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A henselian preparation theorem

Laurent Moret-Bailly∗†‡

December 22, 2021

Abstract

We prove an analogue of the Weierstrass preparation theorem for henselian pairs,
generalizing the local case recently proved by Bouthier and Česnavičius. As an
application, we construct a henselian analogue of the resultant of p-adic series defined
by Berger.

AMS 2020 Classification: 13J15; 13B40; 13P15.

1 Introduction
Let R be a ring (commutative, with unit). We denote by R{t} the henselization of the
polynomial ring R[t] with respect to the ideal (t): this is a subring of the power series
ring R[[t]]. The aim of this work is to prove the following result:

Theorem 1.1 (Henselian Preparation Theorem). Let R be a ring, I an ideal of R. As-
sume that (R, I) is a henselian pair. Let d be a natural integer and let f be an element of
R{t} which in R[[t]] has the form f =

∑
i≥0 ait

i, where ad ∈ R× and ai ∈ I for i < d.
Then f can be written uniquely as f = (td +Q) v where v ∈ R{t}× and Q ∈ R[t] has

degree < d and coefficients in I.

See 3.4 for a more detailed statement, including the analogue of the Weierstrass divi-
sion theorem.

The analogous statement where R{t} is replaced by R[[t]] and R is assumed I-adically
complete and separated is due to O’Malley [6, 2.10]; the “classical” form of the latter is
the special case where I is maximal, see for instance [2, §3, no 8, prop. 5].

When R is local henselian with maximal ideal I, the above theorem was proved by
Bouthier and Česnavičius in [3, 3.1.2], which inspired the present paper. The proof we
give here is somewhat different and more direct: we do not use reduction to the noetherian
case or the classical preparation theorem, but we work directly from the construction of
R{t} as a filtered colimit of étale R[t]-algebras.1

∗Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
†laurent.moret-bailly[AT]univ-rennes1.fr
‡The author was partially supported by the Geolie project (ANR-15-CE 40-0012) of the Agence

nationale de la recherche.
1Regrettably, there does not seem to be, at the moment, a general result covering all the above-

mentioned variants (and more, such as rings of convergent series).
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As an easy application, we define in Section 4 a notion of resultant in R{t}, entirely
similar to the resultant constructed by Berger [1] for p-adic formal power series.

Notation and conventions. All rings are commutative with unit; ring homomorphisms
respect unit elements. The unit group of of a ring R is denoted by R×, its Jacobson
radical by rad(R).

If x is a point of a scheme, κ(x) denotes its residue field.
Let Y be a closed subscheme of a scheme X. We say (X, Y ) is a Zariski pair if X is the

only open subscheme of X containing Y ; this condition only depends on the underlying
spaces. If X = Spec (A) is affine and I ⊂ A is the ideal of Y , we say (A, I) is a Zariski
pair if (X, Y ) is a Zariski pair or, equivalently, if I ⊂ rad(A). If (X, Y ) is Zariski and
X ′ → X is a closed morphism, then (X ′, Y ×X X ′) is Zariski.

If A is a ring and I ⊂ A an ideal, we denote by (A, I)h or Ah the henselization of
(A, I). Recall that if A→ B is an integral morphism, then (B, IB)h = (A, I)h ⊗A B. In
particular, if (A, I) is henselian, so is (B, IB).

2 Preliminary results

2.1 Structure of henselian series rings

Let R be a ring, t = (t1, . . . , tn) a finite sequence of indeterminates 2 We denote by R{t}
the henselization of R[t] at the ideal (t1, . . . , tn); it is an R[t]-algebra with an isomorphism
ε : R{t}/(t) ∼−→ R, and there is a natural injection R{t} ↪→ R[[t]] making R[[t]] the (t)-adic
completion of R{t}; the image of f ∈ R{t} in R[[t]] will be denoted by ffor.

As a functor of R, R{t} is better behaved than R[[t]]. In particular, it commutes with
filtered colimits, and if I is any ideal of R we have R{t}/IR{t} ∼= (R/I){t}.

For f ∈ R{t} we have the equivalences:

f ∈ R{t}× ⇔ ffor ∈ R[[t]]× ⇔ ε(f) ∈ R×.

It follows that rad(R{t}) is generated by rad(R) and (t). In particular, if (R, I) is a
Zariski pair, so is (R{t}, IR{t}+ (t)).

Similarly, if (R, I) is a henselian pair, so is (R{t}, IR{t}+ (t)): to see this, view R as
the quotient R{t}/(t) and apply the transitivity property [8, 0DYD].

Classically, R{t} can be constructed as the colimit of a filtered family (Aλ)λ∈L of étale
R[t]-algebras, with compatible isomorphisms ελ : Aλ/(t)Aλ

∼−→ R. In particular, for all
λ ∈ L and N ∈ N, the natural morphism of R-algebras R[t]/(t)N → Aλ/(t)

NAλ is an
isomorphism.

Each natural morphism πλ : Spec (Aλ)→ Spec (R) is smooth of relative dimension n,
and has a section sλ deduced from ελ.

We say that an R-algebra A is geometrically irreducible if the natural morphism
Spec (A)→ Spec (R) has geometrically irreducible fibers.

Lemma 2.1.1. Let R and t = (t1, . . . , tn) be as above. Then one can choose the system
(Aλ)λ∈L such that each Aλ is a geometrically irreducible R-algebra.

2For the preparation theorem we only need the case n = 1. The case of an arbitrary set of indetermi-
nates is left to the reader.
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Proof. Starting with an arbitrary family (Aλ)λ∈L, we may assume, by enlarging L, that
for all λ ∈ L and f ∈ Aλ such that ελ(f) ∈ R×, the localized algebra Aλ[1/f ] is still
in the family. It suffices to show that, assuming this, the sub-system formed by the
geometrically irreducible Aλ’s is cofinal. For each λ, let Uλ ⊂ Spec (Aλ) be the union of
the connected components of the fibers of πλ meeting the seciton sλ. As πλ is smooth, Uλ
is open in Spec (Aλ) [4, (15.6.7)], and its fibers over Spec (R) are smooth and connected,
with a rational point, hence geometrically irreducible. Since Uλ is open, there is f ∈ Aλ
such that Im(sλ) ⊂ Spec (Aλ[1/f ]) ⊂ Uλ (in an affine scheme, every closed subset has
a basis of principal open neighborhoods). The fibers of Spec (Aλ[1/f ]) → Spec (R) are
nonempty and open in those of Uλ → Spec (R) and therefore geometrically irreducible.
This completes the proof.

2.1.2 Evaluation

This section will not be used until Section 4.
Let us keep the notation of 2.1 and consider the category AlghR of henselian pairs

(A, J) where A is an R-algebra. Then (R{t}, (t)) is an object of AlghR corepresenting the
set-valued functor (A, J) 7→

∏n
i=1 J . In particular, for an object (A, J) of AlghR and a

sequence α = (α1, . . . , αn) from J , we have a morphism “evaluation at α” from R{t} to
A which we denote by f 7→ f(α). One may construct it by noting that the morphism
P 7→ P (α) from R[t] to A maps the ti’s into J , hence factors through R{t} because (A, J)
is henselian.

For given α, the element f(α) is the sum in A, for the J-adic topology, of the series
ffor(α) obtained by substituting α for t; this property characterizes f(α) if A is J-adically
separated (but not in general).

The reader can check the following nice property, which will not be used here: if I
is an ideal of R generated by n elements a1, . . . , an, the evaluation morphism f 7→ f(a)
induces an isomorphism of R{t}/(ti − ai)1≤i≤n with the henselization (R, I)h.

2.2 Schemes over henselian pairs: a decomposition result

Notation 2.2.1. Let (R, I) be a henselian pair. Put S = Spec (R), R = R/I, and
S = Spec (R); more generally, for each R-algebra A, (resp. each R-scheme X) we shall
put A = A/IA (resp. X = X ×S S).

The following proposition is a variant of [7, XI, cor. 1 p. 119]:

Proposition 2.2.2. With notation as above, let Z be a separated R-scheme of finite type.
Assume that Z is finite over R.

Then there is a unique open and closed subscheme Z f of Z which is finite over R and
satisfies Z f = Z. Moreover Z f has the following properties:

(1) The pair (Z f , Z) is henselian.

(2) Z f is the smallest open subscheme of Z containing Z.

(3) Let T be an R-scheme and u : T → Z an R-morphism. Assume that (T, T ) is a
Zariski pair. Then u factors through Z f .
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Proof. Let us first assume the existence of Z f and prove (1), (2) and (3). First, (1) is clear
since (R, I) is henselian and Z f is finite over R. In particular, (Z f , Z) is a Zariski pair,
and (2) follows because Z f is open in Z. Now take u : T → Z as in (3): then u−1(Z f) is
a neighborhood of T in T , hence equal to T , which proves (3).

Observe that (2), for instance, implies the uniqueness of Z f . Now let us prove existence.
First, consider the set Z ′ of points x ∈ Z isolated in their fiber above Spec (R). Then Z ′
is open in Z [4, (13.1.4)] and, viewed as an open subscheme, it is quasifinite over Spec (R);
in addition, we have Z ′ = Z. So it is clear that if Z ′f exists it is open in Z, and closed
since it is finite over R, so we can take Z f = Z ′f . Replacing Z by Z ′, we can therefore
assume Z quasifinite over R.

By Zariski’s main theorem [5, (18.12.13)], there is an open immersion Z ↪→ Zc, where
Zc is a finite R-scheme. As Z is finite over R, the induced open immersion Z ↪→ Zc is
closed, so we have Zc = Z q Y for an open and closed subscheme Y of Zc. Since (R, I)
is henselian and Zc is finite over R, this decomposition is induced by a decomposition
Zc = Z f q Zc

1 of Zc, where Z f and Zc
1 are finite over R and Z f = Z. In particular

(Z f , Z f) = (Z f , Z) is a Zariski pair. Since Z ∩ Z f is open in Z f and contains Z, it is
therefore equal to Z f which means that Z f ⊂ Z and Z = Z f q Z ′ with Z ′ := Z ∩ Zc

1.
Thus, the desired conditions for Z f are satisfied.

Remarks 2.2.3. (1) Assertions (2) and (3) of 2.2.2 only use the existence of Z f and the
Zariski property for (R, I).

(2) We see in particular that Z f is the largest closed subscheme of Z which is finite over
S. Moreover, Z f is functorial in Z: if Y is a separated R-scheme of finite type with Y
finite over R, every R-morphism Z → Y sends Z f to Y f .

(3) Using more sophisticated tools, one can generalize 2.2.2 by replacing “finite” by
“proper” in the conditions for Z and Z f . For the proof, the first step (reduction to the
quasifinite case) is of course ignored. One uses Nagata compactification to choose an open
immersion Z ↪→ Zc into a proper S-scheme p : Zc → S. Then by the properness of Zc

and the henselian property of (R, I), we can apply [8, Tag 0A0C] to the sheaf (Z/2Z)Zc to
conclude that the idempotent defining Z in Zc lifts to a unique idempotent on Zc, which
we take to define Z f .

3 The preparation theorem

3.1 Notation and assumptions

We fix a ring R and an indeterminate t. We denote by Alg+R[t] the category of pairs (A, x)
where A is an R[t]-algebra and x is an element of A.

We also fix an element f of R{t}, and we write

ffor =
∑
i≥0

ait
i ∈ R[[t]] (ai ∈ R).

We assume that the ideal generated by the ai’s (i > 0) is equal to R. Equivalently, for all
p ∈ Spec (R), the image of f in κ(p)[[t]], or in κ(p){t}, is not a constant.

Finally we denote by S the R[t]-algebra R{t}/(f).
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Proposition 3.2. With the assumptions of 3.1, we also fix an indeterminate u.

(1) The object (R{t}, f) of Alg+R[t] is the filtered colimit of a system (Aλ, fλ)λ∈L with, for
each λ ∈ L, the following properties:

(i) The R[t]-algebra Aλ is étale and, for all n ∈ N, the canonical morphism R[t]/(tn)→
Aλ/t

nAλ is an isomorphism.
(ii) The canonical R-morphism R[u]→ Aλ mapping u to fλ is flat and quasifinite.

In particular, the canonical R-morphism R[u]→ R{t} mapping u to f is flat, and f is a
nonzerodivisor in R{t}.
(2) The R[t]-algebra S is the filtered colimit of a system (Sλ)λ∈L with the following prop-
erties:

(i) Each R-algebra Sλ is flat, of finite presentation and quasifinite, and the transition
maps Sλ → Sµ (λ ≤ µ) are étale. (In particular, S is flat over R.)

(ii) For all n ∈ N and λ ∈ L, the canonical morphism R[t]/(tn)→ Sλ/t
nSλ is surjective.

Proof. Part (1) immediately implies part (2), with Sλ = Aλ/(fλ) (the transition maps are
étale due to the same property for the Aλ’s, which are étale over R[t]).

To prove (1), write R{t} = lim−→λ∈LAλ as in Lemma 2.1.1, and call tλ ∈ Aλ the canonical
image of t. There exists λ0 ∈ L and fλ0 ∈ Aλ0 mapping to f ; we can restrict L to the
indices λ ≥ λ0 and, for each λ, denote by fλ ∈ Aλ the image of fλ0 . Clearly, we have
(R{t}, f) = lim−→λ∈L(Aλ, fλ). Part (1) (i) is obvious from the choice of (Aλ)λ∈L.

Let us prove (1) (ii). For fixed λ, we can view fλ as a morphism gλ : Xλ := Spec (Aλ)→
A1
R = Spec (R[u]) of R-schemes. For s ∈ Spec (R), the κ(s)-morphism gλ,s : Xλ,s → A1

κ(s)

induced on the fibres is deduced from 1⊗ fλ ∈ κ(s)⊗R Aλ, whose image in κ(s)⊗R R{t}
is assumed nonconstant. So gλ,s is not constant on Xλ,s, which is a smooth geometrically
irreducible curve over κ(s). It follows that gλ,s is flat and quasifinite. Since Xλ and A1

R

are smooth over Spec (R), the “fiberwise flatness” criterion [4, (11.3.10)] shows that gλ is
flat. It is also quasifinite since it is affine of finite presentation with finite fibers. This
completes the proof.

Definition 3.3. Let R be a ring, I an ideal of R, t an indeterminate.
We say that a formal power series f =

∑
i≥0 ait

i ∈ R[[t]] is I-normal if there is d ∈ N
such that ad ∈ R× and ai ∈ I for i < d. The integer d (unique if I 6= R) is called the
order of f .

We say that f is I-monic of order d if it is I-normal of order d and ad = 1.
An element f of R{t} is I-normal (I-monic) of order d if ffor ∈ R[[t]] is.

Theorem 3.4. With notation and assumptions as in 3.1, let d ∈ N be such that ad ∈ R×
and let I ⊂ R be the ideal generated by a0, . . . , ad−1. (Thus, f is I-normal of order d).

Assume that (R, I) is a henselian pair. Then:

(1) The images of 1, t, . . . , td−1 form a basis of the R-module S = R{t}/(f).
(2) (Division theorem) Every element of R{t} can be written uniquely in the form Bf+C
where B ∈ R{t} and where C ∈ R[t] is a polynomial of degree < d.

(3) (Preparation theorem) f can be written uniquely as f = (td +Q) v where v ∈ R{t}×
and where Q ∈ R[t] has degree < d and coefficients in I. Moreover, v(0) ≡ ad (mod I).
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Proof. If d = 0, everything is trivial. We assume from now on that d > 0; thus, the
assumption of 3.1 is satisfied and, in particular, Proposition 3.2 applies to f .

Assertion (2) is an immediate consequence of (1), with uniqueness coming from the
fact that f is a nonzerodivisor (3.2 (1)).

Let us prove that (2) implies (3). The relation in (3) can be rewritten as td = v−1 f−Q,
so that uniqueness follows from the uniqueness part of (2); next, applying (2) to td, we
find that td = Bf − Q where Q is a polynomial of degree < d. Reducing modulo I and
comparing coefficients, we see that Q has coefficients in I and the constant term of B is
in ad + I, which gives (3) with v = B−1.

It remains to prove (1). As in 2.2, we put A = A/IA for every R-algebra A.
First we observe that the image f of f in R{t} ∼= R{t} is the product of td by a unit,

so that S ∼= R{t}/(td) ∼= R[t]/(td) which is R-free with basis (1, t, . . . , td−1).
Let us write S as the colimit of a filtered system (Sλ)λ∈L of R[t]-algebras with the

properties of 3.2 (2). We have just seen that td vanishes in S, so by changing L we may
assume that td vanishes in Sλ for all λ: thus, Sλ = Sλ/tdSλ hence, by 3.2 (2) (ii), it is a
quotient of R[t]/(td). So we have morphisms of R[t]-algebras R[t]/(td) → Sλ → S where
the first map is surjective and the composition is an isomorphism. We conclude that
R[t]/(td)

∼−→ Sλ for all λ. In particular, Sλ is finite over R. As (R, I) is henselian, we may
apply Proposition 2.2.2 and write Sλ = Sf

λ × Tλ, where Sf
λ is finite over R and Sf

λ = Sλ.
By functoriality (Remark 2.2.3), the quotients Sf

λ of the Sλ’s form an inductive system.
Since S is a quotient of R{t} and (R{t}, IR{t}) is a Zariski pair, so is (S, IS). Hence,

for all λ, the canonical morphism Sλ → S factors through Sf
λ by 2.2.2 (3), and finally

S = lim−→λ∈L S
f
λ.

Since, for each λ, Sλ is a flat R-algebra of finite presentation, so is Sf
λ, which is in

addition a finite R-module, hence locally free. As (1, tλ, . . . , t
d−1
λ ) induces an R-basis of

Sf
λ, and I ⊂ rad (R), it follows easily that (1, tλ, . . . , t

d−1
λ ) is an R-basis of Sf

λ for all λ,
and part (1) follows.

Remark 3.4.1. In Theorem 1.1 from the introduction, I denotes any ideal containing
a0, . . . , ad−1 and such that (R, I) is henselian. Clearly this implies that (R, (a0, . . . , ad−1))
is henselian, so 1.1 follows from 3.4. Note that in the classical preparation theorem, I is
the maximal ideal of the local ring R, while (a0, . . . , ad−1) is not necessarily maximal; this
is why the formulation of 1.1 is usually preferred in this case.

4 Application: a henselian resultant
If R is a ring, S a finite locally free R-algebra and x an element of S, we denote by
NS/R(x) ∈ R the norm of x in R, i.e. the determinant of multiplication by x in the
R-module S.

Definition 4.1. Let (R, I) be a henselian pair. Let f ∈ R{t} be I-monic of order d.
Denote by S the R-algebra R{t}/(f) (which is a free R-module of rank d, by 3.4 (1)).

For g ∈ R{t}, the (henselian) resultant of f and g, denoted by Resh(f, g), is the
element of R defined by

Resh(f, g) := NS/R(g).
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4.2 Properties of the resultant

We keep the notation and assumptions of 4.1, and we denote by P = td+Q the polynomial
associated to f by 3.4 (3). The proofs of the following properties are easy and left to the
reader.

4.2.1. Functoriality: Let ϕ : (R, I) → (R′, I ′) be a morphism of henselian pairs, f ′ et g′
the images of f and g in R′{t}. Then Resh(f ′, g′) = ϕ(Resh(f, g)).

4.2.2. By construction, Resh(f, g) only depends on f via the R-algebra R{t}/(f). In
particular, Resh(f, g) = Resh(P, g).

4.2.3. Resh(f, g) only depends on g via its class modulo f ; in other words, we have
Resh(f, g + hf) = Resh(f, g) for all h ∈ R{t}. Moreover, Resh(f, g) ∈ R× if and only if
the ideal (f, g) ⊂ R{t} equals R{t}. (More generally, see 4.2.8 below.)

4.2.4. Special cases: If α ∈ R, we have Resh(f, α) = αd and Resh(f, α− t) = P (α).
If α ∈ I, then Resh(α− t, g) = g(α), and Resh(f, α− t) = (1+ ε) f(α) for some ε ∈ I

by the second formula above (recall that f is I-monic).

4.2.5. Multiplicativities: If h ∈ R{t}, we have Resh(f, gh) = Resh(f, g) Resh(f, h); if in
addition h is I-monic of order m, then Resh(fh, g) = Resh(f, g) Resh(h, g). For the second
equality, one may use the exact sequence

0 −→ R{t}/(h) ×f−−→ R{t}/(fh) −→ R{t}/(f) −→ 0.

4.2.6. Polynomials: If f and g are in R[t], with f monic of degree d (in the sense of
polynomials), then Resh(f, g) is the usual resultant. The condition on f is essential: for
instance, Resh(1 + αt, g) = 1 for all α ∈ R and g ∈ R{t}. (In fact, for two possibly
non-monic polynomials of respective degrees ≤ d and ≤ m, the definition of the classical
resultant depends on the choice of d and m.)

4.2.7. Weak symmetry: Assuming that g is I-monic of order m, then Resh(g, f) =
(−1)md (1 + ε) Resh(f, g) for some ε ∈ I. To see this, reduce to the case of polynomials
and apply 4.2.6.

4.2.8. Elimination: Let J ⊂ R{t} be the ideal generated by f and g. Then Resh(f, g) ∈ J
(thus it belongs to J ∩ R): indeed, in the free R-module S = R{t}/(f), the image of
multiplication by g contains Resh(f, g)S.

Conversely, every α ∈ J ∩R is a multiple of the class of g in S so, taking norms, αd
is a multiple of Resh(f, g) in R. In particular, we have in R the inclusions (Resh(f, g)) ⊂
J ∩R ⊂

√
(Resh(f, g)). Geometrically, the closed subset V (Resh(f, g)) ⊂ Spec (R) is the

projection of V (f, g) ⊂ Spec (R{t}).
4.2.9. Roots: Let ϕ : R→ R′ be a ring homomorphism, and let α ∈ R′ be a zero of P in
R′. First, I claim that g(α) makes sense in R′ and is an element of R[α] ⊂ R′. Indeed, the
relation P (α) = 0 shows that (due to the form of P ) αd ∈ IR[α], whence α ∈

√
IR[α].

Since R[α] is a finite R-module, the pair (R[α],
√
IR[α]) is henselian, hence the claim.

Now assume that the image of P in R′[t] factors as
∏d

i=1(t− αi), where the αi’s are
elements of R′. Then we have in R′ the equality

ϕ(Resh(f, g)) =
d∏
i=1

g(αi)
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as follows from the above remark and properties 4.2.4 and 4.2.5 (applied in the ring
R[α1, . . . , αd] ⊂ R′).

Note that if we assume for simplicity that R = R′ is a domain, then the αi’s are the
zeros of f in

√
I.

4.2.10. Power series: Assume R is I-adically complete and separated. Then Resh(f, g) =
Res(ffor, gfor) where Res denotes the resultant defined in [1].
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