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Under increasing environmental and financial constraints, ecologists are faced with making decisions about dynamic and uncertain biological systems. To do so,

Introduction

Numerous problems in ecology involve making decisions about the best option among a set of competing strategies. These so-called optimization problems can be solved using mathematical procedures such as linear programming [START_REF] Nash | Linear and Nonlinear Programming[END_REF] which allows the determination of maximum benefits or minimum costs given some objectives and under some constraints for deterministic systems assumed at equilibrium. If uncertainty in the dynamic of the system needs to be accounted for, the Markov Decision Process (MDP, [START_REF] Puterman | Optimal escapement levels in stochastic and deterministic harvesting models[END_REF][START_REF] Williams | Markov decision processes in natural resources management: Observability and uncertainty[END_REF]) model is usually adopted. MDP, an extension of Markov chains, is a decision model in which the system changes from one state to another depending on a decision taken in a given state but does not depend on the previous states or on the previous decisions made.

Once a problem is formalized as a MDP it can be solved using stochastic dynamic programming (SDP) techniques. In ecology, SDP is often used to refer to the mathematical model (MDP) and its solution techniques (SDP). MDPs are usually modeled and solved by going through several successive steps: defining the different objectives and formalizing them as a mathematical function of costs and/or benefits [START_REF] Williams | Analysis and management of animal populations[END_REF]; defining possible states of the system, monitoring the system and making statistical inference on system behavior [START_REF] Nichols | Monitoring for conservation[END_REF]; defining a set of alternative actions that influence the performance of the system; building a dynamic model to describe the system transitions from one state to another after implementing every possible decision; and finally determining the optimal strategy that is the set of decisions that is expected to best fulfill the objectives over time [START_REF] Runge | An introduction to adaptive management for threatened and endangered species[END_REF]). These objectives are formalized in a utility function which prioritizes some desired outcomes by evaluating the benefits of any decision for the system [START_REF] Williams | Analysis and management of animal populations[END_REF]. MDP models highlight the tradeoff between obtaining current utility and altering the opportunities to obtain utility in the future. Such problems abound in ecology because decisions taken today often have important implications for the future behavior of biological systems.

Stochastic Dynamic Programming is an optimization technique used to solve MDPs and is appropriate for the non-linear and random processes involved in many biological systems. While the time dimension is often neglected in optimization procedures such as classical linear or nonlinear programming, SDP determines state-dependent optimal decisions that vary over time [START_REF] Williams | Analysis and management of animal populations[END_REF]. Finally SDP is acknowledged to be one of the best tools for making recurrent decisions when coping with uncertainty inherent to biological systems [START_REF] Possingham | Optimal fire management strategies for threatened species: An application of stochastic dynamic programming to state-dependent environmental decision-making[END_REF][START_REF] Possingham | The business of biodiversity: applying decision theory principles to nature conservation[END_REF][START_REF] Wilson | Prioritizing global conservation efforts[END_REF][START_REF] Chadès | General rules for managing and surveying networks of pests, diseases, and endangered species[END_REF].

The principle of SDP relies on the partitioning of a complex problem in simpler subproblems across several steps that, once solved, are combined to give an overall solution (Mangel & Clark 1988;[START_REF] Lubow | SDP: Generalized software for solving stochastic dynamic optimization problems[END_REF][START_REF] Clark | Dynamic state variable models in ecology: methods and applications[END_REF]. SDP was first developed and used in applied mathematics, in economics and engineering [START_REF] Bellman | Dynamic Programming[END_REF][START_REF] Intriligator | Mathematical optimization and economic theory[END_REF] and has gained attention in ecology (Mangel & Clark 1988;[START_REF] Shea | Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management[END_REF]. A pioneer use of SDP was in behavioral ecology to determine individuals' breeding and foraging strategies maximizing fitness (Mangel & Clark 1988;[START_REF] Houston | Dynamic models in behavioral and evolutionary ecology[END_REF][START_REF] Ludwig | Life history strategies for energy gain and predator avoidance under time constraints[END_REF]. Early work in resource management included applications to pest control [START_REF] Winkler | An optimization technique for the bud worm forest-pest model[END_REF]) and fisheries management [START_REF] Walters | Optimal harvest strategies for salmon in relation to environmental variability and uncertain production parameters[END_REF][START_REF] Puterman | Optimal escapement levels in stochastic and deterministic harvesting models[END_REF]. In conservation biology, SDP has been successfully used to optimize resources allocation [START_REF] Westphal | The use of stochastic dynamic programming in optimal landscape reconstruction for metapopulations[END_REF][START_REF] Martin | Optimal conservation of migratory species[END_REF][START_REF] Chadès | General rules for managing and surveying networks of pests, diseases, and endangered species[END_REF]) and more recently to manage natural resources in the context of global change [START_REF] Martin | Structured decision making as a proactive approach to dealing with sea level rise in Florida[END_REF]. In forestry, SDP allowed achieving a balance between the protection of biological diversity and sustainable timber production [START_REF] Lembersky | Optimal policies for managed stands: an infinite horizon Markov decision process approach[END_REF][START_REF] Teeter | Optimal forest harvest decisions: A stochastic dynamic programming approach[END_REF][START_REF] Richards | Optimal fire management for maintaining community diversity[END_REF]. SDP has also been implemented in various studies aiming at controlling the spread of weeds, pests or diseases (Shea et al. 2000;[START_REF] Baxter | Optimizing search strategies for invasive pests: learn before you leap[END_REF][START_REF] Pichancourt | Simple rules to contain an invasive species with a complex life cycle and high dispersal capacity[END_REF], to determine the best irrigation policies [START_REF] Martin | Structured decision making as a conceptual framework to identify thresholds for conservation and management[END_REF] or to enhance the efficiency of a bio-control agent [START_REF] Shea | Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management[END_REF]. In wildlife management, SDP has often been used to find the optimal rates for harvesting populations [START_REF] Johnson | Uncertainty and the management of mallard harvests[END_REF][START_REF] Milner-Gulland | A stochastic dynamic programmingmodel for the management of the saiga antelope[END_REF][START_REF] Spencer | Optimal harvesting of fish populations with nonlinear rates of predation and autocorrelated environmental variability[END_REF][START_REF] Martin | Optimal control of native predators[END_REF].

Despite the flexible nature of SDP and its ability to solve important decision-making problems in ecology, its transfer to ecologists is difficult. One reason for the slow uptake is the mathematical knowledge required for SDP to be implemented. Here, we provide a primer on SDP for ecologists. We introduce the main concepts of SDP, provide a step-by-step procedure to implement dynamic programming in a deterministic system and illustrate how to make decisions in the presence of uncertainty. We demonstrate the applicability of SDP by applying this approach to data from a wolf population controlled by culling. We provide R code to run the models as well as procedures in specialized toolboxes implementing SDP that can conveniently be amended for one's own purposes.

The six steps of stochastic dynamic programming

The aim of SDP is to find the solution of an optimization problem based on the "principle of optimality" which states that "an optimal policy has the property that, whatever the initial state and decision are, the remaining decisions must constitute an optimal policy with regards to the state resulting from the first decision" [START_REF] Bellman | Dynamic Programming[END_REF]. The principle of optimality allows us to consider a static problem for the current period by assuming that all future decisions will be made optimally. The effect of the current action thus contributes to both current utility and to future utility through its effect on the future state of the system. In this way SDP finds a strategy that balances current rewards with future opportunities. SDP is the technique used to solve a Markov decision problem. One can conceive solving a Markov decision problem through six steps described below. Notations are gathered in Table 1 and a non-exhaustive list of studies that have used SDP is given in Table 2.

The first step defines the optimization objective of the problem. An objective must be specific to the problem, measurable with indicators, acceptable by involved actors, achievable and defined over a period of time also called time horizon. Several objectives can be defined depending on the type of ecological problem we are investigating but an optimization objective must be defined as maximization or minimization function over a time horizon [START_REF] Puterman | Optimal escapement levels in stochastic and deterministic harvesting models[END_REF][START_REF] Converse | A matter of tradeoffs: Reintroduction as a multiple objective decision[END_REF]. The time horizon can be defined as finite or infinite.

For many resource problems choosing the time horizon is quite challenging. An infinite horizon is often viewed as consistent with sustainability but inconsistent with legal mandate.

The choice of a finite or infinite horizon depends on a number of factors. First, there may be mandated constraints on a problem. Conservation and management programs are often planned on a limited time and budget, and are bounded by political decisions also taken at regular time intervals. For instance, the conservation status of species listed under Appendix 2 of the Habitat Directive is evaluated every 5 years by the European commission (92/43/EEC).

As a consequence, some governments evaluate every 5 years decisions related to management of wildlife and habitats present within their territory [START_REF] Meedat -Map | Plan d'action national sur le loup 2008-2012, dans le contexte français d'une activité importante et traditionnelle[END_REF]. For private decisions a finite horizon is often appropriate for situations in which firms hold time limited rights to extract resources. Finite horizons should be used carefully in situations where they are arbitrary specified. It is very possible that the "optimal" decision as the time horizon approaches will reflect only very short run goals. For example, a conservation problem that penalizes failure to meet a target performance level at the time horizon may result in short run decisions designed only to meet the target rather than designed to maximize the long run conservation goals. Objectives in management for harvested populations typically focus on maximizing the harvest opportunities, while insuring sustainable populations over the time horizon (Hauser et al. 2001[START_REF] Nichols | Adaptive harvest management of North American waterfowl populations: a brief history and future prospects[END_REF]. Alternatively the monetary value of the economic yield from harvest might be used (Millner-Gulland 1997, Table 2). Objectives can include both conservation and exploitation of natural resources and can also include several, possibly conflicting, and conservation goals. For instance a conservation problem might deal with the protection of two species that are negatively interacting between one another over an infinite time horizon [START_REF] Chadès | Setting realistic recovery targets for interacting endangered species[END_REF], or with the protection of a habitat threatened by an invasive species by determining the optimal management strategy to eradicate the species over a finite time horizon [START_REF] Baxter | Optimizing search strategies for invasive pests: learn before you leap[END_REF]. In metapopulation models, often used in invasion biology, epidemiology and landscape ecology, objectives can also be expressed as maximizing or minimizing the number of sites occupied by a species (Shea &Possingham 2000, Chadès et al. 2011, andTable 2). When the economic costs of management and monitoring, as well as the cost of failure to maintain a viable protected species are well known, the objective can be clearly formalized to determine the best way to allocate funding to protect a threatened species [START_REF] Regan | Optimal eradication: when to stop looking for an invasive plant[END_REF][START_REF] Baxter | Optimizing search strategies for invasive pests: learn before you leap[END_REF].

The second step is to define the set of states that represents the possible configuration of the system at each time step. Let X t be the state variable of the system at time t. The state variable can be a population abundance [START_REF] Milner-Gulland | A stochastic dynamic programmingmodel for the management of the saiga antelope[END_REF][START_REF] Runge | The importance of functional form in optimal control solutions of problems in population dynamics[END_REF] or predator abundance and prey productivity [START_REF] Martin | Optimal control of native predators[END_REF]. Others studies have considered a qualitative state variable such as site occupancy of a colonizing species [START_REF] Shea | Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management[END_REF]. We refer to Table 2 for additional examples.

In the third step, one needs to define the decision variable, A t , that is the component of the system dynamic that one can control to meet the objective. For example, it can be expressed as the way of releasing a bio-control agent in crop sites: many individuals released in few sites or few individuals released in many sites. Another example of control actions is different harvest rates in each age class [START_REF] Martin | Optimal control of native predators[END_REF] or sex class of a species [START_REF] Milner-Gulland | A stochastic dynamic programmingmodel for the management of the saiga antelope[END_REF].

In a fourth step, one needs to build a transition model describing the system dynamics and its behavior in terms of effect of a decision on the state variables (Table 2). This transition model follows a Markov process in which the future state X t+1 depends on the current state X t and the action adopted A t but not on the past state and action pairs of the system. In a fifth step, one needs to define the utility function U t at time t also called the immediate reward. It might be expressed in terms of economic benefits, desired ecological status or social improvement (Table 2) and might be quantified in a more or less subjective way [START_REF] Simon | Rational Decision making in Business Organizations[END_REF][START_REF] Isen | Influence of positive affect on the subjective utility of gains and losses: It is just not worth the risk[END_REF][START_REF] Milner-Gulland | A stochastic dynamic programmingmodel for the management of the saiga antelope[END_REF]. This function, denoted as ! ! ! ! , ! ! , represents the desirability of acting in a given state of the system and is defined in terms of the state variable X t (step 2) and the decision A t (step 3). The utility values can accrue over either a finite or an infinite time horizon depending on the objectives formalized in step 1. In the former case a terminal reward or salvage value ! ! !!! can also be specified that measures the utility that accrues if the system is left in a given state after the last decision is made. In population biology and behavioral ecology, R(X T+1 ) is often chosen to be the desired abundance of a population or the energy state of an individual (Mangel & Clark 1988;[START_REF] Martin | Optimal control of native predators[END_REF].

Sixth, the final step consists in determining the optimal solution to the optimization problem. The optimal solution also called strategy or policy maximizes our chance of achieving our objective over a time horizon. An optimal solution is defined as a function that maps an optimal decision to each state, ! ! : ! ! → ! ! . Hereafter we examine the three most commonly used approaches to solve an MDP: backward iteration, value iteration and policy iteration.

How to determine the optimal solution?

Several algorithms using SDP technique are available to find the optimal solution of an MDP. How to choose the most appropriate algorithms mainly depends on the optimization objective (step one). Backward iteration is the run over a finite horizon in time-reversed fashion. It leads to a time and state specific optimal solution. Value iteration and policy iteration are used to solve infinite time horizon problems. Both techniques provide an optimal action expressed as a time independent function.

OPTIMIZATION PROCEDURE OVER A FINITE HORIZON

According to the principle of optimality [START_REF] Bellman | Dynamic Programming[END_REF], an efficient way to find an optimal decision is by reasoning backward in time. More precisely, it consists in assuming that the last decision taken at the horizon time T is optimal and by choosing what to do in every remaining time step. T is the time required to reach the optimal solution. Let π* be a vector that maps the best decision for each state at the horizon time. π * is the set of decisions (A) associated with the maximum value function of the set of states (V(X)). The finite horizon problem can be written formally as

! ! ! ! = max {! ! } !!! ! ! !!! ! ! ! , ! ! ! !!! + ! !!! ! ! !!! !"#1
The expression includes two parts, the sum of the discounted utility values from time t to the horizon T and the discounted terminal reward (R(X T+1 )), which is a function of the state that the system is left in, ! !!! , after the last decision is taken. The discount factor, 0 < ! ≤ 1, represents the value of the reward gained in the next period relative to the reward obtained in the current period [START_REF] Martin | Structured decision making as a proactive approach to dealing with sea level rise in Florida[END_REF]. It can also reflect a measure of confidence level in the predictions of the dynamic model. Predictions made for the near future are generally more certain than the ones made for the distant future.

In the backward iteration algorithm, the starting point is to realize that there exists a recursive relationship that identifies, for each state, a value function for step t, denoted V t (X t ), given that step V t+1 (X t+1 ) has already been solved (Appendix S1):

! ! ! ! = max ! ! ! ! ! ! , ! ! + !! !!! (! !!! ) !"# 2
As suggested by the Principle of Optimality, the Bellman equations express the optimization problem in terms of the current decision alone. The first part of this equation is made of the immediate reward represented by the utility function while the second part is the value function for the next period, V t+1 (X t+1 ). The procedure is initialized by setting V T+1 (X T+1 )=R(X T+1 ). Then, the previous value V T (X T ) is computed, then V(X T-1 ), and so on.

The optimal action, that is the action associated with each initial state X 0, is obtained by repeated backward recursions from the horizon time T to present time 0 (see Figs 1b, c, andd) and by taking the argument of the maximum initial values V 0 (X 0 ) (Fig 1d andFig 2).

Important issues in using a finite horizon approach, besides the choice of the horizon T and of the terminal value of the system, R(X T+1 ), is the choice of a discount factor ! [START_REF] Lubow | Adaptive Stochastic Dynamic Programming (ASDP): Version 3.2[END_REF] which lies between 0 and 1 [START_REF] Bellman | Dynamic Programming[END_REF]. Discounting is often specified in terms of a discount rate r, with the (annual) discount factor given by ! = 1/(1 + !). Conservation biologist tend to advocate the use of a ! of 1, meaning no discounting the value of future system states. In such situations future utility contributes as much to the overall objective as current utility. Even though not discounting future utility complies with the sustainability principle, most economists recommend using a discount factor less than 1.

Many people give more importance in current than future rewards, especially when future rewards are risky [START_REF] Norgaard | Sustainability and Discounting the Future[END_REF]. Most problems in resource management involve utilities that have some social and economic cost and benefit, associated with them. When the resource has a non-market value, one difficulty is to convert the ecological, social and economic costs and benefits into a common scale [START_REF] Wam | Economists, time to team up with the ecologists[END_REF]. Such scale differences and issues of utility incommensurability impede the determination of an appropriate discount rate (whether financial, social or ecological). The method commonly used for selecting a discount rate is based on a market rate for a relatively risk-free asset such as a US Treasury bond. Recent recommendations for environmental projects suggest the use of r=2% for long-term projects (http://www.whitehouse.gov/omb/circulars_a094/a94_appx-c; see also EU's "Guide to Cost-Benefit Analysis of Investment Projects").

OPTIMIZATION PROCEDURE OVER AN INFINITE HORIZON

With infinite horizon problems both the value function and the optimal policy are independent of time. The problem to be solved can be written as

! ! ! = max !(!) ! !!! ! ! ! , !(! ! ) ! !!! !"#3
Starting with an arbitrary value function and iterating over an infinite-horizon model with policy or value iteration causes the optimal action to converge towards a time independent function also called a stationary strategy with the optimal solution only depending on the state of the system and not on time.

The first algorithm used to solve MDP over infinite horizon, called value iteration, follows the same procedure as described above except that the Bellman equation is applied iteratively until a convergence criterion is met. A typical convergence criterion [START_REF] Boutilier | Stochastic dynamic programming with factored representations[END_REF]) is:

!(! !!! ) -!(! ! ) ≤ ! 1 -! 2! !"#4
where the norm !(! !!! ) -!(! ! ) is the maximum absolute value of the difference between two successive decision values, for all possible states. The value of ! is usually chosen to be small, so that when the condition in Eq. 4 is satisfied the value function is within ! of its optimal value. In our example we fixed ! at 10 -3 as in [START_REF] Boutilier | Stochastic dynamic programming with factored representations[END_REF]. We may notice that on an infinite time horizon it is necessary to discount future utility otherwise some computation difficulty can be encountered. In such situation, the value function will never be stationary, unless there is a probability of 1 that the state variable reaches and stays in a nonvalued state at some time. Otherwise the value function increases without bound as the time horizon goes to infinity. It is therefore more appropriate to use an average value approach which attempts to maximize the per period expected value function.

Another algorithm called policy iteration [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF] involves alternating between finding the best policy (or strategy) given the current guess of the value function and determining the value function associated with the current policy (Appendix S2). One advantage of the policy iteration algorithm is that it can run faster than the value iteration [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF]. The policy iteration approach can be decomposed in three steps.

In the first step (evaluation), a value function is calculated from a guessed policy [START_REF] Boutilier | Stochastic dynamic programming with factored representations[END_REF]. Let A t be any policy which describes the actions that are taken for any value of the state X t , so that X t+1 is a function of both variables that can be written as X t+1 =g(X t , A t ). The value function associated with this policy can be determined by solving a system of linear equations, one for each value of the state variable

! ! ! ! = ! ! !, ! ! + !! !!! !(!!, !!) !"# 5
In the second step (improvement), we find the policy A' that satisfies, for each value of the state

max !! ! ! ! , !′ ! + !! !!! !(! ! , ! ! ) !"# 6
The same procedure is performed again (back to first step) until the two policies A and A' do not change.

Making decisions in presence of uncertainty

Thus far we have focused on deterministic MDPs. Here, we introduce how to accommodate uncertainty in dynamic programming. Let P be a transition matrix displaying the conditional probabilities of the system at state X t at time t and action A t (in rows) to change into states X t+1 (in columns) given the action. In SDP, there are several possible next states, given the action taken and the current state and each of them has a certain probability to be achieved. The Bellman equation can therefore be rewritten as the utility value at the current state (which holds in the deterministic version) and the expected future rewards that are the products of transition probabilities and values of all possible next states (Appendix S1), no matter which procedure is being used. For instance in the backward iteration procedure, the stochastic version of the equation is

! ! ! ! = max ! ! ! ! ! ! , ! ! + ! ! ! !!! ! ! , ! ! ! !!! (! !!! ) ! !!! !"#. 7
One may notice that the difference from Eqn 2 is the addition of the transition probability matrix. Actually, the deterministic version of the Bellman equation can be rewritten as a special case of SDP, where P is a matrix of 0s with a single 1 in each row. In SDP, P consists of transition probabilities depending on stochastic events related to demographic and/or environmental stochasticity or to the action taken, the effect of which can be uncertain. Then, the transition matrix is stochastic and the rows consist of non-negative values that sum to 1.

We distinguish three types of uncertainty that can be accounted for to solve a Markov decision problem. First, management uncertainty results from the inability to accurately predict the transition states after applying an action. This can be due to natural random process or to the inability to implement the action correctly. Populations are subject to environmental stochasticity that can strongly affect their vital rates through changes in weather conditions, habitat structure or other external biotic and abiotic factors [START_REF] Regan | A taxonomy and treatment of uncertainty for ecology and conservation biology[END_REF][START_REF] Martin | Optimal control of native predators[END_REF]. Demographic stochasticity is also a common source of natural uncertainty. It reflects the variability in survival and reproduction among individuals and is likely to occur in small size populations [START_REF] Lande | Risk of population extinction from demographic and environmental stochasticity and random catastrophes[END_REF]. Sometime actions themselves are taken in an uncertain way. For instance, a planned harvest rate can sometimes not be achieved by managers for many reasons even though it was assumed to be the best solution [START_REF] Milner-Gulland | A stochastic dynamic programmingmodel for the management of the saiga antelope[END_REF][START_REF] Baxter | Optimizing search strategies for invasive pests: learn before you leap[END_REF][START_REF] Richards | Optimal fire management for maintaining community diversity[END_REF]; see also Table 3). When management uncertainty is unknown, an alternative optimization approach to backward iteration, policy or value iteration is reinforcement learning. This technique makes sequential decisions when transition probabilities or rewards are unknown and cannot be estimated by simulation [START_REF] Chadès | Setting realistic recovery targets for interacting endangered species[END_REF]. The Q-learning algorithm is used in which the optimal value V 0 * and the corresponding action are estimated by a learning process of observed transitions and values obtained with function approximation [START_REF] Chadès | Managing interacting threatened species: A reinforcement learning decision theoretic approach[END_REF]; Table 3). A potential issue with this method, originally developed in robotics, is that it requires a large number of observations to build the transition matrix.

The second type of uncertainty deals with that coming from the partial knowledge of the value of the state variable. To cope with such uncertainty, one may use Partially Observable Markov Decision Process (POMDP), a procedure that can solve stochastic dynamic problems assuming we are unable to observe perfectly the state of the system [START_REF] Chadès | When to stop managing or surveying cryptic threatened species[END_REF]. In a population model a POMDP might augment an MDP to include detection probability matrices. The detection history is not explicitly represented but rather is summarized by a belief state or probability distribution over the state space representing where we think the state of the system is [START_REF] Chadès | When to stop managing or surveying cryptic threatened species[END_REF]; see also Table 3).

Unfortunately, POMDP are even more complex to solve than MDP, and to date it is possible to compute exact solutions only for small size problems [START_REF] Chadès | General rules for managing and surveying networks of pests, diseases, and endangered species[END_REF].

A third form of uncertainty is model uncertainty, which refers to the lack of certainty about the structural frame shaping the behavior of the system [START_REF] Walters | Adaptive management of renewable resources[END_REF][START_REF] Punt | Fisheries stock assessment and decision analysis: the Bayesian approach[END_REF]. Adaptive Management is a common approach adopted to reduce such uncertainty by testing multiple models through the ongoing process of management and monitoring occurring under the principle of "learning by doing" [START_REF] Runge | An introduction to adaptive management for threatened and endangered species[END_REF]. In adaptive management, belief weights are attributed to each model depending on the comparison between model predictions of the outcome of an action and the observed response from monitoring. Such a comparison allows us to increase our belief in the model that is most likely to give rise to the observed response.

Two approaches, based on the role of learning are then conceivable [START_REF] Williams | Markov decision processes in natural resources management: Observability and uncertainty[END_REF]. Passive adaptive management assumes learning is a by-product of decision making in which the models weights are updated by applying Bayes theorem but remain constant during the optimization process [START_REF] Williams | Analysis and management of animal populations[END_REF]. For instance, [START_REF] Martin | Optimal control of native predators[END_REF] used passive adaptive management to determine an optimal harvest strategy to control raccoons to improve oystercatcher productivity. They considered two models, one assuming no effect of raccoons on oystercatchers' productivity and another one assuming a strong effect. In the 

Software packages performing dynamic programming

There are several software packages that allow the implementation of SDP. ASDP (Lubow 1995, available MDPSolve and the MDPtoolbox implement the value iteration and the policy iteration algorithms, while ASDP uses only the former. ASDP does not use the convergence criterion discussed above for infinite time horizon but stops after the policy remains the same for a specified number of iterations. MDPSolve and MDPtoolbox deal with management uncertainty in finite and infinite time horizons (Table 3). MDPtoolbox satisfyingly copes with unknown management uncertainty through the implementation of Q-learning in an infinite horizon while MDPSolve does not. MDPSolve enjoys capabilities that permit solving POMDP and addressing model uncertainty, while MDPtoolbox does not. MDPSolve also allows defining probability of state transition not only in the form of a matrix but also in the form of a function. The "f2p" and "g2p" functions create transition matrix from conditional density functions or from any functional transition representation that can include random shock, reflecting environmental variation or other process noise. These functions can be very useful for problems with continuous state variables that need to be discretized [START_REF] Nicol | Which States Matter? An Application of an Intelligent Discretization Method to Solve a Continuous POMDP in Conservation Biology[END_REF]. Otherwise different interpolation methods exist to analytically discretize the transition function before running either of the two software packages (MDPSolve and MDPtoolbox). In the following section, we provide an application of SDP and solve the associated decision problem using both MDPSolve and MDPtoolbox. Although we emphasize that this exercise does not represent a general introduction to these packages (we refer to the user's guides instead), we hope it will be a good starting point. In addition to the use of these packages, we demonstrate that MDP problems can be implemented in program R and provide code that can be amended for one's own purpose.

Application to wolf culling

In this section, we illustrate each step of SDP required to derive an optimal management strategy to control a population of wolves in Europe. We consider several decision models of increasing complexity for wolf culling. First, we build a deterministic model to keep things easy and illustrate the notation. Then, we illustrate how to make decisions when uncertainty exists.

SETTING THE SCENE

We go through the six steps of dynamic programming. First, the optimization objective is to maximize the population while providing that the population does not exceed 250 individuals (N max ) and remains above 50 individuals (N min ). These thresholds are somewhat arbitrary from a biological perspective, but were selected to obtain results in a reasonable amount of time while scanning a relatively broad range of abundance states.

Second, the state variable X t is naturally population size N t at time t, which ranges from 0 to K where K is an arbitrary upper bound on the state space. Third, the control variable A t is the harvest rate H t , a discrete variable ranging from 0% to 100% with an increment of 1/(K+1) therefore allowing as many possible actions as there are number of states. Fourth, regarding the transition model describing population dynamics and the consequences of actions (harvest H t ) on the state variable (abundance N t ), we adopted an exponential growth (Fig 1), which is suitable to describe a population currently in a colonization phase. More precisely, we used:

! !!! = !! ! 1 -! ! !"#. 8
where λ is the population growth rate. The value of λ was extracted from the literature using the French population as an example (the estimate of λ is 1.25 with 95% confidence interval [1.14; 1.37]; [START_REF] Marescot | Capture-recapture population growth rate as a robust tool against detection heterogeneity for population management[END_REF]. Fifth, utility is based on abundance and harvest rate bearing in mind the objective to keep a population size between N min and N max . We choose a utility function increasing linearly with abundance when the current state is within the objective range. In mathematical terms, we write:

U t = N t (1-H t ) α t Eqn. 9
where ! ! takes the value 1 if N min ≤ N t+1 ≤ N max and 0 otherwise. Given the current population size N t and harvest rate H t , if the future state is above the utility threshold N max or below N min , the penalty factor ! ! takes a null value so does the utility function. If, however, the future population size N t+1 is in the target abundance range, then the utility of harvest level H t in state N t is the population size after harvest but before annual growth occurs (Fig 1 .b). An alternative utility function could be defined only on the current abundance since no economic cost was considered here. Adopting the general formulation in which utility is defined as a function of current action would be useful to incorporate economic costs and payoffs. Sixth, we need to solve the Bellman equation using the value iteration or the policy iteration algorithm.

DETERMINISTIC CASE

We first ran a deterministic model over an infinite time horizon using both value iteration and policy iteration algorithms.

There was also an analytic solution to this deterministic MDP, which enables us to validate the approach. With an objective of keeping a population between Nmin and Nmax, the optimal action for a state n is a harvest rate of the maximum between 0 and 1 -Nmax / (λ × n). The three different methods provided the same optimal harvest rates (Fig. 3). The strategy of no From there, optimal harvest rate increased from 0.8 % up to 20%. The highest harvest rate was reached at the utility abundance threshold of 250 individuals (Fig. 3). We provide R code to implement the resolution of this MDP (Appendices S1 and S2). This example was also run in MDPSolve and MDPtoolbox (Appendix S3 for the scripts and S4 for the numeric values).

The solution demonstrates the tradeoff between current and future utility inherent in dynamic programming problems. Here there is no reason to cull unless the population will exceed Nmax in the next period. If the population is high enough, however, it is optimal to forgo current utility by culling enough to ensure that utility is obtained in the next period.

COPING WITH UNCERTAINTY

Besides the deterministic model, we consider models with demographic stochasticity that generates variability in population growth rates arising from random differences among individuals in survival and reproduction within a season or a year [START_REF] Lande | Risk of population extinction from demographic and environmental stochasticity and random catastrophes[END_REF]). R code is provided to run this additional example (Appendix S5).

We assume that the state variable is distributed according to a Poisson distribution:

! !!! ~!"#$ ! ! ! 1 -! ! Eqn. 10 with mean value E(! !!! ) = ! ! ! 1 -! ! equal to its deterministic counterpart (Appendix S
1 and 2). The transition probabilities are now changing across the different states according to a Poisson distribution:

! ! !!! = ! !!! | ! ! = ! ! , ! ! = ℎ ! = ! ! !! ! (!!! ! ) !! ! (1 -ℎ ! ) ! !!! ! !!! ! !"#. 11
We found that harvesting was not recommended as long as population was below 200 individuals. As in the deterministic model, above this abundance threshold, harvesting increased from 0.8% to 20 % of population size (Fig. 4). When population was already at the upper objective limit N max , 50 individuals were to be removed.

Discussion

Stochastic dynamic programming is a valuable tool for solving complex decision making problems that has numerous applications in conservation biology, behavioral ecology, forestry and fisheries sciences. It provides an optimal decision that is the most likely to fulfill an objective despite the various sources of uncertainty impeding the study of natural biological systems. The formalization of objectives of any Markov decision problem is given by the utility function that allows prioritizing the preferences of the ones who make the decisions (decision maker, manager, specimen…). As opposed to the dynamic model, the representation of utility is subjective and hence can be difficult to define.

DIFFERENT WAY OF DEFINING A UTILITY FUNCTION

The use of dynamic programming implies a particular formalization of the objective into a utility function. The utility is a function of one or more decision variables, themselves defined on the system states and actions. Utility is a sometimes defined with constraints that can reflect different decision rules [START_REF] Williams | Analysis and management of animal populations[END_REF].

Problems in resource management often deal with tradeoffs not only between current and future objectives but also tradeoff between multiple current objectives. For example, one tradeoff objective is to control and protect a predator that is potentially threatened. Other objectives can be to restore natural habitat while minimizing action cost and allowing some recreational activities. When multiple objectives are involved, different decision variables can be considered. The objective can be to find a relevant utility optimum reflecting the tradeoff between the different decision variables (for instance the habitat quality and the intensity of recreational activity) which can respond differently to decisions (restoration). In such cases some weighting scheme must be used to express the different decision variables in common units. For example, suppose that E is an environmental performance of variable and B is the benefits from recreation activities and C is the financial cost of an action. Utility can be define as a weighted sum of decision variable U=wE+B-C where w is a weight that assigns a monetary value to environmental variable.

An alternative to using weighted sums is to use a multiplicative functional form such as U=E a B b . The parameters a and b serve two functions. First, if a and b are both positive and if a > b, it implies that environmental variable is more important than the recreation variable.

The relative value of a to b changes the weight that is placed on E versus B. Second, if a or b value is less than 1 in absolute value, it implies that the marginal contribution of an additional unit is smaller for larger values of the variable than for smaller one. This representation is also appropriate when it is deemed more important to save an additional individual of a protected species such as the wolf in France when there are very few remaining than when the population is more abundant. Note that, unlike the additive utility form, this multiplicative form is not affected by the scale of either variable.

Another approach is to convert one decision variable into a constraint or to use a penalty function for failure to meet the target. This approach simplifies the multiple objectives into a single constrained objective [START_REF] Converse | A matter of tradeoffs: Reintroduction as a multiple objective decision[END_REF]. For instance one objective can be to improve habitat quality given a limited budget of $50000, while allowing a minimum of 100 h/year of recreational activities. For example U= E if (B≥100h/year) and if (C< $50000) otherwise U = 0 otherwise. Here the decision variable is the intensity of recreation and action cost has been converted into a constraint. This avoids the need to make comparisons between variables of different types but it also has implications that an analyst should be aware of.

First, if the system never reaches the threshold implies by the two constraints (100h/year of recreation and a budget of $50000) it means that both B and C are irrelevant. Second, it implies that once one threshold is reached further increases in C or further decreases in B are irrelevant. Finally it should be noted that this utility is not the same as optimizing with respect to E subject to a long run expectation that the thresholds are satisfied.

LIMITS OF DYNAMIC PROGRAMMING: CURSE OF DIMENSIONALITY

Despite the flexibility of dynamic programming, one has to find a trade-off between biological realism and model complexity when tackling an optimization problem. Indeed, DP methods often face the issue known as 'the curse of dimensionality' which states that, when more state variables are added in the model, the size of the DP problem increases exponentially [START_REF] Walters | Ecological optimization and adaptive management[END_REF][START_REF] Schapaugh | A simple method for dealing with large state spaces[END_REF]. To overcome this computational complexity, approximate optimization methods can be used such as heuristic sampling algorithms that proved efficient for models with several variables (Nicol & Chadès 2011). These methods approximate the optimal solution given the starting state by simulating the possible future states the more likely to occur. Simulating only possible future states lightens the computational calculation in comparison to the value or policy iteration procedure in which values are computed for all possible states.

PERSPECTIVES FOR WOLF POPULATION MANAGEMENT

The aim of this paper was to demonstrate the usefulness and relative ease of SDP. We hope that this paper can serve as an entry point into the extensive literature and potential applications of SDP in ecology. For the sake of clarity, we made assumptions to keep the illustration simple, but SDP can accommodate several useful extensions. For example, we did not include socio-economic constraints in the modeling process. However, SDP allows the incorporation of such factors by maximizing several objectives simultaneously using complex tradeoffs in the utility function [START_REF] Walters | Ecological optimization and adaptive management[END_REF][START_REF] Milner-Gulland | A stochastic dynamic programmingmodel for the management of the saiga antelope[END_REF][START_REF] Runge | The importance of functional form in optimal control solutions of problems in population dynamics[END_REF]. In our example, economic constraints could be incorporated via a trade-off between monetary loss from livestock depredation, impact of wolves on game abundance and indirectly on hunting activity, the receipts from ecotourism and the cost of wolf culling (e.g.

Milner-Gulland 1997). Second, the lower abundance limit could also be refined based on an ecological threshold that once reached is irreversible [START_REF] Holling | Resilience and stability of ecological systems[END_REF][START_REF] Bodin | The usefulness of stability concepts in forest management when coping with increasing climate uncertainties[END_REF].

Using such thresholds would be relevant for a protected species since it would insure population viability without necessarily changing the optimal policy [START_REF] Martin | Structured decision making as a conceptual framework to identify thresholds for conservation and management[END_REF].

Additionally, further work is needed to compare optimal strategies obtained with alternative population dynamic models. Indeed the choice of exponential growth is an adequate model for a colonizing population but when a population is established and the habitat saturated this model becomes inappropriate. Instead of considering exponential growth, one could use a logistic growth with density-dependent effects such as an Allee effect which has been shown in social species with few breeding units like African wild dogs (Lycaon pictus) [START_REF] Stephens | Consequences of the Allee effect for behaviour, ecology and conservation[END_REF].

PERSPECTIVES FOR ADAPTIVE MANAGEMENT

Structural uncertainty can be defined as the noise arising from our lack of knowledge about system behavior and can be reduced through comparison of multiple models [START_REF] Walters | Adaptive management of renewable resources[END_REF][START_REF] Punt | Fisheries stock assessment and decision analysis: the Bayesian approach[END_REF][START_REF] Williams | Analysis and management of animal populations[END_REF][START_REF] Dorazio | Bayesian inference and decision theory -a framework for decision making in natural resource management[END_REF]. For example, one could also assess the impact of accounting versus neglecting poaching on the final optimal action (Millner-Gulland 1997) or the impact of additive versus compensatory effects of harvesting on annual mortality [START_REF] Runge | The importance of functional form in optimal control solutions of problems in population dynamics[END_REF]. Reducing structural uncertainty is essential for conducting a conservation program, especially when the resulting optimal policy is highly sensitive to models structure and assumptions. In such case, one needs the most accurate predictions in order to optimize future allocation of monitoring and management effort [START_REF] Williams | Analysis and management of animal populations[END_REF][START_REF] Conroy | Application of decision theory to conservation management: recovery of Hector's dolphin[END_REF]. Adaptive management is a sequential action process, specifically designed for conservation problems dealing with structural uncertainty [START_REF] Runge | An introduction to adaptive management for threatened and endangered species[END_REF]. It is an integrated part of decision making that deals simultaneously with predictions on future states and updated beliefs from monitoring [START_REF] Walters | Adaptive management of renewable resources[END_REF]. Using SDP in an adaptive management framework aims at seeking the optimal management strategy while reducing structural uncertainty so better knowledge leads to better actions [START_REF] Martin | Structured decision making as a conceptual framework to identify thresholds for conservation and management[END_REF]). However the real interest of adaptive management in conservation biology is not really to reduce structural uncertainty that sometimes doesn't affect the optimal solution but more to drive a learning process to improve decision given management objectives [START_REF] Runge | An introduction to adaptive management for threatened and endangered species[END_REF].

One common assumption in conservation biology is that a system must be well understood before making any management decision. Monitoring efforts tend to be oriented towards the perspective of understanding system functions more than in the perspective of establishing good decision rules. This leads sometimes to inefficient outlays of conservation funds [START_REF] Caughlan | Cost considerations for long-term ecological monitoring[END_REF][START_REF] Field | Optimizing allocation of monitoring effort under economic and observational constraints[END_REF][START_REF] Chadès | When to stop managing or surveying cryptic threatened species[END_REF]. Considering the environmental issues currently at stake, we agree with [START_REF] Nichols | Monitoring for conservation[END_REF] that active conservation action should be initiated even when the causes of the problem are not fully identified. SDP is a relevant optimization method for making decisions while conducting monitoring. Biologists studying ecological systems are often facing uncertainty, noise and disturbance. Adaptive management is a further natural extension of SDP and should be the preferred approach undertaken whenever a management action is planned. 

  second approach, referred to as active adaptive management, model weights appear in the optimization process. More precisely, the next updated weights are incorporated in the expected sum of future rewards of the Bellman equation. Such approach is the most advanced form of adaptive management. In contrast to passive adaptive management, active adaptive management considers how current decisions will affect future learning and chooses an optimal balance between rewards based on current beliefs and future rewards based on updated beliefs[START_REF] Runge | An introduction to adaptive management for threatened and endangered species[END_REF]. For instance,[START_REF] Mcdonald-Madden | Optimal timing for managed relocation of species faced with climate change[END_REF] used active adaptive management to assess species relocation strategies in the context of climate change. They considered two models, one in which carrying capacity declined over time because of climate change and another one in which climate change had no impact on species carrying capacity.

  culling remained the best strategy until population reached 200 individuals. Above 200 individuals, expected population size reached the utility threshold N max (200 x 1.25 = 250).
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 4 Fig. 4: Optimal harvest obtained from a model incorporating demographic

Table 1 :

 1 Notation used in dynamic programming (X t+1 |X t , A t ) Matrix (number of states at t, number of states at t+1)

	Variable	Notation	Nature
	State Variable	X t	Vector indexed by time
	Control action	A t	Vector indexed by time
	Time	t	Index
	Optimal action	π*	Vector of length the number of states at time t
	Utility	U(X t , A t )	Function of the states and actions
	Transition probability		
	Value	V(X t )	Vector of length the number of states at t
	Discount factor	Β	Real number between 0 and 1

P

Table 2 :

 2 Non-exhaustive list of studies using stochastic dynamic programming.

	Study	State variable	Objective	Actions	Utility function
	Shea &	Site level of colonization:	Bio-control agent colonizing as many	Many agents released in	Number of established sites
	Possingham	empty, insecure, established	sites and as quickly as possible	small patches	
	(2000)			Few agents in several	
				patches	
				Mix of both strategies	
	Venner et al.	Energy supply of the orb-	Optimize fitness by maximizing the	Web building choice	Balance between energy
	(2006)	weaving spider	energy brought by breeding and	possible web size.	gained from eggs laid and
			foraging while minimizing predation		prey caught on the web and
			and starvation risks		energy cost from starvation
					and from predation risks.
	Runge &	Pre-breeding abundance of	Find the optimal harvest rate given	Harvest rate	Total number of harvest
	Johnson	ducks	several recruitment and survival		accumulated through time
	(2002)		functions		
	Martin et al.	Female raccoon abundance	Maintain Oystercatcher productivity	Harvest rate in each age	Total number of raccoons
	(2010)	Oyster productivity	above a level necessary for	class	after harvest with a penalty
			population recovery		factor when oyster
			while minimizing raccoon removal.		productivity goes below a
					threshold
	Millner-	Saiga antilope abundance	Maximize monetary yield while	Harvest rate	Annual monetary yield
	Gulland	Proportion of males and	preserving the saiga population	Proportion of males in	from game hunting, given
	(1997)	females	already threatened by drought	the harvest	the price of the meat, the
					horn and management costs
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Study

d) At time 0, we look one last time at the transition states for N min and N max given the potential actions and the strategy that leads to the highest value that is then the optimal solution. So in the backward iteration, optimal action is reached when the procedure reaches the initial time 0. Here, we display the time sequence of actions standing for the trajectory that leads from any initial state to the final objective that is to keep a population between N min and N max while harvesting as few individuals as possible. In the example, the recursion starts from the end and goes backward in time. Once values of all states are obtained across the time horizon, we can decide which actions to take across the successive transition states. Here, we look at the best trajectory for four initial states N=38, 50, 60 and 65 individuals. Optimal harvest rate acknowledge that dynamic programming is a discrete optimization algorithm, hence not all possible harvest rates can be continuously explored. However, the difference between the solutions obtained by dynamic programming and the analytic solution were never larger than