8

)
,

when qn = 1/
√
n and

∆(Qn, U
2) = O

(
n−1/6.2

)
.

when qn = 1/n.
A proof of Theorem 2 is given in Section 3.2. It will use the three following

lemmas.

3.1 Lemmas

Lemma 5 is the Erdős-Turán-Koksma inequality. It is a kind of Berry-Esseen theo-
rem on the 2-dimensional torus. Theorem 2 in [12] is the most general version in the
univariate case. Here is a simplified formulation which is sufficient in our network.

Lemma 5. Let Q stands for the law of a 2-dimensional random vector Z = (Z1, Z2)
and set H = max(|h|, |h1|) and R = max(|h|, 1) max(1, |h1|). Then, for every posi-
tive integer M ,

∆(Q,U2) ≤ C

(
1

M
+

∑
0<H≤M

∣∣E(e(hZ1 + h1Z2))
∣∣

R

)

where the constant C is independent of M and Q.

We give now some bounds for |E(e(hαYn))| and |E(e(hαYn +h1αYn+1))| in order
to make use of Lemma 5 in the case qn = 1/nβ with 0 < β ≤ 1.

Lemma 6. Set qn = 1/nβ with 0 < β ≤ 1. Then, if h 6= 0,

|E(e(hαYn))| = 1

| sin(πhα)|
O
(
1/n(β+1)/2

)
and, if h1 6= 0 and 1/3 < β ≤ 1,∣∣E(e(hαYn + h1αYn+1)

)∣∣ =
1

| sin(πh1α)|
O
(
1/n(3β−1)/2)

where the constants implied by O are independent of h and h1.
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Proof. We know that, if h 6= 0,

|E(e(hαYn))| ≤ 3qn
| sin(πhα)|

max
0≤j≤n−1

P (Sn−1 = j)

(see Lemma 4) and that, if h1 6= 0

∣∣E(e(hαYn + h1αYn+1)
)∣∣ ≤ 1

| sin(πh1α)|

+∞∑
m=n

qmqm+1P (Sm−1 = n− 1)

(see Section 2.2 above). By Lemma 2,

max
0≤j≤n−1

P (Sn−1 = j) = O
(
(q1 + · · ·+ qn−1)

−1/2)
and

P (Sm−1 = n− 1) = O
(
(q1 + · · ·+ qm−1)

−1/2) .
Moreover (q1 + · · · + qn) ∼ (1 − β)n1−β when qn = 1/nβ with 0 < β < 1 and
(q1 + · · ·+ qn) ∼ log n when qn = 1/n.

Set qn = 1/nβ with 0 < β < 1. We get

sup
h6=0
| sin(πhα)||E(e(hαYn))| = O

(
1/n(β+1)/2

)
and

sup
h1 6=0
| sin(πh1α)|

∣∣E(e(hαYn + h1αYn+1)
)∣∣ = O

(
+∞∑
m=n

m−2βm(β−1)/2

)
= O

(
1/n(3β−1)/2) .

Set now qn = 1/n. We get

sup
h6=0
| sin(πhα)||E(e(hαYn))| = O

(
1/n(log n)−1/2

)
= O (1/n)

and

sup
h1 6=0
| sin(πh1α)|

∣∣E(e(hαYn + h1αYn+1)
)∣∣ = O

(
+∞∑
m=n

m−2(logm)−1/2

)

= O

(
+∞∑
m=n

m−2

)
= O (1/n) .

In connection with Lemma 6, the following lemma explains the influence of η(α)
on the convergence rates. It is proved in [9, p. 123].

Lemma 7. We have
M∑
h=1

1

h| sin(πhα)|
= O(Mη−1)

for all η > η(α).
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3.2 Proof of Theorem 2

Set qn = 1/nβ with 0 < β ≤ 1. Recall the notation H = max(|h|, |h1|) and
R = max(|h|, 1) max(1, |h1|) and that (h, h1) 6= (0, 0) and note that R = |h| when
h1 = 0, R = |h1| when h = 0 and R = |h||h1| when h 6= 0 and h1 6= 0. For all pairs
(M,n) of positive integers,

∑
0<H≤M
h1=0

R−1
∣∣E(e(hαYn + h1αYn+1)

)∣∣ = 2
M∑
h=1

|h|−1
∣∣E(e(hαYn))

∣∣
because h 6= 0 when h1 = 0 and

∣∣E(e(hαYn))
∣∣ =

∣∣E(e(−hαYn))
∣∣.

By Lemma 6 we get, for all positive integers M ,

∑
0<H≤M
h1=0

R−1
∣∣E(e(hαYn + h1αYn+1)

)∣∣ = 2

(
M∑
h=1

1

h| sin(πhα)|

)
O
(

1

n(β+1)/2

)
(5)

and

∑
0<H≤M
h1 6=0

R−1
∣∣E(e(hαYn +h1αYn+1)

)∣∣ =

 ∑
0<H≤M
h1 6=0

1

R| sin(πh1α)|

O( 1

n(3β−1)/2

)
(6)

where the constants implied by O are independent of M . Now∑
0<H≤M
h1 6=0

1

R| sin(πh1α)|
=

∑
0<|h1|≤M

1

| sin(πh1α)|
∑

0≤|h|≤M

1

R

=

(
1 + 2

(
1 +

1

2
+ · · ·+ 1

M

)) ∑
0<|h1|≤M

1

|h1|| sin(πh1α)|

≤ O(logM)
M∑
h1=1

1

h1| sin(πh1α)|
. (7)

Fix η > η(α) and set η′ = (η(α)+η)/2 . There exists a constant C1, independent
of M and n, such that∑

0<H≤M
h1=0

R−1
∣∣E(e(hαYn + h1αYn+1)

)∣∣ ≤ C1
Mη′−1

n(3β−1)/2

(see (5) and Lemma 7 and note that (β + 1)/2 ≥ (3β − 1)/2 when β ≤ 1) and∑
0<H≤M
h1 6=0

R−1
∣∣E(e(hαYn + h1αYn+1)

)∣∣ ≤ C1
Mη′−1 logM

n(3β−1)/2

(see (6), (7) and Lemma 7). Therefore∑
0<H≤M

R−1
∣∣E(e(hαYn + h1αYn+1)

)∣∣ ≤ 2C1
Mη′−1 logM

n(3β−1)/2 . (8)
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As a consequence of (8) and Lemma 5, we get

∆(Qn, U
2) ≤ C

(
1

M
+
Mη′−1 logM

n(3β−1)/2

)
where the constant C is independent of M and n. Now we replace M by the integer
part of n(3β−1)/2η′ . In this case,

Mη′−1

n(3β−1)/2 ∼
1

n(3β−1)/2η′ and logM ∼ 3β − 1

2η′
log n

and we get

∆(Qn, U
2) = O

(
log n

n(3β−1)/2η′

)
.

Theorem 2 is proved since η > η′.

4 Application to Benford law
All along the present section, a and b are two integers greater than 1 such that
logb a is irrational, that is to say such that a is not a rational power of b. We
consider the sequence (aYn)n which is the random subsequence of (an)n generated
by our Bernoulli trials. More precisely, we are interested inMb(a

Yn) whereMb(x)
designates the mantissa of the positive real x in the numeration base b, that is to
say the unique number in [1, b) such that x =Mb(x)bm for some integer m.

The investigations on fractional parts and on mantissae are closely related. In-
deed, for any positive real number x, {logb x} = logb(Mb(x)) and so

(Mb(x) < t) ⇐⇒ ({logb x} < logb t) (t ∈ [1, b)). (9)

In particular, if Z is a positive random variable, {logb Z} is distributed following U1

if and only ifMb(Z) is distributed following the Benford law in base b, denoted Bb

here and defined by Bb([1, t)) = logb t for t ∈ [1, b). Moreover, for positive random
variables Zn, the law ofMb(Zn) converges weakly to Bb as n → +∞ if and only if
the law of {logb Zn} converges weakly to U1 and, for any positive integer k, the law
of (Mb(Zn), . . . ,Mb(Zn+k)) converges weakly to the product probability measure
Bk+1
b as n → +∞ if and only if the law of ({logb Zn}, . . . , {logb Zn+k}) converges

weakly to Uk+1.
As already said above, the u.p.m. on the set {{αn} : n = 1, . . . , N} converges

weakly to U1 as N → +∞ when α is irrational. Thus what precedes shows that the
u.p.m. on the set {Mb(a

n) : n = 1, . . . , N} converges weakly to Bb as N → +∞
since logb a is supposed irrational. That is why the sequence (an)n is said to be a
Benford sequence in base b when logb a is irrational. Among many others [10], the
sequences (n!)n and (nn)n are Benford in any base b. The main property of the
Benford sequences is the so-called firts digit phenomenon: 1 appears as the leading
significant digit about 30.1 percent of the time (instead of 11.1 percent as it might
seem at first glance), 2 about 17.6 percent of the time, and so on. See for example
[1] and [6, Appendix] for relevant background on Benford law.

If we are given the value of Mb(a
n) (but not the value of n), then we know

precisely the value ofMb(a
n+1) becauseMb(xy) =Mb

(
Mb(x)Mb(y)

)
. We will see
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in particular that, by contrast, the random variables Mb(a
Yn) and Mb(a

Yn+1) are
asymptotically independent when Condition (1) is satisfied.

The two following corollaries are direct consequences of what precedes and of
Proposition 1, Theorem 1 and Corollary 1.

Corollary 2. Fix q ∈ (0, 1) and suppose that qn = q for all n and that logb a is
irrational. Then the law of

(
Mb(a

Yn),Mb(a
Yn+1)

)
does not converge weakly to B2

b

as n→ +∞ and thusMb(a
Yn) andMb(a

Yn+1) are not asymptotically independent.

Corollary 3. Suppose that the qn decrease to zero and sum to +∞ and that logb a
is irrational. If condition (1) is satisfied, then, for any positive integer k, the law of(
Mb(a

Yn), . . . ,Mb(a
Yn+k)

)
converges weakly to Bk+1

b as n→ +∞ and thusMb(a
Yn),

. . . ,Mb(a
Yn+k) are asymptotically independent.

This is the case in particular if qn = 1/nβ with 1/3 < β < 1 and if qn = 1/n or
qn = 1/n log n and so on.

4.1 Rates of convergence

In the present section, b is such that logb 2 is irrational, that is to say: b is not a
power of 2. Let Fb denotes the set of prime factors of b. Then η(logb 2) ≤ 7.62
when Fb ⊂ {2, 3}, η(logb 2) ≤ 15.28 when Fb ⊂ {2, 3, 5} and η(logb 2) ≤ 256.87 when
Fb ⊂ {2, 3, 5, 7} (see [11]).

Recall that Qn designates the law of ({αYn}, {αYn+1}) and that

∆(Qn, U
2) := sup

(s,t)∈[0,1)2
|Qn

(
[0, s)× [0, t)

)
− st|.

Let Q∗n denotes the law of
(
Mb(2

Yn),Mb(2
Yn+1)

)
and set

∆(Q∗n, B
2
b ) = sup

(u,v)∈[1,b)2
|Q∗n
(
[1, u)× [1, v)

)
− logb u logb v|.

Note that, by (9),
∆(Qn, U

2) = ∆(Q∗n, B
2
b ) (10)

if α = logb 2.
The following corollary is a direct consequence of what precedes and of Theorem

2.

Corollary 4. Set qn = 1/nβ with 1/3 < β ≤ 1. Then

∆(Q∗n, B
2
b ) = O

(
log n

n(3β−1)/16

)
if Fb ⊂ {2, 3},

∆(Q∗n, B
2
b ) = O

(
log n

n(3β−1)/31

)
Fb ⊂ {2, 3, 5} and

∆(Q∗n, B
2
b ) = O

(
log n

n(3β−1)/514

)
Fb ⊂ {2, 3, 5, 7}.

For example, if b = 10 and qn = 1/
√
n, then ∆(Q∗n, B

2
10) = O

(
logn
n1/62

)
and, if

b = 10 and qn = 1/n, then ∆(Q∗n, B
2
10) = O

(
logn
n1/31

)
.
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5 Concluding remark
Here qn = 1/nβ with 0 < β < 1. It is possible to evaluate the almost sure order
of magnitude of Yn by using Proposition 6.2 in [8] which states that Sn is almost
surely equivalent to q1 + · · ·+ qn whenever

∑
qn = +∞. The sequence (Yn) being a

(random) subsequence of (n), n = SYn is almost surely equivalent to q1 + · · ·+ qYn .
In particular (1− β)−1Y 1−β

n is almost surely equivalent to n. So we can say that Yn
is almost surely of the same order of magnitude than n(1−β)−1 .

On the other hand, it is proved in [5] that, if un = {αnγ}, the u.p.m. on the
set {(un, . . . , un+k) : n = 1, 2, . . . , N} converges weakly to Uk+1 when γ > k but
not when γ ≤ k. That why we have been surprised to find that Condition (1)
ensures the asymptotic independence of {αYn}, . . . , {αYn+k} whatever is the value
of k. In view of the results in [5] and the above evaluation, we expected something
like: {αYn}, . . . , {αYn+k} are asymptoticly independent if (1 − β)−1 > k but not if
(1− β)−1 ≤ k − 1.

However the comparison between the two situations would be more pertinent if
we have investigated the weak convergence as N → +∞ of the u.p.m. on the set

{({αYn(ω)}, . . . , {αYn+k(ω)}) : n = 1, 2, . . . , N}

instead of the distribution of the possible values of ({αYn}, . . . , {αYn+k}) for fixed
n.
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