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Abstract
Stochastic dynamic matching problems have recently gained attention in the stochastic-modeling
community due to their diverse applications, such as supply-chain management and kidney exchange
programs. In this paper, we study a matching problem where items of different classes arrive according
to independent Poisson processes. Unmatched items are stored in a queue, and compatibility between
items is represented by a simple graph, where items can be matched if their classes are connected.
We analyze matching policies in terms of stability, delay, and long-term matching rate optimization.
Our approach relies on the conservation equation, which ensures a balance between arrivals and
departures in any stable system. Our main contributions are as follows. We establish a link between
the existence of stable policies, the dimensionality of the solution set of the conservation equation,
and the compatibility graph’s structure. We describe the convex polytope formed by non-negative
solutions to the conservation equation, and we design policies that can achieve or closely approximate
the vertices of this polytope. Lastly, we discuss potential extensions of our results beyond the main
assumptions of this paper.
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1 Introduction.

Stochastic dynamic matching problems, in which items arrive at random instants to be
matched with other items, have recently attracted much attention in the stochastic-modeling
community. These challenging control problems are highly relevant in many applications,
including supply-chain management, pairwise kidney exchange programs, and online mar-
ketplaces. In pairwise kidney exchange programs for example, each item represents a
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donor-receiver pair, and two pairs can be matched if the donor of each pair is compatible
with the receiver of the other pair. In online marketplaces, items are typically divided into
two categories, called demand and supply, and the goal is to maximize a certain long-term
performance criteria by appropriately matching demand items with supply items.

In this paper, we consider the following dynamic matching problem2. Items of different
classes arrive according to independent Poisson processes. Compatibility constraints between
items are described by a simple graph on their classes, such that two items can be matched
if their classes are neighbors in the graph. Unmatched items are stored in the queue of their
class, and the matching policy decides which matches are performed and when. All in all,
a stochastic matching model is described by a triplet (G, λ, Φ), where G = (V, E) is the
compatibility graph, λ = (λ1, λ2, . . . , λn) is the vector of per-class arrival rates, and Φ is the
matching policy. In Figure 1 for instance, there are four item classes numbered from 1 to 4;
classes 2 and 3 are compatible with all classes, while classes 1 and 4 are compatible only
with classes 2 and 3.

λ2

λ3

λ1 λ4

µ1,2

µ1,3

µ2,4

µ3,4
µ2,3

Figure 1 Illustration of a matching model (G, λ, Φ) on the diamond graph.

A matching model (G, λ, Φ) is said to be stable if the associated Markov chain is positive
recurrent; roughly speaking, this means that the queue length of each class does not explode
as time elapses. Assuming that this matching model is stable, the matching rate µk along
an edge k ∈ E with endpoints i, j ∈ V is the rate at which class-i items and class-j items
are matched with one another. Our end goal is to characterize the matching rates that are
achievable under stable matching policies and to use this characterization to design matching
policies that achieve certain matching rate vectors. We focus specifically on two performance
indicators, namely the matching rates along edges and the delay (proportional to the mean
queue length of each class by Little’s law). Our results show that these metrics are sometimes
incompatible, in the sense that optimizing a function of the matching rate vector can lead to
instability.

1.1 Motivation.

Besides providing us with criteria to compare the long-term impact of different matching
policies, stability, delay, and matching rates are relevant performance criteria in many
instances of matching models.

2 Detailed definitions of the concepts discussed here will be given in Section 2.
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Linear optimization.

First assume a reward rk is earned each time a match is performed between items of the
classes i and j that are endpoints of edge k ∈ E, and that we look for a policy Φ that
maximizes the long-run reward rate

∑
k∈E rkµk while making the system stable. This

optimization problem is relevant to applications in organ exchange programs, where rewards
capture the desirability of a match, accounting for metrics such as the quality of life after
transplant and the survival rates of the recipients and donors [7].

Perhaps the most natural policy to consider is a priority policy whereby each incoming
item is immediately matched with an unmatched item of the compatible class leading to
the highest reward, if any. Unfortunately, it was observed in [33, Section 5] that such a
priority policy may lead to instability. Furthermore, using a matching policy with a specific
priority order for edges does not guarantee that the ordering of the resulting matching rates
is consistent with the edge priorities. Depending on the properties of the compatibility
graph G and the arrival rate vector λ, we will introduce either a stable matching policy that
yields the optimal reward (if such a stable policy exists) or a family of stable policies that
get arbitrarily close to the optimal.

Chained matching.

Matching rates become also crucial when the output of a stable “first-level” matching model
(G, λ, Φ) is the (non-Poisson) arrival process of a “second-level” matching model (or, more
generally, of another stochastic system). The second-level model consists of a compatibility
graph G′ = (E, E′) whose nodes are the edges of G, and the matching rate vector µ of
the first-level model is the arrival rate vector of this second-level model. The ability to
control this vector µ becomes instrumental in stabilizing or optimizing performance in the
second-level model. Such two-level matching systems are found in various applications such
as quantum switches [40, 43].

1.2 Contributions.
We propose a unified approach to studying stability, delay, and matching rates in stochastic
matching problems. The starting point is the conservation equation, which any stable policy
must satisfy, expressed as Aµ = λ, where A is the incidence matrix of the compatibility
graph G, λ gives the arrival rates, and µ gives the matching rates achieved by the policy. As
we will see, what can be achieved in terms of stability, delay, and matching rates is closely
related to properties of the linear mapping µ 7→ Aµ, particularly injectivity and surjectivity.
We establish simple equivalences between these linear properties and the structure of the
graph (Definitions 2–5 and Proposition 6). With a slight abuse of notation, we say that a
graph has a given property if the associated linear map does, e.g., G is said to be bijective if
µ 7→ Aµ is bijective. Building on these definitions, our main contributions are as follows.

First, we establish a direct relationship between the solution space of the conservation
equation, the structure of the compatibility graph, and the existence of a stable policy.
Specifically, we show that a compatibility graph G is stabilizable (i.e., there exists a vector
λ and a policy Φ such that the matching model (G, λ, Φ) is stable) if and only if the
graph G is surjective (Proposition 7). We also prove that a matching problem (G, λ) is
stabilizable (i.e., there exists a policy Φ such that the matching model (G, λ, Φ) is stable)
if and only if G is surjective and the conservation equation has a solution with positive
coordinates (Proposition 8). This result provides a new direct method to verify stabilizability,
in polynomial time with respect to the number of classes and edges.
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Second, we describe the space Π of solutions to the conservation equation. When G is
bijective, Π reduces to a unique solution, for which we provide a closed-form expression
(Proposition 9). When G is surjective-only, we give a parametric expression for Π (Proposi-
tion 10 and Definition 11) and characterize the polytope Π⩾0 of non-negative solutions. We
show that the vertices of Π⩾0, i.e., its extreme points, correspond to injective solutions in the
sense that the subgraph restricted to their support is injective (Proposition 13). Moreover,
we show that the vertices are bijective with probability 1 when the vector λ is sampled
randomly from a reasonable distribution (Proposition 14).

Third, we apply these results to the linear optimization of matching rates achievable
by stable policies. This optimization problem is equivalent to reaching a vertex of Π⩾0
(Propositions 15 and 16). A solution is achievable if and only if the vertex is bijective, in
which case we propose an optimal policy (Proposition 17). Otherwise, we demonstrate a
fundamental trade-off between regret with respect to the optimal solution and the experienced
delay (Proposition 18), and we introduce a sequence of policies that we prove to have
arbitrarily small regret, at the cost of increasing mean queue sizes (Proposition 19). These
results are supported by extensive simulations, where we benchmark our policies against the
state-of-the-art.

Finally, we outline possible extensions of our work. We show via a convexity result that
optimizing a non-linear function of µ is also possible, in the sense that a target µ∗ in the
interior of Π⩾0 can always be achieved by a stable policy (Propositions 20 and 21). We also
explore the optimization of µ using greedy policies (Propositions 23 and 24 and Conjecture 25),
and we investigate what happens when G is a hypergraph.

1.3 State of the art.
We now review the relevant work related to (static or dynamic) matching problems.

Non-bipartite or general stochastic matching.

Our work is part of a broader research effort on the stochastic matching model that was briefly
discussed earlier and will be described in details in Section 2, see [5, 6, 12, 15, 25, 33, 35].
Among these works, the following are particularly relevant because directly related to our
results on stability. The work in [33] is the earliest on this matching model. It derives
necessary and sufficient stability conditions that are instrumental in several of our results, in
particular Propositions 7 and 8. This work also proves that the Match-the-Longest (ML)
policy is maximally stable (in the sense that it always leads to stability whenever the matching
problem (G, λ) is stabilizable), a result that is also applied in Proposition 8. [15, 35] focus
on the First-Come-First-Match (FCFM) policy. In particular, [35] proves that the FCFM
policy is maximally stable, and [15] provides a new sufficient stability condition we prove to
be also necessary in Proposition 8.

The recent work in [5] is perhaps the closest to ours, so we provide a detailed discussion to
highlight the relation with our paper. The first statement of [5, Theorem 1] is synonym to the
equivalence of statements ii and iii in Proposition 8. Our proof is significantly shorter because
it relies more heavily on existing results. Our observation at the beginning of Section 4 that
the conservation equation has a unique solution if and only if the graph is bijective (and
not surjective-only) summarizes [5, Theorem 3]. Some formulas derived in [5, Section 9] are
special cases of the formulas derived in Proposition 9. The non-bipartite matching model
in [5] is slightly more general because it considers graphs with self-loops, that is, an edge
can have identical endpoints, and this paper also considers the bipartite model that will be
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discussed in the next paragraph. However, [5] does not adopt the polytope approach that
allows us to derive the necessary and sufficient conditions of Sections 4–6. Furthermore,
although we decided to focus on nonbipartite matching models to aleviate the discussion,
the general approach we develop in Section 3 equally applies to bipartite graphs and can be
used to derive results for bipartite matching model such as those studied in [5].

Other variants of the model were studied recently, and an interesting future work would
consist of generalizing our results to these variants. In particular, [25] considers item
abandonment, [6] considers graphs with self-loops, and [23, 36, 28, 22, 41, 38] allow matches
not limited to two items by replacing the graph with a hypergraph, which is also called
multi-way matching in the literature.

A series of papers on multi-way [28, 22, 41] and two-way matching [29] are closely related
to our analysis of matching rates optimization (see Section 6). Under a certain general
position condition, these papers propose reward rate maximizing matching policies achieving
a regret of O(1) at all times simultaneously. In our setting, the general position condition
corresponds to approaching a bijective vertex of Π⩾0, and so, Proposition 17 is an equivalent
steady-state result. Additionally, we consider the case of injective-only vertices in Section
6.2 and propose a matching policy that ensures stability and arbitrarily small regret in the
steady-state at the cost of increasing mean queue length size. Such a policy that ensures
stability while optimizing the reward rate seems to be new in the literature, as the results
of [28, 22, 41, 29] cannot be directly generalized to the steady-state for the injective-only
case. In addition, we explicitly characterize when a vertex is either bijective or injective-only,
which also appears to be a new contribution.

Bipartite stochastic matching.

To the best of our knowledge, the first example of a stochastic matching model with an infinite
time horizon in the literature, which predated the model that we consider, is the bipartite
matching model introduced in [13] and studied in [1, 2, 3, 9, 10, 11, 16]. In this model, the
compatibility graph is bipartite, with two parts that correspond to supply and demand items,
respectively. This bipartite model differs from ours by its arrival process: time is slotted
and, during each time slot, one demand item and one supply item arrive. [2, 9] have made
contributions about stability and [2] focused on matching rates, and they obtained results
similar to those derived in the literature on our model. The bipartite nature of the graph
simplifies some calculations, for instance by allowing the application of flow-maximization
algorithms to calculate optimal matching rates.

Static and fractional matching.

The static matching problem, in which the nodes of the graph represent items (rather
than classes), has been extensively studied in mathematics, computer science, and economy,
see [32]. Although the questions raised in static and dynamic matching are often different,
the conservation equation that we obtain is reminiscent of several results in static matching.
For example, finding a maximum-cardinality matching in the graph G (that is, a maximum-
cardinality set of edges without common endpoints) is equivalent to finding integers µk ∈ {0, 1}
for each edge k ∈ E that maximize

∑
k∈E µk while satisfying the conservation equation with

λi = 1 for each i ∈ V . The relaxation of this integer linear program leads to the so-called
fractional matching problem, which has been studied in the literature, see [32, Section 7.2].
Therefore, the fractional matching polytope defined in [32, Section 7.5] is a special case of
the convex polytope that we consider in Section 5.2, and our characterization of this convex
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polytope is a natural generalization of existing characterizations of the fractional polytope 3.

1.4 Outline.
The remainder of the paper is organized as follows. Section 2 gives a formal definition
of the model. Section 3 introduces the conservation equation and defines the notions of
surjectivity, injectivity, and bijectivity for a graph. We use these definitions to formulate new
necessary and sufficient stability conditions. In particular, we show that stability requires the
compatibility graph to be surjective (that is, either bijective or surjective-only). In Section 4,
we focus on bijective graphs and give a closed-form expression of the unique solution to the
conservation equation. Section 5 characterizes the solution set of the conservation equation
for surjective-only graphs. Section 6 focuses on the linear optimization of the matching rates
(that is, optimizing a linear combination of the matching rates) under a stable policy. The
performance of the proposed policies is validated in Section 7 through simulations. Lastly,
in Section 8, we consider several extensions of our framework: non-linear optimization,
restriction to greedy policies, and hypergraph matchings.

2 Stochastic dynamic matching.

We consider a stochastic dynamic matching system in which items arrive at random times to
be matched with other items. Each incoming item may be matched with any unmatched
item of a compatible class; in this case, both items disappear immediately. Unmatched items
are gathered in a waiting queue. In this paper, such a stochastic dynamic matching system
will be described by a triplet (G, λ, Φ), where G is the compatibility graph, λ the vector of
arrival rates, and Φ the matching policy. We now review each component in details. To
facilitate reference and understanding, notation is summarized in Table 1.

2.1 Compatibility graph.
Compatibility constraints between items are described by a graph G = (V, E), called the
compatibility graph of the model, which is simple (undirected and without self-loop). The
number of nodes is represented by n, while m denotes the number of edges.

We use V = {v1, v2, . . . , vn} to denote the set of nodes, where each node corresponds
to a class in the matching model. In cases where there is no confusion, we may refer to
a class vi simply by its index i. Following the intuition conveyed in Figure 1, we will use
the terms “class i” and “queue i” interchangeably, and refer for instance to the number of
unmatched class-i items as the size of queue i; this is a convenience of terminology, and this
does not preclude the matching policy from using information not captured by this state
representation, such as the arrival order of items of different classes (see Section 2.3 for more
details).

The set of edges is denoted by E = {e1, e2, . . . , em}. These edges represent compatibility
constraints between item classes, in the sense that a class-i item and a class-j item can be
matched with one another if and only if their classes are adjacent, that is, if there is an edge
with endpoints i and j. When there is no ambiguity, we may refer to an edge ek ∈ E with
endpoints i, j ∈ V by its index k or its set {i, j} of endpoints. In Figure 1 for instance, there
are four item classes numbered from 1 to 4. Classes 2 and 3 are compatible with all classes,

3 The fractional matching polytope is actually defined using non-strict inequalities rather than equalities.
However, one can verify that these two convex polytopes have the same non-zero vertices.
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but classes 1 and 4 are only compatible with classes 2 and 3. The absence of self-loop means
that an item of a given class cannot be matched with other items of the same class.

Lastly, we let I denote the family of independent sets of the compatibility graph G, where
an independent set of G is a non-empty set of nodes that are pairwise non-adjacent. The family
of independent sets in the compatibility graph of Figure 1 is I = {{1}, {2}, {3}, {4}, {1, 4}}.

2.2 Arrival process.
Class-i items arrive according to an independent Poisson process with rate λi > 0, for each
i ∈ V . The vector of arrival rates is denoted by λ = (λ1, λ2, . . . , λn) ∈ Rn

>0. Scaling all
coordinates of λ by the same positive constant is equivalent to changing the time unit, so we
can renormalize λ without changing the dynamics. For example, we will sometimes use the
unit normalization, in which

∑
i∈V λi = 1. We also let I = (It, t ∈ N) denote the sequence

of independent and identically distributed (i.i.d.) item classes, so that It is the class of the
(t + 1)-th item, equal to i with probability λi/(

∑
j∈V λj), for each t ∈ N. The couple (G, λ)

is called a matching problem or simply a problem. Occasionally, when we need to specify the
sequence of incoming items and not merely its distribution, we will also refer to the couple
(G, I) as a (matching) problem.

2.3 Policy and matching dynamics.
Most of the paper focuses on deterministic size-based policies, that is, policies whereby
matching decisions are deterministic functions of the queue-size vector. However, as we will
briefly explain at the end of this section (and discuss in more details in the supplementary
material), our results also apply to a more general definition of a policy. Throughout the
paper, we assume that the system is initially empty, meaning that it starts with no unmatched
item.

2.3.1 Deterministic size-based policies.
A (deterministic) size-based matching policy is defined formally as a function Φ : Q× V →
V ∪{⊥}, where Q is an infinite subset of Nn that contains the reachable states of the system.
In-depth discussion on Q will come in Sections 2.3.2 and 2.3.3. For each q ∈ Q and i ∈ V , an
incoming class-i item that finds the system in state q is matched with an item of class Φ(q, i)
if Φ(q, i) ∈ V and is added to class-i queue if Φ(q, i) = ⊥. The matching policy is assumed
to be adapted to the compatibility graph G in the sense that

Φ(q, i) ∈ {j ∈ Vi : qj ⩾ 1} ∪ {⊥}, q ∈ Q, i ∈ V, (1)

where Vi is the neighbor set of node i in G. The system dynamics are described by a
Markov chain Q = (Qt, t ∈ N), called the queue-size process. For each t ∈ N, Qt =
(Qt,1, Qt,2, . . . , Qt,n) is an n-dimensional vector giving the number of unmatched items of
each class right after the arrival of the t-th item, with the assumption that the system is
initially empty, that is, Q0 = 0. The system dynamics satisfy the recursion

Qt+1 =
{

Qt + 1It
if Jt = ⊥,

Qt − 1Jt if Jt ̸= ⊥,
(2)

where Jt = Φ(Qt, It) for each t ∈ N, and 1i is the n-dimensional vector with one in
coordinate i and zero elsewhere, for each i ∈ V . We assume that the policy Φ is such that
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the Markov chain Q has state space Q and is irreducible. By unfolding the recursion (2), we
obtain that, for each t ∈ N,

Qt,i = Lt,i −
∑

k∈Ei

Mt,k, t ∈ N, i ∈ V, (3)

where Ei ⊆ E is the set of edges that are incident to node i in the graph G, for each i ∈ V ,
Lt,i is the number of class-i items among the first t arrivals, for each t ∈ N and i ∈ V , and
Mt,k is the number of times that classes i and j are matched over the first t arrivals, for each
t ∈ N and {i, j} = ek ∈ E:

Lt,i =
t−1∑
s=0

1{Is=i}, t ∈ N, i ∈ V, (4)

Mt,k =
t−1∑
s=0

1{{Is,Js}=ek}, t ∈ N, k ∈ E, (5)

with the convention that the sums are zero if t = 0. The triplet (G, λ, Φ) is called a matching
model, or simply a model. Occasionally, when specifying the sequence of incoming item
classes is useful, we will also refer to the triplet (G, I, Φ) as a (matching) model.

2.3.2 Greedy policies.

A policy Φ is called greedy if an incoming item is matched whenever possible, that is, if there
is an unmatched item that is compatible. More formally, the policy Φ is greedy if

Φ(q, i) ̸= ⊥ for each (q, i) ∈ Q× V such that {j ∈ Vi : qj ⩾ 1} ≠ ∅. (6)

Equivalently, a policy Φ is greedy if the set of unmatched item classes under this policy is an
independent set of the compatibility graph, meaning that the state space Q of the queue-size
process is equal to

QG = {q ∈ Nn : qiqj = 0 for each i, j ∈ V such that {i, j} ∈ E}. (7)

Here are two examples of greedy matching policies that will appear later in the paper:
Match-the-Longest (ML): For each (q, i) ∈ Q × V such that

∑
j∈Vi

qj ⩾ 1, we
choose Φ(q, i) ∈ arg maxj∈Vi

(qj) (ties are broken arbitrarily). This policy was considered
by [33, 6, 25, 5].
Highest-Reward-First (HRF): This policy selects matches according to rewards
defined on edges. If r denotes a vector of Rm (indexed by the edges) with distinct
coordinates, we let Φ(q, i) = arg maxj∈Vi:qj⩾1 ri,j for each (q, i) ∈ Q × V such that∑

j∈Vi
qj ⩾ 1. This definition remains valid if the coordinates of r have ties that do not

impact the decision, i.e., if all pairs of edges that are incident to the same node and are
not part of a triangle have distinct rewards4. Note that the order induced by r fully
defines an HRF policy.

4 If three classes form a triangle in the compatibility graph, at most one of them can be non-empty under
a greedy policy, so at most one edge of the triangle can be in the input of arg max.
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2.3.3 Non-greedy policies.
The state space Q under non-greedy policies is a strict superset of the set QG defined in (7).
In Section 6, non-greedy policies are obtained by applying the following modifications to
greedy policies:

Filtering: Given a subset E⋆ ⊊ E of edges, replace Vi (the neighbors of node i) with
V ⋆

i = {j ∈ Vi : {i, j} ∈ E⋆} in the definition (1) of Φ. Intuitively, we eliminate the edges
of E \ E⋆ and follow a (greedy or non-greedy) policy on the subgraph G⋆ = (V, E⋆).
Semi-filtering: We consider a variant of filtering policies in which the restriction of
selecting matches from a subset E⋆ is not always enforced. Examples of semi-filtering
policies will be given in Sections 6 and 7.

2.3.4 Other policies.
Although our results are stated for deterministic size-based policies because they are nota-
tionwise convenient, our results apply to a broader family of policies that are either random
or require a more complex state descriptor, or both.

The extension to random policies is standard. A random (size-based) policy Φ can be
defined as a function Φ : Q× V × (V ∪ {⊥})→ [0, 1] such that, for each t ∈ N, Jt is sampled
according to the distribution Φ(q, i, ·) given that Qt = q and It = i. Saying that the policy is
adapted to the compatibility graph G is then equivalent to saying that, for each q ∈ Q and
i ∈ V , the support of Φ(q, i, ·) is included into {j ∈ Vi : qj ⩾ 1} ∪ {⊥}. The policy is greedy
if Φ(q, i,⊥) = 0 for each (q, i) ∈ Q × V such that {j ∈ Vi : qj ⩾ 1} ̸= ∅ or, equivalently, if
Q = QG .

An even broader of policies that fit into our framework is described in Appendix A. In a
nutshell, the extended definition of a policy starts with a pair (S, | · |), where S is a countably
infinite set and | · | : S → Nn is a function that maps any state s ∈ S to the corresponding
queue-size vector. The policy is then a function Φ : S × V × (V ∪ {⊥}) × S → [0, 1] such
that Φ(s, i, j, s′) is the conditional probability that, given an incoming class-i item finds
the system in state s, the matching decision is j and the new state is s′. The policy is
assumed to be such that the Markov chain S = (St, t ∈ N) defined on S by the evolution of
the system state is irreducible. The stochastic process Q = (Qt = |St|, t ∈ N) is called the
queue-size process. It no longer satisfies the Markov property in general, but it does satisfy
the evolution equations (2) and (3), with Li = (Lt,i, t ∈ N) and Mk = (Mt,k, t ∈ N) defined
by (4) and (5) for each i ∈ V and k ∈ E. The state space of the queue-size process is given
by Q = {|s|, s ∈ S}. The policy is greedy if Q = QG and non-greedy if Q ⊋ QG , where QG is
still given by (7). First-Come-First-Match (FCFM) (e.g., see [35, 15]) is a classical example
of a deterministic policy that requires an expanded state descriptor (remembering the arrival
order of items of different classes).

This extended policy definition can initially be ignored, with St (resp. S) understood
as Qt (resp. Q). All results for extended policies remain valid if restated for deterministic
size-based policies, except for the convexity result in Proposition 20, which specifically relies
on extended policies.

2.4 Performance criteria.
We now define the main performance indicators. Later, we will show that these indicators
can sometimes be antagonistic, meaning that certain matching problems may require to
make trade-offs between them.
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Stability.

We now define the notions of stability and stabilizability, which will be explored in Section 3.

▶ Definition 1 (Stability and stabilizability).
(i) A model (G, λ, Φ) is called stable if the Markov chain (St, t ∈ N) is positive recurrent.

In this case, we say that the policy Φ stabilizes the problem (G, λ).
(ii) A problem (G, λ) is called stabilizable if there exists a policy that stabilizes it.
(iii) A compatibility graph G is called stabilizable if there exists a vector λ ∈ Rn

>0 such that
the problem (G, λ) is stabilizable.

The ML greedy policy, discussed in Section 2.3.2, has the property of stabilizing all stabilizable
matching problems ([33]). The First-Come-First-Match (FCFM) greedy policy has the same
property (see [35] for details). When the matching problem (G, λ) is clear from the context,
we will refer to a policy (adapted to G) as stable if the corresponding model (G, λ, Φ) is
stable.

Delay.

In a stable matching model (G, λ, Φ), the delay is defined as the long-term average of the
waiting times of the items (where the waiting time is zero if the item is matched immediately

upon its arrival). According to Little’s law [30, 31], the delay is equal to
∑

i∈V
E[Q∞

i ]∑
i∈V

λi
, where

Q∞ = (Q∞
1 , Q∞

2 , . . . , Q∞
n ) is a random vector following the stationary distribution of the

Markov chain Q = (Qt, t ∈ N) under policy Φ.

Matching rates.

Consider a stable matching model (G, λ, Φ). We define the matching rate µk along an edge
ek ∈ E, with endpoints i and j, as the long-run average number of matches between a class-i
item and a class-j item per unit of time, given by:(∑

i∈V

λi

)
× 1

t
Mt,k

almost surely−−−−−−−−→
t→+∞

µk, k ∈ E. (8)

This quantity is uniquely defined according to the ergodic theorem, see [37, Theorem 1.10.2].
Note that Mt,k/t represents the average number of matches per arrival (out of the first t

arrivals), and the factor
(∑

i∈V λi

)
converts this into the average number of matches per

unit of time. The vector of matching rates associated with the model (G, λ, Φ) is denoted
as µ = (µ1, . . . , µm) ∈ Rm

⩾0. If ambiguity arises, we will use the notation µ(Φ) or µ(G, λ, Φ).
Sections 4 and 5 will investigate the constraints that a vector of matching rates must satisfy.

▶ Remark 1 (Zero-rate edges). The following remark will play a key role in Section 6.1. The
matching rate along an edge ek ∈ E with endpoints i and j is given by

µk = λi

∑
s,s′∈S

π(s)Φ(s, i, j, s′) + λj

∑
s,s′∈S

π(s)Φ(s, j, i, s′),

where π is the equilibrium distribution of the Markov chain (St, t ∈ N). Since λi > 0, λj > 0,
and the distribution π is positive on its support S, it follows that the matching rate µk is
zero if and only if Φ(s, i, j, s′) = Φ(s, j, i, s′) = 0 for each s, s′ ∈ S, that is, items of classes i

and j are never matched with one another under policy Φ. In this case, the policy Φ is also
adapted to the subgraph G⋆ = (V, E⋆) with E⋆ = E \ {ek}.
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Regret.

To turn a matching rate vector into a scalar performance metric, we assume that the quality
of a matching rate vector can be evaluated by some reward function f : µ ∈ Rm → f(µ) ∈ R.
It is then convenient to define the regret of a policy Φ as R(Φ) = fsup − f(µ(Φ)), where
fsup = supΨ:(G,λ,Ψ) stable f(µ(Ψ)) is the supremum of the rewards achievable by any stable
policy. Unless otherwise stated, we consider linear reward functions of the form f : µ ∈
Rm → r⊺µ, where r = (r1, . . . , rm) ∈ Rm is a vector of rewards associated with the edges of
G.

Delay and regret will be the main focus of Sections 6–8.

General notation

N,N>0,R,R⩾0,R>0 Sets of non-negative integers, positive integers, real numbers,
non-negative real numbers, positive real numbers.

⩾, ⩽, >, < Coordinate-wise comparison in Rn.
|A| Cardinality of the set A.

Graph notation

G = (V, E) Simple graph G with |V | = n vertices and |E| = m edges.
vi Vertex indexed by i (denoted i if there is no ambiguity).
ek, k, or {i, j} Edge indexed by k, with endpoint vertices i and j.

Matching notation

λ = (λi)1⩽i⩽n Vector of arrival rates of the item classes.
Φ A matching policy.
µ = (µk)1⩽k⩽m = (µi,j){i,j}∈E Vector of matching rates along the edges.

Linear-algebra notation

A = (ai,k)i∈V,k∈E Incidence matrix of the graph G.
A⊺ = (ak,i)k∈E,i∈V Transpose of the matrix A.
ker(A) = {y ∈ Rm : Ay = 0} Right kernel of the matrix A. Its dimension is called the nullity

of A.
ker(A⊺) = {x ∈ Rn : A⊺x = 0} Left kernel of the matrix A. Its dimension is the nullity of A⊺.
d = m − n Dimension of the right kernel of the matrix A if G is surjective.

Table 1 Table of key notation.

3 Graph theory and linear algebra.

In this section, we present a central result of this paper, namely, the connection between
stability and the structure of the compatibility graph. Section 3.1 introduces the conservation
equation, a system of linear equations satisfied by all matching rate vectors. Section 3.2
introduces the related concepts of surjectivity, injectivity, and bijectivity that will play a
key role throughout the paper. In Section 3.3, we combine these concepts to formulate
new necessary and sufficient conditions under which a compatibility graph G or a matching
problem (G, λ) is stabilizable in the sense of Definition 1. Section 3.4 illustrates these results
with early examples.
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3.1 Conservation equation.
Computing the matching rate vector achieved by a given stable policy or characterizing the
set of matching rate vectors that can be achieved by stable policies is a difficult problem a
priori. To circumvent this difficulty, we first establish a necessary condition known as the
conservation equation. This equation is satisfied by the matching rate vectors achieved by all
stable policies. It asserts that, in a stable system, the arrival of items and their departure
due to matches balance each other in the long run. More formally, given a stable matching
model (G, λ, Φ), the conservation equation (ce) can be derived by dividing (3) by t and
taking the limit as t tends to infinity, and it can be written in two equivalent forms, either
as a system of linear equations (ce–1) or in matrix form (ce–2):∑

k∈Ei

µk = λi, i ∈ V, (ce–1)

Aµ = λ, (ce–2)

where the n × m matrix A = (ai,k)i∈{1,2,...,n},k∈{1,2,...,m} is the incidence matrix of the
graph G, defined by ai,k = 1 if edge ek is incident to node vi and ai,k = 0 otherwise. Using a
conservation equation is common in queueing theory, but our contributions in this paper
primarily stem from the novel mixed approach that combines graph theory and linear algebra,
which we will elaborate on in the following sections.

The conservation equation (ce) holds significant importance throughout this paper. While
our primary focus is to understand the matching rate vector, we often find it beneficial to
temporarily depart from interpreting λ and µ as vectors of arrival and matching rates in a
matching model. Instead, we view the conservation equation as a linear equation with λ as a
free variable and µ as an unknown. This perspective allows us to explore various aspects of
the equation and its implications. In this context, we will sometimes allow the coordinates
of λ and µ to be negative, even if the vectors of arrival and matching rates in a matching
model have non-negative coordinates.

3.2 Surjectivity, injectivity, and bijectivity.
Definitions 2–5 below introduce the notions of surjectivity, injectivity, and bijectivity of
a graph. In a nutshell, a compatibility graph G is said to be surjective (resp. injective,
bijective) if the linear application µ 7→ Aµ defined by its incidence matrix A is surjective
(resp. injective, bijective). Interestingly, simple equivalent conditions exist in terms of the
graph structure. As we will see later, these notions are fundamental to study the stability of
matching models and the associated matching rate vector. In particular, we will see that (i)
a compatibility graph G is stabilizable if and only if G is surjective, and (ii) the matching
rates in a stabilizable matching problem (G, λ) are independent of the policy Φ if and only if
G is bijective. Examples are shown in Figure 2. The equivalence of the conditions given in
Definitions 2–4 and the implications in Proposition 6 are proved in Appendix B.1.

▶ Definition 2 (Surjective graph). Consider a simple graph G = (V, E) with n nodes and m

edges. Let A denote the n×m incidence matrix of G. The graph G is called surjective if
one of the following equivalent conditions is satisfied:

(i) The function µ ∈ Rm 7→ Aµ ∈ Rn is surjective.
(ii) For each λ ∈ Rn, the equation Aµ = λ of unknown µ ∈ Rm has at least one solution.
(iii) The left kernel of the matrix A is trivial.
(iv) Each connected component of the graph G is non-bipartite.
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1

2

3

4

(a) Graph that is neither surjective nor injective.
Both A⊺ and A have nullity 1.

1

2

3

4

(b) Surjective-only graph.
The nullity of A⊺ is 0 and that of A is 1.

1

2

3 4

(c) Injective-only graph.
The nullity of A⊺ is 1 and that of A is 0.

1

2

3 4

(d) Bijective graph.
Both A⊺ and A have nullity 0.

Figure 2 Examples of graphs. The nullity of a matrix is the dimension of its kernel.

▶ Definition 3 (Injective graph). Consider a simple graph G = (V, E) with n nodes and m

edges. Let A denote the n×m incidence matrix of G. The graph G is called injective if one
of the following equivalent conditions is satisfied:

(i) The function µ ∈ Rm 7→ Aµ ∈ Rn is injective.
(ii) For each λ ∈ Rn, the equation Aµ = λ of unknown µ ∈ Rm has at most one solution.
(iii) The right kernel of the matrix A is trivial.
(iv) Each connected component of the graph G contains at most one odd cycle and no even

cycle; in other words, each connected component of G is either a tree or a unicyclic
graph with an odd cycle.

▶ Definition 4 (Bijective graph). Consider a simple graph G = (V, E) with n nodes and
m edges. Let A denote the n×m incidence matrix of G. The graph G is called bijective if
the following equivalent conditions are satisfied:

(i) The function µ ∈ Rm 7→ Aµ ∈ Rn is bijective.
(ii) For each λ ∈ Rn, the equation Aµ = λ of unknown µ ∈ Rm has exactly one solution.
(iii) The matrix A is invertible.
(iv) Each connected component of the graph G contains one cycle and this cycle is odd.

▶ Definition 5 (Surjective-only graph, injective-only graph). A simple graph G is called
surjective-only (resp. injective-only) if G is surjective but not injective (resp. injective but
not surjective).

The following proposition gives necessary conditions for surjectivity and injectivity in terms
of the number of nodes and edges in the graph.

▶ Proposition 6. Consider an undirected graph G = (V, E) with n nodes and m edges.
(i) If G is surjective, then n ⩽ m.
(ii) If G is injective, then n ⩾ m.
(iii) If G is bijective, then n = m.
(iv) If G is surjective, then G is also injective if and only if n = m.
(v) If G is injective, then G is also surjective if and only if n = m.

3.3 Necessary and sufficient conditions for stabilizability
The definitions and results of Sections 3.1 and 3.2 allow us to formulate new necessary and
sufficient conditions for stabilizability.
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3.3.1 Stabilizable compatibility graph.
The following proposition gives necessary and sufficient conditions for a graph G to be
stabilizable, in terms of either its structure or its incidence matrix.

▶ Proposition 7. Let G be a compatibility graph. The following conditions are equivalent:
(i) The graph G is stabilizable.
(ii) The graph G is surjective.

Proof. Equivalence between Proposition 7i and Definition 2iv has been proved by [33,
Theorem 1]. ◀

Although the equivalence between Proposition 7i and Definition 2iv is a known result, no
prior literature on stochastic matching models (to the best of our knowledge) has explored the
connection between Proposition 7i and the alternative definitions of surjectivity introduced
in Definition 2. As we will see later, this new characterization of the stabilizability of a
graph G will be useful to analyze the relationship between delay and matching rates.

In the remainder, we will use the words “stabilizable” and “surjective” interchangeably.
Furthermore, unless stated otherwise, we will assume that the graph G is surjective.

3.3.2 Stabilizable matching problem.
We now turn to the stabilizability of a matching problem (G, λ). As recalled in Section 2.4,
two examples of greedy policies that stabilize the model whenever this matching problem
is stabilizable are ML and FCFM, as shown by [33] and [35], respectively. Proposition 8
below provides necessary and sufficient conditions for the matching problem (G, λ) to be
stabilizable; condition ii was already derived by [33], but condition iii is new5.

▶ Proposition 8. Consider a matching problem (G, λ) with a surjective graph G. The
following conditions are equivalent:

(i) The matching problem (G, λ) is stabilizable.
(ii) For each independent set I ∈ I, we have

∑
i∈I λi <

∑
i∈V (I) λi.

(iii) The conservation equation (ce) admits a solution µ ∈ Rm
>0 (i.e., a solution with strictly

positive components).

Proof. This result is proved in Appendix B.2 using results from [33, 15]. ◀

One might expect that the time complexity to verify condition ii in Proposition 8 is exponential
in the general case, considering that the number of independent sets grows exponentially
fast with the number n of classes. However, [33, Proposition 1] proved that there exists a
polynomial algorithm for verifying this condition. It is worth noting that this verification
process is indirect in that it involves constructing a bipartite double cover of G. In contrast,
condition iii offers a more direct, polynomial-time method to verify the stabilizability of a
matching model (G, µ). To present this approach more explicitly, we differentiate between
two cases based on whether the graph G, assumed to be surjective, is surjective-only or
bijective.

▶ Remark 2. As observed by [15, Lemma 12], if the graph G is surjective, condition iii in
Proposition 8 gives a simple way of generating vectors λ ∈ Rn

⩾0 such that the problem (G, λ)
is stabilizable: it suffices to take λ = Aµ for some µ ∈ Rm

>0. For instance, if µ = (β, . . . , β)
for some β > 0, then the coordinates of λ are proportional to the degree of each node.

5 [35] concurrently proved a similar result, see Section 1.3.
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Verify stabilizability when G is bijective.

If the graph G is bijective, then the matrix A is invertible, and (ce) has a unique solution,
namely A−1λ. Proposition 8 implies that the matching problem (G, λ) is stabilizable if and
only if all coordinates of A−1λ are positive. The special case of bijective graphs will be
investigated in detail in Section 4, where we will provide a more direct expression for A−1λ.

Verify stabilizability when G is surjective-only.

If the compatibility graph G is surjective-only, (ce) has multiple solutions. To determine
if one of these solutions is positive, it suffices to solve a linear optimization problem that
searches for a solution to (ce) whose smallest coordinate is as large as possible:

Maximize
z=(z1,z2,...,zm+1)∈Rm+1

zm+1,

Subject to A(z1, z2, . . . , zm)⊺ = λ,

zi ⩾ zm+1, i ∈ {1, 2, . . . , m}.

(10)

Here, the first m coordinates of the vector z are the coordinates of a vector µ ∈ Rm that
satisfies (ce), and the last coordinate of z is a lower bound of the coordinates of this vector µ.
Indeed, the equality constraint means that µ satisfies (ce), and the inequality constraint
means that the last coordinate of z is less than or equal to its other coordinates. The value
to maximize is the last coordinate of the vector z.

If z is a solution to (10), we call the corresponding vector µ ∈ Rm a maximin solution
to (ce). The optimization problem (10) is a textbook linear optimization problem. It can be
solved with a time complexity that is polynomial in the number n of nodes and the number m

of edges using many methods, for instance the interior-point-method, see [26].
The linear optimization problem (10) has a solution with positive coordinates if and

only if (ce) has a solution with positive coordinates. According to Proposition 8, this is
equivalent to saying that the matching problem (G, λ) is stabilizable. Therefore, to verify if a
matching problem (G, λ) is stabilizable, it suffices to find a solution to the linear optimization
problem (10) and to check if its last coordinate is positive.

▶ Remark 3. Observe that the optimization problem (10) always has solutions with finite
coordinates. Indeed, the set of vectors that satisfy the constraints of (10) contains at least
one valid solution with real-valued coordinates (this is again a consequence of the surjectivity
of G). We just need to consider an arbitrary solution µ of (ce) (see Section 5.1.2 for a
concrete example using the Moore-Penrose inverse) and to let zµ = (µ1, µ2, . . . , µm, min(µ)),
where min(µ) is the smallest coordinate of the vector µ. Any solution better than zµ has
all its coordinates lower-bounded by min(µ) and upper-bounded by max(λ) − min(0, (n −
2) min(µ)). The latter bound is obtained by observing that, if edge k is incident to node i and
if (µ′

1, µ′
2, . . . , µ′

m, x′) is a solution to (10) such that x′ ⩾ min(µ), then µ′
k = λi−

∑
ℓ∈Ei\k µ′

ℓ

by (ce). We then use the inequalities λi ⩽ max(λ) and
∑

ℓ∈Ei\k µ′
ℓ ⩾ min(0, (n − 2)x′) ⩾

min(0, (n−2) min(µ)) (this latter inequality is obtained by distinguishing two cases, depending
on whether min(µ) ⩾ 0 or min(µ) < 0). Therefore, the solutions better than zµ belong to a
compact set of Rm+1, which ensures the existence of an optimal solution with finite coordinates.

3.4 Early examples.
We now provide illustrative examples that illustrate the stabilizability results of Propositions 7
and 8 as well as our definitions of surjectivity, injectivity, and bijectivity. These examples
will also introduce useful notions that will be further explored in Sections 4–6.
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3.4.1 Bijective graphs.

We first consider connected compatibility graphs G that are both surjective and injective:
the graph contains exactly one cycle, and this cycle is odd. According to Definition 4, (ce)
has a unique solution for each vector λ ∈ Rn of arrival rates. Proposition 8 implies that the
matching problem (G, λ) is stabilizable if and only if the coordinates of this solution are
positive, in which case this solution gives the matching rates achieved by all stable matching
policies. By Remark 2, one can always exhibit a vector λ ∈ Rn

>0 of arrival rates such that
the matching problem (G, λ) is stable.

1 2

3

λ1+λ2−λ3
2

λ1+λ3−λ2
2

λ2+λ3−λ1
2

(a) Matching rates in the triangle graph C3.

1

2

3 4λ1+λ2−λ̄3
2

λ1 +λ̄3 −λ22

λ2+λ̄3−λ1

2

λ4

(b) Matching rates in the paw graph. λ̄3 = λ3 − λ4
denotes the residual rate that class 3 can provide to
classes 1 and 2.

1

2

3

4
2λ1λ

2 + α

2λ1λ3 −
α

2λ2λ4 −
α

2λ3λ
4 + α

(c) Matching rates in the square
graph C4 with the normalization
λ1 + λ4 = λ2 + λ3 = 1

2 . This graph
is not stabilizable.

1

2

3

4
2λ 1̄λ

2 + α

2λ1 λ̄3 −
α

2λ̄2λ4 −
α

2̄λ3λ
4 + α

β

(d) Matching rates in the diamond graph with the normalization
λ1 + λ4 = 1

2 . 2β = λ2 + λ3 − λ1 − λ4 = λ2 + λ3 − 1
2 is the difference

between the arrival rates of the inner part {2, 3} and the outer part
{1, 4}. λ̄2 = λ2 − β and λ̄3 = λ3 − β represent the residual rates
that classes 2 and 3 can provide to classes 1 and 4, and they are
such that λ1 + λ4 = λ̄2 + λ̄3 = 1

2 , as in Example 3.

1

2

3 4

5

6

λ1+λ2−λ3+α
2

λ1+λ3−λ2−α

2

λ2 +λ3 −λ1 −α
2

α λ5+λ6−λ4+α
2

λ4+λ5−λ6−α

2

λ4 +λ6 −λ5 −α
2

(e) Matching rates in the kayak paddle KP3,3,1.

Figure 3 Examples of Section 3.4.

▶ Example 1 (Triangle). If the graph G is a triangle graph C3, and the vector λ = (λ1, λ2, λ3)
is given, the solution to (ce) is unique and shown in Figure 3a. According to Proposition 8iii,
(G, λ) is stabilizable if and only if all coordinates of this solution are positive. This condition
is indeed equivalent to Proposition 8ii, which states that λ1 < λ2 + λ3, λ2 < λ1 + λ3, and
λ3 < λ1 + λ2. Alternatively, this condition can be expressed as λ1, λ2, and λ3 being the
lengths of the sides of a non-degenerate triangle (i.e., they satisfy the triangular inequality).
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Under these conditions, the model (G, λ, Φ) is stable if Φ is the (unique) greedy policy adapted
to G (indeed, Proposition 34 shows that a complete graph G admits a unique greedy policy Φ).

▶ Example 2 (Paw graph). If G is a paw graph, the solution to (ce) is again unique and
shown in Figure 3b. Here, λ̄3 = λ3 − λ4 is the remaining rate of class 3 after accounting for
the needs of class 4. After this subtraction, the matching rates along edges {1, 2}, {1, 3}, and
{2, 3} are defined as in the triangle graph of Figure 3a.

It is important to note that, while the existence of a matching rate vector with positive
coordinates guarantees that a greedy policy like ML is stable, there may still exist greedy
policies that are unstable. Consider, for instance, the paw graph of Figure 3b and a Highest-
Reward-First policy where the edges {1, 3} and {2, 3} offer higher rewards than {3, 4}. Even
if the problem is stabilizable, this policy might select the edge {3, 4} at a slower rate than
class-4 items arrive, causing instability (see [33, Section 5]).

3.4.2 Bipartite graph (neither injective nor surjective).

Besides explaining intuitively why bipartite graphs cannot be stabilized, the following example
will prepare the ground for Example 4.

▶ Example 3 (Square graph). Figure 3c shows a square graph C4. This graph is not
surjective because it is bipartite with parts {1, 4} (called the outer part) and {2, 3} (inner
part). Therefore, according to Proposition 7, this graph is not stabilizable. Yet, given a vector
λ = (λ1, λ2, λ3, λ4) of arrival rates, (ce) may still have a solution with positive coordinates.
This does not contradict Proposition 8, as Item iii is equivalent to Items i and ii only if the
graph G is surjective. Assuming unit normalization, the conservation equation (ce–2) has a
solution if and only if

λ1 + λ4 = λ2 + λ3 = 1
2 . (11)

If (11) is satisfied, the solutions to (ce) can be described with a parameter α as shown
in Figure 3c: starting from the particular solution µ = (2λ1λ2, 2λ1λ3, 2λ2λ4, 2λ3λ4), all
solutions can be generated by alternately adding and subtracting α along the (even) cycle
1–2–4–3. The positive solutions correspond to values of α such that −2 min(λ1λ2, λ3λ4) <

α < 2 min(λ1λ3, λ2λ4).
To understand why the matching problem (C4, λ) is not stabilizable even when (ce) has

a solution with positive coordinates, let us focus on the system dynamics. We can use (3)
to show that the difference in total queue size between the outer part {1, 4} and the inner
part {2, 3} satisfies Qt,1 + Qt,4 − (Qt,2 + Qt,3) = Lt,1 + Lt,4 − (Lt,2 + Lt,3) for each t ∈ N.
Therefore, the Markov chain (Qt,1 + Qt,4 − (Qt,2 + Qt,3), t ∈ N) is a random walk on the
integer number line {. . . ,−2,−1, 0, 1, 2, . . .}, with transition probability proportional to λ1 +λ4
in the increasing direction and to λ2 + λ3 in the decreasing direction. If (11) is not satisfied,
this random walk is transient, and the difference between the queue sizes of the two parts
grows linearly with time. On the other hand, if (11) is satisfied, then the random walk does
not have this bias, but the model is still unstable because the corresponding Markov chain is
null recurrent6.

6 Some existing studies of matching in bipartite graphs solve this issue by coupling arrivals in the two
components, see [2, 9, 13], or by assuming that items have a finite patience time, as in [25].
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3.4.3 Surjective-only graphs.
We finally consider a compatibility graph G that is surjective but not injective. In other words,
the graph G is stabilizable and (ce) has an infinite number of solutions. The achievability of
these solutions by a stable matching policy will be discussed in Section 6.

▶ Example 4 (Diamond (double-fan) graph). Figure 3d shows the diamond graph D, that is,
a square graph with an additional edge between nodes 2 and 3. Compared to Example 3, this
additional edge makes the graph non-bipartite, and therefore surjective, so that the graph is
stabilizable according to Proposition 7. For ease of computation, we assume that the vector
λ = (λ1, λ2, λ3, λ4) of arrival rates is normalized so that λ1 + λ4 = 1

2 . Under this assumption,
and with β = 1

2 (λ2 + λ3 − λ1 − λ4) = 1
2 (λ2 + λ3) − 1

4 , λ̄2 = λ2 − β, and λ̄3 = λ3 − β, the
general solution to (ce) can be described with a parameter α as shown in Figure 3d. After
subtracting β from λ2 and λ3, the solutions to (ce) for all edges but {2, 3} are exactly the
same as in the square graph of Example 3.

According to Proposition 8ii, the matching problem (D, λ) is stabilizable if and only if

λ2 < λ1 + λ3 + λ4, λ3 < λ1 + λ2 + λ4, λ1 + λ4 < λ2 + λ3, (12)

that is, λ̄3 > 0, λ̄2 > 0, and β > 0. If these inequalities are satisfied, the positive solutions
correspond to values of α such that −2 min(λ1λ̄2, λ̄3λ4) < α < 2 min(λ1λ̄3, λ̄2λ4). Intuitively,
compared to the square graph, stabilizable matching problems (D, λ) have a positive difference
of 2β between the arrival rates of the inner part {2, 3} and the outer part {1, 4}. This
difference is absorbed by the central edge {2, 3}, which has matching rate β. Like Example 1
and unlike Example 2, the matching model (D, λ, Φ) is stable for every greedy policy Φ
provided that (12) is satisfied (as shown in Corollary 27 of Appendix B.3).

▶ Example 5 (Kayak paddle graph). Figure 3e shows a kayak paddle KP3,3,1, consisting of
two triangles linked by an edge. According to Proposition 8, the matching problem (G, λ) is
stabilizable if and only if there exists α > 0 such that (λ1, λ2, λ3 − α) and (λ4 − α, λ5, λ6)
are the arrival rate vectors of two stabilizable triangle graphs C3. The solutions to (ce) can
be described by varying α as shown in Figure 3e. Assuming the matching problem (G, λ) is
stabilizable, the solutions to (ce) with positive coordinates correspond to the values of α such
that

0 < α < min(λ3 − |λ2 − λ1|, λ4 − |λ5 − λ6|).

Intuitively, solutions with positive coordinates have a positive matching rate α along edge
{3, 4}. After subtracting this rate from λ3 and λ4, the subgraphs restricted to nodes 1, 2,
and 3 and to nodes 4, 5, and 6, respectively, behave like the triangle of Figure 3a. Like
Example 2 and unlike Examples 1 and 4, the fact that (G, λ) is stabilizable does not guarantee
the stability of all greedy policies.

4 Matching rates in bijective graphs.

In the remainder, we consider exclusively compatibility graphs G that are stabilizable.
According to Definition 2 and Proposition 7, this implies that the graph G is surjective, i.e.,
that each connected component of G is non-bipartite. By Proposition 6iv and Proposition 8,
there are only two possible cases:
1. If n = m, the graph G is also bijective: each connected component of G is a unicyclic

graph, and its (only) cycle is odd. The conservation equation (ce) has a unique solution
given by µ = A−1λ. The matching problem (G, λ) is stabilizable if and only if all
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components of this solution are positive, in which case the solution provides the matching
rates achievable by any stable policy.

2. If n < m, the graph G is surjective-only: each connected component of G is non-bipartite,
and at least one of these connected components contains an even cycle or a pair of odd
cycles. The conservation equation (ce) has an infinite number of solutions. The matching
problem (G, λ) is stabilizable if and only if one of them has all-positive components.

Case 1 is studied in this section, while case 2 will be studied in Sections 5 and 6.
In Proposition 9 below, we give a simpler expression for the unique solution µ = A−1λ

of (ce) in terms of the arrival rate vector λ, under the assumption that the graph G is
bijective. We assume without loss of generality that G is connected, as otherwise we can
consider each connected component independently. Compared to the expression µ = A−1λ,
the advantage of Proposition 9 is twofold: it does not require calculating a matrix inversion,
and it highlights the monotonicity of the matching rates with respect to the arrival rates.
This result will be illustrated in Examples 6 and 7.

▶ Proposition 9. Consider a problem (G, λ) with a compatibility graph G = (V, E) that is
connected and bijective, and consider an edge k ∈ E.

(i) If edge k does not belong to the (unique odd) cycle of the graph G, then edge k separates
the graph G into two parts, namely a tree and a unicyclic graph. If Vk ⊂ V denotes
the set of nodes that belong to the tree (including one endpoint of edge k), then the
matching rate along edge k is given by

µk =
∑
i∈Vk

(−1)di,k λi, (13)

where di,k is the distance between node i and edge k, defined as the minimum distance
between node i and an endpoint of edge k.

(ii) If edge k belongs to the (unique odd) cycle of the graph G, then the matching rate along
edge k is

µk = 1
2

(∑
i∈V

(−1)di,k λi

)
. (14)

Proof. We first prove (13) for every edge k that does not belong to the cycle. As observed in
the proposition, each edge k that does not belong to the cycle separates the graph into two
parts, one of which is a tree with node set Vk; the rooted tree associated with k is obtained
by designating the corresponding endpoint of edge k as the root. We now prove (13) by
induction on the height this rooted tree. Equation (13) is true if the height of this tree is
zero. Indeed, in this case, the endpoint of edge k that belongs to the tree, say node i, has no
other incident edge, so that applying (ce–1) to node i yields µk = λi, which is consistent
with (13). Now assume that the assumption is satisfied for each edge whose associated rooted
tree has height at most h− 1 for some h ⩾ 0, and consider an edge k whose associated rooted
tree has height h. By applying (ce–1) to the root i of this associated rooted tree, we obtain

µk = λi −
∑

ℓ∈Ei\{k}

µℓ. (15)

The induction hypothesis guarantees that (13) is satisfied for every ℓ ∈ Ei \{k} (as the height
of the associated rooted tree is at most h− 1). After injecting this observation to (15), the
result for edge k follows by observing that dj,k = dj,ℓ + 1 for each ℓ ∈ Ei \ {k} and j ∈ Vℓ,
and that Vk = {i} ∪ (

⋃
ℓ∈Ei\{k} Vℓ) (all sets being disjoint).
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We now prove (14) for each edge k that belongs to the cycle. Since the graph G is
unicyclic, deleting edge k from G yields a (connected) tree, and therefore a bipartite graph.
We let V+ denote set of nodes in the part that contains both endpoints of edge k (that both
endpoints belong to the same part follows from the fact that the cycle is odd) and V− the
set of nodes in the other part. We obtain∑

i∈V+

λi −
∑

i∈V−

λi =
∑

i∈V+

∑
ℓ∈Ei

µℓ −
∑

i∈V−

∑
ℓ∈Ei

µℓ = 2µk.

The first equality follows from (ce–1). The second equality holds because each edge ℓ ∈ E\{k}
has one endpoint in V+ and another in V−, so that µℓ appears once in the first nested sum
and once in the second; on the contrary, since both endpoints of edge k belong to V+, µk

appears twice in the first nested sum and zero times in the second. Equation (14) follows by
observing that di,k is even if and only if i ∈ V+. ◀

We remark that the influence of the arrival rate of a node on the matching rate along an
edge only depends on the parity of the distance between the edge and the node. The actual
distance does not. In particular, even in a very large (bijective) graph, a node far away from
an edge has the same (although possibly reversed) impact on this edge’s matching rate as an
endpoint of this edge.

1 2

3

4

5

λ1+λ2−λ5−λ3+λ4
2

(a) Matching rates in the pentagon
graph C5. Only rate µ1,2 is shown
for ease of display. The other rates
are deduced by permutation.
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3 4
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6

7
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9

λ1+λ2−λ̄3
2

λ2 +λ̄3 −λ12

λ1+λ̄3−λ2

2

λ̄4
λ5

λ6

λ̄7

λ8

λ9

(b) Matching rates in a “lying puppet” graph with n = 9 nodes
and m = 9 edges. The differences λ̄7 = λ7 − λ8 − λ9, λ̄4 =
λ4 − λ5 − λ6 − λ̄7, and λ̄3 = λ3 − λ̄4 are the residual rates that
classes 7, 4, and 3 provide to their neighbors of lower index.

Figure 4 Matching rates in bijective graphs.

▶ Example 6 (Cycle graph with 5 nodes). A cycle graph is the simplest bijective graph that we
can consider, as it contains an odd cycle and no other edges. In the cycle graph of Figure 4a,
a direct application of Proposition 9ii yields µ1,2 = 1

2 (λ1 + λ2−λ3 + λ4−λ5). Matching rates
along other edges follow by symmetry. From the point of view of edge {1, 2}, we can partition
nodes into two sets, namely {1, 2, 4} and {3, 5}. The former (resp. latter) set contains nodes
at an even (resp. odd) distance of edge {1, 2}, and increasing the arrival rate of these nodes
increases (resp. decreases) the matching rate along edge {1, 2}.

▶ Example 7 (Lying puppet). We now consider the graph of Figure 4b. Edges {1, 2}, {1, 3},
and {2, 3} belong to the cycle, and the other edges do not. According to Proposition 9, we
have

µ1,2 = λ1 + λ2 − λ̄3

2 , µ1,3 = λ1 − λ2 + λ̄3

2 , µ2,3 = −λ1 + λ2 + λ̄3

2 ,

where λ̄3 = λ3 − µ3,4, and

µ4,5 = λ5, µ4,6 = λ6, µ7,8 = λ8,
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µ7,9 = λ9, µ4,7 = λ7 − µ7,8 − µ7,9, µ3,4 = λ4 − µ4,5 − µ4,6 − µ4,7.

This second set of equations can be obtained either by a direct application of (13) or by
applying (ce–1) recursively from the leaves. Indeed, applying (ce–1) to nodes 5, 6, 8, and 9
gives directly the values of µ4,5, µ4,6, µ7,8, and µ7,9, then applying (ce–1) to node 7 gives
the value of µ4,7, and finally applying (ce–1) to node 4 gives the value of µ3,4. The values
of µ1,2, µ1,3, and µ2,3 are similar to Example 2, where the arrival rate λ3 is again replaced
with the effective arrival rate λ̄3 from the point of view of classes 1 and 2.

5 Polytope of solutions in surjective-only graphs.

Let G be a surjective compatibility graph. In Section 4, we considered the case where G

was bijective, so that the vector of matching rates for any stable policy was the unique
solution to (ce). Let us now assume that G is surjective-only, meaning that each connected
component of G is non-bipartite and that at least one component contains either an even
cycle or a pair of odd cycles (cf. Definitions 2, 3, and 5). In this case, the solution set of
(ce) is infinite. The matching rate vector under any stable policy belongs to this set and has
non-negative coordinates.

To better control the matching rates, we first need to understand the structure of the
solution set of (ce). To this end, Section 5.1 generalizes the earlier examples from Section 3.4
by systematically characterizing the affine space of all real-valued solutions to (ce). Following
this, Section 5.2 describes the convex polytope formed by the solutions with non-negative
coordinates, in particular its vertices, that is its extreme points. Whether these solutions
can be achieved through a stable matching policy is explored in Section 6.

5.1 Affine space of real-valued solutions.
We first consider the set of solutions to (ce) with real-valued (positive, zero, or negative)
coordinates:

Π = {µ ∈ Rm : Aµ = λ} . (16)

We now delve into the properties of Π. In Section 5.1.1, we recall that Π is an affine space of
dimension d = m− n that can be described as a translation of the kernel of the incidence
matrix A by a particular solution to (ce). Section 5.1.2 gives examples of particular solutions
that can be used. Section 5.1.3 gives an algorithm to construct a basis for the kernel of the
incidence matrix using a spanning tree of the graph G.

5.1.1 Edge basis, kernel basis.
The following proposition characterizes the solution set Π of (ce) using the incidence matrix
of the compatibility graph. Equation (17) shows in particular that, up to translation, this
solution set depends only on the structure of the compatibility graph G, while the arrival
rate vector λ impacts only the translation vector.

▶ Proposition 10. Consider a matching problem (G, λ) with a surjective-only compatibility
graph G, and let A denote the incidence matrix of G. The solution set Π of (ce) is the affine
space obtained by translating the kernel ker(A) of the matrix A by a particular solution µ◦

of (ce), that is,

Π = {µ◦ + µ : µ ∈ ker(A)} . (17)

Furthermore, the vector space ker(A) and the affine space Π have dimension d = m− n.
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Proof. That the set Π is of the form (17) is a well-known result in linear algebra. Definition 2
about surjectivity implies that the rank of A is n, and we conclude from the rank-nullity
theorem that the nullity of A is d = m − n. The affine space Π has the same dimension
according to (17). ◀

Thanks to Proposition 10, given a particular solution µ◦ of (ce) and a basis B = (b1, b2, . . . , bd)
of ker(A), we can rewrite the affine space Π as

Π = {µ◦ + α1b1 + α2b2 + . . . + αdbd : α1, α2, . . . , αd ∈ R} .

In fact, we can define the following affine isomorphism between the coordinate space Rd and
the d-dimensional affine space Π:

α = (α1, α2, . . . , αd) ∈ Rd 7→ µ = µ◦ + α1b1 + α2b2 + . . . + αdbd ∈ Π. (18)

This allows us to define two coordinate systems, edge coordinates and kernel coordinates.

▶ Definition 11 (Edge basis, kernel basis). Consider a matching problem (G, λ) with a sur-
jective-only graph G. Given a particular solution µ◦ of (ce) and a basis B = (b1, b2, . . . , bd)
of ker(A), there are two natural bases to represent vectors in Π:

Edge basis: A vector of Π is described by its canonical coordinates µ = (µ1, µ2, . . . , µm) ∈
Rm, solution to (ce), where µk represents a candidate matching rate along edge k, for
each k ∈ E.
Kernel basis: A vector of Π is described by its coordinates α = (α1, α2, . . . , αd) ∈ Rd in
the basis B, where d = m− n is the dimension of the affine space Π.

If B is the m× d matrix giving the coordinates of the vectors of the basis B in the edge basis,
the change-of-basis formulas are as follows:

A vector of Π with coordinates α in kernel basis has coordinates µ = µ◦ + Bα in edge
basis;
A vector of Π with coordinates µ in edge basis has coordinates α = B+(µ− µ◦) in kernel
basis, where B+ is the pseudo-inverse 7 (or Moore-Penrose inverse) of B.

Both bases have advantages. The edge basis, by definition, gives directly the candidate
matching rates. The kernel basis allows us to work in lower dimension (d instead of m) and
to ignore the conservation equation (ce), which is implicitly enforced. In the remainder,
we will often use interchangeably the edge coordinates µ = (µ1, µ2, . . . , µm) and the kernel
coordinates α = (α1, α2, . . . , αd) to describe a given vector in Π. Which basis we are actually
using will be made clear by our choice of letters (either µ or α).

For graphs that have a low kernel dimension d, it is convenient to mix both approaches
by representing a generic vector of Π, i.e., a generic solution to (ce), in the form µ◦ + α1b1 +
α2b2 + . . . + αdbd. The solutions in Examples 4 and 5 displayed in Figures 3d and 3e follow
this convention. This representation, along with the possibility to switch between edge basis
and kernel basis, will be used extensively in Sections 5.2 and 6.

5.1.2 Particular solution.
We propose two ways of computing a particular solution to (ce).

7 The columns of the matrix B are linearly independent because B is a basis, so that the pseudo-
inverse B+ has the simple expression B+ = (B⊺B)−1B⊺, where the d × d matrix B⊺B is invertible
because ker(B⊺B) = ker(B) = {0}.
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Maximin solution.

A solution to the linear optimization problem (10) from Section 3.3.2 is a particular solution.
Recall that such a solution allows us to determine whether the matching problem (G, λ) is
stabilizable by checking if all its coordinates are positive.

Pseudoinverse.

Alternatively, a standard approach to simultaneously finding a particular solution µ◦ and
characterizing ker(A) makes use of the pseudoinverse (or Moore-Penrose inverse) of the
matrix A. Since Definition 2 on surjectivity implies that the rows of A are linearly independent,
the pseudoinverse A+ of A has the following simple form:

A+ = A⊺(AA⊺)−1,

where the n× n matrix AA⊺ is invertible because ker(AA⊺) = ker(A⊺) = {0}. We can then
describe a particular solution µ⊥ and the kernel ker(A) as follows:

µ⊥ = A+λ, ker(A) =
{

(Idm×m −A+A)µ : µ ∈ Rm
}

, (19)

where Idm×m denotes the m-dimensional identity matrix. The vector µ⊥ is the least-squares
solution to (ce), and it is orthogonal to ker(A). In general, some coordinates of this solution
can be negative even if non-negative solutions exist. For example, if G is the diamond
graph D of Example 4, then the matching problem (D, λ) with λ = (4, 5, 2, 1) is stabilizable
(µ = ( 7

2 , 1
2 , 1, 1

2 , 1
2 ) is a solution to (ce) with positive coordinates), but the solution given by

the pseudoinverse is µ⊥ = ( 11
4 , 5

4 , 1, 5
4 ,− 1

4 ).
Equation (19) shows that the pseudoinverse also provides an implicit characterization

of ker(A), though this is not very practical, as it relies on a projection from Rm to ker(A).
Section 5.1.3 offers a more direct characterization by constructing a basis for ker(A) based
on the structure of the compatibility graph G.

5.1.3 Basis of the kernel of the incidence matrix.
Recall that a vector µ ∈ Rm belongs to ker(A) if and only if Aµ = 0, which reads

∑
k∈Ei

µk = 0
for each i ∈ V . In other words, a vector µ ∈ Rm belongs to ker(A) if and only if, for each
i ∈ V , the sum of the coordinates of µ associated with the edges that are incident to node i

is zero. Using this observation, we first give examples of vectors that belong to ker(A), and
then we give an algorithm that generates a basis B = (b1, b2, . . . , bd) of ker(A).

First observe that an even cycle, if it exists, is the support of a vector in ker(A): it suffices
to assign alternatively the values +1 and −1 to the edges of this cycle and the value 0 to all
other edges. In the diamond graph of Example 4, if edges are numbered in lexicographical
order, then y = (1,−1, 0,−1, 1) is a vector of the unidimensional kernel (d = m − n = 1),
with support the even cycle 1–2–4–3 (see Figure 5a). Intuitively, even cycles can be used to
move weight between “odd” and “even” edges of the cycle without modifying the value of
the product Aµ. Actually, in this example, Figure 3d shows that the only way to increase
the matching rate along edges {1, 2} and {3, 4} is if we reduce the matching rate along edges
{1, 3} and {2, 4}, and conversely.

Apart from even cycles, other structures of interest are kayak paddles KPℓ,r,p, made of
two odd cycles (of lengths ℓ and r) connected by a path (of length p). Such graphs have a
unidimensional kernel, and a base vector can be found by assigning properly the values +1
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(b) Vector of the kernel space of the kayak paddle KP3,5,2.

Figure 5 Base vectors of kernel spaces of two toy graphs.

and −1 along the cycles and the values +2 and −2 along the path. Figure 5b shows such an
assignment for KP3,5,2.

Surprisingly, for any surjective graph G, one can build a basis of ker(A) using only
subgraphs of G that are even cycles and kayak paddles. Algorithm 1, derived from [20],
describes such a construction. Appendix C.1 gives a more detailed description of this
algorithm and proof that it terminates and returns the desired result.

Figure 6 shows a possible run of Algorithm 1 for the codomino graph: in Figure 6a, a
spanning tree T (plain back edges) and a pivotal edge a such that T ∪ {a} contains an odd
cycle (dotted edge) are selected. Then, for each edge si that does not belong to T ∪ {a}, we
build a base vector of the kernel space with support included into T ∪ {a, si}, after observing
that T ∪ {a, si} contains either an even cycle or a kayak paddle similar to those shown in
Figure 5. Other examples are shown in Appendix C.1.

Data: A connected surjective-only compatibility graph G = (V, E)
Result: A basis B of the kernel of the incidence matrix A of G

1 T ← Edges of a spanning tree of G

2 a← An edge in E \ T such that T ∪ {a} contains an odd cycle
3 B ← ∅
4 for s ∈ E \ (T ∪ {a}) do
5 Select from T ∪ {a, s} an even cycle or a kayak paddle made of two odd cycles
6 Weight the selected edges like in Figure 5 (unselected edges have weight 0)
7 Add resulting kernel vector to B
8 return B

Algorithm 1 High-level description of the construction of a basis of the kernel of the incidence
matrix A of a compatibility graph G. See Appendix C.1 for detailed description.
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Figure 6 A possible execution of Algorithm 1 for the codomino graph.
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▶ Remark 4. Equation (17) implies that, given an edge k ∈ E, all solutions to (ce) have
the same value along edge k if and only if edge k does not belong to the support of any basis
vector. According to Algorithm 1, this is equivalent to saying that edge k belongs neither to
an even cycle nor to a kayak paddle. In the diamond graph of Example 4 for instance, the
edge {2, 3} is the only one that does not belong to the even cycle 1–2–4–3, and it is indeed
the only one with a fixed rate β. In general, if an edge k ∈ E satisfies this unicity condition,
then the matching rate along edge k in a stable matching model (G, λ, Φ) is independent of
the policy Φ. Note that there is no straightforward relation between the number of edges with
uniquely-defined matching rates and the dimensionality d of the affine space Π.

5.2 Polytope description
We continue to focus exclusively on matching problems (G, λ) that are stabilizable. Let Π⩾0
denote the set of solutions to (ce) that have non-negative coordinates, defined as

Π⩾0 = Π ∩ Rm
⩾0 = {µ ∈ Rm : Aµ = λ, µ ⩾ 0}. (20)

The set Π⩾0 is a d-dimensional convex polytope in Rm, as it is the intersection of a d-
dimensional affine space with the positive orthant Rm

⩾0, both of which are convex. This
set Π⩾0 is neither empty nor degenerated to a dimension lower than d because the matching
problem (G, λ) is assumed to be stabilizable, which by Proposition 8 means that Π contains
a vector with positive coordinates (i.e., in the interior of the positive orthant). It is bounded
because each µ ∈ Π⩾0 satisfies 0 ⩽ µk ⩽ mini∈Vk

(λi) for each k ∈ E.
Equation (20) describes Π⩾0 in the edge basis. As Π⩾0 is a subset of Π, we can also

express its elements in the kernel basis introduced in Section 5.1.1. In the kernel basis, Π⩾0
is defined by the vectors whose coordinates belong to

Π̃⩾0 = {α ∈ Rd : µ◦ + α1b1 + α2b2 + . . . + αdbd ⩾ 0}. (21)

As (20) and (21) basically represent the same polytope up to the change-of-basis formulas of
Definition 11, in the remainder, we will use the same notation Π⩾0 to describe both sets; the
underlying basis will be made clear by our choice of letters (as before, µ for the edge basis
and α for the kernel basis).

5.2.1 Vertex characterization
The vertices of a convex polytope, also known as its corners or extreme points, are instrumental
in optimization, which will be the object of Section 6. Definition 12 provides the formal
definitions of vertices, along with faces and facets.

▶ Definition 12 (Vertices, faces, and facets; adapted from [42]). Let Υ denote a convex
polytope of dimension d ∈ N>0. A (non-empty) face of Υ is a non-empty intersection of
Υ with a hyperplane such that Υ is included into one of the two halfspaces defined by the
hyperplane. A vertex of Υ is a face of dimension 0. Equivalently, a vector µ ∈ Υ is a vertex
of Υ if, and only if, it cannot be written as a convex combination of points in Υ\{µ}. A
facet of Υ is a face of dimension d− 1.

Proposition 13 below gives a simple yet powerful characterization of the vertices of Π⩾0.

▶ Proposition 13. Consider a vector µ ∈ Π⩾0. Let E⋆ = {k ∈ E : µk > 0} denote the
support of the vector µ and G⋆ = (V, E⋆) its support graph. The following statements are
equivalent:



26 Online Stochastic Matching: A Polytope Perspective

1

2

6

3

5

4

1−
α1

1 +
α1

1 + α1 − α2

1
+

α
2

1−
α1

1
+

α
2

1 + α1

1− α1 − α2

(a) Generic solution to (ce).

α1

α2

0

(−1,−1)

(0, 1)

(−1, 0) (1, 0)

(1,−1)

(b) Polytope Π⩾0.

Figure 7 Matching problem (G, λ), where G is the codomino graph and λ = (2, 3, 3, 2, 3, 3) ∈ R6.
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Figure 8 Matching problem (G, λ), where G is the codomino graph and λ = (4, 4, 3, 4, 3, 4) ∈ R6.

(i) The vector µ is a vertex of Π⩾0.
(ii) The graph G⋆ is injective.

In particular, if µ is a vertex, we can distinguish two cases depending on the value of |E⋆|:
1. If |E⋆| = n then G⋆ is bijective.
2. If |E⋆| < n then G⋆ is injective-only.

Proof (borrowed from [14]). See Appendix C.2. ◀

With a slight abuse of notation, we say that a vertex µ ∈ Π⩾0 is bijective (resp. injective-
only) if the support graph G⋆ of µ is bijective (resp. injective-only).

Figures 7 and 8 shows Π⩾0 for the codomino graph. In each figure, the left part displays
a generic solution to (ce) on the graph, while the right part shows the polytope Π⩾0 and
its vertices in the kernel basis. In Figure 7, Π⩾0 has five vertices. The vertex α = (0, 1) is
bijective, as |E⋆| = |E \ {{2, 3}, {5, 6}}| = 6. One can verify that the remaining four vertices
are injective-only (as at least three edge coordinates are null). In Figure 8, Π⩾0 has three
vertices, all of which are bijective.

For further details, we encourage the reader to consult Appendix C.3, which provides
additional results on the relationships between vertex properties and the edge positivity
inequalities from Equation (21), along with more detailed examples of polytopes and their
vertices.
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5.2.2 Probability of bijectivity
Section 6 will show that the bijectivity of vertices is central for optimizing the matching
rates achieved by a stable policy. It is thus natural to wonder how frequent (or rare) bijective
vertices are. Proposition 14 gives a part of the answer.

▶ Proposition 14. Let G be a surjective-only graph, and assume that the arrival rate vector
λ is drawn according to a positive Lebesgue density over ∆n−1, the standard simplex of Rn.
Then,

P (All vertices of Π⩾0 are bijective|(G, λ) stabilizable) = 1.

Proof. See Appendix C.4. ◀

Proposition 14 suggests that under random arrival rates, the polytope Π⩾0 is likely to
have only bijective vertices. This result also holds if each coordinate of λ follows a continuous,
independent probability distribution, provided that the distribution’s projection on ∆n−1

has a positive measure and includes at least one vector λ for which (G, λ) is stabilizable. In
practice, injective-only vertices may still occur, especially when the coordinates of λ display
certain regularities, such as being proportional to node degrees (as in Figure 7). Moreover,
injective-only vertices offer unique theoretical challenges worth exploring.

In a sense, Proposition 14 resembles the statement with probability 1, a square matrix
is invertible: while generally true under suitable conditions, this does not imply that non-
invertible matrices can be ignored.

6 Matching rates optimization.

In Section 5, we identified the matching rate vectors µ that may be achieved by a stable policy
when the compatibility graph G is surjective-only. We now use these results to characterize
and optimize the matching rates actually achieved by a stable policy. As stated in Section 2.4,
given a stabilizable problem (G, λ) and a reward vector r = (r1, . . . , rm) ∈ Rm giving the
immediate reward yielded by a match, our goal is to design a stable policy Φ adapted to G

and that maximizes r⊺µ(G, λ, Φ), the long-run average reward.

▶ Remark 5. The constraint of stability is important, as it forces µ ∈ Π⩾0, which can
impact reward optimization. Consider for example the matching problem from Figure 9 with
associated rewards (1, 1, 1, 0, 0) (matches involving class 4 are not rewarded). One can verify
that r is orthogonal to ker(A), so that all stable policies yield the same reward, which is 5
here. On the other hand, if we accept to never match class-4 items, the resulting policy is
obviously unstable (class 4 has unbounded queue length) but can achieve a reward of 6, e.g.
by applying the ML policy restricted to the triangle {1, 2, 3}. Optimizing unstable policies is
outside the scope of this paper, but in Section 8.3.2, we briefly investigate how the paradox
from Figure 9 can be solved using the formalism of hypergraphs.

The remainder of this section is structured as follows: Section 6.1 recalls that optimizing
linear rewards amounts to reaching a vertex of the polytope. We show that: if the vertex is
bijective, the optimal solution is trivially achieved by a stable policy; if the vertex is injective
only, no stable policy can achieve the vertex. Section 6.2 focuses on the non-trivial case where
the vertex is injective-only. We demonstrate that such a vertex can be approached at the price
of an increase in the average queue sizes, and we introduce a family of vertex-approaching
policies with a guaranteed trade-off in performance.
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Figure 9 A matching problem where all stable policies have the same reward if r = (1, 1, 1, 0, 0).

6.1 Vertex optimality
We first recall a classical result from convex optimization; namely, a convex optimization
problem defined on a convex polytope always admits a vertex of the polytope as solution.
More specifically, Proposition 15 states that for optimizing a linear reward function, it is
sufficient to be able to reach the vertices of Π⩾0. Proposition 16 shows that, most of the
time, it is also necessary.

▶ Proposition 15. Let (G, λ) a stabilizable matching problem with a surjective-only compati-
bility graph G, and let r = (r1, . . . , rm) ∈ Rm be a vector of rewards associated with the edges
of G. Consider the problem of finding a solution to (ce) with non-negative components that
maximizes the reward rate r⊺µ, and let F = {µ ∈ Π⩾0 : r⊺µ = maxz∈Π⩾0 r⊺z}. Then F is
a non-empty face of Π⩾0. In particular, there exists a vertex µ ∈ Π⩾0 that maximizes the
reward (i.e., µ ∈ F ).

Proof. This is a standard result from convex optimization. Since Π⩾0 is closed and bounded,
there is a maximum rmax among the rewards associated with vectors inside Π⩾0. The set F

is the intersection of the hyperplane {y ∈ Rm : r⊺y = rmax} with Π⩾0. Therefore, it is a
non-empty face of Π⩾0. That any non-empty face contains a vertex follows from the lattice
structure of the faces of polytopes. ◀

▶ Proposition 16. Let (G, λ) a stabilizable matching problem with a surjective-only compati-
bility graph G, and let r ∈ ∆m−1 be a vector of rewards drawn according to a positive Lebesgue
density over ∆m−1, the standard simplex of Rm. Let F = {µ ∈ Π⩾0 : r⊺µ = maxz∈Π⩾0 r⊺z}
be the set of the optimal matching rate vectors for r. Then, with probability 1, F = {µr},
where µr is a vertex of Π⩾0.

Proof. As in Proposition 15, the non-empty face F is the intersection of the hyperplane
{y ∈ Rm : r⊺y = maxz∈Π⩾0 r⊺z} with Π⩾0. If its dimension is more than 0, it contains a
1-dimensional face of Π⩾0 (an edge). Let b ∈ Rm \ {0} be a direction of that edge. We have
b⊺r = 0. The set {r ∈ ∆m−1 : b⊺r = 0}, if it exists, has a dimension at most m− 2, so the
probability that b⊺r = 0 is 0. As the number of edges of Π⩾0 is finite, we conclude that, with
probability 1, F does not contain any edge of Π⩾0, which means it is reduced to a single
vertex. ◀

Building on Propositions 15 and 16, a natural question is: Can a given vertex be achieved
by a stable policy? It is answered by Proposition 17.

▶ Proposition 17. Let (G, λ) be a stabilizable matching problem with a surjective-only
compatibility graph G. Let ΠP be the set of matching rate vectors achieved by stable policies
adapted to (G, λ), µ a vertex of the polytope Π⩾0 associated to (G, λ), and E⋆ ⊂ E the
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support of µ. We distinguish two cases, depending on whether µ is bijective or injective-only
(cf Proposition 13).

(i) If µ is bijective (meaning that |E∗| = n), then µ ∈ ΠP . In fact, µ = µ(ΦE⋆), where
ΦE⋆ is the ML policy adapted to G with a filter on E⋆.

(ii) If µ is injective-only (meaning that |E∗| < n), then µ /∈ ΠP : no stable policy can
achieve µ.

Proof. Let G⋆ = (V, E⋆) be the subgraph of G associated with µ, p = |E⋆| be the number
of positive coordinates of µ, and let A⋆ denote the n× p incidence matrix of G⋆. As G⋆ is
injective (Proposition 13), the restriction µ̃ of the vector µ to its positive coordinates is the
only solution of the conservation equation A⋆ z̃ = λ, of unknown z̃ ∈ Rp. We now consider
the two cases separately:

(i) If G⋆ is bijective, Proposition 8 implies that the matching problem (G⋆, λ) is stabilized by
the ML policy: G⋆ is surjective and µ̃ is a solution to the conservation equation A⋆z = λ

with positive coordinates. To prove µ ∈ ΠP , we consider the ML policy with a filter on
E⋆ on the matching problem (G, λ), denoted ΦE⋆ . ΦE⋆ behaves exactly like the greedy
ML policy on (G⋆, λ), which is stable with matching rate µ̃ as we just saw. Hence, the
model (G, λ, ΦE⋆) is stable, and its matching rate is necessarily equal to µ by injectivity
of G∗. This proves that µ ∈ ΠP .

(ii) If G⋆ is injective-only, Proposition 7 implies that the matching problem (G⋆, λ) is not
stabilizable. We prove that µ /∈ ΠP by contradiction. Suppose that µ ∈ ΠP , and let Φ
be a stable policy on the matching problem (G, λ) such that µ(Φ) = µ. Since µk(Φ) = 0
for each k ∈ E \E⋆, we know from Remark 1 that Φ never performs a match supported
by an edge in E \ E⋆. Hence, Φ also defines a stable policy on the matching problem
(G⋆, λ), which contradicts the instability of the matching problem (G⋆, λ). Therefore,
µ /∈ ΠP . ◀

Proposition 17 tells that optimizing linear rewards is easy when the vertex is bijective:
we just need to forbid the edges outside the support of the vertex. We now focus on the
injective-only case.

6.2 Approaching injective-only vertices
Consider an injective-only vertex µ of Π⩾0, and let its support graph be denoted by G⋆ =
(V, E⋆), where E⋆ = {k ∈ E : µk > 0}. As shown in Proposition 17, the matching problem
(G⋆, λ) is not stabilizable. In this section, we present a stronger result: no sequence of
matching policies can converge to an injective-only vertex of Π⩾0 while maintaining finite
queue lengths. On the other hand, we also provide an achievability result. We propose a
simple variant of the ML policy and demonstrate that it achieves matching rates that are
O(ϵ) close to µ, with an expected queue length of O(1/ϵ). Note that the distance to µ and
the expected queue length are directly tied to our main scalar performance metrics, namely
regret and delay8.

8 Queue length and delay are related by Little’s law (see Section 2.4). Consider a stable policy Φ with
matching rate µ(Φ) ∈ Π⩾0 and regret R(Φ). We have R(Φ) = r⊺(µ − µ(Φ)) = cos(θ)||r||2.||µ − µ(Φ)||2,
where θ denotes the angle between r and µ − µ(Φ). In particular, R(Φ) ⩽ ||r||2.||µ − µ(Φ)||2: if you
are close to µ, your regret is low. Conversely, if α denotes the minimum possible cosine between r and
µ−µ′ for µ′ ∈ Π⩾0 \{µ} (i.e., α = minµ′∈Π⩾0\{µ}

r⊺(µ−µ′)
||r||2.||µ−µ′||2

), we obtain R(Φ) ⩾ α||r||2.||µ−µ(Φ)||2.
Therefore, α||r||2.||µ − µ(Φ)||2 ⩽ R(Φ) ⩽ ||r||2.||µ − µ(Φ)||2. Note that if µ is the unique optimal
solution (as is often the case; see Proposition 16), then α > 0: if you are far from µ, your regret is high.
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6.2.1 Impossibility result
The next proposition captures the fundamental trade-off between approaching an injective-
only vertex and keeping the queue length short.

▶ Proposition 18. Consider an injective-only vertex µ of Π⩾0. For each policy Φ adapted to
G and such that the matching model (G, λ, Φ) is stable, if ∥µ(Φ)− µ∥1 ⩽ ϵ, then E

[
∥Q∥2

2
]
⩾

Ω (1/ϵ).

Proof. See Appendix D.1. ◀

The above proposition provides a bound of the order Ω(1/ϵ) on the second moment of
the queue length. We believe such a lower bound is not tight. In particular, we expect an
Ω(1/ϵ) lower bound on the first moment. Nonetheless, the result demonstrates that the
trade-off between approaching an injective-only vertex and keeping the queue lengths small
is fundamental. Remind, however, that such trade-off does not exist for bijective vertices, as
demonstrated in Proposition 17.

▶ Remark 6. Appendix D.1 actually proves a more general version of Proposition 18 where
we consider matching policies that can form at most M pairs of items at each time step, for
some M ∈ N>0.

6.2.2 Achievability result
Given an injective-only vertex µ of Π⩾0, we now construct a sequence of policies, that we call
ϵ-filtering policies, which converge to the vertex µ as ϵ ↓ 0. The principle of these policies
is as follows: when a new item arrives, it is marked with low probability as eligible for all
matches in E. For a match outside E⋆ to be made, the selected pair must contain at least
one such marked item. Marks allow some matches to be made outside E⋆, which ensures
stability. Their low probability ensures that the resulting matching rate vector is close to the
target vertex µ.

Formally, given 0 < ϵ < 1, we label each incoming arrival by ‘−’ (marked) with probability
ϵ and ‘+’ (unmarked) otherwise, independently of everything else. An item with class i and
label ℓ ∈ {+,−} is said to have type-iℓ. We denote the number of items of type iℓ at time t by
Qt,iℓ . Thus, the total number of class-i items at time t is Qt,i = Qt,i+ +Qt,i- . Now, we restrict
our attention to policies that do not match type-i+ items to type-j+ items for all {i, j} ∈ E\E⋆.
The policies that follow this restriction in the original graph G can be viewed as policies
operating on the augmented graph G′ = (V ′, E′), with V ′ =

{
iℓ : i ∈ V, ℓ ∈ {+,−}

}
and

E′ = E+ ∪ E± ∪ E-, where

E+ = {{i+, j+} : {i, j} ∈ E⋆} , E± = {{i+, j-} : {i, j} ∈ E} , E- = {{i-, j-} : {i, j} ∈ E} .

The arrival-rate vector in the augmented graph is given by λ′
ϵ ∈ R2n

⩾0 with λ′
ϵ,i+ = (1− ϵ)λi

and λ′
ϵ,i- = ϵλi for each i ∈ V . An ϵ-filtering policy adapted to (G, λ) with filter E⋆ refers to a

policy adapted to (G′, λ′
ϵ). For example, an ϵ-filtering ML policy adapted to (G, λ) with filter

E⋆ mimics the ML policy adapted to (G′, λ′
ϵ). To be more precise, for a given state q ∈ R2n

⩾0,
an incoming item of type iℓ is matched with a type in the set arg maxjℓ̃∈V ′:{iℓ,jℓ̃}∈E′ qjℓ̃ .

Note that, for any greedy policy adapted to (G′, λ′
ϵ), most of the arrivals are matched

using edges in E+, or equivalently E⋆, as items are labeled ‘+’ with probability 1− ϵ. As
G⋆ is the support graph of the vertex µ, we can then show that such a policy ensures that
the matching rate on {i+, j+} is O(ϵ) close to µi,j for all {i, j} ∈ E⋆. We require ϵ > 0, as
ϵ = 0 corresponds to operating a greedy policy on (G⋆, λ), and the matching problem (G⋆, λ)



Comte, Mathieu, Varma, and Bušić 31

is not stabilizable. We show that ϵ > 0 is sufficient to ensure stability as long as (G, λ) is
stabilizable (even when (G⋆, λ) is not). In particular, whenever ϵ > 0, we use the edges in
E± ∪E-, or equivalently, all the edges in E, to match an Ω(ϵ) fraction of items that ensures
stability and also results in an O(1/ϵ) bound on the expected number of items queued in the
steady state. We make this argument formal in the following proposition for the ϵ-filtering
ML policy.

▶ Proposition 19. Consider a vertex µ of Π⩾0 with support graph G⋆ = (V, E⋆), where
E⋆ = {k ∈ E : µk > 0}. For each ϵ > 0, let Φϵ denote the ϵ-filtering ML policy adapted to
(G, λ) with filter E⋆. Then, (G, λ, Φϵ) is stable and there exist C1, C2 ∈ R⩾0 and ϵ0 ∈ (0, 1)
such that, for all ϵ ⩽ ϵ0, we have

∥µ (Φϵ)− µ∥1 ⩽ C2ϵ, E

[∑
i∈V

Qi

]
⩽

C1

ϵ
.

The first part of the proposition asserts that the matching rate vector under the ϵ-filtering
ML policy is O(ϵ) close to the vertex µ. The second part proves an upper bound of the
order O(1/ϵ) on the expected sum of queue lengths. While Proposition 18 formalized the
fundamental trade-off between approaching an injective-only vertex and maintaining small
queue lengths, the above proposition demonstrates that such a trade-off is achievable. Now
we present a sketch of the proof that highlights the intuition behind the result.

Sketch of the Proof (See Appendix D.2 for the complete proof). We first consider an ar-
bitrary matching problem (G, λ). Define the CRP gap δ(G, λ) as follows, where CRP stands
for Complete Resource Pooling:

δ(G, λ) = min
I∈I

 ∑
j∈V (I)

λj −
∑
i∈I

λi

 . (22)

Note that, by Proposition 8, the matching problem (G, λ) is stabilizable if and only if
δ(G, λ) > 0. Intuitively, δ(G, λ) characterizes the minimum slack between the arrival rate of
any independent set I and its neighbors V (I). The arrival rate of the neighbors acts as a
service rate for I, and the CRP gap δ(G, λ) is reminiscent of the heavy-traffic parameter for
a single-server queue. We make this intuition rigorous by showing that, under the ML policy,
we have

E

[∑
i∈V

Qi

]
= O

(
1

δ(G, λ)

)
. (23)

The above result holds for any matching problem (G, λ) operating under the ML policy as
long as δ(G, λ) > 0 (equivalently, whenever the matching problem (G, λ) is stabilizable).
Now, we use the above result to analyze the ϵ-filtering ML policy adapted to (G, λ) with filter
E⋆. Recalling that this is exactly the ML policy adapted to (G′, λ′

ϵ), we turn our attention
to the augmented matching problem (G′, λ′

ϵ) and prove the following:
Expected queue length is O(1/ϵ): We show that δ(G′, λ′

ϵ) = Ω(ϵ), and so, the expected
queue length is O(1/ϵ) by (23). The idea is that, while the edges in E+ may not contribute
to a non-zero CRP gap because E+ mimics E⋆, matching Θ(ϵ) arrivals using the edges
in E± ∪ E- ensures a CRP gap of Ω(ϵ) because E± ∪ E- does mimic E. Thus, we have
δ(G′, λ′

ϵ) = Ω(ϵ), which by (23) implies the expected queue length in steady state is at most
O(1/ϵ).
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Matching rate is O(ϵ) close to µ: We show that we are O(ϵ) close to the vertex µ by
bounding the frequency of “bad” matches, i.e., the matches that do not correspond to the
support graph G⋆. Such edges are of the form (i+, j-) or (i-, j-). We use the conservation
equations given by (ce–1) along with the fact that the arrival rate to vertices {i- : i ∈ V } is
O(ϵ) to prove this statement.

Combining the two steps above completes the proof of the proposition. ◀

▶ Remark 7. In [36], Nazari and Stolyar introduce the Extended Greedy Primal-Dual (EGPD)
policies, a family of reward-based stable policies designed to achieve (near)-optimal rewards.
EGPD provides an alternate solution to approaching injective-only vertices. The main benefit
of ϵ-filtering policies is that the trade-off between queue size and reward is proved, while for
EGPD it was observed only empirically in [36]. Also, our approach allows us to identify the
cases where the trade-off is not necessary (bijective vertices).

7 Practical performance

Let (G, λ) be a stabilizable problem with a surjective-only compatibilitygraph G, r ∈ Rm a
vector of rewards, and µ a vertex of Π⩾0 that optimizes the average reward r⊺µ. Let E⋆ ⊊ E

denote the edges of G that support µ. In this section, we use simulations to quantitatively
evaluate the performance of various policies in reaching µ. Section 7.1 introduces the policies
under consideration, while Section 7.2 outlines the simulation methodology. Sections 7.3
and 7.4 analyze the injective-only and bijective cases, respectively. Finally, Section 7.5
presents a discussion of the results.

7.1 Considered policies

For ease of display, we use the same notation Φ to designate all policies; which policy is
considered will be made clear by the letter in subscript (e.g., ϵ for the ϵ-filtering, β for
EGPD). More specifically, we consider the following policies:

Filtering ML policy: The ML policy restricted to E⋆, denoted by ΦE⋆ , is stable only
if µ is bijective (see Proposition 17). In this case, it is optimal (i.e., incurs no regret),
and its delay can be used as a benchmark for evaluating other policies.
ϵ-filtering ML policy: The ϵ-filtering ML policy with filter E⋆, denoted by Φϵ for
ϵ ∈ (0, 1), is stable as long as ϵ > 0 and converges to µ as O(ϵ), with a bounded delay in
O(1/ϵ) (Proposition 19).
k-filtering ML policy: The k-filtering ML policy with filter E⋆, denoted by Φk for
k ∈ N, applies the filter E∗ depending on the state: it applies ΦE⋆ if the length of the
longest queue is less than k, otherwise it applies the ML policy without filter.
EGPD policies: The Extended Greedy Primal-Dual (EGPD) algorithm, denoted by Φβ

for β ∈ (0, +∞), is the state-of-the-art policy for minimizing regret. Introduced in [36],
the algorithm is based on two ingredients: a virtual queue of matches to be performed
in the future, and a score function that is mostly driven by r, with the addition of a
small term proportional to β to account for queue lengths and stabilize the system. An
informal definition of EGPD is as follows. After each arrival:

(i) The system updates scores and selects the highest-scoring potential match, regardless
of immediate feasibility. If scores are too low, no edge is selected.

(ii) If an edge is selected, its label is added to the virtual queue.
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(iii) If a queued label becomes feasible, meaning all required items are available, the match
is executed, and the label is removed. If multiple labels are feasible, the oldest one is
chosen (FCFM selection).

Compared to our approach, EGPD has two main differences: first, it is oblivious to the
structure of the polytope Π⩾0; second, it is designed to work for arbitrary hypergraphs,
whereas we focus on simple graphs. These two aspects will be discussed in Sections 7.5
and 8.3, respectively.

▶ Remark 8. The motivation for introducing Φk is our belief that it should outperform
Φϵ in practical applications. Specifically, while Φϵ consistently permits a small proportion
of items to be matched outside E⋆, Φk relaxes the constraint on allowed edges only when
necessary—namely, in cases where delay is significantly impacted. We provide in Appendix E.1
elements to substantiate the conjecture that Φk offers theoretical guarantees similar to those
of Φϵ.

7.2 Methodology
For measuring the performance criteria presented in Section 2.4, we used the Python package
Stochastic Matching of [34]. Among other things, the package leverages our theoretical
results to tell if a matching problem is stabilizable, compute an optimal vertex for a given
reward, and measure the regret and delay of policies through simulations. A matching model
is evaluated by simulating 1010 arrivals and measuring regret and delay. For policies that
depend on a parameter, we choose the following parameter values:

k ∈ [1, 211] for k-filtering;
ϵ ∈ [10−4, 10−1] for ϵ-filtering;
β ∈ [10−3, 10] for EGPD.

Unless otherwise stated, our evaluation protocol is as follows: after choosing G and λ, we
select a vertex µ of Π⩾0. Then we choose a reward vector r such that µ is optimal, using
one the following methods:

Gentle rewards: An edge ek receives a reward of 1 if µk > 0 and -1 otherwise. This
clearly highlights the support of µ.
Adversarial rewards: While ensuring that µ remains the unique optimum for r, we
manually adjust the weights to make it more difficult to identify. This is typically achieved
by assigning a large reward to an edge outside the support of µ, or by reducing the reward
on an edge within the support.

Note that changing the rewards primarily affects the behavior of the EGPD policy. Indeed,
since the other policies rely solely on knowledge of the support E⋆ of µ to operate, the choice
of reward vector r does not impact the matching-rate vector they achieve (although it still
impacts the regret).

7.3 Approaching an injective-only vertex
To begin, we consider the diamond graph from Figure 1 with degree-proportional arrival
rates, i.e., λ = (2, 3, 3, 2). Our goal is to approach the injective-only vertex µ = (2, 0, 1, 0, 2),
which disables edges {1, 3} and {2, 4}. The results are presented in Figure 10.

When the rewards associated with µ are gentle (Figure 10a), all policies clearly demonstrate
the (ϵ, 1/ϵ) trade-off between delay and regret, as predicted by Proposition 19. Specifically,
Φk and Φβ exhibit very similar performance, while Φϵ lags slightly behind.
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Figure 10 G: diamond graph; λ: (2, 3, 3, 2) (degree-proportional); µ: (2, 0, 1, 0, 2) (injective-only).

When the adversarial reward vector r = (1, 2.9, 1,−1, 1) is considered (Figure 10b),
both Φϵ and Φk remain largely unaffected, as expected. However, the performance of Φβ

significantly deteriorates. The performance gap between Φk and Φβ exceeds a factor of
10 — meaning that Φβ incurs ten times more regret than Φk for the same target delay, or,
equivalently, Φβ requires a delay ten times longer to achieve the same regret as Φk.

7.4 Approaching a bijective vertex

Still focusing on the diamond graph, we now take λ = (4, 4, 4, 2) and examine the vertex
µ = (1, 3, 1, 2, 0), which disables edge {3, 4}. Since µ is bijective, we know from Proposition 17
that ΦE⋆ is optimal in terms of regret. However, it is interesting to assess how vertex-
approaching policies perform in this case. The results are presented in Figure 11, where the
dotted line shows the delay of ΦE⋆ .
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Figure 11 G: diamond graph; λ: (4, 4, 4, 2); µ: (1, 3, 1, 2, 0) (bijective).

When the rewards associated with µ are gentle (Figure 11a), both Φϵ and Φk converge to
ΦE⋆ : their regret approaches zero, and their delay matches that of ΦE⋆ . The performance of
Φβ is superior, as it achieves zero regret with a shorter delay than ΦE⋆ .



Comte, Mathieu, Varma, and Bušić 35

The situation changes drastically when the adversarial reward vector r = (−1, 1, 1, 1, 2.9)
is considered (Figure 11b). Although the regret approaches zero for all policies, the delay
behaves differently: the delays of Φϵ and Φk remain contained and are bounded by that of
ΦE⋆ , while the delay of Φβ appears to grow as 1/β and becomes virtually unbounded.

7.5 Discussion
The observations made in Sections 7.3 and 7.4 are not specific to the diamond graph.
Appendix E.2 displays other examples (up to 100 nodes) that are qualitatively similar. From
them we conclude that:

ϵ-filtering ML is a robust vertex-approaching policy that works well on injective-only
and bijective vertices. It has the advantage of offering theoretical guarantees, but its
numerical performance can often be bested by other (state-dependent) policies.
EGPD has the advantage that it does not require the knowledge of the vertex µ that
corresponds to the considered arrival-rate and reward vectors. Empirically, its performance
is optimal when the rewards and the support E⋆ of µ are aligned enough, but it degrades
strongly when it not the case.
While the theoretical guarantees of k-filtering ML are only conjectured for now, simulations
indicate that it offers the best compromise between performance and robustness. It is the
policy we recommend if the arrival rates are steady enough for the vertex to be computed.

8 Extensions of our results

The central focus of this article is the linear optimization of the matching rate vector achieved
by a stable policy adapted to a matching problem based on a simple graph. Yet, our approach
applies to a broader scope. In this section, we discuss some of these extensions. Section 8.1
considers the case of a non-linear reward function. Section 8.2 revisits the results above when
only greedy policies are considered. Section 8.3 briefly describes how to extend our results on
hypergraphs.

8.1 Non-linear optimization
Proposition 17 introduced ΠP , the set of matching rates achievable by a stable policy, and
compared it to the vertices of Π⩾0, which contain the optimal solutions for linear reward
optimization.

However, when considering a non-linear reward function r(µ), an optimal solution can lie
anywhere within Π⩾0. For example, one might want a stable policy to be as close as possible
to a target matching rate vector µ0 and use the reward function r(µ) = −||µ− µ0||1. Ideally,
we would like ΠP to be as close to Π⩾0 as possible. The following proposition demonstrates
that this is indeed the case.

▶ Proposition 20. Let ΠP be the set of matching rate vectors achievable by a stable policy
adapted to a given stabilizable matching problem (G, λ). Then, ΠP is convex. Furthermore,
any positive solution to the conservation equation (ce) can be obtained by a stable policy,
that is,

Π>0 ⊆ ΠP ⊆ Π⩾0, where Π>0 = {µ ∈ Rm
>0 : Aµ = λ}.

In the particular case where all vertices of Π⩾0 are bijective, we have ΠP = Π⩾0.
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Proof. Convexity of ΠP is shown in Appendix F.1. The inclusion ΠP ⊆ Π⩾0 follows from the
discussion in Section 3.1: any stable policy yields a matching rate vector that satisfies (ce)
with non-negative coordinates. We now prove that Π>0 ⊆ ΠP . Since ΠP is convex, its
closure is also convex. By Proposition 19 and the convexity of ΠP , the closure of ΠP contains
all vertices of Π⩾0, and, by convexity, encompasses Π⩾0 as well. As a result, by virtue of
convexity, ΠP contains the interior9 of its own closure, which includes Π>0, the interior of
Π⩾0. In the particular case where all vertices are bijective, they all belong to ΠP , leading to
the equality ΠP = Π⩾0. ◀

Proposition 20 is essentially an existence result, as the policy constructed to show convexity
of ΠP in Appendix F.1 may be both hard to implement (as it requires computing the mean
return time to a particular state of two Markov chains) and undesirable in practice (as the
matching rate will have high variance). An interesting follow-up question is thus to explore
practical methods to reach an arbitrary vector of ΠP .

8.2 Greedy policies
Greedy policies are appealing candidates for controlling matching problems, and they have
been extensively studied in the literature. Some, such as ML and FCFM, are direct to
implement and stabilize all stabilizable matching problems. Moreover, greedy policies may be
more socially acceptable, particularly in scenarios involving human participants. However, as
we will demonstrate in this section, greedy policies are generally not well-suited for optimizing
matching rate vectors. They can never achieve a vertex, and examples suggest that in most
cases, they are unable to even approach one.

In what follows, consider a stabilizable problem (G, λ) with a surjective-only graph G,
and let ΠG denote the set of matching rate vectors achieved by stable greedy policies adapted
to the problem (G, λ). As in Proposition 20, let Π>0 = {µ ∈ Rm

>0 : Aµ = λ} denote the set of
the positive solutions to the conservation equation (ce), i.e., those with positive coordinates,
which form the interior of Π⩾0.

8.2.1 Convexity and impossibility result
We first demonstrate that, unlike stable policies in general, stable greedy policies can never
reach the boundary of the convex polytope Π⩾0, irrespective of whether the vertices of Π⩾0
are bijective or injective-only.

▶ Proposition 21. Let ΠG denote the set of matching rate vectors achievable by a stable
greedy policy for a given stabilizable matching problem (G, λ), where G is surjective-only.
Then, ΠG forms a non-empty convex subset of Π>0.

Proof. The set ΠG is non-empty because, as recalled in Section 2.4, the greedy ML and
FCFM policies are stable. Its convexity is shown in Appendix F.1. We now prove that
ΠG ⊆ Π>0. Consider a stable greedy policy Φ and let µ denote the matching-rate vector in
the model (G, λ, Φ). Consider an edge ek = {i, j}. Since the policy Φ is greedy, two items of
classes i and j are always matched if the following sequence of events occurs: the system
is in the empty state ∅, then a class-i item arrives, and then a class-j item arrives. Let

9 Here, the notion of interior refers to the canonical Rd topology of the d-dimensional affine space of
solutions to the conservation equation.
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p∅ denote the stationary probability that the model (G, λ, Φ) is in the empty state10 ∅.
We know that p∅ > 0 because the model is stable, and the previous remark implies that
µk ⩾ p∅λiλj/(

∑
ℓ∈V λℓ)2 > 0. Since this is true for each edge ek ∈ E and each µ ∈ ΠG , we

conclude that ΠG ⊆ Π>0. ◀

Proposition 21 has the following consequence regarding greedy policies and linear optimization.

▶ Corollary 22. Let rmax = maxµ∈Π⩾0 r⊺µ be the optimal reward in the linear optimization
problem defined by the reward vector r in Proposition 15. One of the following must hold:

(i) All stable policies (greedy or not) are optimal, i.e., r⊺µ = rmax for each µ ∈ ΠP .
(ii) All stable greedy policies are suboptimal, i.e., r⊺µ < rmax for each µ ∈ ΠG.

Proof. We know from Proposition 15 that the set of vectors µ ∈ Π⩾0 maximizing the
reward forms a non-empty face F of Π⩾0. If F = Π⩾0, then we are in case i, meaning
all µ ∈ ΠP ⊂ Π⩾0 are optimal. This occurs when the vector r is orthogonal to ker(A)11.
Otherwise, by the lattice structure of polytope faces, F is contained in a facet of Π⩾0,
implying there is at least one edge k ∈ E where the k-th coordinate of all vectors in F is
zero. As stable greedy policies produce matching rate vectors with all positive coordinates,
no greedy policy can be optimal in this case. ◀

8.2.2 Achievability results
We now explore the relationship ΠG ⊆ Π>0 through several examples. In particular, Propo-
sitions 23 and 24 illustrate situations where ΠG is a strict subset of Π>0, suggesting that
the greedy constraint imposes significant limitations on the set of achievable matching rates.
However, this is not universally true, as Conjecture 25 provides a (carefully chosen) example
where ΠG = Π>0.

▶ Proposition 23. Let (Kn, λ) be a stabilizable matching problem, where Kn is the complete
graph with n ⩾ 3 nodes. All greedy policies adapted to Kn are stable and yield the same
matching-rate vector, denoted µG. In particular, we have ΠG = {µG} ⊊ Π>0 whenever n ⩾ 4.

Proof. See Appendix F.2.1 for proof and discussion. ◀

▶ Proposition 24. Let (D, λ) be a stabilizable matching problem, where D is the diamond
graph from Figure 3d. All greedy policies adapted to D are stable. In kernel coordinates,
there exist α− < α+ such that ΠG = [α−, α+] ⊊ Π>0.

Proof. See Appendix F.2.2 for proof, discussion, and numerical results. ◀

▶ Conjecture 25. Let (G, λ) be the stabilizable matching problem depicted in Figure 12 (the
Fish matching problem). For this problem, we have ΠG = (−1/2, 1/2) = Π>0.

Proof. See Appendix F.2.3 for sketch of proof, discussion, and numerical results. ◀

10 As mentioned in Appendix A, we assume that there exists a unique state s ∈ S such that |s| = 0.
This state is called the empty state and denoted by ∅. This assumption guarantees that the intuitive
notion of system stability is captured by the positive recurrence of the Markov chain describing the
evolution of the system state. If the policy is queue-based (so that S = Q), this empty state is simply
the n-dimensional zero vector.

11 An example of this is shown in Figure 9, or when all coordinates of r are equal, making all edges
equivalent.
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Figure 12 Generic solution to (ce) in the Fish matching (λ = (4, 4, 3, 2, 3, 2)).

8.3 Hypergraphs
A hypergraph G = (V, E) consists of a set of nodes V and a set of hyperedges E, where each
hyperedge is a multi-subset (i.e. potentially allowing redundancy) of V of arbitrary size,
starting from one. This contrasts with simple graphs, where each edge is a pair of distinct
nodes. Stochastic matching models can be extended from simple graphs to hypergraphs in
the following natural manner: when a matching decision is made, items corresponding to the
selected hyperedge are removed from the system.

A full extension of our results to hypergraphs is beyond the scope of this paper, but the
key ideas are:

The incidence matrix A for hypergraphs is defined similarly to simple graphs, with ai,k

indicating whether node i belongs to hyperedge k (or counting occurrences in case of
multiplicity). We believe that the connection between properties of A and stability still
holds, particularly Proposition 7. However, some graph-specific relations, such as the
connection between instability and bipartite structures or the description of ker(A) in
terms of cycles and kayak paddles, do not generalize easily to hypergraphs.
We believe that Proposition 8 remains valid. Specifically, the stability condition iii
can still be checked by computing A−1λ for bijective hypergraphs, or solving (10) for
surjective-only hypergraphs.
The policies discussed in Sections 6 and 7 for optimizing the matching-rate vector, namely
ΦE⋆ , Φϵ, and Φk, rely on the ML policy and its maximal stability in simple graphs. This
property does not extend to hypergraphs12, making it necessary to adopt a different
maximally stable policy. As [36] prove that Φβ is maximally stable for each β ∈ (0, +∞),
one can use its version with null rewards as a substitute for ML. We refer to this unbiased
version as ΦU .

We now illustrate this adaptation through numerical results on a few example cases. We
consider the policies from Section 7.1, adapted to hypergraphs as necessary, and we follow the
simulation methodology outlined in Section 7.2. These cases will highlight how the proposed
adaptations perform in the context of hypergraphs.

8.3.1 Original example from [36]
[36] considered the hypergraph shown in Figure 13 for the numerical evaluation of their
policy Φβ . This hypergraph consists of four nodes, each with a self-loop (1-edge), two regular
2-edges, and one 3-edge. It can be verified that this hypergraph is surjective-only, and the
solution space to (ce) has dimension 3.

The authors consider one unique reward vector (shown in Figure 13) and two distinct
arrival-rate vectors: λ = (1.2, 1.5, 2, 0.8) and λ = (1.8, 0.8, 1.4, 1). Both vectors are stabi-

12 In hypergraphs, stabilizable matching problems exist where no greedy policy is stable.
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Figure 13 Hypergraph example studied in [36]. The rewards associated with each hyperedge are
indicated.
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Figure 14 Reaching the vertex corresponding to r = (−1, −1, 1, 2, 5, 4, 7) in the hypergraph from
Figure 13.

lizable. The first generates a polytope Π⩾0 with 8 vertices, while the second generates a
polytope with 4 vertices. All vertices are bijective, meaning that the reward can always be
optimized using a filtering policy ΦE⋆ adapted to the optimal vertex. The performance of
the considered policies under this setting is shown in Figure 14. The most noticeable findings
are:

All parameterized policies manage to achieve optimal rewards when the parameter is
aggressive enough.
As noted in [36], the delay experienced by Φβ continues to grow as 1/β, even after rewards
have been optimized.
The delay experienced by Φϵ appears to remain bounded, yet above that of ΦE⋆ . This
differs from the convergence expected (as in Section 7.4) and may be due to interactions
between the expanded graph, on which Φϵ dispatches arrivals in a unbalanced way, and
the virtual queue reservation mechanism used by ΦU .
The delay of Φk converges to that of ΦE⋆ , as observed in Section 7.4.

8.3.2 Unstable policies
Figure 9 in Remark 5 introduced a toy example demonstrating that imposing stability can
limit the achievable reward. With the formalism of hypergraphs, such issues can be resolved
by adding self-loops to absorb unmatched items. In the toy example of Figure 9, adding
a self-loop to class 4 creates a third vertex in the polytope, which zeroes edges {2, 4} and
{3, 4}. This vertex is bijective, so ΦE⋆ is stable without regret.



40 Online Stochastic Matching: A Polytope Perspective

10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

Delay

R
eg

re
t

Φϵ

Φk

Φϵ

ΦE⋆

(a) r = (1, 1, 1, −1, −1, 0) (gentle rewards)

10−1 100 101 102
10−8

10−6

10−4

10−2

100

Delay

R
eg

re
t

Φϵ

Φk

Φβ

ΦE⋆

(b) r = (−1, 1, 1, 1, 3, 2) (adversarial rewards)

Figure 15 Optimizing rewards with a policy that tolerates abandonment.

The performance of the considered policies under this setting is shown in Figure 15. The
most noteworthy findings are:

All parameterized policies have regret that diminishes to zero as the parameter becomes
aggressive enough.
The delay of Φβ converges to that of ΦE⋆ when adapted rewards are considered (Fig-
ure 15a). However, for adversarial rewards (Figure 15b), the delay of Φβ grows as
1/β.
The performance of Φϵ is lower than that of the other policies.
The delay of Φk converges to that of ΦE⋆ .
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A Supplementary material of Section 2.3.4 (Other policies).

Our results are not limited to deterministic size-based policies but apply to a broader family
of policies that are either random or require a more complex state descriptor, or both. We
now introduce this family of policies, with the goal of being as general as possible.

A.1 Extended definition.
Under this more general definition, the match-maker makes decisions based not only on
the vector of queue sizes, but also (possibly) on additional information that is captured by
the system state. The state space is a couple (S, | · |), where S is a countably infinite set
and | · | : S → Nn is a function that maps any state s ∈ S to the vector giving the number
of unmatched items of each class in that state, denoted by |s| = (|s|1, |s|2, . . . , |s|n). The
existence of the function | · | guarantees that the system state contains enough information
to retrieve the number of unmatched items of each class, which is a classical assumption in
queueing theory (see for instance [27, Section 3.2]). We assume that there exists a unique
state s ∈ S such that |s| = 0. This state is called the empty state and denoted by ∅. This
assumption guarantees that the intuitive notion of system stability will be captured by the
positive recurrence of the Markov chain describing the evolution of the system state13.

The policy is now a function Φ : S × V × (V ∪ {⊥})× S → [0, 1] such that Φ(s, i, j, s′) is
the conditional probability that, given an incoming class-i item finds the system in state s,
the matching decision is j and the new state is s′. More formally, the dynamics are described
by a Markov chain ((St, It, Jt), t ∈ N), where I = (It, t ∈ N) is the sequence of incoming item
classes and, for each t ∈ N, i ∈ V , j ∈ V ∪ {⊥}, and s, s′ ∈ S, we have

P(Jt = j, St+1 = s′ | St = s, It = i) = Φ(s, i, j, s′).

The stochastic process S = (St, t ∈ N) is also a Markov chain, with transition probabilities

P(St+1 = s′ | St = s) =
∑

i∈V λi

∑
j∈V ∪{⊥} Φ(s, i, j, s′)∑

i∈V λi
, t ∈ N, s, s′ ∈ S.

We assume that the Markov chain S has state space S and is irreducible, and that S0 = ∅.
The policy is assumed to be adapted to the compatibility graph G and consistent in the sense
that, for each (s, i, j, s′) ∈ S × V × (V ∪ {⊥})× S, we have Φ(s, i, j, s′) > 0 only if

j ∈ {j′ ∈ Vi : |s|j′ ⩾ 1} ∪ {⊥}, and |s′| =
{
|s|+ 1i if j = ⊥,
|s| − 1j if j ̸= ⊥.

Using this extended definition, the previously defined policy models can be easily expressed.
For example, the matching policy Φ is called size-based if | · | is the identity (implying S ⊂ Nn)
and deterministic if, for each s ∈ S and i ∈ V , there exists (j, s′) ∈ (V ∪ {⊥})× S such that
Φ(s, i, j, s′) = 1. The policy is called greedy if

∑
s′∈S Φ(s, i,⊥, s′) = 0 for each (s, i) ∈ S × V

such that {j ∈ Vi : |s|j ⩾ 1} ̸= ∅, and non-greedy otherwise. FCFM (e.g., see [15, 35])
is a classical example of a deterministic policy that is not size-based: its state space is

13 Without this assumption, one may construct two Markov chains associated with the same system, one
positive recurrent and the other transient, for example if the state of the latter Markov chain embeds
the time t. This assumption is used only in the proofs of Propositions 20 and 26. In both cases, we
can verify that the same conclusion holds as long as the set of states s ∈ S such that |s| = 0 is finite.
Assuming that this set is reduced to a singleton is merely a notational convenience.
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a couple (S, | · |) where S is a subset of the set of sequences c = (c1, c2, . . . , cp) made of
a finite but arbitrarily large number p of elements of I, and |c|i is the cardinality of the
set {q ∈ {1, 2, . . . , p} : cq = i}, for each i ∈ I. A policy that is neither size-based nor
deterministic will appear in the proof of Proposition 20.

The stochastic process Q = (Qt, t ∈ N) defined by Qt = |St| for each t ∈ N is called the
queue-size process. This process does not satisfy the Markov property in general, but it does
satisfy the evolution equations (2) and (3), with Li = (Lt,i, t ∈ N) and Mk = (Mt,k, t ∈ N)
defined by (4) and (5) for each i ∈ V and k ∈ E. The state space of the queue-size process is
given by Q = {|s|, s ∈ S}. The policy is greedy if Q = QG and non-greedy if Q ⊋ QG , where
QG is still given by (7).

▶ Remark 9 (Arrival rates vs. arrival sequence). We will often identify the matching model
(G, λ, Φ) with the Markov chain S. This is a slight abuse of language: the triplet (G, λ, Φ) spec-
ifies the transition diagram of this Markov chain but, even if Φ is deterministic, characterizing
its sample paths requires specifying the sequence I, sampled according to λ = (λ1, λ2, . . . , λn).
This slight abuse of language will not cause confusion when discussing stability and matching
rates, but the distinction will matter in Section 6.

▶ Remark 10 (Discrete time vs. continuous time). The discrete-time Markov chain S gives the
sequence of states observed by incoming items, and it was analyzed under various policies [33,
25]. Yet, in queueing theory, it is more common to consider the continuous-time Markov
chain describing the system state over time. However, as observed in [15, Section 2.2.2], S

is the jump chain of this continuous-time Markov chain, and both Markov chains have the
same stationary measures because the departure rate from each state in the continuous-time
Markov chain is constant equal to

∑
i∈V λi. Therefore, our results are equally relevant to

study performance metrics like the mean queue size or the mean waiting time of items.

A.2 Equivalent policies.
With our extended definition, a decision rule can be associated with an infinite number of
policies. For instance, it is always possible to artificially expand the state definition, resulting
in an unlimited range of policies. We define here an equivalence relation between policies that
captures the intuitive concepts of yielding identical distributions of matching decisions (for
random policies) and making the same decisions (for deterministic policies). This discussion
will also prepare the ground for Propositions 34 and 36.

Consider a policy Φ1 adapted to a compatibility graph G = (V, E), and let (S1, | · |1)
denote its state space. Assume that the function | · |1 : S1 → Nn can be written as a
composition of two functions, ⟨·⟩ : S1 → S2 and | · |2 : S2 → Nn, such that S2 is the image of
S1 through ⟨·⟩. Moreover, assume that there exists a policy Φ2 with state space (S2, | · |2),
adapted to the graph G, such that for each s2, s′

2 ∈ S2, i ∈ V , and j ∈ V ∪ {⊥}, we have∑
s′

1∈S1:⟨s′
1⟩=s′

2

Φ1(s1, i, j, s′
1) = Φ2(s2, i, j, s′

2) for each s1 ∈ S1 such that ⟨s1⟩ = s2. (24)

We say that policy Φ1 can be reduced to policy Φ2 and that ⟨·⟩ is a reduction function. If
((S1,t, It, J1,t), t ∈ N) and ((S2,t, It, J2,t), t ∈ N) denote the Markov chains associated with
policies Φ1 and Φ2, respectively, under the same sequence (It, t ∈ N) of incoming item classes,
then for each t ∈ N, (i) the conditional distribution of (J1,t, ⟨S1,t+1⟩) given that S1,t = s1
and It = i is the same for all states s1 ∈ S1 that have the same image s2 = ⟨s1⟩, and (ii)
(⟨S1,t⟩, It, J1,t) and (S2,t, It, J2,t) have the same distribution. Conclusion (ii) follows from an
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inductive argument and implies that policies Φ1 and Φ2 are stable or unstable under the
same conditions and, if stable, yield the same matching rate vector.

The special case where the policy Φ2 is deterministic will be useful in Propositions 34
and 36. In this case, (24) says that, for each s2 ∈ S2 and i ∈ V , there exist j ∈ V ∪ {⊥} and
s′

2 ∈ S2 such that
∑

s′
1∈S1:⟨s′

1⟩=s′
2

Φ1(s1, i, j, s′
1) = Φ2(s2, i, j, s′

2) = 1 for each s1 ∈ S1 such
that ⟨s1⟩ = s2. This condition implies that the Markov chains under Φ1 and Φ2 are equivalent
pathwise (i.e., ⟨S1,t⟩ = S2,t and J1,t = J2,t for each t ∈ N) and not just in distribution.

In general, we say that two policies Φ1 and Φ2 adapted to the graph G are equivalent if
there exists a policy Φ adapted to the graph G such that both Φ1 and Φ2 can be reduced to
Φ. This equivalence between Φ1 and Φ2 can be interpreted as indicating that the two policies,
when they are in equivalent states, i.e. states that have the same reduction, yield identical
distributions of matching decisions. It follows that, if we let (Q1,t, t ∈ N) and (Q2,t, t ∈ N)
denote the queue-size processes under Φ1 and Φ2 with the same sequence (It, t ∈ N) of
incoming item classes, then we have P(Q1,t = q) = P(Q2,t = q) for each t ∈ N and q ∈ Q.
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B Supplementary material of Section 3 (Graph theory and linear
algebra).

B.1 Proofs of Section 3.2 (Surjectivity, injectivity, and bijectivity)
Proof of Definition 2. The equivalence of i, ii, and iii is a well-known result in linear
algebra. We prove that conditions iii and iv are equivalent. This proof is adapted from [17,
Lemma 2.2.3].

The key argument consists of observing that a vector x = (x1, x2, . . . , xn) ∈ Rn belongs
to the left kernel of the matrix A if and only if

n∑
i=1

xiai,k = 0, k ∈ {1, 2, . . . , m}.

For each k ∈ {1, 2, . . . , m}, the k-th equation reads xj = −xi, where i and j are the endpoints
of edge k. An induction argument shows that, for every path i1, i2, . . . , ik in the graph G,
we have xip

= (−1)p−1xi1 for each p ∈ {1, 2, . . . , k}.
First assume that condition iv is satisfied. Let x ∈ Rn be a vector of the left kernel of

the matrix A. Since each connected component of G is non-bipartite, for each i ∈ V , there
exists a path of length say ℓ that connects node i to a cycle i1, i2, . . . , ip, ip+1 = i1 consisting
of an odd number p of nodes. We then obtain xi = (−1)ℓ+p+ℓxi = −xi, which implies that
xi = 0. Therefore, the left kernel of A is trivial, meaning that condition iii is satisfied.

On the contrary, if condition iv is not satisfied, then there exists a connected component
of G that is bipartite with parts V+ and V−. We build a non-zero vector in the left kernel
of A by choosing xi = 1 for each i ∈ V+, xi = −1 for each i ∈ V−, and xi = 0 for each
i ∈ V \ (V+ ∪ V−). This implies that condition iii is not satisfied. ◀

Proof of Definition 3. The equivalence of conditions i, ii, and iii is a well-known result in
linear algebra. We now prove that conditions iii and iv are equivalent.

We first assume that the graph G is connected, and we distinguish the following two
cases:

If G is non-bipartite, according to Definition 2, the nullity of A⊺ is 0. The rank-nullity
theorem implies that the rank of A⊺ is n, so that the rank of A is also n. A second
application of the rank-nullity theorem implies that the nullity of A is m−n. In particular,
ker(A) = {0} if and only if m = n.
If G is bipartite, any non-zero vector of the left kernel of A must be parallel (collinear)
to the non-zero vector x constructed in the proof of Definition 2. This parallelism is due
to the constraints xi = −xj for all edges {i, j}. Based on this, the nullity of A⊺ is 1, and
we conclude from another double application of the rank-nullity theorem that the nullity
of A is m− n + 1. In particular, ker(A) = {0} if and only if m = n− 1.

All in all, we obtain that condition iii is true if and only if either the graph G is non-bipartite
and contains as many edges as nodes, or the graph G is bipartite and contains one less edge
than it contains nodes. This, in turn, is equivalent to condition iv.

If the graph G is not connected, we can rewrite A as a bloc matrix in which each bloc
corresponds to a connected component, and we can then use the previous argument to prove
the equivalence for each connected component. ◀

Proof of Definition 4. The function µ ∈ Rm 7→ Aµ ∈ Rn is bijective if and only if it is both
surjective and injective. Hence, the equivalence of conditions i to iv follows directly from
Definitions 2 and 3. ◀
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Proof of Proposition 6. These statements (transposed to A) are again well-known in linear
algebra. ◀

B.2 Proof of Section 3.3.2 (Stabilizable matching problem)
Proof of Proposition 8. Equivalence of i and ii follows from [33, Proposition 2 and Theo-
rem 2]. For completeness, we observe that [33, Proposition 2] is proved under the assumption
that the matching policy Φ is greedy and deterministic and that the state space (S, | · |) has
a particular form, but we can verify that the argument remains valid under the assumptions
of Section 2. We now prove that ii and iii are equivalent. Condition ii implies condition iii
because (a) according to [33], under condition ii, (G, λ, Φ) is stable when Φ is the ML policy,
and (b) the associated vector µ of matching rates satisfies condition iii by ergodicity. That
condition iii implies condition ii was proved by [15, Lemma 12]. ◀

B.3 Minimal stability region for greedy matching policies (Section 3.4.3
and Appendices F.2.1 and F.2.2).

The following result gives a sufficient stability condition for greedy matching policies. The
proof relies on a linear Lyapunov function. This result can be seen as the counterpart of [9,
Proposition 5.1] for non-bipartite matching models.

▶ Proposition 26. Consider a matching problem (G, λ) with a connected graph G. If∑
i∈V (I)

λi >
1
2
∑
i∈V

λi, I ∈ I, (25)

then the matching model (G, λ, Φ) is stable for every greedy matching policy Φ.

Proof. Consider a matching problem (G, λ) that satisfies (25) and a greedy matching policy Φ
adapted to the graph G. Since the Markov chain (St, t ∈ N) associated with the matching
model (G, λ, Φ) depends on the vector λ only up to a positive multiplicative constant, we
can assume without loss of generality that

∑
i∈V λi = 1. Let S denote the state space of this

Markov chain and | · | the corresponding queue-size function (as defined in Appendix A). We
consider the Lyapunov function F : S → R defined by F (s) =

∑
i∈V |s|i (that is, F (s) is the

number of unmatched items in state s) for each s ∈ S. For each t ∈ N and s ∈ S, we have

E (F (St+1) | St = s)− F (s) =
∑

i∈V \V (I)

λi −
∑

i∈V (I)

λi = −

 ∑
i∈V (I)

λi −
∑

i∈V \V (I)

λi

 ,

where I = {i ∈ V : |s|i ⩾ 1} is the set of classes of unmatched items in state s. Importantly,
if F (s) > 0 (that is, s ̸= ∅), then I is an independent set of the compatibility graph G

because it is non-empty and the policy Φ is greedy. It follows that, for each s ∈ S \ {∅},

E (F (St+1) | St = s)− F (s) ⩽ −ε, with ε = min
I∈I

 ∑
i∈V (I)

λi −
∑

i∈V \V (I)

λi

 .

Equation (25) implies that ε > 0. Using the Lyapunov-Foster theorem, see [8, Theorem 1.1
in Chapter 5], we conclude that the matching model (G, λ, Φ) is stable. ◀

As one would expect, any matching problem (G, λ) that satisfies (25) is stabilizable in the
sense of Definition 1. Indeed, (25) implies Proposition 8ii because I ⊆ V \ V (I) for each
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I ∈ I. Corollary 27 below shows that, conversely, whether a stabilizable matching problem
satisfies (25) depends on the structure of the graph G: conditions i and ii exhibit compatibility
graphs G such that (25) is satisfied whenever the matching problem (G, λ) is stabilizable,
while conditions iii and iv exhibit stabilizable compatibility graphs G for which (25) is never
satisfied.

▶ Corollary 27. Consider a matching problem (G, λ).
Under the following two conditions, the stabilizability of the matching model (G, λ) implies
that (25) is satisfied, and therefore that the matching model (G, λ, Φ) is stable under every
greedy policy Φ adapted to G:

(i) G is a complete graph with n ⩾ 3 nodes.
(ii) G is the diamond graph of Example 4.

Under the following conditions, (25) is never satisfied:
(iii) The graph G has diameter greater than or equal to 3.
(iv) The graph G contains a leaf (that is, a node with degree 1).

Proof. We first need to prove that, under either condition i or condition ii, the matching
model (G, λ) is stabilizable if and only if (25) is satisfied. We proceed by verifying that,
under either of these two conditions, Proposition 8ii and (25) are equivalent:

(i) First assume that condition i is satisfied. The independent sets of a complete graph Kn

are the singletons. Using this observation, we can verify that Proposition 8ii and (25)
are both equivalent to λi < 1

2
∑

i∈V λi for each i ∈ V .
(ii) Now assume that condition ii is satisfied, that is, G is the diamond graph. The

conclusion follows by recalling that Proposition 8ii simplifies to (12), and then by
observing that (12) and (25) are equivalent.

To prove that (25) cannot be satisfied under either condition iii or iv, we proceed by
contradiction:
(iii) First assume that condition iii is satisfied, and let i and j denote two nodes that are at

distance 3 or more. In particular, the sets Vi and Vj are disjoint. If (25) is satisfied,
then applying this equation to both {i} and {j} and summing the inequalities yields∑

i′∈Vi∪Vj
λi′ >

∑
i′∈V λi′ , which is a contradiction since Vi ∪ Vj ⊆ V . Hence, (25)

cannot be satisfied by both {i} and {j}.
(iv) Now assume that condition iv is satisfied. Let i denote a leaf node of G and j the

(only) neighbor of i. Then again, applying (25) to both {i} and {j} and summing the
inequalities yields

∑
i∈Vj∪{j} λi′ >

∑
i′∈V λi′ , which is again a contradiction.

◀
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C Supplementary material of Section 5 (Polytope of solutions in
surjective-only graphs).

C.1 Algorithm of Section 5.1.3 (Basis of the kernel of the incidence
matrix).

Data: A connected surjective-only compatibility graph G = (V, E)
Result: A basis B of the kernel of the incidence matrix A of G

1 T ← the set of edges of a spanning tree of G

2 a← an edge in E \ T such that T ∪ {a} contains an odd cycle
3 B ← ∅
4 for s ∈ E \ (T ∪ {a}) do
5 b← (0, 0, . . . , 0) ∈ Rm

6 if T ∪ {a, s} contains an even cycle Cℓ then
7 c1, . . . , cℓ ← consecutive edges of Cℓ

8 for d ∈ {1, . . . , ℓ} do
9 k ← index of cd in E

10 bk ← (−1)d

11 else
12 T ∪ {a, s} contains a kayak paddle KPℓ,r,p with ℓ odd, r odd, and p ⩾ 0
13 vi ← node connecting the kayak’s cycle Cℓ to the kayak central path Pp

14 vj ← node connecting the kayak’s cycle Cr to the kayak central path Pp

15 c1, . . . , cℓ ← consecutive edges of Cℓ, starting and ending at node vi

16 for d ∈ {1, . . . , ℓ} do
17 k ← index of cd in E

18 bk ← (−1)d

19 c1, . . . , cp ← consecutive edges of Pp, starting at node vi and ending at node vj

20 for d ∈ {1, . . . , p} do
21 k ← index of cd in E

22 bk = 2(−1)d+1

23 c1, . . . , cr ← consecutive edges of Cr, starting and ending at node vj

24 for d ∈ {1, . . . , r} do
25 k ← index of cd in E

26 bk ← (−1)d+p+1

27 B ← B ∪ {b}
28 return B

Algorithm 1 Construction of a basis of the kernel of the incidence matrix A of the compatibility
graph G. This algorithm was initially introduced by [20, Section 3] to build a basis of the eigenspace
associated with the eigenvalue −2 of the adjacency matrix of a line graph (i.e., a graph whose nodes
and edges represent, respectively, the edges and their incidence relations in another graph).

Given a surjective-only graph G with an incidence matrix denoted by A, Algorithm 1
builds a basis of the kernel of A as follows. The algorithm first identifies a spanning tree T
of G (Line 1) and an edge a ∈ E \T such that the set E \(T ∪{a}) (of cardinality d = m = n)
contains an odd cycle (Line 2). Then, for each edge s ∈ E \ (T ∪ {a}), the algorithm builds
(Lines 5–26) a base vector b whose support (i) is either an even cycle or a kayak paddle and
(ii) contains s and is included into T ∪ {a, s}. We assume without loss of generality that
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the graph G is connected (in addition to being surjective-only). If not, we can apply the
algorithm to each connected component separately, and then we embed the obtained vectors
to Rn via zero padding.

We now verify that Algorithm 1 termines and yields the desired result.

▶ Proposition 28. Algorithm 1 terminates and returns a basis of the kernel of the incidence
matrix A of the compatibility graph G.

Proof. The proof is based mainly on the notion of cycle space in a graph. We briefly
summarize the concepts that are useful to understand the proof (see [19, Section 1.9] for
details).

A spanning subgraph of a graph G = (V, E) is a subgraph G◦ = (V, E◦) with E◦ ⊆ E.
Importantly, G and G◦ have the same set of nodes. A subgraph is Eulerian if every
vertex has an even degree (possibly zero). In particular, if E◦ is a set of edges that form
a cycle in G, then the graph (V, E◦) is Eulerian. The cycle space of G is the vector
space made of all Eulerian spanning subgraphs of G, using the symmetric difference of
the edge sets for addition and the two-element field for scalar multiplication. Equivalently,
the cycle space can be described as a vector space of the finite field Z/2Z: each vector
g = (g1, g2, . . . , gm) in this vector space satisfies

∑
k∈Ei

gk = 0 (modulo 2) for each i ∈ V ,
and the addition and multiplication are the usual operations in Z/2Z. For example, if G is
the codomino graph of Figure 17, the spanning subgraphs G1, G2, and G3 of G with edge sets
E1 = {{1, 2}, {1, 6}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, E2 = {{2, 3}, {2, 6}, {3, 5}, {5, 6}}, and E3 =
{{1, 2}, {1, 6}, {2, 6}}, respectively, belong to the cycle space of G. The edge set of the addition
G1+G2 is the set {{1, 2}, {1, 6}, {2, 6}, {3, 4}, {3, 5}, {4, 5}} of edges that are either in E1 or in
E2, but not in both. Similarly, the edge set of G1 + G3 is {{2, 3}, {2, 6}, {3, 4}, {4, 5}, {5, 6}},
and the edge set of G2 + G3 is {{1, 2}, {1, 6}, {2, 3}, {3, 5}, {5, 6}. One can verify that
{G1, G2, G3} forms a basis of the cycle space of G. Importantly, in general, the dimension of
the cycle space is m− n + 1.
Algorithm 1 terminates. We first prove the existence of edge a defined on Line 2 of
Algorithm 1. By definition of a spanning tree, T contains n − 1 edges and, for each edge
a ∈ E \T , T ∪{a} contains a unique cycle. The m−n + 1 = |E \T | cycles thus obtained are
independent in the sense that each cycle contains at least one edge (a) that is not contained
in the other cycles. Therefore, these m− n + 1 cycles form a basis of the cycle space of G.
Since a linear combination of even cycles cannot produce a subgraph consisting of a single
odd cycle14, and since G contains an odd cycle (as it is non-bipartite), then at least one of
the m− n + 1 basis cycles is odd.

We now verify that, for each s ∈ E \ (T ∪{a}), T ∪{a, s} contains either (i) an even cycle
Cℓ or (ii) a kayak paddle KPℓ,r,p with two odd cycles. By construction, T ∪ {a} contains a
unique cycle Cr, which is odd, and T ∪ {s} contains a unique cycle Cℓ. T ∪ {a, s} contains
both Cr and Cℓ. We now proceed by elimination:

If Cℓ is even, then Cℓ is an even cycle included into T ∪ {a, s}, and we are in case (i).
If Cℓ is odd and shares at least one edge with Cr, then the symmetric difference of Cr and
Cℓ is an even cycle, and it is again included into T ∪ {a, s}, so we are again in case (i).
If Cℓ is odd and Cr and Cℓ have no edge in common, then we are in case (ii).

14 A linear combination of even cycles may produce a subgraph consisting of an even number of disjoint
odd cycles, as illustrated by G1 + G2 in the example above, but not a subgraph consisting of one odd
cycle. Indeed, the symmetric difference of two edge sets contains an even number of edges if both edge
sets contain an even number of edges.
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Algorithm 1 returns the correct result. We finally prove that the family B returned by
Algorithm 1: (i) has cardinality m− n, (ii) is linearly independent, and (iii) is included into
the kernel of A. We prove each item one after another:

(i) The family B has cardinality m− n: It suffices to observe that B has same cardinality
as E \ (T ∪ {a}), which we already mentioned has cardinality m− n.

(ii) The family B is linearly independent: For each s ∈ E \ (T ∪ {a}), the basis vector
constructed from edge s is the only vector in B whose support contains this edge.

(iii) The family B is included into the kernel of A: Let b ∈ B. Our goal is to prove that b

belongs to the kernel of A, i.e., that
∑

k∈Ei
bk = 0 for each i ∈ V . First observe that,

for each i ∈ V , we have
∑

k∈Ei
bk =

∑
k∈Ei∩S bk, where S is the support of the vector b.

In particular, we have immediately
∑

k∈Ei
bk = 0 for each i ∈ V such that Ei ∩ S = ∅.

Now consider a node i ∈ V such that Ei∩S ̸= ∅. We make a case disjunction depending
on the support S of b:

If S is an even cycle Cℓ, then Ei ∩S = {k1, k2}, where k1 and k2 are two consecutive
edges of the cycle Cℓ. Line 10 in the algorithm implies that bk1 = −bk2 ∈ {1,−1}.
It follows that

∑
k∈Ei

bk = bk1 + bk2 = 0.
If S is a kayak paddle KPℓ,r,p with odd cycles Cℓ and Cr and central path Pp, p ∈ N,
we again distinguish several cases:
Node i does not belong to the central path: If Ei ∩ S ⊆ Cℓ or Ei ∩ S ⊆ Cr, we

conclude as before.
Node i does not belong to a cycle: If Ei ∩ S ⊆ Pp, then Ei ∩ S = {k1, k2} where

k1 and k2 are two consecutive edges of the path Pp. Line 22 of the algorithm
implies that bk1 = −bk2 ∈ {2,−2}. It follows that

∑
k∈Ei

bk = bk1 + bk2 = 0.
Node i belongs to a cycle and the central path: The only remaining case is when

Ei∩S intersects several sets among Cℓ, Cr, and Pp. If p = 0, that is, if the central
path is the node i, then Ei∩S = {k1, k2, k3, k4}, where k1 and k2 (resp. k3 and k4)
are two consecutive edges in Cℓ (resp. Cr). Lines 18 and 26 yield bk1 = bk2 = −1
and bk3 = bk4 = 1, which implies that

∑
k∈Ei

bk = bk1 + bk2 + bk3 + bk4 = 0. If
p ⩾ 1, then Ei ∩ S = {k1, k2, k3}, where k1 and k2 are two consecutive edges of
either Cℓ or Cr, and k3 is an edge in Pp. Lines 18, 22, and 26 of the algorithm
imply that bk1 = bk2 ∈ {1,−1} and hat bk3 = −2bk1 , so that we conclude again
that the desired sum is zero.

◀

Figures 16 and 17 shows possible runs of Algorithm 1 on the triamond and codomino
graphs, which both have a two-dimensional kernel. Note that the basis is not unique and
depends on our choice of the spanning tree T and the augmenting edge a (see Lines 1 and 2
in Algorithm 1).

C.2 Proof of Section 5.2.1 (Vertex characterization).
Proof of Proposition 13 (borrowed from [14]). We prove that the negations of i and ii are
equivalent. Let A⋆ denote the incidence matrix of G⋆.

By Definition 12, if µ is not a vertex of Π⩾0, there exist z1, z2 ∈ Π⩾0\{µ} and 0 < θ < 1
such that µ = θz1 + (1− θ)z2. The coordinates of the vectors z1 and z2 are non-negative, so
this equality implies that their supports are included into the support E⋆ of the vector µ. In
particular, if µ̃ and z̃1 denote the restrictions of µ and z1 to coordinates in E⋆, respectively,
then A⋆µ̃ = Aµ = λ = Az1 = A⋆ z̃1 with µ̃ ≠ z̃1, which means that G⋆ = (V, E⋆) is not
injective.
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Spanning tree T Augmenting edge a

First kernel vector Second kernel vector
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(a) Construction A.
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−1 1

−1

−1 1
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(b) First vector for A (KP3,3,0).

1 2 3

5 4

0

0 0
1

−1
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(c) Second vector for A (C4).

1 2 3

5 4

a s1s2

(d) Construction B.
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1 1
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0
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(e) First vector for B (C4).

1 2 3
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0

0 0
−1

1

−1

1

(f) Second vector for B (C4).

Figure 16 Two possible constructions of a kernel basis for the triamond graph. Construction A
yields the basis vectors b1 = (1, −1, −1, −1, 1, 1, 0) and b2 = (0, 0, 1, 0, −1, −1, 1). Construction B

yields the basis vectors b1 = (−1, 1, 0, 1, 0, 0, −1) and b2 = (0, 0, −1, 0, 1, 1, −1).
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(f) Second vector for B (C4).

Figure 17 Two possible constructions of a kernel basis for the codomino graph. Construction A
yields the vectors b1 = (1, −1, 0, −1, 1, −1, −1, 2) and b2 = (0, 0, 1, −1, 0, −1, 0, 1). Construction B
yields the vectors b1 = (−1, 1, 1, 0, −1, 0, 1, −1) and b2 = (0, 0, −1, 1, 0, 1, 0, −1).

Conversely, if G⋆ is not injective, there exists a non-zero vector z̃ in R|E⋆| such that
A⋆ z̃ = 0. If we embed z̃ into R|E| with zero-padding, we obtain a non-zero vector z such
that Az = 0, and whose support is included into that of the vector µ. This implies that
there exists ε > 0 such that both µ− εz and µ + εz belong to Π⩾0. The convex combination
µ = 1

2 (µ− εz) + 1
2 (µ + εz) proves that the vector µ is not a vertex of Π⩾0.

The last part directly derives from Items ii and v in Proposition 6. ◀

C.3 Additional examples and results for Section 5.2.1 (Vertex
characterization).

Following Proposition 13, the bijectivity of a vertex is determined by the number of its
coordinates that are positive in edge coordinates, that is, by the cardinality of the set of edges
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that form its support. Recall that the d-dimensional polytope Π⩾0 is actually characterized
by the m inequalities µk ⩾ 0 for each k ∈ E. In particular, this polytope has at most m

facets, one for each inequality, but it typically has fewer. Indeed, some inequalities may
be redundant and/or not tight, in a sense that will be defined in Definition 29 below. For
example, by looking more closely at the general solution obtained for the diamond graph in
Figure 3d, we conclude that:

The inequality µ2,3 ⩾ 0 is satisfied trivially by every vector µ ∈ Π, as we have µ2,3 = β > 0.
Therefore, this inequality does not define a facet of Π⩾0.
If λ1λ̄2 < λ̄3λ4, the inequality µ1,2 ⩾ 0 supersedes the inequality µ3,4 ⩾ 0, and conversely.
If λ1λ̄2 = λ̄3λ4, these two inequalities are equivalent. In both cases, the inequalities
µ1,2 ⩾ 0 and µ3,4 ⩾ 0 lead to a single facet of Π⩾0.
If λ1λ̄3 < λ̄2λ4, the inequality µ1,3 ⩾ 0 supersedes the inequality µ2,4 ⩾ 0, and conversely.
If λ1λ̄3 = λ̄2λ4, these two inequalities are equivalent. In both cases, the inequalities
µ1,3 ⩾ 0 and µ2,4 ⩾ 0 lead to a single facet of Π⩾0.

1

2

3

4
2λ 1̄λ

2 + α

2λ1 λ̄3 −
α

2λ̄2λ4 −
α

2̄λ3λ
4 + α

β

Figure 3d (repeated) Matching rates in the diamond graph with the normalization λ1 + λ4 = 1
2 .

2β = λ2 + λ3 − 1
2 is the difference between the arrival rates of {2, 3} and {1, 4}. λ̄2 = λ2 − β and

λ̄3 = λ3 − β represent the residual rates that classes 2 and 3 can provide to classes 1 and 4.

All in all, the 1-dimensional convex polytope Π⩾0 associated with the diamond graph of
Figure 3d has two facets, even if it is defined by five inequalities. Definition 29 below will
help us relate these notions to the number of zero coordinates of the vertices of the convex
polytope Π⩾0.

▶ Definition 29 (Adapted from [4, 42]). Let k ∈ E.
(i) The inequality µk ⩾ 0 is said to be tight if there exists a vector µ ∈ Π⩾0 such that

µk = 0, in which case we also say that this inequality is tight for the vector µ.
(ii) The inequality µk ⩾ 0 is said to be redundant if removing this inequality does not change

the polytope Π⩾0, in the sense that

Π⩾0 = {µ ∈ Rm : Aµ = λ and µℓ ⩾ 0 for each ℓ ∈ E \ {k}}.

Otherwise, this inequality is called irredundant.
(iii) The matching problem (G, λ) is called essential if all tight inequalities are irredundant.
(iv) The polytope Π⩾0 is said to be simple if every vertex of Π⩾0 belongs to exactly d facets,

which is the minimal number of facets a vertex belongs to.

Importantly, the number of positive coordinates of a vertex µ (considered in Proposition 17)
is the number of inequalities that are not tight for this vertex. More generally, Definition 29
has the following intuitive interpretation. An inequality is tight if the convex polytope Π⩾0
intersects the hyperplane obtained by transforming this inequality into an equality. Non-tight
inequalities are “useless” (and redundant) because they are never satisfied as equalities by
any vector in Π⩾0. The matching problem (G, λ) is essential if each tight inequality defines
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a distinct facet of the convex polytope Π⩾0. Under this condition, the number of facets
that contain a vertex is equal to the number of inequalities that are tight for this vertex.
In particular, as we will see in Proposition 30, if the matching problem (G, λ) is essential
and the polytope Π⩾0 is simple, then every vertex satisfies exactly d (tight) inequalities as
equalities, which means that this vertex has d zero coordinates, and therefore n = m − d

positive coordinates, so that this vertex is bijective.
All these notions are illustrated in Examples 8–10 below, which show in particular that

a matching problem (G, λ) may be essential even if the polytope Π⩾0 is not simple, and
conversely. Consistently with the discussion above on Figure 3d, these examples use a kernel
basis to verify effortlessly whether an inequality is tight and/or irredundant.

▶ Example 8 (Essential matching problem). Figure 18 considers a codomino graph with
the vector of arrival rates λ = (4, 5, 3, 2, 3, 5). A particular solution to (ce) is µ◦ =
(2, 2, 1, 2, 1, 1, 1, 1) ∈ R8, and the basis of ker(A) consists of the vectors b1 = (−1, 1, 1, 0,−1, 0, 1,−1)
and b2 = (0, 0,−1, 1, 0, 1, 0,−1) obtained in construction B of Figure 17. The generic solution
to (ce) is shown in Figure 18b.

The inequalities are listed in Figure 18a. The 2-dimensional polytope Π⩾0, shown in
Figure 18c in kernel basis, is characterized by five tight inequalities which are also irredundant:

−1 ⩽ α1 ⩽ 1, α2 ⩾ −1, α1 − α2 ⩾ −1, α1 + α2 ⩽ 1.

The matching problem (G, λ) is essential. In kernel basis, the vertices of the convex poly-
tope Π⩾0 are (0, 1), (−1, 0), (1, 0), (−1,−1), and (1,−1), and we can verify on Figure 18c
that each vertex belongs to exactly 2 facets. Therefore Π⩾0 is simple (more generally, all
2-dimensional polytopes are simple). All in all, each vertex of Π⩾0 has 2 zero coordinates
and 6 positive coordinates in edge coordinates, so that this vertex is bijective. These vertices
are represented in edge basis in Figures 18d–18h.

▶ Example 9 (Non-essential matching problem). Figure 19 shows the same codomino graph
as in Example 8, with the same basis of ker(A), but with the vector of arrival rates λ =
(2, 4, 4, 2, 2, 2). A particular solution to (ce) is µ◦ = (1, 1, 2, 1, 1, 1, 1, 0), and the general
solution is shown in Figure 19b.

The inequalities are listed in Figure 19a. The 2-dimensional convex polytope Π⩾0 is
shown in kernel basis in Figure 19c. All inequalities are tight, but only one is irredundant,
so we conclude that the matching problem (G, λ) is not essential, even if the polytope Π⩾0 is
still simple. Correspondingly, even if each vertex belongs to exactly two facets, they all have
more than 2 zero coordinates, so none of them is bijective. For example, the vertex (1,−1)
in kernel basis has coordinates (0, 2, 4, 0, 0, 0, 2, 0) in edge basis (Figure 19f). This vertex has
5 zero coordinates in edge coordinates (and only 3 positive coordinates) even if it belongs to
only 2 facets.

▶ Example 10 (Non-simple polytope). We finally exhibit an essential matching problem with
a non-simple associated polytope. As 2-dimensional polytopes are simple, we need to consider
a more complex example. We consider the matching problem of Figure 20a. The arrival
rate is λ = (3, 3, 6, 3, 4, 4, 6, 3, 4, 4) ∈ R10. The particular solution and kernel basis are shown
on the edges. The set Π⩾0, shown in Figure 20b in kernel basis, is an Egyptian pyramid
characterized by the following tight inequalities:

α3 ⩾ 0, 1 + α1 − α3 ⩾ 0, 1− α1 − α3 ⩾ 0, 1 + α2 − α3 ⩾ 0, 1− α2 − α3 ⩾ 0.
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Edge basis Kernel basis Tight? Irredundant?
µ1,2 ⩾ 0 α1 ⩽ 2 ✗ ✗

µ1,6 ⩾ 0 α1 ⩾ −2 ✗ ✗

µ2,3 ⩾ 0 α1 − α2 ⩾ −1 ✓ ✓

µ2,6 ⩾ 0 α2 ⩾ −2 ✗ ✗

µ3,4 ⩾ 0 α1 ⩽ 1 ✓ ✓

µ3,5 ⩾ 0 α2 ⩾ −1 ✓ ✓

µ4,5 ⩾ 0 α1 ⩾ −1 ✓ ✓

µ5,6 ⩾ 0 α1 + α2 ⩽ 1 ✓ ✓

(a) Inequalities.
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(b) Generic solution to (ce).
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(c) Polytope Π⩾0 in kernel basis.
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(g) Edge coordinates of (−1, −1).
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(h) Edge coordinates of (1, −1).

Figure 18 An essential matching problem (G, λ) with a simple polytope Π⩾0. The vector of arrival
rates is λ = (4, 5, 3, 2, 3, 5) ∈ R6, a particular solution to (ce) is µ◦ = (2, 2, 1, 2, 1, 1, 1, 1) ∈ R8, and
the chosen base vectors for ker(A) are b1 = (−1, 1, 1, 0, −1, 0, 1, −1) and b2 = (0, 0, −1, 1, 0, 1, 0, −1).

These five inequalities are irredundant (each one corresponds to exactly one of the five facets),
so we conclude that the matching problem (G, λ) is essential. In kernel basis, the vertices
of this convex polytope are (−1,−1, 0), (1,−1, 0), (1, 1, 0), (−1, 1, 0), and (0, 0, 1). These
vertices are shown in edge basis in Figures 20c–20g. The polytope Π⩾0 is not simple because
the vertex (0, 0, 1) (the “top” of the pyramid) belongs to 4 facets, while the polytope has
dimension 3. Consistently, we can see in Figure 20g that this vertex has 4 zero coordinates
and only 9 positive coordinates in edge basis; the subgraph defined by the support of this vertex
is injective-only.

In light of these examples, we can give the following characterization of the bijective
vertices of Π⩾0.
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Edge basis Kernel basis Tight? Irredundant?
µ1,2 ⩾ 0 α1 ⩽ 1 ✓ ✗

µ1,6 ⩾ 0 α1 ⩾ −1 ✓ ✗

µ2,3 ⩾ 0 α1 − α2 ⩾ −2 ✓ ✗

µ2,6 ⩾ 0 α2 ⩾ −1 ✓ ✗

µ3,4 ⩾ 0 α1 ⩽ 1 ✓ ✗

µ3,5 ⩾ 0 α2 ⩾ −1 ✓ ✗

µ4,5 ⩾ 0 α1 ⩾ −1 ✓ ✗

µ5,6 ⩾ 0 α1 + α2 ⩽ 0 ✓ ✓

(a) Inequalities
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(e) Edge coordinates of (−1, −1).
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(f) Edge coordinates of (1, −1).

Figure 19 Non-essential matching problem (G, λ) with a simple polytope Π⩾0. The vec-
tor of arrival rates is λ = (2, 4, 4, 2, 2, 2) ∈ R6, a particular solution to (ce) is µ◦ =
(1, 1, 2, 1, 1, 1, 1, 0) ∈ R8, and the chosen base vectors for ker(A) are b1 = (−1, 1, 1, 0, −1, 0, 1, −1)
and b2 = (0, 0, −1, 1, 0, 1, 0, −1).

▶ Proposition 30. Let µ be a vertex of Π⩾0. The following statements are equivalent:
(i) µ is bijective.
(ii) µ belongs to exactly d facets of Π⩾0 and none of the inequalities tight for µ is redundant.

In particular, all vertices of Π⩾0 are bijective if, and only if, the matching problem (G, λ) is
essential and the polytope Π⩾0 is simple.

Proof. To prove the equivalence of i and ii, we first remark that the number of zero edge
coordinates of a vector µ ∈ Π⩾0 is by definition the number of inequalities that are tight
for µ. It is in particular at least the number of facets that intersect µ, with equality if, and
only if, none of the inequalities tight for µ is redundant.

If a vector µ is a vertex of Π⩾0, then µ belongs to at least d facets of Π⩾0. Now, the
vector µ is bijective if, and only if, d of its coordinates are zero, which in view of the
remark above is equivalent to say that µ belongs to exactly d facets of Π⩾0 and none of the
inequalities tight for µ is redundant.

As for the last statement, it follows directly from Definition 29. ◀
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(c) Edge coordinates of (−1, −1, 0).
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(d) Edge coordinates of (1, −1, 0).
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(e) Edge coordinates of (1, 1, 0).
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(f) Edge coordinates of (−1, 1, 0).
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(g) Edge coordinates of (0, 0, 1).

Figure 20 Essential matching problem (G, λ) with a non-simple polytope Π⩾0. The arrival rate
is λ = (3, 3, 6, 3, 4, 4, 6, 3, 4, 4) ∈ R10. A particular solution and the chosen base vectors for ker(A)
are implicitly shown on the edges of Figure 20a.

▶ Remark 11. We can further explore the relationship between vertices and their support
graph. Again consider a vertex µ of Π⩾0, and let G⋆ denote the support graph of µ and A⋆

its incidence matrix. According to Definitions 2, 3, and 5, the subgraph G⋆ is injective if
and only if each connected component of G⋆ is either a tree or a unicyclic graph with an odd
cycle. For each connected component of G⋆ that is a tree, and therefore a bipartite graph with
parts V+ and V−, the existence of vertex µ implies that∑

i∈V+

λi =
∑

i∈V−

λi. (26)

This equation follows by summing (ce–1) over the nodes in V+ on the one hand, sum-
ming (ce–1) over the nodes in V− on the other hand, and verifying that the left-hand sides of
both equations are equal. In fact, one can verify that the vector λ belongs to the image of A⋆

if and only if λ satisfies (26) for each connected component of G⋆ that is a tree. Note that
this condition is void if G⋆ is bijective because, in this case, none of the connected components
of G⋆ is a tree.

Conversely, one can wonder which injective subgraph G⋆ of G defines a vertex of Π⩾0.
Satisfying (26) for each tree connected component of G⋆ only guarantees the existence of a
(unique) solution z ∈ Rp to the conservation equation A⋆z = λ. If each coordinate of z is
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positive, then we indeed obtain a vertex of Π⩾0 by embedding z in Rm with zero padding;
otherwise, G⋆ does not define a vertex of Π⩾0.

C.4 Proof of Section 5.2.2 (Probability of bijectivity).
Proof of Proposition 14. Let C denote the set of normalized arrival rate vectors λ such
that (G, λ) is stabilizable:

C = {λ ∈ ∆n−1 : (G, λ) stabilizable}

.
To prove Proposition 14, we proceed as follows:
We prove that C is non-empty and convex, hence measurable.
We prove that C is an open set (for the Lesbegue measure), so its probability is positive
and the conditional probability given C is well-defined.
We prove that if a vertex is injective-only, the vector λ must respect a constraint that
reduces the dimension of the possible solutions, meaning that the measure of the event is
null.

We first prove the different properties of C.
C is not empty. We use Remark 2: consider λ = Aµ, with µ = ( 1

2m , . . . , 1
2m ). The

matching problem (G, λ) is stabilizable as all coordinates of µ are positive. Moreover, one can
check that λ = ( d1

2m , . . . , dn

2m ), where di is the degree of node i, so λ ∈ ∆n−1 (
∑

i di = 2m).
Hence, λ ∈ C.

C is convex. Let λa and λb be two vectors of C. Let µa ∈ Rm
>0 and µb ∈ Rm

>0 be
positive solutions to Aµa = λa and Aµb = λb respectively (such solutions exist as stated in
Proposition 8). For 0 < x < 1, consider λ = xλa + (1 − x)λb. λ ∈ ∆n−1 because ∆n−1 is
convex. Moreover, we have Aµ = λ, with µ = xµa + (1− x)µb. As Rm

>0 is convex, µ ∈ Rm
>0,

so (G, λ) is stabilizable (Proposition 8), hence λ ∈ C.
C is open in ∆n−1. Let λ ∈ C. For some ϵ > 0, let λϵ be an element of ∆n−1 such that

||λ − λϵ||1 < ϵ. To prove that C is open, we just need to show that λϵ ∈ C if ϵ is small
enough. Let µ ∈ Rm

>0 be a positive solution to Aµ = λ. Using Equations (18) and (19), we
can write µ = A+λ + µα, with µα = µ−A+λ = (Idm×m −A+A)µ ∈ ker(A). Consider now
µϵ = A+λϵ + µα. We have Aµϵ = AA+λϵ + Aµα = λϵ so (λϵ, µϵ) checks (ce). Moreover,
||µ − µϵ||1 = ||A+(λ − λϵ)||1 < ||A+||1ϵ, where ||A+||1 < +∞ is the operator norm of A+

associated to the 1-norm. All coordinates of µ are positive, so if ϵ is small enough, it also
the case for µϵ, meaning that (G, λϵ) is stabilizable (Proposition 8). In other words, λϵ ∈ C.

This establishes that C (i.e., the stabilizability of (G, λ)) defines a proper conditional
probability. We now examine the conditions under which the polytope Π⩾0 of a stabilizable
problem (G, λ) possesses an injective-only vertex.

Consider λ ∈ ∆n−1. Let µ be a solution to Aµ = λ. Using Definition 11 and the
pseudoinverse approach from Section 5.1.2, the kernel coordinates of µ are α = B+(Idm×m−
A+A)µ, so we can write

µ = Bα + A+λ = Dγ,

where D = (B|A+) is the m × m horizontal concatenation of B and A+, and γ =
(α1, . . . , αd, λ1, . . . , λn) is the concatenation of α and λ.

Notice that D depends solely on G and is invertible. Its inverse can be verified as the
vertical concatenation of B+(Idm×m −A+A) and A: any matching rate vector µ uniquely
defines λ and α .



Comte, Mathieu, Varma, and Bušić 59

We now assume that one vertex of the polytope is injective-only and look for the
implications for λ.

The existence of an injective-only vertex implies that there exists a subset of edges
K ⊂ E, with |K| > d, such that µ is null on K (remind that d = m − n is the dimension
of ker(A)). Let D|K denote the |K| ×m submatrix of D formed by the rows corresponding
to K, and let B|K denote the d first columns of D|K , that is the part of D|K that handles
α. As |K| > d, we have ker ((B|K)⊺) ̸= {0}, meaning that there exists a non-trivial linear
combination v ∈ R|K| \ {0} of the rows of B|K such that vB|K = 0.

Let A+|K denotes the n last columns of D|K , that is the part of D|K that handles λ.
We know that vD|K ̸= 0 because D is invertible, so its row are linearly independent. As
vB|K = 0, this means that vA+|K ̸= 0. The vector u = vA+|K can be seen as a non-trivial
linear combination of the coordinates of λ.

We can now conclude: if the polytope Π⩾0 associated to some λ ∈ C admits an injective-
only vertex, we have a subset of edges K ⊂ E, with |K| > d such that D|Kγ = 0. In
particular, we must have vD|Kγ = 0, which simplifies as uλ = 0. In other words, for µ to be
null over K, the vector λ must belong to some hyperplane Lu of dimension n− 1 that can be
built solely from G and K. As ∆n−1 ̸= Lu (one is affine, the other is not), the intersection
∆n−1 ∩Lu, if it exists, has a dimension at most n− 2. In particular, the Lebesgue measure of
∆n−1 ∩ Lu (over ∆n−1) is null, meaning that the probability to nullify all edges of K is null.

The number of subsets K ⊂ E such that |K| > d is finite, so the probability to nullify
all edges of any of them is also null, so the probability that the polytope Π⩾0 associated to
some λ ∈ C admits an injective-only vertex is null. ◀
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D Supplementary material of Section 6 (Matching rates optimization).

D.1 Proof of Proposition 18
We consider an arbitrary Markovian, stationary matching policy that matches at most
M∈ N pairs of items in one time step. In particular, we consider a matching policy that only
depends on the current state of the underlying Markov chain of the matching problem. To
be more precise, consider an irreducible, aperiodic, and positive recurrent DTMC (St, t ∈ N)
defined in a similar way as in Appendix A, such that Qt and Φt are functions of St, where
Φt,i is the number of class-i items matched at time t for all i ∈ V . If Qt = St, then the
matching policy simply depends on the current queue lengths, e.g., ML policy. Now, given an
injective-only vertex µ, the following proposition formalizes the trade-off between closeness
to µ and the queue lengths in the steady-state (denoted by Q∞) for any such matching
policy. Proposition 18 is a special case of Extended Proposition 18 with M = 1. The proof
of Extended Proposition 18 is given in the rest of the appendix.

▶ Extended Proposition 18. Consider an injective-only vertex µ of Π⩾0. Then, under any
Markovian, stationary matching policy Φ that matches at most M ∈ N pairs of items in
one-time step, if ∥µ(Φ)− µ∥1 ⩽ ϵ, then E

[
∥Q∞∥2

2
]
⩾ Ω (1/ϵ), where Q∞ is the queue length

under the steady state of (St, t ∈ N).

Proof. As µ is injective-only, there exists a connected component of G⋆ = (V, E⋆) that is
bipartite by Definitions 3 and 4. Denote such a connected component by G◦ = (V+ ∪ V-, E◦),
where V+ and V- are the (disjoint) parts of the connected component, and E◦ ⊆ E⋆. Now,
consider the following test function:

W (q) =
〈
1(V+,V-), q

〉2
, q ∈ Q,

where 1(V+,V-)
i = 1 for i ∈ V+, −1 for i ∈ V-, and 0 otherwise. For each t ∈ N, let At

denote the class of the incoming item at time t, so that At = 1It
, where It is the class

of (t + 1)-th item. Thus, λi/
∑

j∈V λj is the probability that At = 1i. We also define
δMt,k = Mt,k −Mt−1,k to be the number of items matched using edge k ∈ E at time t.
Thus, we have

∑
k∈Ei

δMt,k = Φt,i for all i ∈ V . For the rest of the proof, we consider the
steady-state of the Markov chain underlying the matching problem. In particular, we consider
the steady-state of the (discrete-time) Markov chain (St, t ∈ N), of which Q = (Qt, t ∈ N)
and Φ = (Φt, t ∈ N) are functions.

If E [W (Q)] = ∞, then we have E
[∑

i∈V Q2
i

]
= ∞ which completes the proof of the

proposition. Indeed, for each q ∈ Nn,

W (q) =

∑
i∈V+

qi

2

+
(∑

i∈V-
qi

)2

− 2

∑
i∈V+

qi

(∑
i∈V-

qi

)
,

⩽

∑
i∈V+

qi

2

+
(∑

i∈V-
qi

)2

,

⩽ |V+|
∑
i∈V+

q2
i + |V-|

∑
i∈V-

q2
i .

Now, assume instead that E [W (Q)] <∞. In stationarity, we have E [W (Qt+1)] = E [W (Qt)].
In particular, we take the expectation under the steady state distribution of (St, t ∈ N).
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Using this, we get

0 = E
[〈
1(V+,V-), Qt+1

〉2
−
〈
1(V+,V-), Qt

〉2
]

,

= E
[〈
1(V+,V-), Qt + At − Φt

〉2
−
〈
1(V+,V-), Qt

〉2
]

,

= E
[〈
1(V+,V-), At − Φt

〉2
]

+ 2E
[〈
1(V+,V-), Qt

〉〈
1(V+,V-), At − Φt

〉]
,

(a)= E
[〈
1(V+,V-), At − Φt

〉2
]
− 2E

[〈
1(V+,V-), Qt

〉〈
1(V+,V-), Φt

〉]
,

(b)
⩾

∑
i∈V+∪V- λi∑

i∈V λi
− 2E

[〈
1(V+,V-), Qt

〉〈
1(V+,V-), Φt

〉]
,

⩾

∑
i∈V+∪V- λi∑

i∈V λi
− 2
√

E
[〈
1(V+,V-), Qt

〉2
]
E
[〈
1(V+,V-), Φt

〉2
]

(by Cauchy-Schwarz),

(c)
⩾

∑
i∈V+∪V- λi∑

i∈V λi
− 4

√√√√√√E

(∑
i∈V

Qt,i

)2
E


 ∑

k∈E\E⋆

δMt,k

2
,

(d)
⩾

∑
i∈V+∪V- λi∑

i∈V λi
− 4

√√√√√ME

(∑
i∈V

Qt,i

)2
 ∑

k∈E\E⋆

E [δMt,k],

(e)
⩾

∑
i∈V+∪V- λi∑

i∈V λi
− 4

√√√√√MϵE

(∑
i∈V

Qt,i

)2
. (27)

Here, (a) follows by noting that E
[〈
1(V+,V-), At

〉]
= E

[〈
1(V+,V-), λ

〉]
= 0, as µ is a feasible

solution to the conservation equations (ce) and G◦ = (V+ ∪V-, E◦) is a connected component
of the subgraph of G induced by support of µ. Note that we also use the independence of
At and Qt in this step. Next, (b) follows by noting that

〈
1(V+,V-), At − Φt

〉2
⩾ 1 whenever〈

1(V+,V-), At

〉
= ±1 (because

〈
1(V+,V-), Φt

〉
is an even number, as each match is counted

twice), and that the event
〈
1(V+,V-), At

〉
= ±1 happens with probability

∑
i∈V+∪V- λi∑

i∈V
λi

. Further,

(c) follows by noting that∣∣ 〈1(V+,V-), Φt

〉 ∣∣ =
∣∣∣∣ ∑

i∈V+

Φt,i −
∑
i∈V-

Φt,i

∣∣∣∣ =
∣∣∣∣ ∑

i∈V+

∑
j∈Vi

δMt,{i,j} −
∑
i∈V-

∑
j∈Vi

δMt,{i,j}

∣∣∣∣,
⩽
∑
i∈V+

∑
j∈Vi\V-

δMt,{i,j} +
∑
i∈V-

∑
j∈Vi\V+

δMt,{i,j},

+
∣∣∣∣ ∑

i∈V+

∑
j∈Vi∩V-

δMt,{i,j} −
∑
i∈V-

∑
j∈Vi∩V+

δMt,{i,j}

∣∣∣∣, (Triangle Inequality)

(∗)=
∑
i∈V+

∑
j∈Vi\V-

δMt,{i,j} +
∑
i∈V-

∑
j∈Vi\V+

δMt,{i,j},

(∗∗)
⩽ 2

∑
k∈E\E⋆

δMt,k,

where (∗) follows by noting that
∑

i∈V+

∑
j∈Vi∩V- δMt,{i,j} =

∑
i∈V-

∑
j∈Vi∩V+

δMt,{i,j} as
the set of edges that we are summing over are the same in the left and right hand side. In
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particular, we are adding over all the edges between V+ and V-. Next, (∗∗) follows by noting
that all edges connecting i ∈ V+ to j ∈ V \V- are not in E⋆. Similarly, all edges connecting
i ∈ V- to j ∈ V \V+ are also not in E⋆ by the definition of G◦. Now, (d) follows by the
assumption that at most M pairs of items can be matched in a single time step. Lastly, (e)
follows as E [δMt] = µ(Φ) in the steady state and

∥µ(Φ)− µ∥1 ⩽ ϵ =⇒
∑

k∈E\E⋆

µ(Φ)k ⩽ ϵ.

Now, to complete the proof, we use (27) which implies

E

[∑
i∈V

Q2
∞,i

]
⩾

1
|V |

E

(∑
i∈V

Q∞,i

)2
 (27)

⩾

(∑
i∈V+∪V- λi

)2

16M|V |
(∑

i∈V λi

)2 ·
1
ϵ

= Ω
(

1
ϵ

)
.

Note that the first inequality follows as ∥q∥2
2 ⩾ ∥q∥2

1/|V | for all q ∈ R|V |. This completes the
proof. ◀

D.2 Proof of Proposition 19
We first prove two intermediary results, Lemmas 31 and 32, that will be instrumental in
proving the upper bound for the mean queue length in Proposition 19.

▶ Lemma 31. Consider a matching problem (G, λ). If the CRP gap δ(G, λ) is positive, then
the ML policy stabilizes (G, λ), and

E

[∑
i∈V

Qi

]
⩽

n

2δ(G, λ)
∑
i∈V

λi.

Proof. Consider the quadratic test function W defined on QG by

W (q) =
∑
i∈V

q2
i , q ∈ QG .

We define the drift of this test function by ∆W (q) = E [W (Qt+1)−W (Qt)|Qt = q] for each
q ∈ QG . Lastly, we let Iq = {i ∈ V : qi > 0} denote the support of q, for each q ∈ QG . Now,
we simplify the drift under the ML policy using the queue evolution recursion given by (2).
For all q ∈ QG \ {0}, we have

∆W (q) = E

[∑
i∈V

(Qt,i + 1{i = It})2
1{Jt = ⊥}+ (Qt,i − 1{i = Jt})2

1{Jt ̸= ⊥} −Q2
t,i

∣∣∣∣ Qt = q

]
,

= E

[∑
i∈V

1{i = It, Jt = ⊥}+ 1{i = Jt}+ 2 (1{i = It, Jt = ⊥} − 1{i = Jt}) Qt,i

∣∣∣∣ Qt = q

]
,

(a)= 1 + 2
∑
i∈V

qiE
[
1{i = It, Jt = ⊥} − 1{i = Jt}

∣∣∣∣ Qt = q

]
,

(b)= 1 + 2∑
i∈V λi

∑
i∈V

λiqi − 2
∑
i∈V

qiE
[
1{i = Jt}

∣∣∣∣ Qt = q

]
,

(c)= 1 + 2∑
i∈V λi

∑
i∈V

λiqi −
2∑

i∈V λi

∑
j∈V

λj max
i∈Vj

qi,
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(d)= 1 + 2∑
i∈V λi

∑
i∈Iq

λiqi −
2∑

i∈V λi

∑
j∈V (Iq)

λj max
i∈Vj

qi,

(e)
⩽ 1− 2δ(G, λ)

|Iq|
∑

i∈V λi

∑
i∈Iq

qi,

= 1− 2δ(G, λ)
|Iq|

∑
i∈V λi

∑
i∈V

qi,

⩽ 1− 2δ(G, λ)
n
∑

i∈V λi

∑
i∈V

qi. (28)

Here, (a) follows as∑
i∈V

1{i = It, Jt = ⊥}+
∑
i∈V

1{i = Jt} = 1{Jt = ⊥}+ 1{Jt ̸= ⊥} = 1.

Next, (b) follows as for all i ∈ V , we have

qiE [1{i = It, Jt = ⊥}|Qt = Q] = qiP {i = It, Jt = ⊥|Qt = q} ,

= qiP {Jt = ⊥|Qt = q, i = It}P {i = It|Qt = q} ,

= qi
λi∑

i∈V λi
1

{
max
j∈Vi

qj = 0
}

= qi
λi∑

i∈V λi
.

The last equality follows from the fact that the ML policy is greedy, which implies that, if
qi > 0, then qj = 0 for all j ∈ Vi. Now, (c) follows by using the definition of ML policy. In
particular, we have∑

i∈V

qiE
[
1{i = Jt}

∣∣∣∣ Qt = q

]
= 1∑

j∈V λj

∑
j∈V

λj

∑
i∈V

qiE
[
1{i = Jt}

∣∣∣∣ Qt = q, j = It

]
,

= 1∑
j∈V λj

∑
j∈V

λj max
i∈Vj

qi.

The equality (d) follows by noting that Iq is equal to the support of q, i.e., we have
Iq = {i ∈ V : qi > 0}. The rest of the paragraph is dedicated to proving (e). Consider the
bipartite graph

Gq = G (Iq ∪ V (Iq), Eq) with Eq = {{i, j} ∈ E : i ∈ Iq, j ∈ V (Iq)} .

By definition of δ(G, λ), we have, for each I ⊆ Iq,∑
i∈I

λi ⩽
∑

j∈V (I)

λj − δ(G, λ) =
∑

j∈V (I):
∃i∈I,{i,j}∈Eq

λj − δ(G, λ),

where the equality follows as V (I) ⊆ V (Iq), and so, V (I) = V (I) ∩ {j : ∃i ∈ I, {i, j} ∈ Eq}
by the definition of Gq. Now, the above inequality implies that∑

i∈I

(
λi + δ(G, λ)

|Iq|

)
⩽

∑
j∈V (I):

∃i∈I,{i,j}∈Eq

λj ∀I ⊆ Iq.

So, by the weighted version of Hall’s marriage theorem [21, Lemma 2.5], there exists µ̃ ∈ R|EQ|
⩾0

such that

λi + δ(G, λ)
|Iq|

=
∑

j∈V (Iq):
{i,j}∈Eq

µ̃i,j , ∀i ∈ Iq, λj ⩾
∑

i∈Iq :
{i,j}∈Eq

µ̃i,j , ∀j ∈ V (Iq).
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Using the above, we get∑
i∈Iq

λiqi −
∑

j∈V (Iq)

λj max
i′∈Vj

qi′ ⩽
∑

{i,j}∈Eq

µ̃i,j

(
qi − max

i′∈Vj

qi′

)
− δ(G, λ)
|Iq|

∑
i∈Iq

qi ⩽ −
δ(G, λ)
|Iq|

∑
i∈Iq

qi,

where the last inequality follows as maxi′∈Vj
qi′ ⩾ qi for all {i, j} ∈ Eq. This completes the

proof of (e).
Now, by (28) we immediately conclude that

∆W (q) ⩽ −1 for each q ∈ QG such that
∑
i∈V

qi ⩾
n
∑

i∈V λi

δ(G, λ) .

Thus, by the Foster-Lyapunov theorem [39], we conclude from (28) that the Markov chain
under the ML policy is positive recurrent. Now, by the moment bound theorem [24,
Proposition 6.14], we further conclude that in steady state, we have

E

[∑
i∈V

Qi

]
⩽

n

2δ(G, λ)
∑
i∈V

λi.

This completes the proof of the lemma. ◀

Now we turn our attention to studying the CRP gap of (G′, λ′
ϵ). We start by defining

additional notations for convenience. Define the set of “positive” vertices by V+ = {i+ : i ∈ V }
and the set of “negative” vertices by V- = {i- : i ∈ V }. Let IG′ be the set of all independent
sets in G′. Note that, each independent set I ∈ IG′ can be uniquely written as I = J- ∪K+

where J- = I ∩ V- and K+ = I ∩ V+ (with at least one of them nonempty). Observe we have
J ∈ {∅}∪ IG and K ∈ {∅}∪ IG⋆ . Now, we lower bound the CRP gap of the augmented graph
in the following lemma. In particular, combining the following lemma with Proposition 8
implies that (G′, λ′

ϵ) is stabilizable whenever (G, λ) is.

▶ Lemma 32. For the augmented problem (G′, λ′
ϵ), we have

δ(G′, λ′
ϵ) ⩾ min

{
ϵ min

i∈V
λi, (1− ϵ) min

i∈V
λi, δ(G, λ)

}
.

Proof. Consider I ∈ IG′ and let J ∈ {∅} ∪ IG and K ∈ {∅} ∪ IG⋆ such that J- = I ∩ V- and
K+ = I ∩ V+, so that I = J- ∪K+. Using the definition of G′, we can verify that, for each
0 < ϵ < 1, we have

∑
i∈VG′ (I)

λ′
ϵ,i −

∑
i∈I

λ′
ϵ,i = ϵ

 ∑
i∈VG(J)

λi −
∑
i∈J

λi

+ (1− ϵ)
∑

i∈VG(J)\VG⋆ (K)

λi

+ (1− ϵ)

 ∑
i∈VG⋆ (K)

λi −
∑
i∈K

λi

+ ϵ
∑

i∈VG(K)\VG(J)

λi. (29)

Now, we consider the following two cases.
Case I: Either VG(K) ̸⊆ VG(J) or VG(J) ̸⊆ VG⋆(K). In this case, either the second term or
the fourth term in (29) is non-zero. So, we have∑

i∈VG′ (I)

λ′
ϵ,i −

∑
i∈I

λ′
ϵ,i ⩾ min {ϵ, 1− ϵ}min

i∈V
λi ∀I ∈ IG′ . (30)
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Case II: We have VG(K) ⊆ VG(J) and VG(J) ⊆ VG⋆(K). In this case, we must have J ̸= ∅
and K ̸= ∅. Thus, we have

VG⋆(K) ⊆ VG(K) ⊆ VG(J) ⊆ VG⋆(K) =⇒ VG⋆(K) = VG(K).

Now, as K ∈ IG⋆ , we have K ∩ VG⋆(K) = ∅. Thus, we have K ∩ VG(K) = ∅ which implies
that K ∈ IG. Now, using the above, we get∑

i∈VG⋆ (K)

λi −
∑
i∈K

λi =
∑

i∈VG(K)

λi −
∑
i∈K

λi ⩾ δ(G, λ), and
∑

i∈VG(J)

λi −
∑
i∈J

λi ⩾ δ(G, λ),

where the inequalities above follow by the definition of δ(G, λ) and noting that J, K ∈ IG.
Now, using (29), we get∑

i∈VG′ (I)

λ′
ϵ,i −

∑
i∈I

λ′
ϵ,i ⩾ δ(G, λ). (31)

Now, by combining (30) and (31), for all I ∈ IG′ we get

∑
i∈VG′ (I)

λ′
ϵ,i −

∑
i∈I

λ′
ϵ,i ⩾ min

{
ϵ min

i∈V
λi, (1− ϵ) min

i∈V
λi, δ(G, λ)

}
,

which completes the proof by definition of δ(G′, λ′
ϵ). ◀

Now that we have stated and proved Lemmas 31 and 32, we are ready to prove Proposi-
tion 19 below.

Proof of Proposition 19. We divide the proof into two parts. In the first part, we show that
the expected queue length is O(1/ϵ). Then, the second part deals with the matching rates.
Controlling the expected queue length: By Lemma 32, we know that δ(G′, λ′

ϵ) > 0.
The corresponding queueing system is stable by Proposition 8. Furthermore, we have

E

[∑
i∈V

Qi

]
= E

[ ∑
i∈V +∪V -

Qi

]
⩽

2n

2δ(G′, λ′
ϵ)
∑
i∈V

λi ⩽
n

ϵ mini∈V λi

∑
i∈V

λi,

where the first inequality follows by applying Lemma 31 to the extended matching problem
(G′, λ′

ϵ), and the second inequality follows by applying Lemma 32 and noting there exists
ϵ0 ∈ (0, 1) such that, for all ϵ ∈ (0, ϵ0), we have ϵ ⩽ 1− ϵ and ϵ ⩽ δ(G, λ)/ mini∈V λi. Now,
by defining C1 = n

mini∈V λi

∑
i∈V λi, the proof of the first part is complete.

Controlling the matching rates: Now, we show the second part of the proposition. Let
Φ′

ϵ denote the ML policy adapted to (G′, λ′
ϵ). As explained at the beginning ot Section 6.2.2,

the policies Φϵ and Φ′
ϵ are practically equivalent, except that Φϵ is seen as a (non-greedy

ϵ-dependent) policy adapted to the original problem (G, λ), while Φ′
ϵ is seen as a (greedy)

policy adapted to the (ϵ-dependent) extended problem (G′, λ′
ϵ). Consistently, µ(Φϵ) is the

matching-rate vector (indexed by E) under the ϵ-filtering ML policy adapted to (G, λ) with
filter E⋆, while µ(Φ′

ϵ) denotes the matching-rate vector (indexed by E′) under the ML policy
adapted to (G′, λ′

ϵ). The rest of the proof is divided mainly in two parts: first we prove the
following bound on our objective ∥µ− µ(Φϵ)∥1 in terms of µ(Φ′

ϵ):

∥µ− µ(Φϵ)∥1 ⩽
∑

{i,j}∈E⋆

∣∣µi,j − µ(Φ′
ϵ)i+,j+

∣∣+ 2ϵ
∑
j∈V

λj . (32)
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Then, we show that
∑

{i,j}∈E⋆

∣∣µi,j − µ(Φ′
ϵ)i+,j+

∣∣ = O(ϵ) using properties of ML policy to
complete the proof. Intuitively, λ′

ϵ is designed in such a way that under any stable policy, all
but O(ϵ) arrivals are matched using edges in E+. So, µ(Φ′

ϵ)i+,j+ must be close to µi,j for all
{i, j} ∈ E⋆.

We start by proving (32). As the ϵ-filtering ML policy mimics the ML policy adapted to
(G′, λ′

ϵ), we have

µ (Φϵ(µ))i,j =
{

µ (Φ′
ϵ)i+,j- + µ (Φ′

ϵ)i-,j+ + µ (Φ′
ϵ)i-,j- + µ (Φ′

ϵ)i+,j+ if {i, j} ∈ E⋆

µ (Φ′
ϵ)i+,j- + µ (Φ′

ϵ)i-,j+ + µ (Φ′
ϵ)i-,j- if {i, j} ∈ E\E⋆,

Using the above, we can upper bound our objective ∥µ−µ(Φϵ)∥1 in terms of µ(Φ′
ϵ) as follows:

∥µ− µ(Φϵ)∥1
(a)=

∑
{i,j}∈E⋆

∣∣µi,j − µ(Φϵ)i,j

∣∣+
∑

{i,j}∈E\E⋆

µ(Φϵ)i,j ,

(b)
⩽

∑
{i,j}∈E⋆

∣∣µi,j − µ(Φ′
ϵ)i+,j+

∣∣+
∑

{i,j}∈E

(
µ (Φ′

ϵ)i+,j- + µ (Φ′
ϵ)i-,j+ + µ (Φ′

ϵ)i-,j-
)

,

(c)
⩽

∑
{i,j}∈E⋆

∣∣µi,j − µ(Φ′
ϵ)i+,j+

∣∣+ 2ϵ
∑
j∈V

λj .

Here, (a) follows by recalling that E⋆ is defined as the support of µ. Next, (b) follows as, for
all {i, j} ∈ E⋆,∣∣µi,j − µ(Φϵ)i,j

∣∣ =
∣∣µi,j − µ (Φ′

ϵ)i+,j+ − µ (Φ′
ϵ)i+,j- − µ (Φ′

ϵ)i-,j+ − µ (Φ′
ϵ)i-,j-

∣∣,
⩽
∣∣µi,j − µ (Φ′

ϵ)i+,j+

∣∣+ µ (Φ′
ϵ)i+,j- + µ (Φ′

ϵ)i-,j+ + µ (Φ′
ϵ)i-,j- .

Lastly, (c) follows by noting that∑
{i,j}∈E

(
µ (Φ′

ϵ)i+,j- + µ (Φ′
ϵ)i-,j-

)
⩽
∑
j∈V

∑
i∈V :

{i,j}∈E

(
µ (Φ′

ϵ)j-,i+ + µ (Φ′
ϵ)j-,i-

) (∗)=
∑
j∈V

λ′
ϵ,j- = ϵ

∑
j∈V

λj ,

∑
{i,j}∈E

µ (Φ′
ϵ)i-,j+ ⩽

∑
i∈V

∑
j∈V :

{i,j}∈E

µ (Φ′
ϵ)i-,j+

(∗)
⩽
∑
i∈V

λ′
ϵ,i- = ϵ

∑
i∈V

λi,

where (∗) follows by applying the conservation equations (ce) to the extended matching
model (G′, λ′

ϵ, Φ′
ϵ). This completes the proof of (32).

Now, we proceed to show that
∑

{i,j}∈E⋆

∣∣µi,j − µ(Φ′
ϵ)i+,j+

∣∣ = O(ϵ). Recall that, by
Proposition 13, the rows of matrix A⋆ are linearly independent. This observation has
multiple consequences:

The system of linear equations A⋆y = λ of unknown y has a unique solution, which we
know to be equal to µ.
The system of linear equations A⋆y = λ̃ of unknown y has a unique solution, which we
know to be equal to µ̃ = {µ(Φ′

ϵ)i+,j+}{i,j}∈E⋆ , where λ̃ is given by

λ̃i =
∑
j∈V :

{i,j}∈E⋆

µ(Φ′
ϵ)i+,j+ i ∈ V.

The matrix (A⋆)T A⋆ is invertible, and the Moore-Penrose inverse of A⋆ is ((A⋆)T A⋆)−1(A⋆)T .
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Thus, we have µ− µ̃ = ((A⋆)T A⋆)−1(A⋆)T (λ− λ̃) which implies∑
{i,j}∈E⋆

∣∣µi,j − µ(Φ′
ϵ)i+,j+

∣∣ ⩽ ∥((A⋆)T A⋆)−1(A⋆)T ∥1∥λ− λ̃∥1. (33)

Now, we upperbound the term ∥λ− λ̃∥1 as follows:

∥λ− λ̃∥1 =
∑
i∈V

∣∣∣∣λi −
∑
j∈V :

{i,j}∈E⋆

µ(Φ′
ϵ)i+,j+

∣∣∣∣,
⩽
∑
i∈V

∣∣∣∣(1− ϵ)λi −
∑
j∈V :

{i,j}∈E⋆

µ(Φ′
ϵ)i+,j+

∣∣∣∣+ ϵ
∑
i∈V

λi,

(a)=
∑
i∈V

∑
j∈V :

{i,j}∈E

µ(Φ′
ϵ)i+,j- + ϵ

∑
i∈V

λi,

(b)
⩽ 2ϵ

∑
i∈V

λi, (34)

where (a) again follows by applying (ce) to the extended matching model (G′, λ′
ϵ, Φ′

ϵ), and
(b) is justified as follows:

∑
i∈V

∑
j∈V :

{i,j}∈E

µ(Φ′
ϵ)i+,j-

(i)=
∑
j∈V

∑
i∈V :

{i,j}∈E

µ(Φ′
ϵ)i+,j-

(ii)
⩽
∑
j∈V

λ′
ϵ,j- = ϵ

∑
j∈V

λj .

Here, (i) follows by switching the order of summation, and (ii) follows by noting that
{i+ ∈ V + : {i+, j-} ∈ E±} ⊆ {i ∈ V ′ : {i, j} ∈ E′} and again applying (ce) to the matching
model (G′, λ′

ϵ, Φ′
ϵ). Now, by combining (34) with (33), we get∑

{i,j}∈E⋆

∣∣µi,j − µ(Φ′
ϵ)i+,j+

∣∣ ⩽ 2∥((A⋆)T A⋆)−1(A⋆)T ∥1
∑
i∈V

λiϵ.

Lastly, by injecting the above inequality into (32) and defining C2 = 2
(
1 + ∥((A⋆)T A⋆)−1(A⋆)T ∥1

)∑
i∈V λi,

the proof is complete. ◀
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E Supplementary material of Section 7 (Practical performance).

E.1 k-filtering policies – Section 7.1 (Considered policies)
We conjecture that k-filtering policies, introduced in Section 7.1, yield a sequence of matching
rate vectors that are arbitrarily close to a vertex of the polytope Π⩾0, even if this vertex is
injective-only. This conjecture is supported by numerical results shown in Sections 7 and 8.

▶ Conjecture 33. Consider a vertex µ of Π⩾0 and let G⋆ = (V, E⋆) denote its support graph.
For each k ∈ N, consider the following semi-filtering policy, denoted by Φk(µ):

If the size of the longest queue is less than k, apply the filtering ML policy adapted to G

with filter E⋆;
Otherwise, apply the greedy ML policy adapted to G.

Φk(µ) is stable for each k ∈ N and limk→∞ µ(Φk(µ)) = µ.

Intuition of the proof. In essence, the approach is as follows: we take a possibly unstable
policy that achieves the desired goal (a matching rate vector equal to µ), and we make it
stable by reverting to a stable policy when the queue sizes become too large. If the threshold
is large enough, most matches will be made under the unstable policy that achieves the
desired goal.

We present here a sketch of proof for the case where G⋆ is injective-only with a unique
connected component, i.e. when G⋆ is a tree. If G⋆ is made of multiple connected components
that are connected in G, the proof needs to compare the model to a virtual model where each
component acts independently and accounts for the interactions between the components. For
example, when one the queue is longer than k, all components may interact when decisions
follow the ML policy on the graph G.

The stability of the model (G, λ, Φk(µ)) for each k ∈ N can be proved using the Lyapunov-
Foster theorem, see [8, Theorem 1.1 in Chapter 5], using the fact that, outside a finite set of
states (those where all queues are shorter than k), the policy Φk(µ) behaves like the stable
ML policy on the graph G.

Now, consider a random vector Q = (Q1, Q2, . . . , Qn) distributed like the vector of queue
sizes in the matching model (G, λ, Φk(µ)) in stationary regime, and let Q+ =

∑
i∈V+

Qi

and Q− =
∑

i∈V−
Qi denote the total queue sizes in the parts V+ and V− of the (bipartite)

graph G⋆. Also let L+ = max(Qi, i ∈ V+), L− = max(Qi, i ∈ V−), and L = L+ if L+ ⩾ L−
and L = −L− if L+ < L−, so that |L| is the size of the longest queue and the sign of L

indicates the part (V+ or V−) to which this queue belongs. The random variable L will play
a crucial role in the proof. Lastly, we let pℓ = P(L = ℓ), ℓ ∈ {. . . ,−2,−1, 0, 1, 2, . . .}, denote
its distribution. The dependency of these random variables on k (via the policy Φk(µ)) is
left implicit to simplify notation.

To show that limk→∞ µ(Φk(µ)) = µ, we need to upperbound the probability that a match
is performed along an edge that does not belong to the support of the vertex µ. To do this,
we upperbound the probability of applying the greedy ML policy on the whole graph G, i.e.,
the probability

∑
|ℓ|⩾k pℓ that the size of the longest queue is k or more.

Intuitively, we expect that the stability of the ML policy implies a uniform drift of the
size of the longest queue towards the origin whenever this size is larger than k, provided that
k is large enough. Formally, we conjecture that there exist K ∈ N and 0 < ρ < 1 such that,
for each k ⩾ K, we have under Φk that pℓ+1 ⩽ ρpℓ for each ℓ ⩾ k and pℓ−1 ⩽ ρpℓ for each
ℓ ⩽ −k. In particular,

∑
ℓ⩾k pℓ ⩽ 1

1−ρ pk and
∑

ℓ⩽−k pℓ ⩽ 1
1−ρ p−k. This implies that, if pk

and p−k go to 0 as k goes to infinity, the probability that the filter on E⋆ is disabled goes to
0 as well.
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To control pk and p−k, we now need to consider the cases where the size of the longest
queue is at most k. We argue that, as long as |L| ⩽ k, the dynamics of L is mainly controlled
by an unbiased random walk between the two parts of the bipartite graph. More precisely, as
long as |L| ⩽ k, the difference Q+ −Q− behaves like an unbiased random walk because any
arrival of a class in V+ increases the difference by one, any arrival of a class in V− decreases
the difference by one, and the arrival rates of V+ and V− are equal (see Equation (26)).
We conjecture that, when |Q+ − Q−| is large enough (while still satisfying |L| ⩽ k), a
distinctive structure emerges due to the filtered ML policy: the queues in one part of the
graph have approximately equal sizes, while the queues in the other part are empty. In
particular, we conjecture that the typical states of the system (when |L| ⩽ k) verify (in some
sense) L ≈ Q+−Q−

|V+| if Q+ > Q− and L ≈ Q+−Q−
|V−| if Q+ < Q−. In a true unbiased random

walk over a bounded range of integers, all states have equal probabilities. By comparing
the evolutions of L and Q+ − Q− and taking into account the border cases (|L| = k), we
conjecture that there exist K ′ ∈ N and c > 0 such that, if k ⩾ K ′, then pℓ ⩾ c max(pk, p−k)
for all ℓ ∈ {−k, . . . ,−1, 0, 1, . . . , k}. In particular, both pk and p−k should be upperbounded
by (c(2k + 1))−1 when k is large enough.

By combining the two cases |L| ⩾ k and |L| ⩽ k, we get
∑

|ℓ|⩾k pℓ = O(1/k). In
other words, the probability that the size of the longest queue is greater than k tends to
0 as k goes to infinity. As matchings outside E⋆ occur only when the size of the longest
queue is greater than k, we conclude that the matching rate of an edge outside E⋆ goes
to 0, which by continuity of the conservation principle and injectivity of G⋆ implies that
limk→∞ µ(Φk(µ)) = µ. ◀

E.2 Additional examples
Section 7 evaluated the performance of matching policies on the diamond graph. We present
here simulations on other graphs.

E.2.1 Co-domino graph
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(a) r = (−1, 1, 1, −1, −1, −1, 1, −1) (gentle rewards)
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Figure 21 Matching problem from Figure 19. Targeting the injective-only vertex from Figure 19f.

We first consider the matching problem depicted in Figure 19, with the goal of approaching
the injective-only vertex shown in Figure 19f. This vertex disables 5 out of 8 edges: {1, 2},
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{2, 6}, {3, 4}, {3, 5}, and {5, 6}. The results are presented in Figure 21.
As observed in Section 7.3, both Φβ and Φk perform best when rewards are gentle.

However, the performance of Φβ significantly deteriorates under adversarial rewards.
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(a) r = (1, 1, −1, 1, 1, 1, −1, 1) (gentle rewards)
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(b) r = (0, 0, 0.9, 0, 0, 2.5, 4, 1.5) (adversarial rewards)

Figure 22 Matching problem from Figure 18. Targeting the bijective vertex from Figure 18e.

Still focusing on the codomino graph, we now consider the matching problem from
Figure 18. Our objective is to approach the bijective vertex illustrated in Figure 18e, which
disables the edges {2, 3} and {4, 5}. The results are presented in Figure 22, with a dotted
line representing the delay of ΦE⋆ , which is reward-optimal and stable for bijective vertices.

As seen in Section 7.4, both Φϵ and Φk steadily converge to ΦE⋆ . When gentle rewards
are used, Φβ manages to optimize the reward with a delay even lower than ΦE⋆ . However,
its performance deteriorates considerably under adversarial rewards.

E.2.2 Larger graph
To observe the performance of our methods on a larger graph, we generated a simple Erdös-
Rényi graph with n = 100 nodes and an edge probability of 20/(n− 1), resulting in m = 1032
edges. The edge rewards were drawn uniformly and independently.

We aimed to study both an injective-only vertex and a bijective vertex. On graphs of
this size, computing the exhaustive list of vertices is unrealistic, but once the reward and
arrival-rate vectors are given, calculating the corresponding optimal vertex is straightforward.

To obtain an injective-only vertex, we used degree-proportional arrival rates, following
the discussion in Section 5.2.2. This ensured the problem was stabilizable and, in this case,
resulted in an optimal vertex with 96 positive edges (injective-only). For the bijective vertex,
we added a noisy perturbation to the degree-proportional arrival rates, yielding a bijective
vertex, as hinted by Proposition 14.

The performance results for both cases are shown in Figure 23.We observe that the
performance of Φϵ, Φk, and Φβ are often comparable. If some level of regret is acceptable,
Φβ can achieve lower delays than the other policies. However, Φk tends to be more effective
at minimizing regret, particularly converging to ΦE⋆ in the bijective case.
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(a) Injective-only vertex (degree-proportional arrivals).
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(b) Bijective vertex (perturbated degree-proportional
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Figure 23 Reaching a vertex on a larger graph (n = 100, m = 1032).

F Supplementary material of Section 8 (Extensions of our results).

F.1 Convexity proofs for ΠP and ΠG (Propositions 20 and 21).
We consider the extended definition of matching policies, as discussed in Appendix A. Consider
a stabilizable matching problem (G, λ) and let ΠP (resp. ΠG) denote the set of vectors of
matching rates achievable by stable policies (resp. by stable greedy policies) adapted to the
compatibility graph G.
Convexity of ΠP . Consider two (extended) policies Φ1 and Φ2 that stabilize the matching
problem (G, λ). The state-space, queue-size function, and empty state of Φ1 (resp. Φ2) are
denoted by S1, | · |1, and ∅1 (resp. S2, | · |2, and ∅2). Given 0 < β < 1, our goal is to
build a matching policy Φβ that also stabilizes the matching problem (G, λ) and satisfies
µ(Φβ) = βµ(Φ1) + (1− β)µ(Φ2).

Intuitively, the policy Φβ will consistently follow the decisions of either Φ1 or Φ2 as long
as the system is non-empty, and switch between these two policies each time the system
becomes empty (therefore, at renewal times). The probability of selecting each policy after
visiting the empty state will be set to achieve the desired matching rate vector in the long
run. More formally, the policy Φβ will have the following characteristics:

State space Sβ = (S1 × {∅2}) ∪ ({∅1} × S2).
Queue-size function | · |β defined by |(s1, s2)|β = |s1|1 + |s2|2 for each (s1, s2) ∈ Sβ .
Empty state: ∅β = (∅1,∅2).

For some 0 < γβ < 1 that will be specified later, the matching policy Φβ is defined as follows:

Φβ((∅1,∅2), i, j, (s1,∅2)) = γβΦ1(∅1, i, j, s1), s1 ∈ S1, i ∈ V, j ∈ V ∪ {⊥},
Φβ((∅1,∅2), i, j, (∅1, s2)) = (1− γβ)Φ2(∅2, i, j, s2), s2 ∈ S2, i ∈ V, j ∈ V ∪ {⊥},
Φβ((s1,∅2), i, j, (s′

1,∅2)) = Φ1(s1, i, j, s′
1), s1 ∈ S1 \ {∅1}, s′

1 ∈ S1,

Φβ((∅1, s2), i, j, (∅1, s′
2)) = Φ2(s2, i, j, s′

2), s2 ∈ S2 \ {∅2}, s′
2 ∈ S2.

The first two equations say that, when the system is empty, we next apply Φ1 with probability
γβ and Φ2 with probability 1− γβ . The third (resp. fourth) equation says that, once we start
applying policy Φ1 (resp. Φ2), we keep applying this policy until we re-visit the empty state.

The stability of the policies Φ1 and Φ2 implies that of the policy Φβ . According to the
elementary renewal theorem for renewal reward processes, the vector giving the long-run
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average matching rates under the policy Φβ is given by

µ(Φβ) = γβT1µ(Φ1) + (1− γβ)T2µ(Φ2)
γβT1 + (1− γβ)T2

,

= γβT1

γβT1 + (1− γβ)T2
µ(Φ1) + (1− γβ)T2

γβT1 + (1− γβ)T2
µ(Φ2).

where T1 (resp. T2) denotes the mean number of matches between two successive visits to
the empty state ∅1 (resp. ∅2) in the matching model (G, λ, Φ1) (resp. (G, λ, Φ2)). We let
the reader verify that the following value of γβ yields µ(Φβ) = βµ(Φ1) + (1− β)µ(Φ2):

γβ = βT2

(1− β)T1 + βT2
.

Convexity of ΠG. It suffices to observe that, if the policies Φ1 and Φ2 are greedy, so is the
policy Φβ .

F.2 Supplementary material of Section 8.2 (Greedy policies).
F.2.1 Proof of Proposition 23 (complete graphs) and discussion.
Consider a matching problem (Kn, λ), where Kn is the complete graph with n ⩾ 3 nodes.
According to Proposition 8, this matching problem is stabilizable if and only if λi < 1

2
∑

j∈V λj

for each i ∈ V . We prove Proposition 23 by first demonstrating that all greedy policies
are “equivalent”, in the sense that they always (deterministically) make the same matching
decisions. The fact that we can formally define many greedy policies in this context is merely
an artifact of our extended definition of a matching policy in Appendix A (see in particular
Appendix A.2).

Notice that the only independent sets of a complete graph are the singletons, hence by (7)
the state space of the queue-size process under greedy policies is

QG(Kn) = {0} ∪
(⋃

i∈V

{ℓ1i : ℓ ∈ N>0}

)
, (35)

where 1i is the n-dimensional vector with one in coordinate i and zero elsewhere, for each
i ∈ V . This observation implies that greediness leaves no freedom in the matching decisions:
all unmatched items belong to the same class, and an incoming item must be matched with
one of them if its class differs. This is formalized in Proposition 34.

▶ Proposition 34. Consider the complete graph Kn with n ⩾ 3 nodes.
(i) There is a unique size-based greedy policy that is adapted to the compatibility graph Kn.

This policy, called the natural greedy policy and denoted by ΦG(Kn), is the deterministic
size-based policy defined on QG(Kn)× V by

ΦG(Kn)(q, i) =
{

j if qj ⩾ 1 with j ̸= i,
⊥ otherwise.

(36)

(ii) Consider a greedy policy Φ adapted to the graph Kn, and let (S, | · |) denote its state
space. The policy Φ makes the same decisions as the natural greedy policy ΦG in the
sense that∑

s′∈S
Φ(s, i, ΦG(Kn)(|s|, i), s′) = 1, s ∈ S, i ∈ V.
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In other words, all greedy policies are equivalent in the sense that they can all be reduced
to ΦG(Kn) (see “Equivalent policies” in Appendix A).

(iii) For each greedy policy Φ adapted to the graph Kn and each sequence I = (It, t ∈ N) of
item classes, we have (QG)t = Qt for each t ∈ N, where QG and Q are the queue-size
processes of the models (Kn, I, ΦG(Kn)) and (Kn, I, Φ), respectively.

Proof. We prove each statement one by one.
Proposition 34i. Consider a (possibly random) size-based greedy policy Φ : QG(Kn) ×
V × (V ∪ {⊥})→ [0, 1], as defined in Section 2.3.4, where QG(Kn) is given in (35). Given
(q, i) ∈ QG(Kn) × V , the definition of QG(Kn) implies that {j ∈ Vi : qj ⩾ 1} is either a
singleton or the empty set. In the former case, letting j denote the unique element of the
singleton, we have Φ(q, i,⊥) = 1 if i = j, while the greediness of Φ implies that Φ(q, i, j) = 1
if i ̸= j. In the latter case, we have directly Φ(q, i,⊥) = 1. In all cases, the matching decision
is deterministic and makes the same decisions as in (36).
Proposition 34ii. The same argument can be repeated for an arbitrary greedy policy Φ
with state space (S, | · |). Given (s, i) ∈ S × V , we know that |s| ∈ QG(Kn), so that
{j ∈ Vi : |s|j ⩾ 1} is either a singleton or the empty set. In the former case, letting j

denote the unique element of the singleton, we have
∑

s′∈S Φ(s, i,⊥, s′) = 1 if i = j, while
the greediness of Φ implies that

∑
s′∈S Φ(s, i, j, s′) = 1 if i ̸= j. In the latter case, we have

directly
∑

s′∈S Φ(s, i,⊥, s′) = 1. In all cases, we have
∑

s′∈S Φ(s, i, ΦG(|s|, i), s′) = 1.
Proposition 34iii. This statement follows directly from Proposition 34ii and from the fact
that, under any matching policy, the dynamics of the queue-size process is fully specified by
the sequence of incoming item classes and the matching decisions via (2). ◀

Proposition 35 below, which encompasses Proposition 23, builds on this equivalence
to conclude that the set ΠG collapses to a single point and directly express the unique
vector of matching rates achieved by (stable) greedy policies. In contrast, the polytope
Π⩾0 exhibits a dimension d = m− n = n(n−3)

2 , where n = |V | is the number of classes and
m = |E| =

(
n
2
)

= n(n−1)
2 is the number of possible matches. In particular, for n ⩾ 4, the

dimension d = m − n of ΠG is at least 2. Therefore, limiting ourselves to greedy policies
dramatically narrows the range of achievable solutions on complete graphs larger than a
triangle.

▶ Proposition 35. Consider a stabilizable matching problem (Kn, λ), where Kn is the
complete graph with n ⩾ 3 nodes, and let Φ denote a greedy policy adapted to Kn. Then:

(i) The model (Kn, λ, Φ) is stable.
(ii) The matching rate vector µG in this model satisfies

(µG)k = λipj + λjpi, ek = {i, j} ∈ E, (37)

where, for each i ∈ V , pi is the stationary probability that queue i is non-empty, given by

pi = λi

(
∑

j ̸=i λj)− λi
p∅, (38)

and p∅ is the stationary probability that the system is empty, given by

p∅ =
(

1 +
∑
i∈V

λi

(
∑

j ̸=i λj)− λi

)−1

. (39)

In particular, we have ΠG = {µG} ⊊ Π>0 whenever n ⩾ 4.
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Figure 24 Matching problem (K4, λ) with λ = (3, 3, 3, 3).

Proof. We prove each statement one by one.
Proposition 35i. Proposition 35i is a consequence of Corollary 27i (Appendix B.3).
Proposition 35ii. We can focus without loss of generality on the FCFM policy, as
Proposition 34iii implies that all greedy matching policies yield the same vector of matching
rates. Equation (37) follows by observing that, for each edge ek = {i, j} ∈ E, a match
between classes i and j happens if:

a class-i item arrives while queue j is non-empty, which happens at rate λipj ;
a class-j item arrives while queue i is non-empty, which happens at rate λjpi.

Equations (38) and (39) follow from [15, Proposition 5]. Indeed, for each i ∈ V , applying
[15, Equation (10)] to the independent set {i} yields (38), and the value of p∅ given in (39)
follows from the normalizing equation. This result may also be obtained more directly by
observing that, for each i ∈ V , the restriction of the transition diagram of the Markov chain
(Kn, λ, ΦG) to the states where all queues but queue i are empty is similar to a (discrete-time)
birth-and-death process with birth probability λi and death probability

∑
j ̸=i λj . ◀

Figure 24 illustrates this result on a complete graph K4 in which all arrival rates are equal
to 3. The particular solution µ◦ and the basis {b1, b2} of ker(A) that we use are shown on
Figure 24a. In the corresponding kernel basis, the polytope Π⩾0 is defined by the inequalities
α1 ⩽ 1, α2 ⩽ 1, and α1 + α2 ⩾ −1, that is, it is the triangle with vertices (−2, 1), (1,−2),
and (1, 1). Yet, Proposition 35 shows that only the solution α = (0, 0) can be achieved by a
greedy policy.

F.2.2 Proof of Proposition 24 (diamond graph) and discussion.
Consider the diamond (double fan) graph introduced in Example 4, for which we will show
that the set ΠG of matching rate vectors achieved by stable greedy policies is a strict subset of
the set Π>0 of positive solution to (ce). More specifically, we consider the diamond matching
problem (D, λ) defined as follows:

D = (V, E) with V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}},
λ = (λ1, λ̄2 + β, λ̄3 + β, λ4)

with λ1 > 0, λ̄2 > 0, λ̄3 > 0, λ4 > 0, β > 0, λ1 + λ4 = λ̄2 + λ̄3 = 1
2 ,

B = {(1,−1, 0,−1, 1)},
µ◦ = (2λ1λ̄2, 2λ1λ̄3, β, 2λ̄2λ4, 2λ̄3λ4),
µ = (2λ1λ̄2 + α, 2λ1λ̄3 − α, β, 2λ̄2λ4 − α, 2λ̄3λ4 + α), α ∈ R.

(40)
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Parameterizing λ by β (= µ2,3 for each µ ∈ Π) is a notational convenience that does not lead
to any loss of generality: as already observed in Example 4, the stabilizability condition ii
writes λ̄2 > 0, λ̄3 > 0, and β > 0. We leave it to the reader to verify that our choices for B
and µ◦ are correct. Equation (40) implies in particular that the sets Π⩾0 and Π>0, are real
intervals, and so are ΠP and ΠG by convexity.

As in Appendix F.2.1, we first provide an equivalence result that will be useful to
describe ΠG in details.

Equivalence of greedy policies

As in Appendix F.2.1, we first identify a common behavior shared by all greedy policies and
then we exploit this behavior to characterize the matching rates achievable by stable greedy
policies.

Since {1, 4} is the only independent set of the diamond graph D that is not a singleton,
the possible queue states under any greedy policy can be partitioned as follows: either all
queues are empty, or exactly one class has a non-empty queue, or (only) classes 1 and 4 have
non-empty queues. In other words, the state space of the queue-size process under greedy
policies adapted to the graph D is

QG(D) = {0} ∪
(⋃

i∈V

{ℓ1i, ℓ ∈ N>0}

)
∪ {ℓ111 + ℓ414 : ℓ1, ℓ4 ∈ N>0} . (41)

Therefore, greediness entirely determines the decisions made by greedy policies, except if
an item of class 2 or 3 enters while there are unmatched items of classes 1 and 4. Using
the fact that classes 2 and 3 are both compatible with classes 1 and 4, we prove formally
in Proposition 36 that all greedy policies adapted to the diamond graph make the same
matching decisions as the natural greedy policy adapted to the complete graph K3 obtained
by “merging” classes 1 and 4 in the diamond graph.

▶ Proposition 36. Given the diamond graph D, we introduce the following notation:
Queue-size projection: For each q = (q1, q2, q3, q4) ∈ QG(D), we let ⟨q⟩ = (q1 + q4, q2, q3).
Class projection: We let ⟨i⟩ = i for each i ∈ {1, 2, 3,⊥} and ⟨4⟩ = 1.

Every greedy policy Φ adapted to the diamond graph D satisfies the following properties:
(i) If Φ is a deterministic size-based policy, then

⟨Φ(q, i)⟩ = ΦG(K3)(⟨q⟩, ⟨i⟩), (q, i) ∈ QG(D)× V.

where ΦG(K3) is the natural greedy policy (36) adapted to the complete graph K3.
(ii) In general, if Φ is a policy with state space (S, | · |), then∑

s′∈S

∑
j∈V ∪{⊥}:

⟨j⟩=ΦG(K3)(⟨|s|⟩,⟨i⟩)

Φ(s, i, j, s′) = 1, s ∈ S, i ∈ V.

(iii) For each sequence I of item classes, we have ⟨Qt⟩ = (QG)t for each t ∈ N, where Q and
QG are the queue-size processes of the models (D, I, Φ) and (K3, ⟨I⟩, ΦG), respectively,
with ⟨I⟩ = (⟨It⟩, t ∈ N).

Loosely speaking, the main take-away of Proposition 36iii is that, in the matching model
(D, I, Φ), the process ((Qt,1 + Qt,4, Qt,2, Qt,3), t ∈ N) does not depend on the specific greedy
policy Φ that is applied, and it is in fact equal to the queue size process built by applying
the natural greedy policy ΦG(K3) in the complete graph K3 obtained by merging classes 1
and 4 in the diamond graph D.
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Proof of Proposition 36. We prove each statement one by one.
Proposition 36i. We leave it to the reader to verify that QG(K3) is the image of QG(D)
by the application q = (q1, q2, q3, q4) 7→ ⟨q⟩ = (q1 + q4, q2, q3). This means in particular that
q1+q4, q2, and q3 cannot be positive simultaneously if q ∈ QG(D). Since the diamond graph D

has only four nodes, we can then conclude by enumerating all relevant cases, depending on
the support of ⟨q⟩ = (q1 + q4, q2, q3). For example, if q1 + q4 ⩾ 1 and q2 = q3 = 0, then we
have immediately Φ(q, i) = ⊥ if i ∈ {1, 4}, and the greediness of the policy Φ implies that
Φ(q, i) ∈ {1, 4} if i ∈ {2, 3}; in other words, we have ⟨Φ(q, i)⟩ = ⊥ if ⟨i⟩ = 1 and ⟨Φ(q, i)⟩ = 1
if ⟨i⟩ ∈ {2, 3}. Similarly, if q1 + q4 = q3 = 0 and q2 ⩾ 1, then Φ(q, i) = ⊥ if i = 2 and
Φ(q, i) = 2 if i ∈ {1, 3, 4}, that is, ⟨Φ(q, i)⟩ = ⊥ if ⟨i⟩ = 2 and ⟨Φ(q, i)⟩ = 2 if ⟨i⟩ ∈ {1, 3}. In
all cases, we can verify that ⟨Φ(q, i)⟩ is equal to ΦG(K3)(⟨q⟩, ⟨i⟩).

Alternatively, by taking a step back, we can prove Proposition 36i more directly by
observing that, for each (q, i) ∈ QG(D)×V , (i) the support of ⟨q⟩ is a singleton {j} whenever
q ̸= 0, and (ii) whether j ∈ Vi depends on i only via ⟨i⟩.
Proposition 36ii. The same argument can be repeated for an arbitrary greedy policy Φ
with state space (S, | · |). As in the proof of Proposition 34ii, the key argument consists of
observing that we still have q = |s| ∈ QG(D) for each (s, i) ∈ S × V , so that q1 + q4, q2, and
q3 cannot be positive simultaneously.
Proposition 36iii. The conclusion follows in much the same way as in the proof of
Proposition 34iii, by injecting statements i and ii from Proposition 36 into (2). ◀

Matching rates under stable greedy policies.

Propositions 37 and 38, which encompass Proposition 24, use the equivalence result of Propo-
sition 36 to characterize the matching rate vector under stable greedy policies. Proposition 37
bounds the coordinates of the matching-rate vectors achievable by a stable greedy policy,
while Proposition 38 details the bounds α+ and α− of ΠG . These propositions illustrate the
complementarity of edge and kernel coordinates: the results of Proposition 37 are easier
to state using edge coordinates, while those of Proposition 38 are easier to state using
kernel coordinates. The lower bound (42) is obtained by following a similar approach as in
Proposition 35ii.

▶ Proposition 37 (Edge coordinates). Consider the matching model (D, λ, Φ), where (D, λ)
is the diamond problem (40) and Φ is a greedy policy adapted to the graph D.

(i) This matching model is stable.
(ii) The matching rate vector µ = µ(D, λ, Φ) satisfies µ2,3 = β = 1

2 (λ2 + λ3− λ1− λ4), and

µ1,2 ⩾ λ1p2 + λ2p1, µ1,3 ⩾ λ1p3 + λ3p1,

µ2,4 ⩾ λ2p4 + λ4p2, µ3,4 ⩾ λ3p4 + λ4p3,
(42)

where pi is the stationary probability that the system contains unmatched items that
belong exclusively to class i, for each i ∈ V .

(iii) Let p1,4 denote the stationary probability that the system contains unmatched items that
belong to class 1 or 4 (or both). We have

p2 = λ2

λ1 + λ3 + λ4 − λ2
p∅, p3 = λ3

λ1 + λ2 + λ4 − λ3
p∅,

p1,4 = λ1 + λ4

λ2 + λ3 − λ1 − λ4
p∅,

(43)
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where p∅ is the stationary probability that the system is empty, whose value follows
from the normalization equation p∅ + p1,4 + p2 + p3 = 1. We also have

p1 >
λ1

λ2 + λ3 + λ4
p∅, p4 >

λ4

λ1 + λ2 + λ3
p∅. (44)

Proof of Proposition 37. We prove each statement one after another.
Proposition 37i. This is a consequence of Corollary 27ii (Appendix B.3).
Proposition 37ii. The equation µ2,3 = β = 1

2 (λ2 + λ3 − λ1 − λ4) is a direct consequence
of (ce). The inequalities (42) for µ1,2, µ1,3, µ2,4, and µ3,4 follow by observing that, for each
edge {i, j} ∈ {{1, 2}, {1, 4}, {2, 3}, {3, 4}}, a match between classes i and j happens at least
in one of the following cases:

a class-i item arrives while the system contains unmatched items that all belong to class j,
a class-j item arrives while the system contains unmatched items that all belong to class i,

These events occur at rates λipj and λjpi, respectively. Equations (42) are not equalities
in general because the above list is not exhaustive. For example, depending on the greedy
policy, a match between classes 1 and 2 may happen if a class-2 item arrives while the system
contains unmatched items of class 1 and unmatched items of class 4.
Proposition 37iii. The expressions for p∅, p2, p3, and p1,4 follow directly by combining
Proposition 36iii with Equations (38) and (39) in Proposition 35. We now derive the lower
bound (44) for p1. The one for p4 follows by symmetry.

First assume that the greedy policy Φ is deterministic and size-based, so that it satisfies
Proposition 36i. For each q ∈ QG(D), let πq denote the probability that the Markov chain
(D, λ, Φ) is in state q in stationary regime. The probability that we want to lower-bound is

p1 =
+∞∑
ℓ=1

πℓ11 . (45)

Now let ℓ ∈ N>0 and consider the balance equation for state ℓ11, given by

(λ1 + λ2 + λ3 + λ4)πℓ11 = λ1π(ℓ−1)11 + (λ2 + λ3)π(ℓ+1)11 + C, (46)

where C is a non-negative real that depends on the model parameters, the integer ℓ, and the
policy Φ, and that accounts for the flow to state ℓ11 from state ℓ11 + 14, if any. It follows
that (λ1 + λ2 + λ3 + λ4)πℓ11 > λ1π(ℓ−1)11 . An inductive argument allows us to conclude that

πℓ11 >

(
λ1

λ1 + λ2 + λ3 + λ4

)ℓ

p∅, ℓ ∈ N>0. (47)

Injecting this inequality into (45) allows us to conclude:

p1 >

+∞∑
ℓ=1

(
λ1

λ1 + λ2 + λ3 + λ4

)ℓ

p∅ = λ1

λ2 + λ3 + λ4
p∅. (48)

If Φ is an extended policy with state space (S, | · |), we can still write (45)–(48) and reach
the same conclusion. The only difference is that π can no longer be defined as the stationary
distribution of a Markov chain: instead, we define πq =

∑
s∈S:|s|=q ϖs for each q ∈ QG(D),

where ϖs is the probability that the Markov chain (D, λ, Φ) is in state s in stationary regime,
for each s ∈ S. ◀

▶ Proposition 38 (Kernel coordinates). Consider the diamond matching problem (D, λ)
of (40).
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(i) The intervals Π⩾0, Π>0, and ΠG are defined as follows in the kernel basis:

Π⩾0 = [−2 min(λ1λ̄2, λ̄3λ4), 2 min(λ1λ̄3, λ̄2λ4)],
Π>0 = (−2 min(λ1λ̄2, λ̄3λ4), 2 min(λ1λ̄3, λ̄2λ4)),
ΠG = [α−, α+],

with −2 min(λ1λ̄2, λ̄3λ4) < α− ⩽ α+ < 2 min(λ1λ̄3, λ̄2λ4). Hence, ΠG ⊊ Π>0 ⊊ Π⩾0.
(ii) The coordinates α+ and α− satisfy the following properties:

a. α+ = α(Φ+), where Φ+ is the Highest-Reward-First (HRF) policy adapted to the
graph D whereby edges {1, 2} and {3, 4} have the highest reward.

b. α− = α(Φ−), where Φ− is the HRF policy adapted to the graph D whereby edges
{1, 3} and {2, 4} have the highest reward.

c. If β → +∞ while λ1, λ̄2, λ̄3, and λ4 remain fixed, we have α+ → 0 and α− → 0.

Proof of Proposition 38. We prove each statement one after another.
Proposition 38i–iia–iib. The diamond graph D has n = 4 nodes and m = 5 edges.
Therefore, according to Propositions 10 and 21, the sets Π⩾0, Π>0, and ΠG have dimension
d = m − n = 1, meaning that they are intervals in R. The equations for the intervals
Π⩾0 and Π>0 follow directly from the change-of-basis equation µ = (2λ1λ̄2 + α, 2λ1λ̄3 −
α, β, 2λ̄2λ4 − α, 2λ̄3λ4 + α) from (40). That ΠG is also an interval is a consequence of its
convexity (Proposition 21). The (non-strict) inequality −2 min(λ1λ̄2, λ̄3λ4) ⩽ α− ⩽ α+ ⩽
2 min(λ1λ̄3, λ̄2λ4) is a consequence of Proposition 21, which states that ΠG ⊆ Π>0. The
first and third inequalities are also strict because α+ and α− belong to ΠG (see below),
while 2 min(λ1λ̄3, λ̄2λ4) and −2 min(λ1λ̄2, λ̄3λ4) do not belong to Π>0. That ΠG is a closed
interval of the form ΠG = [α−, α+] and that α+ and α− are as given in Proposition 38iia
–iib are consequences of Lemma 39 below, which will be proved by a coupling argument later
in this appendix15.

▶ Lemma 39. Consider the HRF policy Φ+ adapted to the diamond graph D whereby edges
{1, 2} and {3, 4} have the highest reward. For each greedy policy Φ adapted to the compatibility
graph D, we have

µ1,2(Φ) ⩽ µ1,2(Φ+), µ3,4(Φ) ⩽ µ3,4(Φ+),
µ1,3(Φ) ⩾ µ1,3(Φ+), µ2,4(Φ) ⩾ µ2,4(Φ+),

(49)

Equivalently, in kernel coordinates, we have α(Φ) ⩽ α(Φ+).

Proposition 38iic. Most of the quantities we consider in this proof are functions of β,
but this dependency is left implicit to simplify notation. In particular, we let µ denote
(the edge coordinates of) the matching rate vector in the matching model (D, λ, Φ+), where
λ = (λ1, λ̄2 + β, λ̄3 + β, λ4), with λ1 + λ4 = λ̄2 + λ̄3 = 1

2 , and Φ+ is the greedy HRF policy
defined in Lemma 39. By combining (42) with the conservation equation µ1,2 + µ1,3 = λ1,
we obtain the following lower and upper bounds for µ1,2:

λ1p2 + λ2p1 ⩽ µ1,2 ⩽ λ1 − (λ1p3 + λ3p1). (50)

15 Lemma 39 focuses on Proposition 38iia. The case Proposition 38iib is trivially deduced by switching
the class labels 2 and 3.
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In addition, injecting the definition (40) of λ into (43) and (44) shows that, in the model
(D, λ, Φ+), we have

p2 = p∅
λ̄2 + β

2λ̄3
, p3 = p∅

λ̄3 + β

2λ̄2
, p1,4 = p∅

1
3β

,

p1 > p∅
λ1

1
2 + λ4 + 2β

, p4 > p∅
λ4

1
2 + λ1 + 2β

,

(51)

with, by the normalization equation p∅ + p2 + p3 + p1,4 = 1,

p∅ =
(

1 + 1
3β

+ λ̄2 + β

2λ̄3
+ λ̄3 + β

2λ̄2

)−1

. (52)

Taking the limit of (51) and (52) as β → +∞, we conclude that both the lower-bound and
the upper-bound in (50) tend to 2λ1λ̄2 as β → +∞. Then combining (50) with the squeeze
theorem allows us to conclude that µ1,2 also tends to 2λ1λ̄2 as β → +∞. By symmetry, we
obtain directly µ1,3 −→ 2λ1λ̄3, µ2,4 −→ 2λ̄2λ4, and µ3,4 −→ 2λ̄3λ4 as β → +∞. According to
the change-of-basis equation µ = (2λ1λ̄2 + α, 2λ1λ̄3 − α, β, 2λ̄2λ4 − α, 2λ̄3λ4 + α) from (40),
this means that α+ −→ 0 as β → +∞. ◀

Proof of Lemma 39. Consider a greedy policy Φ adapted to the graph D. We will prove
the inequality relations in (49) using a coupling argument. More specifically, we will compare
the matching models (D, I, Φ) and (D, I, Φ+), where I = (It, t ∈ N) is a sequence of i.i.d.
classes, such that It = i with probability λi/(λ1 + λ2 + λ4 + λ3) for each t ∈ N and i ∈ V .

Considering the model (D, I, Φ), we let Qt denote the vector of queue sizes at time t,
Lt,i the number of class-i items among the first t arrivals, and Mt,{i,j} (or Mt,i,j for short)
the number of times that classes i and j are matched over the first t arrivals, for each t ∈ N
and i, j ∈ V , as defined in (2)–(5). We introduce similar notation for the model (D, I, Φ+),
the only difference being that all quantities have superscript +. Since both models have the
same sequence of incoming items, we have Lt,i = L+

t,i for each t ∈ N and i ∈ V . As usual,
we also assume that Q0 = Q+

0 = 0. Neither (Qt, t ∈ N) nor (Q+
t , t ∈ N) need to be Markov

chains for our argument to hold.
Our end goal is to prove that the following inequalities are satisfied at each time t ∈ N:

Mt,1,2 ⩽ M+
t,1,2, (53–1,2)

Mt,3,4 ⩽ M+
t,3,4, (53–3,4)

Mt,1,3 ⩾ M+
t,1,3, (53–1,3)

Mt,2,4 ⩾ M+
t,2,4. (53–2,4)

Injecting these inequalities into the definition (8) of the matching rates yields the inequali-
ties (49). We will prove (53) by induction over time t ∈ N. The following equations will be
instrumental to prove the induction step:

Qt,1 + Qt,4 = Q+
t,1 + Q+

t,4, Qt,2 = Q+
t,2, Qt,3 = Q+

t,3, (54)
Lt,1 = Qt,1 + Mt,1,2 + Mt,1,3 = Q+

t,1 + M+
t,1,2 + M+

t,1,3, (55)
L4,t = Qt,4 + Mt,2,4 + Mt,3,4 = Q+

t,4 + M+
t,2,4 + M+

t,3,4. (56)

Equation (54) follows from Proposition 36iii, while (55) and (56) follow from our assumption
that the arrivals in both models are coupled. Furthermore, given the definition of QG(D)
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in (41), we know that only one integer among Qt,1 + Qt,4, Qt,2, and Qt,3 can be positive, for
each t ∈ N.

We now proceed to the induction step. Let t ∈ N. We now prove that, assuming that the
inequalities (53) are satisfied at time t, these inequalities are also satisfied at time t + 1. We
distinguish several cases depending on the value of It:
Case It = 1: We have directly Mt+1,i,j = Mt,i,j and M+

t+1,i,j = M+
t,i,j for (i, j) ∈ {(2, 4), (3, 4)},

hence the induction assumption implies that (53–2,4) and (53–3,4) hold at time t + 1.
Since the policy Φ is greedy, we only have three mutually-exclusive cases:
Case Qt,2 ⩾ 1: The class-1 item is matched with a class-2 item already present, and we

obtain Mt+1,1,2 = Mt,1,2 + 1 and Mt+1,1,3 = Mt,1,3.
Case Qt,3 ⩾ 1: The class-1 item is matched with a class-3 item already present, and we

obtain Mt+1,1,2 = Mt,1,2 and Mt+1,1,3 = Mt,1,3 + 1.
Case Qt,2 = Qt,3 = 0: The class-1 item is left unmatched, and we obtain Mt+1,1,2 =

Mt,1,2 and Mt+1,1,3 = Mt,1,3.
Since the policy Φ+ is also greedy, we can repeat the same argument for the quantities
associated with Φ+. Combining this observation with (54) yields Mt+1,1,2 −M+

t+1,1,2 =
Mt,1,2−M+

t,1,2 and Mt+1,1,3−M+
t+1,1,3 = Mt,1,3−M+

t,1,3. Hence, the induction assumption
implies directly that (53–1,2) and (53–1,3) are satisfied at time t + 1.

Case It = 2: We have directly Mt+1,i,j = Mt,i,j and M+
t+1,i,j = M+

t,i,j for (i, j) ∈ {(1, 3), (3, 4)},
hence the induction assumption implies that (53–1,3) and (53–3,4) hold at time t + 1.
Proving that (53–1,2) and (53–2,4) also hold at time t + 1 is more intricate, and we will
distinguish three mutually-exclusive cases depending on the values of Qt,1, Qt,4, Q+

t,1,
and Q+

t,4:
Case Q+

t,1 + Q+
t,4 = 0: Under both policies, the class-2 item is either matched with a

class-3 item or added to the queue. In particular, we obtain Mt+1,i,j = Mt,i,j and
M+

t+1,i,j = M+
t,i,j for (i, j) ∈ {(1, 2), (2, 4)}, so that (53–1,2) and (53–2,4) are again

satisfied at time t + 1 thanks to the induction assumption.
Case Q+

t,1 + Q+
t,4 ⩾ 1: We again subdivide this case into three mutually-exclusive cases:

Case Q+
t,1 ⩾ 1 and Q+

t,4 ⩾ 1: We have M+
t+1,1,2 = M+

t,1,2 + 1 and M+
t+1,2,4 = M+

t,2,4
by definition of the policy Φ+, while for the policy Φ we only know that Mt+1,1,2 ∈
{Mt,1,2, Mt,1,2 + 1} and Mt+1,2,4 ∈ {Mt,2,4, Mt,2,4 + 1}. We can verify that (53–1,2)
and (53–2,4) hold at time t + 1 thanks to the induction assumption.

Case Q+
t,1 = 0 and Q+

t,4 ⩾ 1: By greediness, the policy Φ+ matches the incoming
class-2 item with a class-4 item, and we obtain M+

t+1,1,2 = M+
t,1,2 and M+

t+1,2,4 =
M+

t,2,4 + 1. If the policy Φ makes the same decision, then we also have Mt+1,1,2 =
Mt,1,2 and Mt+1,2,4 = Mt,2,4 + 1, hence (53–1,2) and (53–2,4) hold at time t + 1
thanks to the induction assumption. Otherwise, the policy Φ matches the class-2
item with a class-1 item, meaning that Mt+1,1,2 = Mt,1,2 + 1 and Mt+1,2,4 = Mt,2,4.
Importantly, this is only possible if Qt,1 ⩾ 1. We now prove (53–1,2) and (53–2,4)
as follows:

Proving (53–1,2) boils down to proving M+
t,1,2 ⩾ Mt,1,2 +1. We have successively:

M+
t,1,2 −Mt,1,2 = (Qt,1 −Q+

t,1) + (Mt,1,3 −M+
t,1,3) ⩾ 1 + 0 = 1,

where the equality follows from (55) and the inequality follows from the induction
assumption and the fact that Qt,1 ⩾ 1 and Q+

t,1 = 0.
Proving (53–2,4) boils down to proving M+

t,2,4 + 1 ⩽ Mt,2,4. We have successively

Mt,2,4 −M+
t,2,4 = (Q+

t,4 −Qt,4) + (M+
t,3,4 −Mt,3,4) ⩾ 1 + 0 = 1,
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where the equality follows from (56) and the inequality follows from the induction
assumption and the observation that Q+

t,4 −Qt,4 = Qt,1 −Q+
t,1 ⩾ 1.

Intuitively, the only way that an incoming class-2 item is matched at time t with a
class-1 item under the policy Φ and with a class-4 item under the policy Φ+ is if, in
the past, the policy Φ+ had made one more match along edge {1, 2} and one less
match along edge {2, 4} compared to the policy Φ.

Case Q+
t,1 ⩾ 1 and Q+

t,4 = 0: This case is symmetrical to the previous case.
Case It = 3: This case is symmetrical to the case It = 2.
Case It = 4: This case is symmetrical to the case It = 1.

◀

Proposition 38 can be interpreted as follows. Intuitively, the kernel coordinate α given
in (40) (also shown in Figure 3d) acts like a slider that determines how much edges {1, 2}
and {3, 4} are (dis)favored compared to edges {1, 3} and {2, 4} on the long run. Remarkably,
Proposition 38 shows that the greedy policy that favors edges {1, 2} and {3, 4} (resp. {1, 3}
and {2, 4}) the most in the long run is also the policy that favors these edges the most in
the short run. This result is proved by a coupling argument. In addition, Proposition 38 uses
the lower bound (42) in Proposition 37 to prove that, in the limit as β → +∞, all greedy
policies yield the same matching rate vector.

Taken together, Items i and iic in Proposition 38 show that, as β → +∞, the interval ΠG
becomes reduced to a single point α = 0, meaning that all greedy policies yield the same
vector of matching rates, with edge coordinates µ = (2λ1λ̄2, 2λ1λ̄3, β, 2λ̄2λ4, 2λ̄3λ4). The
rationale behind this result is the following. In the regime where β = µ2,3 → +∞, we see
in (40) that the arrival rates of classes 2 and 3 become large compared to those of classes 1
and 4. As a result, items of classes 1 and 4 are matched (almost) always immediately, and
unmatched items belong to either class 2 or class 3 (but not both at the same time). In the
proof of Proposition 38iic, this intuition is formalized by taking the limit of (43) as β → +∞,
which yields p∅ −→ 0, p2 −→ 2λ̄2, p3 −→ 2λ̄3, and p1,4 −→ 0. In this regime, the greediness
of the policy allows no degree of flexibility in choosing the class of the item to which an
incoming item is matched, so the matching rates are unique.

▶ Remark 12. Some quantities in Proposition 38 are functions of the matching rate β = µ2,3,
but this dependency is kept implicit to simplify notation. In particular, the intervals Π⩾0 and
Π>0 do not depend on β, but the interval ΠG and the coordinates α+ and α− do.

Numerical results.

To illustrate Proposition 38, Figure 25 shows a symmetric example with λ1 = λ̄2 = λ̄3 =
λ4 = 1

4 . The figure compares Π⩾0 and ΠG with the bounds (42)–(44) (converted in the
kernel coordinates) and the limit α = 0. Each point forming the shape of ΠG = [α−, α+]
is obtained by running a simulation consisting of 1010 steps (as specified in Section 7). As
announced by Proposition 38, ΠG becomes reduced to a single point α = 0 when β → +∞.
We also notice that the bounds (42)–(44) are not tight when β is small (in the sense that the
difference between α+ and the upper-bound is no longer negligible compared to the difference
between α+ and the boundary 2 min(λ1λ̄3, λ̄2, λ4) of Π⩾0), while at the same time α+ and
α− become arbitrarily close to the borders of Π⩾0 when β tends to zero (which does not
contradict the fact that ΠG is a strict subset of Π⩾0 as long as β > 0). The gap between
ΠG and the bounds (42)–(44) comes from the fact that, to obtain the lower bounds for p1
and p4 in (44), we neglected the case where there are both class-1 and class-4 unmatched
items, and this case is not negligible when β is small.
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Figure 25 Evolution of ΠG as a function of β in the diamond problem (40) with λ1 = λ̄2 =
λ̄3 = λ4 = 1

4 . For each β, ΠG is estimated by simulating the model (D, λ, Φ+) and leveraging the
symmetry of the problem. Π⩾0 and other bounds are displayed for comparison. All results are
expressed in kernel coordinates.

F.2.3 Intuition of Conjecture 25 (Fish matching problem) and
discussion.

We consider a matching problem, which we call the Fish problem, where we conjecture that
ΠG = Π>0. The Fish matching problem is defined as follows:

V = {1, 2, 3, 4, 5, 6},
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 6}, {4, 5}, {5, 6}},
λ = (4, 4, 3, 2, 3, 2),
B = {(0, 0, 0, 1,−1,−1, 1)},

µ◦ = (3, 1, 1, 1
2 , 1

2 , 3
2 , 3

2 ),
µ = (3, 1, 1, 1

2 + α, 1
2 − α, 3

2 − α, 3
2 + α), α ∈ R.

(57)

The general solution µ given in (57) is shown in Figure 12. We can verify by a direct
inspection that this matching problem is stabilizable and that Π⩾0 = [− 1

2 , 1
2 ] in kernel

coordinates. The kernel coordinate α acts like a slider that is positive (resp. negative) if
matches along edges {3, 4} and {5, 6} are more (resp. less) frequent than matches along edges
{3, 6} and {4, 5}.

1

2

3

4

5

6

3

1

1

1
2
+ α

3
2 − α

3
2
+ α

1
2 −

α

Figure 12 (repeated) Generic solution to (ce) in the Fish matching problem of (57) with
λ = (4, 4, 3, 2, 3, 2).

Intuition of proof. To support Conjecture 25, we build two families of stable greedy policies,
denoted by (Φ+

k )k∈N and (Φ−
k )k∈N, such that limk→+∞ α(Φ+

k ) = 1
2 and limk→+∞ α(Φ−

k ) = − 1
2 .

The conclusion then follows from the convexity of the set ΠG (Proposition 21). We focus on
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the family (Φ+
k )k∈N, as the family (Φ−

k )k∈N is symmetrical (in the sense that it suffices to
exchange classes 4 and 6).

The family (Φ+
k )k∈N is defined as follows. Let Φ+

∞ denote the HRF policy where edges
have the following decreasing reward order: {1, 3}, {2, 3}, {3, 4}, {5, 6}, followed by all
other edges in an arbitrary order. Let Φ+

0 denote the HRF policy where edges have the

1
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4

5

6

1nd

2st

3rd

4th

(a) Policy Φ+
∞, followed by policy Φ+

k when the
size of queue 4 is at most k − 1

1

2

3

4

5

6

3nd

2rd

1st

4th

(b) Policy Φ+
0 , followed by policy Φ+

k when the
size of queue 4 is at least k

Figure 26 HRF (greedy) policies considered in the Fish matching problem of (57).

following decreasing reward order: {3, 4}, {2, 3}, {1, 3}, {5, 6}, followed by all other edges
in an arbitrary order. The important point is that both policies prioritize edges {3, 4} and
{5, 6} over edges {3, 6} and {4, 5} (with the hope that this lead to a high α), but that Φ+

∞
gives higher priority to the “tail” of the fish, while Φ+

0 gives higher priority to the “trunk”.
Now, for each k ∈ N, Φ+

k is the deterministic size-based policy that follows Φ+
∞ when the

queue size of class 4 is at most k− 1 and Φ+
0 when the queue size of class 4 is at least k (that

is, Φ+
k (q, i) = Φ+

∞(q, i) if q4 ⩽ k − 1 and Φ+
k (q, i) = Φ+

0 (q, i) if q4 ⩾ k).
The rationale behind this definition is as follows. According to (57), α is maximal (i.e.,

equal to 1
2 ) when µ3,4 is equal to 1 and µ3,6 is equal to 0. If we allow non-greedy policies,

α = 1
2 can be achieved by merely applying the edge-filtering variant of ML (or any maximally-

stable policy) on the bijective subgraph of G obtained by eliminating edge {3, 6}, that is, by
never performing a match between classes 3 and 6. As we will see, the family (Φ+

k )k∈N of
(stable greedy) policies emulates this (non-greedy) edge-filtering policy by favoring edge {3, 4}
over edge {3, 6} while making the probability that q4 = 0 arbitrary small as k increases.
Roughly speaking, mixing the policies Φ+

∞ and Φ+
0 allows us to control q4: Φ+

∞ is not stable
and makes q4 go to infinity, while Φ+

0 is stable and reduces q4 when it is large. All in all, Φ+
k

keeps the value of q4 around k, so that the probability that q4 = 0 is low when k is large. In
the limit, q4 is always positive, so that the class-3 items that are not matched with classes 1
or 2 are drained by class 4 (while class 6 is matched only with class 5), so that µ3,4(Φ+

k )
tends to 1 and µ3,6(Φ+

k ) tends to 0 as k →∞.
We expect that a rigorous proof that µ3,6(Φ+

k ) tends to 0 as k → +∞ will involve the
following steps, some of which may require further investigation or analysis:
1. For each k ∈ N, the matching model (G, λ, Φ+

k ) is stable. Stability can be proved by
applying a fluid-limit argument that generalizes the framework of [18] 16. Therefore, for
each k ∈ N, we can consider a random vector Qk = (Qk,1, Qk,2, . . . , Qk,n) distributed like
the vector of queue sizes in the matching model (G, λ, Φ+

k ) in stationary regime, and we
know that the vector µ(Φ+

k ) is well-defined.
2. For each k ∈ N, by definition of the policy Φ+

k , we have

µ(Φ+
k )3,6 = λ3P (Qk,4 = 0, Qk,6 > 0) + λ6P (Qk,3 > 0, Qk,5 = 0),

⩽ (λ3 + λ6)P (Qk,4 = 0),

16 Formalizing this generalization is outside the scope of this paper and could be the topic of a future work.
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where the inequality arises because the events (Qk,4 = 0, Qk,6 > 0) and (Qk,3 > 0, Qk,5 =
0) are both included into the event (Qk,4 = 0) (in the latter case, this is because the
greediness of the policy prevents the system from containing unmatched items of classes 3
and 4 at the same time). Consequently, to prove that µ(Φ+

k )3,6 → 0, it suffices to prove
that P (Qk,4 = 0) → 0 as k → +∞. This argument rigorously supports the intuition
that, if class 4 becomes “unstable”, then this class “drains” all class-3 items that are not
matched with classes 1 and 2.

3. To prove that P (Qk,4 = 0)→ 0 as k → +∞, we believe that we can reason as follows:
We can prove that, for each k ∈ N, the conditional average rate at which class 3 is
matched with either class 4 or class 6, given that Qk,4 ⩽ k − 1, is upperbounded by

λ3

(
1 + λ1

λ2 + λ3 − λ1
+ λ2

λ1 + λ3 − λ2

)−1
= 9

11 .

This upper bound follows by coupling the fish problem with a “worst-case” matching
problem in which there is an infinite backlog of items of classes 4 and 6 to be matched
with class 3. Roughly speaking, this worst-case matching problem can be obtained by
taking λ4 = λ6 = +∞ in the fish problem; then, focusing on nodes 1, 2, and 3, the
system behaves like a paw graph with an unstable pendant node obtained by merging
classes 4 and 6.
Using this upper bound, we prove that at least one class among classes 4 and 6 becomes
unstable, in the sense that limk→+∞ P (Qk,4 = 0) = 0 or limk→+∞ P (Qk,6 = 0) = 0.
Since we can verify otherwise that class 6 does not become unstable, it follows that
limk→+∞ P (Qk,4 = 0) = 0.

◀

The complete proof is left as an open question for future works.

Numerical results.
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Figure 27 Approaching the vertex α = 1/2 in the Fish graph from Figure 12 with greedy policies
(r = (2, 2, 2, 1, −1, 0, 1)).

The performance of Φ+
k is shown in Figure 27. Since the vertex at α = 1/2 is bijective, we

include the delay of the reward-optimal policy ΦE⋆ for comparison. The figure corroborates
Conjecture 25, demonstrating that the regret of Φ+

k converges to zero. However, as mentioned
earlier, this reduction in regret comes at the cost of increasing the size of the class-4 queue,
thus increasing the delay of the policy.
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