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Abstract. Pilot-scale enhanced oil recovery in hydrocarbon field development is often implemented to reduce
investment risk due to geological uncertainties. Selection of the pilot area is important, since the result will be
extended to the full field. The main challenge in choosing a pilot region is the absence of a systematic and
quantitative method. In this paper, we present a novel quantitative and systematic method composed of reser-
voir-geology and operational-economic criteria where a cluster analysis is utilized as an unsupervised machine
learning method. A field of study will be subdivided into pilot candidate areas, and the optimized pilot size is
calculated using the economic objective function. Subsequently, the corresponding Covariance (COV) matrix is
computed for the simulated 3-D reservoir quality maps in the areas. The areas are optimally clustered to select
the dominant cluster. The operational-economic criteria could be applied for decision making as well as the
proximity of each area to the center of dominant cluster as a geological-reservoir criterion. Ultimately, the
Shannon entropy weighting and the reference ideal method are applied to compute the pilot opportunity index
in each area. The proposed method was employed for a pilot study on an oil field in south west Iran.

1 Introduction

Maximizing the Recovery Factor (RF) and economic profit
are the main goals of Enhanced Oil Recovery (EOR) meth-
ods. Pilot design plays a vital role in the road map of EOR
planning and risk reduction. Therefore, EOR pilots are con-
ducted to reduce uncertainty in EOR performance [1–4]. In
the last 50 years, a significant number of EOR field pilots
has been studied and the gained experience has been used
in the oil and gas industry [5]. The results of the implemen-
tation of EOR pilots may increase consciousness regarding
hydrocarbon field behavior and EOR scenarios designed
for entire hydrocarbon field.

Pilot area selection is one of the imperative factors in
designing an EOR [6]. The objective of the pilot location
studies is determining how to narrow down the pilot candi-
date areas from the field extent to only an optimum area of
interest.

Three methodologies have been presented in the litera-
ture for pilot area selection. The first category presents
some qualitative insights regarding the pilot area, such as
the necessity of using predictive reservoir simulation models
[4, 7–10]. These studies do not provide any quantitative

methods to select a pilot area. In the second category, the
reservoir area is filtered to select the pilot area according
to some merit parameters [11–13]. These studies are based
on reservoir past performance. In the final category, the
reservoir is divided into a number of areas and the pilot area
is selected on the basis of a semi-quantitative approach. In a
previous study [14], a hydrocarbon field was divided into six
square kilometers parts and each part labeled as a locator.
Consequently, locators were classified based on permeabil-
ity patterns and the number of water-invaded zones. Per-
meability patterns were described as the combination of
the average permeability of the different layers. The aver-
age value was marked per layer as shown in Figure A1
(Appendix A). The locators were chosen as pilot areas from
a class that has a maximum number of dominated pattern.

According to other studies [15, 16] that have been car-
ried out, the field was divided into six areas as shown in
Figure A2 (Appendix A). The size of the areas can be arbi-
trary. A semi-quantitative approach was chosen to rank
each of the six areas for pilot implementation. A list of selec-
tion criteria, including the qualitative ranking (low, med-
ium, and high) in each area is shown in Figure A3
(Appendix A). Although this approach tries to determine
the part with the best properties, each selected part is not
representative of the whole field. Moreover, predefined* Corresponding author: mehdi@aut.ac.ir
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patterns such as permeability patterns were applied to iden-
tify dominated pattern in this category.

In addition to the methodological approaches, criteria
based on reservoir-geology and operational-economic issues
could be considered. According to the geological criteria of
the reservoir, the pilot area should have alike behavior to
the reservoir to be an appropriate representative and
achieve the EOR goals [4, 12, 14]. However, an area with
moderate to good reservoir properties is another selection
criterion. For example, having remaining oil saturation in
the range of 0.2–0.5 could lead to an appropriate pilot area
[11]. According to other studies [7, 8], high remaining oil
saturation has been applied to locate pilot areas. In addi-
tion, a lower ratio of vertical to horizontal permeability
and higher lateral permeability continuity have also been
a basis for pilot area selection [15, 16].

Operational-economic criteria refer to uncertainty and
economic aspects of pilot area selection. An area with a
higher accuracy in analysis of pilot production performance
is suitable from an operational point of view. Moreover, a
lower cost of pilot implementation is desirable too. The level
of knowledge, the interaction of pilot and production area,
the distance between a candidate area and surface facilities
and the number of existing applicable wells for running a
pilot are all important operational-economic criteria. For
example, a pilot area could be selected based on the quality
and quantity of the available petrophysical data [4, 14, 15].
In addition, less interaction between the pilot and produc-
tion areas could lead to a more reliable interpretation of
the gathered data [4, 11–13]. Besides, the closeness of the
pilot to existing facilities could lead to economic aspects
[12–14]. Finally, existing wells may be used to reduce pilot
implementation costs [13]. The pilot operation will assist in
receiving relevant operational and technical experience and
establishing required quality control [17].

It is therefore apparent that having a systematic and
quantitative approach is necessary to choose the optimum
pilot area. Such an approach should consist of a better rep-
resentative of reservoir features along with operational-
economic criteria. In this paper, a methodology is presented
to select the optimal size and location of the pilot for an
EOR project. To do so, a pilot opportunity index is intro-
duced. The proposed index is defined based on integration
of reservoir quality maps (from reservoir simulations), fuzzy
clustering, Shannon entropy, Analytical Hierarchy Process
(AHP) and the Reference Ideal Method (RIM) as a multi-
criteria decision-making method. Finally, the presented
method is utilized to a real reservoir case and the optimum
pilot area is thereby determined.

2 Methodology

The three key steps for choosing the location and size of a
pilot established are:

1. Pilot candidate areas specification;
2. Reservoir representativeness quantification and calcu-

lating its value for each pilot candidate area;

3. Pilot opportunity index calculation and selecting the
optimum pilot region.

Figure 1 illustrates the workflow of the planned scheme.

2.1 Pilot candidate areas

In the model of hydrocarbon reservoir, the field is seg-
mented into pilot candidate regions of an equal size. Then,
the five-spot pattern are utilized to locate wells in each
region.

Afterwards, a sensitivity analysis is performed for the
Net Present Value (NPV) in regard to the production
and injection wells distance, which reflects the size of the
pilot. The NPV is the most commonly used economic objec-
tive function and is shown in equation (1):

NPV r; Tð Þ ¼ R t0ð Þ þ
Z T

t1

P0 � q0 tð Þ � Cprod
w � qprodw ðtÞ � C inj

w

�

� qinjw ðtÞ � C 0 � q0 tð Þ�ð1þ rÞ�tdt; ð1Þ

R t0ð Þ ¼ C facility þ nwellCwell; ð2Þ
where t1 is the start time of production, T is the overall
time of econometry, Po is the unit price of oil, qo is the
oil production rate, Cprod

w is the unit cost of handling the
produced water, Cprod

q is the water production rate, C inj
w

is the unit cost of injecting water, qinjw is the water injec-
tion rate, Co is the unit operating cost per barrel of pro-
duced oil and r is the discount rate. R(t0) is the initial
capital expenditure, as shown in equation (2), where
Cfacility is the cost of facility installation, nwell is the entire
number of injection and production wells and Cwell is the
drilling cost of a well. Consequently, the optimal pilot size
has the highest NPV. Finally, the size and number of pilot
candidates are determined.

2.2 Impression of reservoir representativeness

Each candidate region has a reservoir dynamic behavior.
Considering all areas, it is possible to classify the behavior.
The class which has the highest number of areas is the rep-
resentative of reservoir behavior. The behavior of each area
is characterized by two arrays of cell RF values and the
covariance matrix of the residual oil volume in cells posi-
tioned in each candidate region.

2.2.1 Quality maps

The various static and dynamic parameters could be com-
bined together to form the quality maps. Due to dynamic
parameters such as oil saturation, the quality maps change
during the production period [18, 19]. The quality map is
applied to solve decision making problems as an auxiliary
analysis with parameters like cumulative oil production
[20].

The 3-D time-dependent quality maps of residual oil
volume is computed by using equation (3) to aggregate var-
ious parameters:
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Vo i; j; k; tð Þ ¼ Ai;j � hk � ;i;j;k � Soi;j;k;t; ð3Þ
where Ai,j, hk, ;i,j,k and Soi,j,k,t are the surface area, the
height, the porosity and the simulated oil saturation of
cell (i, j, k) in the given time period, respectively. Equa-
tion (4) is applied to calculate the RF in each cell based
on these quality maps:

RF i; j; kð Þ ¼ ½Vo i; j; k; tsð Þ �Vo i; j; k; teð Þ�
�Vo i; j; k; tsð Þ; ð4Þ

where ts and te are the beginning and termination times of
the simulation, correspondingly.

Equation (5) is applied to illustrate the covariance
matrix of the residual oil volume for a typical candidate
region. For instance, Vocell#;1 is a set of annual residual oil
volume sequence from ts to te in the first cell of the area:

See the equation (5) bottom of the page

2.2.2 Clustering

The number of clusters of reservoir behaviors could be spe-
cified by Fuzzy clustering. Clustering is a subset of unsuper-
vised machine learning [21] and data mining [22] methods.
It is used to assess the flow field in hydrocarbon reservoirs
[23–25].

The similar objects are placed in a same group using
clustering analysis. Equation (6) [26] is utilized to define
the objective of fuzzy clustering. The number of clusters
and cluster center are signified by c and ci. A multi-dimen-
sional space is denoted by X that includes n candidate
areas. For the jth candidate region in the cluster i, the mem-
bership degree is indicated by uij .

Furthermore, v and dij are identified as the fuzzifier and
the Euclidean distance of the jth candidate region from the
ci.

J X ;C ;Uð Þ ¼
Xc
i¼1

Xn
j¼1

uv
ijd

2
ij ; ð6Þ

COV ¼

COV Vocell#1;Vocell#1ð Þ COV Vocell#1;Vocell#2ð Þ
COV Vocell#2;Vocell#1ð Þ COV Vocell#2;Vocell#2ð Þ

� � � COV Vocell#1;Vocell#eð Þ
� � � COV Vocell#2;Vocell#eð Þ

..

. ..
.

COV Vocell#e;Vocell#1ð Þ COV Vocell#e;Vocell#2ð Þ

. .
. ..

.

� � � COV Vocell#e;Vocell#eð Þ

2
6666664

3
7777775
: ð5Þ

Fig. 1. Workflow of the planned scheme.
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8 i; 1 � i � cð Þ and 0 � uij � 1
� �

and

8 j; 1 � j � n :
Xc
i¼1

uij ¼ 1

 !
;

uij ¼
d

2
1�v
ijPc

k¼1
d

2
1�v
kj

; ð7Þ

ci ¼

Pn
j¼1

uv
ij xj

Pn
j¼1

uv
ij

: ð8Þ

The optimal number of clusters is determined using two
cluster validity indices: (1) XB (Xie and Beni) [27] and
(2) fuzzy-silhouette [28] as illustrated in equations (9) and
(10)–(14), correspondingly.

The higher square distance between cluster centers (aj)
is more favorable, as well as lower mean square distance
between a candidate area and its cluster center (bj). There-
fore, the lower and higher values of the XB and fuzzy-
silhouette are the result of high-quality clustering:

XB ¼

Pc
i¼1

Pn
j¼1

u2
ijd

2
ij

n �min
~j 6¼j

d2
~jj

; ð9Þ

aj ¼ min

Pn
k¼1

intrai j; kð Þdjk

Pn
k¼1

interrs j; kð Þ
;
Xn
k¼1

intrai j; kð Þ > 0; 1 � i � c

8>><
>>:

9>>=
>>;; ð10Þ

bj ¼ min

Pn
k¼1

interrs j; kð Þdjk

Pn
k¼1

interrs j; kð Þ
;
Xn
k¼1

interrs j; kð Þ > 0; 1 � r < s � cg;

8>><
>>: ð11Þ

intrai djk

� � ¼ uij

^
uik

� �
; ð12Þ

interrs djk

� � ¼ urj

^
usk

� �
_ usj

^
urk

� �
; ð13Þ

Sil xð Þ ¼ 1
n

Xn
j¼1

bj � aj

max aj ; bj
� � : ð14Þ

2.2.3 Reservoir Similarity Index

For a candidate area, the intensity of the reservoir represen-
tativeness is indicated by the Reservoir Similarity Index
(RSI). Therefore, the RSI is composed of the two normal-
ized distances: 1) d(RF array, RF-center) and 2) d(COV
array, COV-center). The RF-center and COV-center are
the centers of the clusters that have the maximum size after
conducting clustering on the RF array and the covariance
matrix of the residual oil volume, correspondingly. The

RF array and COV array are the Recovery Factor and
Covariance matrix arrays of the residual oil volume of the
candidate area. The weights of the two normalized dis-
tances are w1 and w2. The RSI is calculated as the sum of
the product of weight and the normalized value for multi-
plicative inverse of the two criteria using equation (15):

RSI ¼ w1 � 1
dðRFarray; RF� centerÞ þ w2

� 1
dðCOVarray; COV� centerÞ : ð15Þ

The Shannon entropy technique is utilized to determine
the w1 and w2.

2.2.4 Shannon entropy

The information content of an event as the concept of
entropy was introduced by Shannon in information theory
[29]. Shannon entropy is used to optimize data acquisition
of the hydrocarbon fields [30]. Furthermore, the Shannon
entropy can quantity the relative importance of criteria in
a multi-criteria problem [31]. The more important criteria
have greater dispersion and their effects are higher on the
RSI value. Considering m alternatives and n criteria, a deci-
sion matrix S of m � n elements is shown in equation (16),
where sij is the jth criterion value for the ith alternative
(candidate area).

Equation (17) is applied to normalize the decision
matrix S. Then, equation (18) is utilized to compute the
Shannon entropy. Afterward, equation (19) is employed
to calculate the weight of each criterion:

S ¼

s11 s12

s21 s22

� � � s1n

� � � s2n

..

. ..
.

sm1 sm2

. .
. ..

.

� � � smn

2
6666664

3
7777775
; ð16Þ

�sij ¼ sij
.Xm

i¼1

sij ði ¼ 1; :::;m; j ¼ 1; :::; nÞ; ð17Þ

Ej ¼ � 1
lnm

Xm
i¼1

�sij ; j ¼ 1; :::; n; ð18Þ

wj ¼ 1� EjPn
j¼1

1� Ej

� � : ð19Þ

2.3 Pilot opportunity index

The attractiveness of pilot implementation in a candidate
area is indicated by the Pilot Opportunity Index (POI).
Two significant features for POI computations are reservoir
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geological and operational-economic. Reservoir geological
factors correspond to the reservoir representativeness inten-
sity. Operational-economic factors refer to the reliability of
the pilot performance results and the implementation cost
of the pilot.

Therefore, the POI is based on the RSI, the level of
knowledge, the interference between internal and external
production of a candidate area, the distance from the sur-
face facilities to candidate area, and the number of existing
applicable wells for running a pilot in an area. Hence, the
RIM in multi-criteria decision-making methods is utilized
to quantify the POI. Moreover, criteria weights are calcu-
lated based on the Analytical Hierarchy Process (AHP).
The higher the POI is, the more desirable the pilot imple-
mentation in an area is. The pilot area is an area with
the highest POI value.

2.3.1 Decision criteria

The criteria to evaluate the POI for each candidate area
include:

� RSI: In a candidate area, this criterion shows the
value of the reservoir representativeness. Higher val-
ues of this criterion are preferable.

� Interference between internal and external production
of a candidate area: Pilot production performance
could be affected considerably by nearby existing pro-
duction wells. Minimizing this interference lead to a
more accurate pilot production performance analysis.
The drainage radius, the distance from a well where
its normal pressure gradient approaches zero (i.e. zero
fluid flux), is applied to quantify this issue [32]. In
other words, there would be pressure interference in
case the distance between two wells is less than two
times the drainage radius. Therefore, to determine
the interaction between the candidate area and the
existing wells, two criteria are established, namely,
the number of existing wells around a candidate area
with a distance less than two times the drainage area,
known as “interfered wells”, and the average distance
between these wells and a candidate area. A lower
number of interfered wells and higher values of the
average distance are more favorable.

� Level of knowledge: A higher quality and quantity of
available data in a candidate area lead to a lower
uncertainty in pilot design and evaluation. The vari-
ogram range, the distance limit beyond which the
data are no longer spatially correlated, is applied to
quantify this criterion [33]. The properties in cells that
contain an existing well are known while the proper-
ties of other cells can be estimated by the known cell
value. The estimation is possible in the case of the spa-
tial distance between known and unknown cells being
smaller than the variogram range. Furthermore, the
error of estimation decreases as the distance decreases.
Therefore, to determine the level of knowledge in a
candidate area, two criteria are established, namely,
the total number of existing wells inside and outside
an area with a distance less than the variogram range
to an area, known as “adjacent wells”, and the average

distance between these wells and a candidate area. A
higher number of total wells and lower values of the
average distance are more favorable.

� Distance between a candidate area and surface facili-
ties: the lower the distance, the lower the cost. The
closest route from areas to the surface facilities is
the most desirable path.

� Number of existing applicable wells for running a pilot
in an area: This is the number of existing wells in a
candidate area that matches the five-spot pattern in
terms of location. Higher values of this criterion are
more preferable due to less capital expenditure to drill
new wells that fit the pattern in an area.

2.3.2 AHP

Analytical Hierarchy Process (AHP) combines mathemat-
ics and intuition to express the comparative importance
of each criterion in a rational and consistent approach
[34, 35]. Table 1 is applied to make the pairwise compar-
isons matrix among criteria.

In the pairwise comparisons matrix, i rows are com-
pared with the j column for n number of criteria such that
the main diagonal is equal to one. The results of the pair-
wise comparison on criteria are summarized in an (n � n)
matrix in which elements wij (i, j = 1, 2, . . . n) are shown
by equation (20):

w ¼

w11 w12

w21 w22

� � � w1n

� � � w2n

..

. ..
.

wn1 wn2

. .
. ..

.

� � � wnn

2
6666664

3
7777775
: ð20Þ

The pairwise comparisons matrix is normalized by
dividing the value of each element with the sum of the cor-
responding column. After normalization, the relative weight
of each criteria is calculated by computing the average of
each row.

The accuracy of the AHP output is related with the con-
sistency of the pairwise comparison judgment. A Consis-
tency Ratio (CR) is calculated by dividing the
Consistency Index (CI) for the judgment by the Random
Consistency Index (RI) for the corresponding random
matrix using equations (21) and (22). The RI is in accor-
dance with the degree of consistency, as shown in Table 2
for a different number of criteria. Moreover, the Cl is based
on the largest eigenvalue (kmax) and the number of criteria

Table 1. Intensity and explanation for comparing criteria
in a matrix of pairwise comparisons [34].

Intensity of importance Definition

1 Equal importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance
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(n), as shown in equation (21). The weighted sum vector is
calculated with a multiplication of the pairwise comparisons
matrix of criteria in the vector of relative magnitudes.
Then, the consistency vector is computed by dividing the
magnitudes of the weighted sum vector of criteria by the
vector of relative magnitudes. The largest eigenvalue (kmax)
is calculated by averaging elements of this vector:

CI ¼ kmax � n
n � 1

; ð21Þ

CR ¼ CI
RI

: ð22Þ

The CR above 0.1% or 10% indicates that the pairwise com-
parisons should be revised, while smaller numbers mean
comparison are more consistent.

2.3.3 RIM

Multi Criteria Decision Making (MCDM) is applied to solve
selection issues including multiple criteria and alternatives
for petroleum field development problems [36]. The RIM
[37] multi-criteria decision-making technique is applied to
prioritize the alternatives (candidate areas) with respect
to the criteria outlined in Section 2.3.1.

Equation (24) is applied to normalize the decision
matrix S, as illustrated by equation (23). The range of val-
ues and ideal values for each criterion are shown by [A, B]
and [C, D], respectively. Equation (25) is utilized to com-
pute the weighted normalized matrix. Equation (26) is
applied to calculate the distances between the ideal alterna-
tives and a candidate area. In conclusion, equation (27) is
employed to compute the score of each area:

See the equation (23) bottom of the page

f s; A;B½ �; C ;D½ �ð Þ ¼

1 if s 2 C ;D½ �

1� dmin s; C ;D½ �ð Þ
A� Cj j if s 2 A;C½ � ^A 6¼ C

1� dmin s; C ;D½ �ð Þ
D � Bj j if s 2 D;B½ � ^ D 6¼ B

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð24Þ

�Y ¼ YbW ¼

y11:w1 y12 :w2

y21:w1 y22 :w2

� � � y1n:wn

� � � y2n:wn

..

. ..
.

ym1:w1 ym2 :w2

. .
. ..

.

� � � ymn:wn

2
6666664

3
7777775
; ð25Þ

Iþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

�yij � wj

� �2s
; I�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

�yij
� �2s

i ¼ 1; :::;m; j ¼ 1; :::; nð Þ;
ð26Þ

Ri ¼ I�i
Iþi þ I�i

0 < Ri < 1; i ¼ 1; :::;mð Þ: ð27Þ

3 Results and discussion on a case study

The studied field has been producing since 2006 and
31 wells have been drilled so far. The field’s oil in place is
around 4 billion standard barrels. The number of grids in
the three main directions x, y and z is 88� 275� 22, respec-
tively. The field has 15 different rock types. Variogram
model and its parameters are calculated for the porosity
as shown in Figure 2. The variogram range is equal to
1500 m. Furthermore, drainage radius is 320 m according
to interpretation of well test in the field.

A history-matched model is applied to predict produc-
tion scenarios by reservoir numerical simulation. In case
of enhancing the history match, it is proposed to use the
integration of multi-start simulated annealing with genetic
algorithm [38].

Waterflooding is planned in the field to increase produc-
tion from 20,000 to 110,000 barrels per day. Moreover, the
maximum allowable bottom hole pressure in injection wells
and the minimum flowing bottom hole pressure in produc-
tion wells are 5880 and 3290 psia, correspondingly.

The pilot project is required prior to the design and field
implementation of EOR. Hence, it is necessary to determine

Y ¼

f ðs11; A;B½ �1; C ;D½ �1Þ f ðs12; A;B½ �2; C ;D½ �2Þ
f ðs21; A;B½ �1; C ;D½ �1Þ f ðs22; A;B½ �2; C ;D½ �2Þ

� � � f ðs1n; A;B½ �n; C ;D½ �nÞ
� � � f ðs2n; A;B½ �n; C ;D½ �nÞ

..

. ..
.

f ðsm1; A;B½ �1; C ;D½ �1Þ f ðsm2; A;B½ �2; C ;D½ �2Þ

. .
. ..

.

� � � f ðsmn; A;B½ �n; C ;D½ �nÞ

2
6666664

3
7777775
; ð23Þ

Table 2. Random consistency indices (RI) for n criteria [34].

n RI n RI n RI n RI n RI

1 0 4 0.89 7 1.35 10 1.49 13 1.56
2 0 5 1.11 8 1.4 11 1.51 14 1.57
3 0.52 6 1.25 9 1.45 12 1.54 15 1.58
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the size and location of the pilot area. The method estab-
lished in this research was utilized to choose the best pilot
region for this field.

Initially, the reservoir model is subdivided into equal
size pilot candidate areas. In each area, production and
injection wells are located according to a five-spot well pat-
tern. The sensitivity analysis on the NPV is utilized to
determine the optimum pilot dimensions. Data to compute
the NPV via equations (1) and (2) are illustrated in
Table B1 (Appendix B). The result of varying distance
between production and injection wells, which reflects the
pilot size on the NPV and cumulative oil production, is
illustrated in Figure 3. There is the highest of NPV in case
of well distance is 900 m.

The positions of the injection and production wells,
along with existing wells in the reservoir, are illustrated in
Figure 4 according to this distance. Moreover, reservoir seg-
mentation resulted in 72 candidate regions, as illustrated in
Figure A4 (Appendix A). Therefore, the number of grids for
a candidate area in the directions x, y and z is 9 � 9 � 22,
respectively. If an area does not contain all the 22 reservoir
layers, it is removed. Therefore, six regions were removed.
Consequently, there are 66 valid candidate regions in the
case study reservoir.

Running of the production and injection well pattern
in the simulator leads to oil saturation computation.
With equation (3), the product of the pore volume in oil

saturation resulted in the quality maps of the residual oil
volume as shown in Figure A5 (Appendix A). By using
equations (4) and (5), 1782-member array of the recovery
factor and 1588653-member array of the covariance
between cells are allocated to an area. By using equations
(6)–(8), the candidate areas are clustered. The values of
the hyper-parameter (fuzzifier v) and convergence criterion
are 1.5 and 1e–9 in fuzzy clustering, respectively.

By using equations (9)–(14), fuzzy clustering of the can-
didate areas are validated as shown in Figure 5. According
to Figure 5, if the number of clusters is considered to be two
and five, the clustering of the covariance between cells
(Sil.F_COV and XB_COV) and the recovery factor
(Sil.F_RF and XB_RF) arrays are optimal, accordingly.

According to the preceding graph, clustering of candi-
date regions leads to two and five clusters for covariance
matrixes and recovery factor arrays, respectively. Figure 6
shows membership of clusters based on the recovery
factor arrays. Moreover, Figure 7 shows membership of
clusters based on the covariance matrixes. Each point on
these two charts corresponds to a candida region. Addition-
ally, the * symbol shows centers of the clusters. Also,

Fig. 2. The variogram model of porosity values.

Fig. 3. Determining pilot size by sensitivity analysis.

Fig. 4. Five-spot patterns in the case study reservoir.

Fig. 5. Determining the optimal number of clusters with cluster
validity indexes.
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Tables B2 and B3 (Appendix B) show results of cluster-
ing such as cluster size. The dominant clusters are cluster
5 and 2 for recovery factor and the covariance matrixes,
respectively.

Figure A6 (Appendix A) shows the distribution map of
the clusters in the field with reference to Figures 6 and 7.
The candidate areas in the same cluster are close to each
other with respect to location. Therefore, there is a spatial
relationship between the reservoir behavior, which is char-
acterized by the covariance of the residual oil volume and
the RF, and the position in the field.

The covariance-center and RF-center are utilized to
show the cluster centers. Averaging all regions in dominant
clusters leads to determination of these centers. Afterward,
the distance from these two centers to candidate areas is
computed as displayed in Table B4 (Appendix B).

Prior to computing the RSI value of each region, the
weights of two criteria: (1) the covariance-center distance
from an area and (2) the RF-center distance from an area
are determined. Using equations (16)–(19) besides the crite-
ria values in Table B4 (Appendix B), the weight of the first
criterion is 0.313 while the weight of the second criterion is
0.686. The sum of product of weight and normalized value
for multiplicative inverse of the two criteria has resulted in
a RSI value that is shown in Figure A7 (Appendix A). For
instance, the candidate area numbers 29, 34 and 33 have
the highest reservoir representativeness intensity with RSI
values equal to 0.99, 0.92 and 0.82, respectively.

To calculate the POI of each candidate area, the criteria
of RSI, the distance from the surface facilities to candidate
area, the number of interfered wells, the mean distance from
these wells to candidate area, number of existing applicable
wells for running a pilot, number of adjacent wells, and
finally the mean distance from these wells to candidate area
have been considered with the weight factors of 0.33, 0.145,

0.145, 0.055, 0.055, 0.09 and 0.18, respectively, according to
the AHP weighting method. The pairwise comparison
matrix (Eq. (20)) and weights of the criteria are shown in
Table B5 (Appendix B). In this method, every pair of crite-
ria is compared with each other with respect to the expert
judgments. In each comparison this question must be
answered: which criterion is more important and how
much? Table 1 is applied to express the rating preferences
between each pair of criteria. For instance, experience and
judgment strongly favor the RSI over the number of adja-
cent wells with importance intensity value equal to 5 as
shown in Table B5 (Appendix B). Furthermore, the consis-
tency ratio is computed to verify the reliability between the
pairwise judgements using equations (21) and (22). The val-
ues of the largest eigenvalue (kmax), the random consistency
index (see Tab. 2), the Consistency Ratio (CR), and the
Consistency Index (CI) are 7.06, 1.35, 0.008, and 0.011,
respectively. The Consistency Ratio of 0.011 shows that
the pairwise comparisons are consistent.

The POI is computed for each region utilizing the Ref-
erence ideal method via equations (23)– (27) and the afore-
mentioned criteria values, as shown in Figure A7
(Appendix A). For example, the values of criteria that con-
tributed to the POI for candidate area numbers 8, 45, 34
and 29 are shown in Table 3.

The values of calculated POI in these regions are equal
to 0.73, 0.66, 0.64 and 0.59, accordingly. Therefore, Pilot
execution in these regions is relatively desirable. In Table 3,
the average distance between interfered wells and a candi-
date area is indicated by the expression of NA when the
number of interfered wells is equal to zero.

According to Table 3 and Figure A7 (Appendix A), for
example, although candidate area number 29 has the
highest amount of RSI value and its distance between a
candidate area and surface facilities is relatively low in

Fig. 6. Clustering result using the color-coding graph for the
RF arrays.

Fig. 7. Clustering result using the color-coding graph for the
COV arrays.
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comparison with the other candidates (i.e. 8 and 45), can-
didate area number 8 has the highest POI value and it is
suggested for running the pilot because candidate area
number 29 does not have any existing applicable wells for
the implementation of a pilot. Furthermore, candidate area
number 29 has two interfered wells that considerably reduce
the accuracy of interpretation of gathered data after run-
ning a pilot in it.

Figure A8 (Appendix A) shows contour maps of the RSI
and POI values on top of the reservoir. There is a spatial
relationship between the covariance matrix for the residual
oil volume as well as recovery factor and location in the field
as shown in the figure. Therefore, there is a spatial relation-
ship between the RSI and the location in the field because
RSI is based on covariance matrix for the residual oil vol-
ume as well as recovery factor.

Figure A9a (Appendix A) shows assigned numbers of
candidate regions. In Figure A9b (Appendix A), Ranking
of each region derived from RSI is shown. Moreover, the
pilot area number 29 has the highest reservoir representative
intensity value. In addition, in Figure A9c (Appendix A),
each candidate region is ranked according to its POI value.
Therefore, the candidate area number 8 has the first priority
to be selected as the pilot area. It should be noted that the
POI value is the most influential parameter for selecting
the best candidate area, because it already covers RSI and
other factors.

A sensitivity analysis is performed to evaluate how
changes in the weights assigned to the criteria would
change the ranking of the pilot candidate areas. Table B6
(Appendix B) shows sensitivity analysis by preference of cer-
tain criteria through 7 scenarios. In Table B6 (Appendix B),
the A–G is a criteria name as shown in Table B5

(Appendix B). The S-1 is a base case scenario in which the
weight of the criteria is determined using AHP method, as
shown in Table B5 (Appendix B). In scenarios S-2 to S-8,
the weight of criteria A to G is increased by 0.2 compared
to the base case scenario, respectively. For instance, the
weight of the RSI has increased by 0.2 while the ratio of
the weight is the same for other criteria [39] in scenario
S-2 as shown in Table B6 (Appendix B).

By making a comparison between the rankings of each
candidate area number (e.g. 8, 45, 26 and 34) in different
scenarios, it is demonstrated that candidate area number
8 is ranked first and second in six out of eight scenarios
as shown in Table 4. Candidate area number 8 could be
selected as pilot area based on the rankings obtained by
using different weight of criteria. Therefore, candidate
area number 8 is clearly dominant compared to other
candidate areas.

4 Conclusion

Based on this research, six important conclusions have been
found:

1. An innovative quantitative and systematic approach
consisting of reservoir-geology and operational-
economic criteria has been presented.

2. A cluster analysis as an unsupervised machine learn-
ing method could be utilized to quantify reservoir rep-
resentative intensity values.

3. MCDMs as decision-making methods have been uti-
lized to integrate the factors, i.e., the distance from
the surface facilities to candidate area, the number

Table 4. Ranking of candidate areas numbers 8, 45, 34 and 29 for different weight criteria scenarios.

Candidate area number Candidate areas ranking by scenarios

S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8

8 1 1 1 1 24 2 24 2
45 2 4 32 14 3 1 19 3
26 3 6 9 40 14 10 31 5
34 4 3 2 2 28 4 1 16

Table 3. Weight factors of criteria and their values for candidate areas numbers 8, 45, 34 and 29 to calculate POI
values.

Criteria name Weight
factor (%)

Candidate area number

8 45 34 29

RSI value 33 0.45 0.47 0.92 0.99
Number of interfered wells 14.5 0 2 0 2
Average distance between interfered wells and a candidate area (m) 14.5 NA 472 NA 524
Number of Adjacent wells 5.5 2 5 2 6
Average distance between Adjacent wells and a candidate area (m) 5.5 1005 784 814 1040
Distance between a candidate area and surface facilities (km) 9 12.7 11.1 6.9 10.1
Number of existing applicable wells for running a pilot 18 1 1 0 0
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of interfered wells, the mean distance from these
wells to candidate area, number of existing applicable
wells for running a pilot, number of adjacent wells,
and the mean distance from these wells to candidate
area, in addition to RSI criteria with each other,
and thereby, a new index called the POI has been
presented.

4. A model of reservoir is subdivided into 66 pilot candi-
date regions in accordance with optimized pilot size.
Then, corresponding covariance matrix and recovery
factor arrays of the areas are optimally clustered in
5 and 2 clusters based on simulated annual 3-D reser-
voir quality maps. A hybrid integration of the AHP-
Shannon Entropy and RIM resulted in the highest
value of POI in area number 8. Candidate area num-
ber 8 has been selected as pilot area in this case study
since it has the POI value of 0.73. There is no interfer-
ing well affecting the reliability of pilot results in the
area. Furthermore, it has one existing applicable well
for running a pilot that reduces execution of pilot cost.

5. Finally, the proposed procedure has the capability to
be extended to all enhanced oil recovery processes.
Several EOR processes such as chemical flooding
and miscible gas can be modeled to calculate remain-
ing oil volume covariance matrix and RF array. Also,
other screening criteria could be identified to deter-
mine POI according to the combination of the Shan-
non Entropy- AHP and MCDM methods.

6. The validity of the results taken from the presented
methodology has been assessed by the following stages:
(1) numerical reservoir modeling, (2) fuzzy clustering
and (3) criteria weighting. In order to validate the sim-
ulated annual remaining oil volume, a history-matched
reservoir model is utilized in this study. In addition,
the validity indices of fuzzy-silhouette and Xie-Beni
are utilized to validate the best cluster numbers.
Furthermore, the criteria weighting results are vali-
dated by the Consistency Ratio (CR) in the AHP
method.

Moreover, the proposed procedure could be developed
using other criteria and well patterns.

References

1 Hu W. R. (2008) Necessity and feasibility of PetroChina
mature field redevelopment, Pet. Explor. Dev. 35, 1, 1–5.

2 Al-Qenae A., Chetri H., Kumar P.R., Orjuela J. (2018)
Tracking the performance of strategically significant EOR
Pilot: Zooming into inter-well connectivity, in: Abu Dhabi
International Petroleum Exhibition & Conference, OnePetro

3 Chen P., Selveindran A., Kumar C., Saloma Y., Bose S.,
Balasubramanian S., Thakur G. (2019) CO2-EOR and
carbon storage in Indian oilfields: from laboratory study to
pilot design, in: SPE Western Regional Meeting, OnePetro.

4 Teletzke G.F., Wattenbarger R.C., Wilkinson J.R. (2010)
Enhanced oil recovery pilot testing best practices, SPE
Reserv. Evaluation Eng. 13, 01, 143–154.

5 Liu Z.X., Liang Y., Wang Q., Guo Y.J., Gao M., Wang Z.B.,
Liu W.L. (2020) Status and progress of worldwide EOR field
applications, J. Pet. Sci. Eng. 193, 107449.

6 Babadagli T. (2020) Philosophy of EOR, J. Pet. Sci. Eng.
188, 106930.

7 Sandoval J.R., Pérez H., Maya G., Castro R., Muñoz E.,
Colmenares K., León J., Sánchez F., Villadiego D., Manrique
E., Romero J., Izadi M. (2010) Dina Cretáceos Field chemical
EOR: from screening to pilot design, in: SPE Latin American
and Caribbean Petroleum Engineering Conference, OnePetro.

8 Chen X., Feng Q., Wu X., Zhao G. (2016) A pilot numerical
simulation case study for chemical EOR feasibility evalua-
tion, J. Pet. Explor. Prod. Technol. 6, 2, 297–307.

9 Alfarge D., Wei M., Bai B., Alsaba M. (2018) Lessons learned
from IOR pilots in Bakken formation by using numerical
simulation, J. Pet. Sci. Eng. 171, 1–15.

10 Taqi F., Ahmad K., Garcia J.G., Zhang I., Zijlstra E., Ayyad
H., Sullivan M. (2019) Interference pressure transient test for
permeability anisotropy evaluation in shallow unconsoli-
dated reservoir undergoing EOR polymer flood pilot, in: SPE
Kuwait Oil & Gas Show and Conference, OnePetro.

11 Chai C.F., Adamson G., Lo S.W., Agarwal B., Ritom S., Du
K., Azizan N. (2011) St. Joseph Chemical EOR Pilot – a key
de-risking step prior to offshore ASP full field implementa-
tion, in: SPE Enhanced Oil Recovery Conference, OnePetro.

12 Ozen O., Wahlheim T.A., Attia T., Barrios L., Bin Majid M.
N., Wilkinson J. (2014) Dukhan field CO2 injection EOR
pilot: Reservoir modeling and planning, in: International
Petroleum Technology Conference, OnePetro.

13 Ali H.A., Musa T.A., Doroudi A. (2015) Chemical enhanced
oil recovery pilot design for Heglig Main Field-Sudan, in:
SPE Saudi Arabia Section Annual Technical Symposium and
Exhibition, OnePetro.

14 Saniez J., VandeBeuque S., Ekpenyong D.E., Bastos N.,
Wantong P., Salley B., Al-Yafei A. (2012) State of the art of
geoscience and reservoir integrated study for EOR CO2 Pilot
Implementation: example of a Giant Carbonate Reservoir of
Arabian Gulf UAE, in: Abu Dhabi International Petroleum
Conference and Exhibition, OnePetro.

15 Al-Dhuwaihi A.S., Abdullah M.B., Tiwari S., Al-Murayri M.
T., Al-Mayyan H., Shahin G.T., Shukla S. (2017) Fit-for-
purpose chemical EOR ASP modeling strategy to guide pilot
development decisions for a giant reservoir in North Kuwait,
in: SPE/IATMI Asia Pacific Oil & Gas Conference and
Exhibition, OnePetro.

16 Sharma S., Kamal D., Al-Maraghi E., AlMahrooqi S.,
Winkler M. (2016) Miscible gas EOR pilot design decisions
driven by linking EOR performance parameters to uncer-
tainties – a Kuwait Field Example, in: SPE EOR Conference
at Oil and Gas West Asia, OnePetro.

17 Prasad D., Pandey A., Kumar M.S., Koduru N. (2014) Pilot to
full-field polymer application in one of the largest onshore field in
India, in: SPE Improved Oil Recovery Symposium, OnePetro.

18 Da Cruz P.S., Horne R.N., Deutsch C.V. (2004) The quality
map: a tool for reservoir uncertainty quantification and
decision making. SPE Reserv. Evaluation Eng. 7, 01, 6–14.

19 Martini R.F., Schiozer D.J., Nakajima L. (2005) Use of
quality maps in reservoir management, J. Braz. Soc. Mech.
Sci. Eng. 27, 4, 463–468.

20 da Cruz Schaefer B., Sampaio M.A. (2020) Efficient work-
flow for optimizing intelligent well completion using produc-
tion parameters in real-time, Oil Gas Sci. Technol. – Rev.
IFP Energies nouvelles 75, 69.

S.M. Motahhari et al.: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 76, 82 (2021)10



21 James G., Witten D., Hastie T., Tibshirani R. (2017) An
introduction to statistical learning with applications in R,
Springer.

22 Gorunescu F. (2011) Data mining: concepts, models and
techniques, Vol. 12, Springer Science & Business Media.

23 Mohaghegh S.D. (2020) Subsurface analytics: contribution of
artificial intelligence and machine learning to reservoir
engineering, reservoir modeling, and reservoir management,
Pet. Explor. Dev. 47, 2, 225–228.

24 Hu J.I.A., Lihui D.E.N.G. (2018) Water flooding flowing
area identification for oil reservoirs based on the method of
streamline clustering artificial intelligence, Pet. Explor. Dev.
45, 2, 328–335.

25 Vaseghi F., Ahmadi M., Sharifi M., Vanhoucke M. (2021)
Generalized Multi-Scale Stochastic Reservoir Opportunity
Index for enhanced well placement optimization under uncer-
tainty in green and brownfields, Oil Gas Sci. Technol. – Rev.
IFP Energies nouvelles 76, 41.

26 Borgelt C. (2013) Objective functions for fuzzy clustering,
Comput. Intell. Intell. Data Anal. 3–16.

27 Xie X.L., Beni G. (1991) A validity measure for fuzzy
clustering, IEEE Trans. Pattern Anal. Mach. Intell. 13, 8,
841–847.

28 Subbalakshmi C., Krishna G.R., Rao S.K.M., Rao P.V.
(2015) A method to find optimum number of clusters based
on fuzzy silhouette on dynamic data set, Proc. Comp. Sci.
46, 346–353.

29 Shannon C.E. (1948) A mathematical theory of communi-
cation, Bell Syst. Tech. J. 27, 3, 379–423.

30 Abellan A., Noetinger B. (2010) Optimizing subsurface field
data acquisition using information theory, Math. Geosci. 42,
6, 603–630.

31 Zhang Y., Li P., Wang Y., Ma P., Su X. (2013) Multiat-
tribute decision making based on entropy under interval-
valued intuitionistic fuzzy environment, Math Prob. Eng.
2013, 526871.

32 Chaudhry A. (2004) Oil well testing handbook, Elsevier.
33 Pyrcz M.J., Deutsch C.V. (2014) Geostatistical reservoir

modeling, Oxford University Press.
34 Saaty T.L., Peniwati K. (2013) Group decision making:

drawing out and reconciling differences, RWS Publications.
35 Samad A.M., Hifni N.A., Ghazali R., Hashim K.A., Disa N.

M., Mahmud S. (2012) A study on school location suitability
using AHP in GIS approach, in: 2012 IEEE 8th International
Colloquium on Signal Processing and its Applications, IEEE,
pp. 393–399.

36 Li Q., Zhang J., Deng B., Chang J., Li H., Liu S., Xu X.
(2011) Grey decision-making theory in the optimization of
strata series recombination programs of high water-cut
oilfields, Pet. Explor. Dev. 38, 4, 463–469.

37 Cables E., Lamata M.T., Verdegay J.L. (2016) RIM-
reference ideal method in multicriteria decision making,
Inform. Sci. 337, 1–10.

38 Maschio C., Schiozer D.J. (2019) Integration of geostatistical
realizations in data assimilation and reduction of uncertainty
process using genetic algorithm combined with multi-start
simulated annealing, Oil Gas Sci. Technol. – Rev. IFP
Energies nouvelles 74, 73.

39 Alinezhad A., Amini A. (2011) Sensitivity analysis of
TOPSIS technique: the results of change in the weight of
one attribute on the final ranking of alternatives, J. Optim.
Indus. Eng. 4, 7, 23–28.

S.M. Motahhari et al.: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 76, 82 (2021) 11



Appendix A

Fig. A1. Permeability ranges of the most represented patterns of one of the reservoirs and the associated pie chart showing their
areal distribution on the field [14].

Fig. A2. Areal division of the reservoir into six areas [15].
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Fig. A3. Qualitative ranking of the selection criteria in each area [16].
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Fig. A4. Segmentation of the reservoir with allocated area numbers.

Fig. A5. Remaining oil volume maps at (a) beginning, (b) 10, (c) 20, and d) 30 years after waterflooding for the 15th layer of the
reservoir.
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Fig. A6. The distribution map of the clusters in the field based on: (a) RF arrays. (b) COV arrays.
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Fig. A7. Values of RSI (blue) and POI (red) in each candidate area.
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Fig. A8. Contour maps of the: (a) RSI and (b) POI values.
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Fig. A9. (a) Number of candidate regions. (b) Ranking of each region derived from RSI. (c) Ranking of each region derived from
POI.
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Appendix B

Table B1. Data for determining pilot size.

1 Price of oil ($/BBL) 55
2 Discount rate (%) 10
3 Cost of drilling (MM$/per well) 12
4 Cost of water injection ($/BBL) 5
5 Cost of oil production ($/BBL) 1
6 Cost of handling produced water ($/BBL) 2
7 Cost of surface facilities (MM$) 300
8 Field Production rate (MMBBLD) 110
9 Voidage replacement ratio 1
10 Maximum water cut (%) 50

Table B2. Clustering outcomes for recovery factor arrays.

Size of cluster Average membership degree Matrix of Euclidean distance

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 5 0.99 0
Cluster 2 14 0.95 52.25 0
Cluster 3 12 0.94 40.57 39.83 0
Cluster 4 11 0.98 43.32 41.75 57.01 0
Cluster 5 24 0.97 60.46 33.09 41.51 48.26 0

Table B3. Clustering outcomes for covariance arrays.

Size of cluster Average membership degree Matrix of Euclidean distance

Cluster 1 Cluster 2

Cluster 1 14 0.94 0
Cluster 2 52 0.98 426.99 0
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Table B4. Distance between candidate areas and center of dominant cluster for Recovery Factor (RF-center) and
covariance between cells (covariance-center) arrays.

Number
of areas

Distance
of area
from the
Recovery
Factor
center

Cluster
number

(Recovery
Factor)

Distance
of area
from
the

covariance
center

Cluster
number

(Covariance
between
cells)

Number
of areas

Distance
of area
from the
Recovery
Factor
center

Cluster
number

(Recovery
Factor)

Distance
of area
from the
covariance
center

Cluster
number

(Covariance
between
cells)

1 50.34 3 202.35 2 38 47.49 3 147.01 2
2 47.53 3 168.02 2 39 50.31 3 176.48 2
3 19.67 5 169.25 2 40 56.77 3 210.84 2
4 23.54 5 390.09 2 41 59.72 3 278.19 2
5 25.72 5 293.87 2 42 56.77 3 170.94 2
6 24.93 5 340.89 2 43 32.08 2 135.37 2
7 24.76 5 394.32 2 44 33.48 2 128.45 2
8 23.37 5 182.44 2 45 37.93 2 155.48 2
9 23.24 5 386.37 2 46 38.02 2 167 2
10 23.87 5 248.18 2 47 40.43 2 141.44 2
11 20.11 5 168.57 2 48 44.75 2 156.5 2
12 18.98 5 106.56 2 49 41.07 2 134.15 2
13 21.69 5 305.74 2 50 41.13 2 141.29 2
14 26.08 5 198.72 2 51 35.65 2 126.69 2
19 58.04 2 152.73 2 52 34.43 2 139.18 2
20 44.01 3 200.83 2 53 32.84 2 126.45 2
21 46.7 3 313.23 2 54 38.63 2 141.67 2
22 44.67 3 215.84 2 56 58.08 1 307.63 2
23 45.64 3 180.48 2 57 64.01 1 655.31 1
24 45.92 3 182.21 2 58 69.51 1 606.88 1
25 20.74 5 155.18 2 59 68.97 1 542.08 1
26 23.47 5 199.21 2 60 66.26 1 659.83 1
27 21.96 5 346.04 2 61 57.94 4 623.11 1
28 21.77 5 232.54 2 62 61.46 4 730.42 1
29 18.74 5 85.42 2 63 57.54 4 684.94 1
30 24.42 5 189.89 2 64 58.18 4 714.6 1
31 22.14 5 148.83 2 65 53.55 4 325.81 1
32 23.31 5 190.46 2 66 56.1 4 341.08 2
33 23.79 5 98.65 2 67 58.18 4 436.99 1
34 20.89 5 89.98 2 68 51.23 4 417.33 1
35 20.58 5 169.97 2 69 52.51 4 625.73 1
36 27.71 5 310.31 2 70 47.77 4 393.38 1
37 77.19 2 163.24 2 71 43.06 4 418.46 1
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Table B5. The pairwise comparison matrix and weights of the criteria using AHP.

Criteria A B C D E F G Weights (%)

(A) RSI value 1 3 3 5 5 4 2 33

(B) Number of interfered wells 1/3 1 1 3 3 2 1 14.5

(C) Average distance between interfered wells and
a candidate area

1/3 1 1 3 3 2 1 14.5

(D) Number of Adjacent wells 1/5 1/3 1/3 1 1 1/2 1/3 5.5

(E) Average distance between Adjacent wells and
a candidate area

1/5 1/3 1/3 1 1 1/2 1/3 5.5

(F) Distance between a candidate area and surface
facilities

1/4 1/2 1/2 2 2 1 1/2 9

(G) Number of existing applicable wells for
running a pilot

1/2 1 1 3 3 2 1 18

Table B6. Scenarios with different criteria weights.

Scenarios Criterion weight

A B C D E F G

S-1) base case 0.33 0.145 0.145 0.055 0.055 0.09 0.18

S-2) increasing of criterion (A) 0.53 0.10 0.10 0.04 0.04 0.06 0.13

S-3) increasing of criterion (B) 0.25 0.345 0.11 0.04 0.04 0.07 0.14

S-4) increasing of criterion (C) 0.25 0.11 0.345 0.04 0.04 0.07 0.14

S-5) increasing of criterion (D) 0.26 0.11 0.11 0.255 0.04 0.07 0.14

S-6) increasing of criterion (E) 0.26 0.11 0.11 0.04 0.255 0.07 0.14

S-7) increasing of criterion (F) 0.26 0.11 0.11 0.04 0.04 0.29 0.14

S-8) increasing of criterion (G) 0.25 0.11 0.11 0.04 0.04 0.07 0.38
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