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Fix an irrational number α and let Y n be the number of attempts needed to get the nth success in a non-stationary sequence of independent Bernoulli trials. It is known that the law of the fractional part of αY n converges weakly to the uniform distribution on [0, 1) , as n → +∞, when the probabilities of success decrease to 0 and sum to +∞. We provide sufficient conditions on the probabilities of success ensuring that the fractional parts of αY n and αY n+1 are asymptotically independent. We extend our results to any number of successive terms, compute upper bounds of the convergence rates depending on a measure of irrationality of α and on the probabilities of success and apply our results to discuss the mantissae of 2 Yn and 2 Y n+1 .

Introduction

We denote by U k the uniform distribution on [0, 1) k and by {y} the fractional part of a real y. Since we deal with fractional parts, we identify [0, 1) k to the the kdimensional torus equipped with its natural topology. That allows us to use Lemmas 1 and 5 below on which our proofs rely.

The uniform probability measure (u.p.m. in the sequel) on the set {αn} : n = 1, . . . , N converges weakly to U 1 as N → +∞ when α is irrational [9, p. 8]. In other words, the sequences (αn) n with irrational α are uniformly distributed modulo 1 in the sense of the natural density.

If we are given α and the value x of {αn} (but not the value of n), then we know that {α(n + 1)} = {αn} + {α} = x + {α} . By contrast, it is proved in [START_REF] Cai | A local Benford law for a class or arithmetic sequences[END_REF] that the u.p.m. on the set {αn γ }, {α(n + 1) γ } : n = 1, 2, . . . , N converges weakly to U 2 when γ > 1. This can be interpreted in the following manner: if γ > 1 and if we are given the values of α and {αn γ } (but not the value of n), that does not give us any information on the value of {α(n + 1) γ }; the possible values of {α(n + 1) γ } are still uniformly distributed in [0, 1). Another example of a sequence uniformly distributed in [0, 1) 2 is {α 1 n}, {α 2 n} n where α 1 and α 2 are linearly independent over the rationals [9, p. 48-49].

Consider an irrational number α and a sequence of independent Bernoulli trials whose probabilities of success sum to +∞ and are either all equal or decrease to zero as the process moves forward. For all n, denote by Y n the number of attempts needed to get the n-th success. We are interested in the present paper in the sequence ({αY n }) n which is the random subsequence of ({αn}) n obtained by removing from ({αn}) n all the points {αj} for which the j-th trial fails. See [START_REF] Berkes | Berry-Esseen bounds and Diophantine approximation[END_REF] and [START_REF] Su | Convergence of random walks on the circle generated by an irrational rotation[END_REF] for the investigation of random subsequences of ({αn}) n of another kind.

It is proved in [START_REF] Massé | Random walks on the circle and measure of irrationality[END_REF] that, as n → +∞, the law of {αY n } converges weakly to U 1 whenever α is irrational. As shown at the beginning of Section 2 below, {αY n } and {αY n+1 } are not asymptotically independent (the law of {αY n }, {αY n+1 } n does not converge weakly to U 2 ) when q j = q ∈ (0, 1) for all j. Moreover, some computer simulations we have made on the mantissa in base 10 of 2 Yn when q j = 1/ log j (log j denotes the natural logarithm of j) suggest that this is still true for {αY n } and {αY n+1 } if q j = 1/ log j and α is the logarithm of 2 in base 10 (these simulations were motivated by the fact that Y n is the n-th Cramér's random pseudo-primes [START_REF] Cramér | Prime numbers and probabilities[END_REF] when q j = 1/ log j). See Section 4 for the definition of the mantissa of a positive real number and for the link between distribution modulo 1 and mantissa distribution.

We prove below that, when q j = 1/j β with 1/3 < β ≤ 1, the law of the random vector {αY n }, {αY n+1 } n converges weakly, as n → +∞, to U 2 , thus that the random variables {αY n } and {αY n+1 } are asymptotically independent. This can be interpreted in the following manner: if q j = 1/j β with 1/3 < β ≤ 1 and if we are given the values of α, n 0 and {αY n 0 (ω)}, that gives us almost no information on the value of {αY n 0 +1 (ω)} when n 0 is large; the possible values of {αY n 0 +1 (ω)} are still almost uniformly distributed in [0, 1).

We then extend this result to the case of any number of successive terms and compute some bounds of the convergence rates depending on the type (see Section 3) of α and the q j . We finally use our results to investigate the asymptotic independence of the mantissae (see Section 4) of 2 Yn and 2 Y n+1 . Note that the bounds obtained in [START_REF] Berkes | Berry-Esseen bounds and Diophantine approximation[END_REF] and [START_REF] Su | Convergence of random walks on the circle generated by an irrational rotation[END_REF] depend on the type of α too.

Definitions and notation

In all the present paper, independent will mean mutually independent. We will use the standard notation: log b a for the logarithm to the base b of a and e(x) for exp(2iπx) with i 2 = -1. The type of an irrational number and the mantissa of a positive real are defined respectively in Sections 3 and 4.

Let (X j ) j≥1 be a sequence of independent Bernoulli random variables. We suppose that the probabilities of success q j = P (X j = 1) sum to +∞. According to Borel-Cantelli Lemma, this is necessary and sufficient to ensure that S N = N j=1 X j → +∞ almost surely as N → +∞ and so that the number of trials needed to get the n-th success Y n = min{N : S N = n} is almost surely well defined for all n. The q j are all equal in Proposition 1 and Corollary 2 and decrease to zero and sum to +∞ in our other results.

Content

After demonstrating that {αY n } and {αY n+1 } are not asymptotically independent when the q j are all equal, we prove in Section 2 that Condition (1) below ensures that {αY n }, . . . , {αY n+k } are asymptotically independent for all k ≥ 1 when the q j decrease to zero and sum to +∞. Section 3 is devoted to the convergence rates of the law of the random vector {αY n }, . . . , {αY n+k } to U k+1 . In Section 4, we apply the results of Sections 2 and 3 to the case α = log b 2, where b is not a power of 2, in order to investigate the random subsequence of (2 n ) n generated by our Bernoulli trials.

Main result

We begin with a situation where {αY n } and {αY n+1 } are not asymptotically independent.

Proposition 1. Fix q ∈ (0, 1) and suppose that q j = q for all j. Then {αY n } and {αY n+1 } are not asymptotically independent.

Proof. In situations where the law of {αY n }, {αY n+1 } converges weakly to U 2 , the law of {αY n+1 } -{αY n } converges weakly to U (see [3, p. 379]) since U is the probability distribution of {Z 2 -Z 1 } where the random vector (Z 1 , Z 2 ) is distributed following U 2 . We suppose now that q j = q ∈ (0, 1) for all j and prove that then the law of {αY n+1 } -{αY n } does not converge weakly to an absolutely continuous probability distribution.

The X n being independent, for all (n, m) satisfying n ≤ m,

P (Y n+1 -Y n = 1)|(Y n = m) = P (Y n = m) ∩ (Y n+1 = m + 1) P (Y n = m) = qP (S m-1 = n -1)q qP (S m-1 = n -1) = q
does not depend on m and so P (Y n+1 -Y n = 1) = q for all n. Hence P {αY n+1 } -{αY n } = {α} = q > 0 for all n because x -y} = {{x} -{y} and because the values of {αk} for k = 1, 2, . . . are distinct from one another when α is irrational. So the law of {αY n+1 } -{αY n } does not converge weakly to an absolutely continuous probability distribution and Proposition 1 is proved.

When the probabilities of success q j decrease to zero and sum to +∞, the laws of {αY n }, . . . and {αY n+k } converge weakly to U 1 whenever α is irrational [START_REF] Massé | Random walks on the circle and measure of irrationality[END_REF]. Therefore {αY n }, . . . and {αY n+k } are asymptotically independent if and only if the law of {αY n }, . . . , {αY n+k } converges weakly to U k+1 . The condition

+∞ m=2 (q 1 + • • • + q m-1 ) -1/2 q m q m+1 < +∞ (1) 
will be called Condition (1) in the sequel. Note that Condition (1) is not satisfied in Proposition 1. Here are our main result and a direct consequence of it.

Theorem 1. Suppose that the q j decrease to zero and sum to +∞. For any k ≥ 1, the k+1 consecutive terms {αY n }, . . . , {αY n+k } are asymptotically independent when Condition (1) is satisfied.

If q j ≤ 1/j, then (q 1 + • • • + q m-1 ) -1/2 q m q m+1 ≤ 1/(q 1/2 1 m 2 ) and Condition 1 is satisfied. Set now q j = 1/j β with 0 < β < 1. Then (q 1 +• • •+q m-1 ) ∼ (1-β) -1 m 1-β
and q m q m+1 ∼ 1/m 2β and thus (q

1 + • • • + q m-1 ) -1/2 q m q m+1 = O 1/m 3 2 β+ 1 2
. This shows that Condition 1 is satisfied if β > 1/3. This demonstrates the following corollary.

Corollary 1. The random variables {αY n }, . . . , {αY n+k } are asymptotically independent in particular when q j = 1/j β with 1/3 < β < 1 and when q j = 1/j or q j = 1/j log j and so on.

Theorem 1 is demonstrated below. Before that, we present the main lemmas used in our proofs.

Lemmas

We collect here the main tools used in our proofs. The weak convergence of a sequence of probability measures on the k-dimensional torus [0, 1) k is characterized by the convergence of the corresponding Fourier coefficients. We present here the case where the limit distribution is U k (Weyl criterion). A direct proof can be obtained by extending the arguments in [9, p. 7] to the k-dimensional case and general sequences of probability measures. It is also a simple consequence of Lemma 5 below. Let A 1 , A 2 , . . . be some random vectors taking their values in the kdimensional torus and denote by Z the set of integers.

Lemma 1. In order that the law of A n converges weakly to U k as n → +∞ it is necessary and sufficient that, for every h ∈ Z k satisfying h = (0, . . . , 0),

lim n→+∞ E(e(h • A n )) = 0
where h • A n designates the dot product of h and A n .

Lemma 2 is a particular case of the Kolmogorov-Rogozin inequality on the Lévy concentration function (Theorem 4 in [13, p. 44]). It will avoid us to upper-bound roughly P (S m-1 = n -1) by 1 in the proofs of Theorems 1 and 2. Lemma 2. When the q j decrease to 0,

max 0≤l≤N P (S N = l) = O (q 1 + • • • + q N ) -1/2
where O denotes the Landau big O.

The next lemma is elementary but we do not have a reference. Lemma 3. If q j ∈ (0, 1) for all j and q j = +∞, then, for all fixed m,

+∞ n=m+1 q n n-1 j=m+1 (1 -q j ) = 1
with the value of an empty product is one.

Proof. By induction on N ,

m+N n=m+1 q n n-1 j=m+1 (1 -q j ) = 1 - m+N n=m+1 (1 -q n ). Now lim N →+∞ m+N n=m+1
(1 -q n ) = 0 when 0 < q n < 1 and q n = +∞. Another argument is that

q n n-1 j=m+1 (1 -q j ) = P (Z m = n)
where Z m is the rank of the first success beyond the m-th attempt (Z m is almost surely well defined when

q n = +∞).
The next lemma is demonstrated in the proof of Theorem 1 in [START_REF] Massé | Random walks on the circle and measure of irrationality[END_REF].

Lemma 4. Let α be any irrational. For any non-nul integer h,

|E(e(hαY n ))| ≤ 3q n | sin(πhα)| max 0≤j≤n-1 P (S n-1 = j). (2) 

Proof of Teorem 1 for k = 1

In this section, we show that Condition (1) ensures the asymptotic independence of two consecutive terms. Let α be any irrational. By Lemma 4, if h 1 = 0 and h = 0, then

E e(hαY n + h 1 αY n+1 ) = E e(hαY n )
tends to 0 as n → +∞ because lim n q n = 0 (see also Lemma 2).

Having Lemma 1 in mind, we verify now that, for all (h, h 1 ) such that h 1 = 0,

E e(hαY n + h 1 αY n+1 ) = +∞ m=n +∞ m 1 =m+1 e(hαm + h 1 αm 1 )P ((Y n = m) ∩ (Y n+1 = m 1 ))
tends to 0 as n → +∞ when condition (1) is satisfied. The random variables X n being independent,

P (Y n = m) ∩ (Y n+1 = m + 1) = P (S m-1 = n -1)q m q m+1
for all m ≥ n and

P (Y n = m) ∩ (Y n+1 = m 1 ) = P (S m-1 = n -1)q m q m 1 m 1 -1 j=m+1 (1 -q j ) for all m 1 > m + 1. Hence, since |e(hαm)| = 1, E e(hαY n + h 1 αY n+1 ) ≤ +∞ m=n q m P (S m-1 = n -1) +∞ m 1 =m+1 e(h 1 αm 1 )Q m 1 (m) (3) 
where Q m+1 (m) = q m+1 and, for

m 1 > m + 1, Q m 1 (m) = q m 1 m 1 -1 j=m+1 (1 -q j ).
For all m 1 ≥ m,

m 1 l=m+1 e(h 1 αl) ≤ 2 |e(h 1 α) -1| = 1 | sin(πh 1 α)| .
So a summation by parts leads to

+∞ m 1 =m+1 e(h 1 αm 1 )Q m 1 (m) ≤ 1 | sin(πh 1 α)| +∞ m 1 =m+1 |Q m 1 +1 (m) -Q m 1 (m)|. (4) 
For all m, the sequence

(Q m 1 (m)) m 1 is decreasing (recall that (q n ) n is decreasing). Therefore +∞ m 1 =m+1 |Q m 1 +1 (m) -Q m 1 (m)| = Q m+1 (m) = q m+1 .
Combining this with (3) and ( 4) gives

E e(hαY n + h 1 αY n+1 ) ≤ 1 | sin(πh 1 α)| +∞ m=n q m q m+1 P (S m-1 = n -1).
By Lemma 2, P (S m-1 = n -1) = O (q 1 + • • • + q m-1 ) -1/2 where the constant implied by O is independent of m. The proof is completed.

Proof of Teorem 1 for k = 2

In this section, we show that Condition (1) ensures the asymptotic independence of three consecutive terms.

If h 2 = 0 and (h, h 1 ) = (0, 0) and if condition (1) is satisfied, the k = 1 case of Theorem 1 indicates that

|E(e(hαY n + h 1 αY n+1 + h 2 αY n+2 ))| = |E(e(hαY n + h 1 αY n+1 ))| tends to 0 as n → +∞.
Fix h 2 = 0 and (h, h 1 ). We are going to verify that

A n := E e(hαY n + h 1 αY n+1 + h 2 αY n+2 )
tends to 0 as n → +∞ when condition (1) is satisfied.

The random variables X n being independent, for all m 2 > m 1 > m ≥ n,

P (Y n = m) ∩ (Y n+1 = m 1 ) ∩ (Y n+2 = m 2 ) = q m P (S m-1 = n -1)Q m 1 (m)Q m 2 (m 1 )
where Q t (s) = q t t-1 j=s+1 (1 -q j ). This leads to

|A n | = +∞ m=n q m P (S m-1 = n -1)e(hαm) m 1 ≥m+1 m 2 ≥m 1 +1 Q m 1 (m)Q m 2 (m 1 )e(h 1 αm 1 + h 2 αm 2 ) ≤ +∞ m=n q m P (S m-1 = n -1) +∞ m 1 =m+1 Q m 1 (m)e(h 1 αm 1 ) +∞ m 2 =m 1 +1 Q m 2 (m 1 )e(h 2 αm 2 ) ≤ +∞ m=n q m P (S m-1 = n -1) +∞ m 1 =m+1 Q m 1 (m) +∞ m 2 =m 1 +1 Q m 2 (m 1 )e(h 2 αm 2 ) .
Using similar arguments to those above, we get

+∞ m 2 =m 1 +1 Q m 2 (m 1 )e(h 2 αm 2 ) ≤ q m 1 +1 | sin(πh 2 α)| .
Therefore

|A n | ≤ 1 | sin(πh 2 α)| +∞ m=n q m P (S m-1 = n -1) +∞ m 1 =m+1 Q m 1 (m)q m 1 +1 ≤ 1 | sin(πh 2 α)| +∞ m=n q m P (S m-1 = n -1)q m+1 +∞ m 1 =m+1 Q m 1 (m) because (q n ) is non-increasing.
This and Lemmas 2 and 3 conclude our proof.

Proof of Teorem 1 for k ≥ 3

We proceed by induction. Fix (h, h 1 , . . . , h k ) = (0, 0, . . . , 0) and suppose that

lim n→+∞ E(e(hαY n + h 1 αY n+1 + • • • + h k-1 αY n+k-1 )) = 0
for all (h, h 1 , . . . , h k-1 ) = (0, 0, . . . , 0). It remains to verify that

A k n := E e(hαY n + h 1 αY n+1 + • • • + h k αY n+k ) tends to 0 as n → +∞ when condition (1) is satisfied and h k = 0. Set again Q t (s) = q t t-1
j=s+1 (1 -q j ). Then, using similar arguments to those above, we get

|A k n | ≤ +∞ m=n q m P (S m-1 = n -1) +∞ m 1 =m+1 Q m 1 (m) • • • +∞ m k-1 =m k-2 +1 Q m k-1 (m k-2 )B m k-1
where

B m k-1 := +∞ m k =m k-1 +1 Q m k (m k-1 )e(h k αm k ) ≤ q m k-1 +1 | sin(πh k α)| .
We get

|A k n | ≤ 1 | sin(πh k α)| +∞ m=n q m q m+1 P (S m-1 = n-1) +∞ m 1 =m+1 Q m 1 (m) • • • +∞ m k-1 =m k-2 +1 Q m k-1 (m k-2 ) since q m k-1 +1 ≤ q m+1 . Indeed P (S m-1 = n -1) = O (q 1 + • • • + q m-1 ) -1/2 by Lemma 2 and +∞ m 1 =m+1 Q m 1 (m) = • • • = +∞ m k-1 =m k-2 +1 Q m k-1 (m k-2 ) = 1
by Lemma 3. Thus

|A k n | = 1 | sin(πh k α)| O +∞ m=n q m q m+1 (q 1 + • • • + q m-1 ) -1/2
and this shows that lim n→+∞ A k n = 0 when condition (1) is satisfied. Our proof is completed.

Rates of convergence

Aiming at clarity, we treat only the case of two consecutive terms and of q n = 1/n β with 1/3 < β < 1, q n = 1/n and q n = 1/n log n and so on. However our methods can easily be extended (at the cost of less and less readable computations as the number of terms grows).

Let Q n designates the law of ({αY n }, {αY n+1 }). We are now concerned with the Kolmogorov-Smirnov distance between

Q n and U 2 ∆(Q n , U 2 ) := sup (s,t)∈[0,1) 2 |Q n [0, s) × [0, t) -st|.
We have no reasons to think that the bounds presented below are sharp, but their proofs have the merit to show why the convergence rates of the probability distribution of ({αY n }, . . . , {αY n+k }) to U k+1 depend most likely on the values of the q n and on a measure of irrationality of α which is defined in [9, p. 161] by

η(α) = sup{γ : lim inf h→+∞ h γ hα = 0}.
It measures the closeness of α to the rationals with reasonable denominators. The Liouville numbers [14, p. 310] are of infinite type; they are very well approximated by rationals. The algebraic numbers are of type 1 [4, p. 169]; they are badly approximated by rationals. Here is what is known on the type (rounded to one decimal place) of some common transcendental numbers:

η(e) = 1 , η(π) < 6.2 , η(π 2 ) < 4.5 , η(log 2) < 2.6 and η(log 3) < 4.2.
See Section 4 for some bounds of η(log b a) where a and b are positive integers and see [START_REF] Massé | Random walks on the circle and measure of irrationality[END_REF] for references and more information about η(α).

The main result of the present section is the following theorem. It can be slightly improved for quadratic irrationals α because they are of of constant type (they are in a way more badly approximated by rationals than e and that the other irrational algebraic numbers). See [9, p. 161] and [START_REF] Massé | Random walks on the circle and measure of irrationality[END_REF] for the definition and more details. Aiming at lighten the present text, we will only use the fact that these numbers are of type 1 like the other algebraic numbers and like e.

Theorem 2. Set q n = 1/n β with 1/3 < β ≤ 1. Then, for all η > η(α),

∆(Q n , U 2 ) = O n -(3β-1)/2η
Here are four direct consequences of Theorem 2 and of the information about η(α) given above. If α = e or α is an irrational algebraic number, then

∆(Q n , U 2 ) = O n -γ for all γ < 1/4, when q n = 1/ √ n and 
∆(Q n , U 2 ) = O n -γ for all γ < 1 when q n = 1/n. If α = π, then ∆(Q n , U 2 ) = O n -1/24.8
,

when q n = 1/ √ n and ∆(Q n , U 2 ) = O n -1/6.2 .
when q n = 1/n. A proof of Theorem 2 is given in Section 3.2. It will use the three following lemmas.

Lemmas

Lemma 5 is the Erdős-Turán-Koksma inequality. It is a kind of Berry-Esseen theorem on the 2-dimensional torus. Theorem 2 in [START_REF] Niederreiter | Berry-Esseen bounds and a theorem of Erdős and Turán on uniform distribution mod 1[END_REF] is the most general version in the univariate case. Here is a simplified formulation which is sufficient in our network. 

∆(Q, U 2 ) ≤ C 1 M + 0<H≤M E(e(hZ 1 + h 1 Z 2 )) R
where the constant C is independent of M and Q.

We give now some bounds for |E(e(hαY n ))| and |E(e(hαY n + h 1 αY n+1 ))| in order to make use of Lemma 5 in the case q n = 1/n β with 0 < β ≤ 1.

Lemma 6. Set q n = 1/n β with 0 < β ≤ 1. Then, if h = 0, |E(e(hαY n ))| = 1 | sin(πhα)| O 1/n (β+1)/2
and, if h 1 = 0 and 1/3 < β ≤ 1,

E e(hαY n + h 1 αY n+1 ) = 1 | sin(πh 1 α)| O 1/n (3β-1)/2
where the constants implied by O are independent of h and h 1 .

Proof. We know that, if h = 0, Lemma 4) and that, if

|E(e(hαY n ))| ≤ 3q n | sin(πhα)| max 0≤j≤n-1 P (S n-1 = j) (see
h 1 = 0 E e(hαY n + h 1 αY n+1 ) ≤ 1 | sin(πh 1 α)| +∞ m=n q m q m+1 P (S m-1 = n -1)
(see Section 2.2 above). By Lemma 2, max 0≤j≤n-1

P (S n-1 = j) = O (q 1 + • • • + q n-1 ) -1/2 and P (S m-1 = n -1) = O (q 1 + • • • + q m-1 ) -1/2 . Moreover (q 1 + • • • + q n ) ∼ (1 -β)n 1-β when q n = 1/n β with 0 < β < 1 and (q 1 + • • • + q n ) ∼ log n when q n = 1/n. Set q n = 1/n β with 0 < β < 1. We get sup h =0 | sin(πhα)||E(e(hαY n ))| = O 1/n (β+1)/2
and sup

h 1 =0 | sin(πh 1 α)| E e(hαY n + h 1 αY n+1 ) = O +∞ m=n m -2β m (β-1)/2 = O 1/n (3β-1)/2 .
Set now q n = 1/n. We get

sup h =0 | sin(πhα)||E(e(hαY n ))| = O 1/n(log n) -1/2 = O (1/n) and sup h 1 =0 | sin(πh 1 α)| E e(hαY n + h 1 αY n+1 ) = O +∞ m=n m -2 (log m) -1/2 = O +∞ m=n m -2 = O (1/n) .
In connection with Lemma 6, the following lemma explains the influence of η(α) on the convergence rates. It is proved in [9, p. 123].

Lemma 7. We have

M h=1 1 h| sin(πhα)| = O(M η-1 )
for all η > η(α).

Proof of Theorem 2

Set q n = 1/n β with 0 < β ≤ 1. Recall the notation H = max(|h|, |h 1 |) and R = max(|h|, 1) max(1, |h 1 |) and that (h, h 1 ) = (0, 0) and note that R = |h| when h 1 = 0, R = |h 1 | when h = 0 and R = |h||h 1 | when h = 0 and h 1 = 0. For all pairs (M, n) of positive integers,

0<H≤M h 1 =0 R -1 E e(hαY n + h 1 αY n+1 ) = 2 M h=1 |h| -1 E(e(hαY n ))
because h = 0 when h 1 = 0 and E(e(hαY n )) = E(e(-hαY n )) . By Lemma 6 we get, for all positive integers M ,

0<H≤M h 1 =0 R -1 E e(hαY n + h 1 αY n+1 ) = 2 M h=1 1 h| sin(πhα)| O 1 n (β+1)/2 (5) 
and

0<H≤M h 1 =0 R -1 E e(hαY n + h 1 αY n+1 ) =     0<H≤M h 1 =0 1 R| sin(πh 1 α)|     O 1 n (3β-1)/2 (6)
where the constants implied by O are independent of M . Now

0<H≤M h 1 =0 1 R| sin(πh 1 α)| = 0<|h 1 |≤M 1 | sin(πh 1 α)| 0≤|h|≤M 1 R = 1 + 2 1 + 1 2 + • • • + 1 M 0<|h 1 |≤M 1 |h 1 || sin(πh 1 α)| ≤ O(log M ) M h 1 =1 1 h 1 | sin(πh 1 α)| . (7) 
Fix η > η(α) and set η = (η(α)+ η)/2 . There exists a constant C 1 , independent of M and n, such that

0<H≤M h 1 =0 R -1 E e(hαY n + h 1 αY n+1 ) ≤ C 1 M η -1 n (3β-1)/2
(see [START_REF] Cai | A local Benford law for a class or arithmetic sequences[END_REF] and Lemma 7 and note that (β + 1)/2 ≥ (3β -1)/2 when β ≤ 1) and

0<H≤M h 1 =0 R -1 E e(hαY n + h 1 αY n+1 ) ≤ C 1 M η -1 log M n (3β-1)/2
(see ( 6), [START_REF] Cramér | Prime numbers and probabilities[END_REF] and Lemma 7).

Therefore 0<H≤M R -1 E e(hαY n + h 1 αY n+1 ) ≤ 2C 1 M η -1 log M n (3β-1)/2 . ( 8 
)
As a consequence of (8) and Lemma 5, we get

∆(Q n , U 2 ) ≤ C 1 M + M η -1 log M n (3β-1)/2
where the constant C is independent of M and n. Now we replace M by the integer part of n (3β-1)/2η . In this case,

M η -1 n (3β-1)/2 ∼ 1 n (3β-1)/2η and log M ∼ 3β -1 2η log n
and we get

∆(Q n , U 2 ) = O log n n (3β-1)/2η .
Theorem 2 is proved since η > η .

Application to Benford law

All along the present section, a and b are two integers greater than 1 such that log b a is irrational, that is to say such that a is not a rational power of b. We consider the sequence (a Yn ) n which is the random subsequence of (a n ) n generated by our Bernoulli trials. More precisely, we are interested in M b (a Yn ) where M b (x) designates the mantissa of the positive real x in the numeration base b, that is to say the unique number in As already said above, the u.p.m. on the set {{αn} : n = 1, . . . , N } converges weakly to U 1 as N → +∞ when α is irrational. Thus what precedes shows that the u.p.m. on the set {M b (a n ) : n = 1, . . . , N } converges weakly to B b as N → +∞ since log b a is supposed irrational. That is why the sequence (a n ) n is said to be a Benford sequence in base b when log b a is irrational. Among many others [START_REF] Massé | Fast growing sequences of numbers and the first digit phenomenon[END_REF], the sequences (n!) n and (n n ) n are Benford in any base b. The main property of the Benford sequences is the so-called firts digit phenomenon: 1 appears as the leading significant digit about 30.1 percent of the time (instead of 11.1 percent as it might seem at first glance), 2 about 17.6 percent of the time, and so on. See for example [START_REF] Berger | A basic theory of Benford's Law[END_REF] and [START_REF] Chenavier | Products of random variables and the first digit phenomenon[END_REF]Appendix] for relevant background on Benford law.

If we are given the value of M b (a n ) (but not the value of n), then we know precisely the value of M b (a n+1 ) because M b (xy) = M b M b (x)M b (y) . We will see in particular that, by contrast, the random variables M b (a Yn ) and M b (a Y n+1 ) are asymptotically independent when Condition (1) is satisfied.

The two following corollaries are direct consequences of what precedes and of Proposition 1, Theorem 1 and Corollary 1.

Corollary 2. Fix q ∈ (0, 1) and suppose that q n = q for all n and that log b a is irrational. Then the law of M b (a Yn This is the case in particular if q n = 1/n β with 1/3 < β < 1 and if q n = 1/n or q n = 1/n log n and so on.

Rates of convergence

In the present section, b is such that log b 2 is irrational, that is to say: b is not a power of 2. Let F b denotes the set of prime factors of b. Then η(log b 2) ≤ 7.62 when F b ⊂ {2, 3}, η(log b 2) ≤ 15.28 when F b ⊂ {2, 3, 5} and η(log b 2) ≤ 256.87 when F b ⊂ {2, 3, 5, 7} (see [START_REF] Massé | Random walks on the circle and measure of irrationality[END_REF]).

Recall that Q n designates the law of ({αY n }, {αY n+1 }) and that Note that, by [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF],

∆(Q n , U 2 ) := sup
∆(Q n , U 2 ) = ∆(Q * n , B 2 b ) (10) 
if α = log b 2.

The following corollary is a direct consequence of what precedes and of Theorem 2. 

Concluding remark

Here q n = 1/n β with 0 < β < 1. It is possible to evaluate the almost sure order of magnitude of Y n by using Proposition 6.2 in [START_REF] Schneider | Recurrence properties of sequences of integers[END_REF] which states that S n is almost surely equivalent to q 1 + • • • + q n whenever q n = +∞. The sequence (Y n ) being a (random) subsequence of (n), n = S Yn is almost surely equivalent to q 1 + • • • + q Yn . In particular (1 -β) -1 Y 1-β n is almost surely equivalent to n. So we can say that Y n is almost surely of the same order of magnitude than n (1-β) -1 .

On the other hand, it is proved in [START_REF] Cai | A local Benford law for a class or arithmetic sequences[END_REF] that, if u n = {αn γ }, the u.p.m. on the set {(u n , . . . , u n+k ) : n = 1, 2, . . . , N } converges weakly to U k+1 when γ > k but not when γ ≤ k. That why we have been surprised to find that Condition (1) ensures the asymptotic independence of {αY n }, . . . , {αY n+k } whatever is the value of k. In view of the results in [START_REF] Cai | A local Benford law for a class or arithmetic sequences[END_REF] and the above evaluation, we expected something like: {αY n }, . . . , {αY n+k } are asymptoticly independent if

(1 -β) -1 > k but not if (1 -β) -1 ≤ k -1.
However the comparison between the two situations would be more pertinent if we have investigated the weak convergence as N → +∞ of the u.p.m. on the set {({αY n (ω)}, . . . , {αY n+k (ω)}) : n = 1, 2, . . . , N } instead of the distribution of the possible values of ({αY n }, . . . , {αY n+k }) for fixed n.

Lemma 5 .

 5 Let Q stands for the law of a 2-dimensional random vector Z = (Z 1 , Z 2 ) and set H = max(|h|, |h 1 |) and R = max(|h|, 1) max(1, |h 1 |). Then, for every positive integer M ,

9 )

 9 [1, b) such that x = M b (x)b m for some integer m. The investigations on fractional parts and on mantissae are closely related. Indeed, for any positive real number x, {log b x} = log b (M b (x)) and so (M b (x) < t) ⇐⇒ ({log b x} < log b t) (t ∈ [1, b)). (In particular, if Z is a positive random variable, {log b Z} is distributed following U 1 if and only if M b (Z) is distributed following the Benford law in base b, denoted B b here and defined by B b ([1, t)) = log b t for t ∈ [1, b). Moreover, for positive random variables Z n , the law of M b (Z n ) converges weakly to B b as n → +∞ if and only if the law of {log b Z n } converges weakly to U 1 and, for any positive integer k, the law of (M b (Z n ), . . . , M b (Z n+k )) converges weakly to the product probability measure B k+1 b as n → +∞ if and only if the law of ({log b Z n }, . . . , {log b Z n+k }) converges weakly to U k+1 .

Corollary 3 .

 3 ), M b (a Y n+1 ) does not converge weakly to B 2 b as n → +∞ and thus M b (a Yn ) and M b (a Y n+1 ) are not asymptotically independent. Suppose that the q n decrease to zero and sum to +∞ and that log b a is irrational. If condition (1) is satisfied, then, for any positive integer k, the law of M b (a Yn ), . . . , M b (a Y n+k ) converges weakly to B k+1 b as n → +∞ and thus M b (a Yn ), . . . , M b (a Y n+k ) are asymptotically independent.

2 |Q

 2 n [0, s) × [0, t) -st|. Let Q * n denotes the law of M b (2 Yn ), M b (2 Y n+1 ) and set ∆(Q * n , B 2 b ) = sup (u,v)∈[1,b) 2 |Q * n [1, u) × [1, v) -log b u log b v|.

Corollary 4 .

 4 Set q n = 1/n β with 1/3 < β ≤ 1. Then ∆(Q * n , B 2 b ) = O log n n (3β-1)/16 if F b ⊂ {2,

F

  b ⊂ {2, 3, 5} and∆(Q * n , B 2 b ) = O log n n (3β-1)/514 F b ⊂ {2, 3, 5, 7}.For example, if b = 10 andq n = 1/ √ n, then ∆(Q * n , B 2 10 ) = O log n n 1/62and, if b = 10 and q n = 1/n, then ∆(Q * n , B 2 10 ) = O log n n 1/31 .