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Abstract
Stochastic dynamic matching problems have recently drawn attention in the stochastic-modeling
community due to their numerous applications, ranging from supply-chain management to kidney
exchange programs. In this paper, we consider a matching problem in which items of different classes
arrive according to independent Poisson processes. Unmatched items are stored in a queue, and
compatibility constraints are described by a simple graph on the classes, so that two items can be
matched if their classes are neighbors in the graph. We analyze the efficiency of matching policies,
not only in terms of system stability, but also in terms of matching rates between different classes.

Our results rely on the observation that, under any stable policy, the matching rates satisfy a
conservation equation that equates the arrival and departure rates of each item class. Our main
contributions are threefold. We first introduce a mapping between the dimension of the solution
set of this conservation equation, the structure of the compatibility graph, and the existence of a
stable policy. In particular, this allows us to derive a necessary and sufficient stability condition
that is verifiable in polynomial time. Secondly, we describe the convex polytope of non-negative
solutions of the conservation equation. When this polytope is reduced to a single point, we give
a closed-form expression of the solution; in general, we characterize the vertices of this polytope
using again the graph structure. Lastly, we study which vectors of the polytope can be achieved by
a stable policy. We show that the set of vectors reached by stable greedy policies is included in the
interior of the polytope, and that the inclusion is strict in general. In contrast, we conjecture that
non-greedy policies can reach any point of the interior of the polytope; whether they can also reach
the boundary of the polytope depends on a simple condition on the vertices.

2012 ACM Subject Classification Mathematics of computing → Queueing theory; Mathematics of
computing → Markov processes; Mathematics of computing → Matchings and factors

Keywords and phrases stochastic dynamic matching, graph theory, linear algebra, stability, matching
rates, conservation equation

1 Introduction

Stochastic dynamic matching problems, in which items arrive at random instants to be
matched with other items, have recently attracted much attention in the stochastic-modeling
community. These challenging control problems are highly relevant in many applications,
including supply-chain management, pairwise kidney exchange programs, and online mar-
ketplaces. In pairwise kidney exchange programs for example, each item represents a
donor-receiver pair, and two pairs can be matched if the donor of each pair is compatible
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with the receiver of the other pair. In online marketplaces, items are typically divided into
two categories, called demand and supply, and the goal is to maximize a certain long-term
performance criteria by appropriately matching demand items with supply items.

In this paper, we consider the following dynamic matching problem2. Items of different
classes arrive according to independent Poisson processes. Compatibility constraints between
items are described by a simple graph on their classes, such that two items can be matched
if their classes are neighbors in the graph. Unmatched items are stored in the queue of their
class, and the matching policy decides which matches are performed and when. All in all,
a stochastic matching model is described by a triplet (G, λ, Φ), where G = (V, E) is the
compatibility graph, λ = (λ1, λ2, . . . , λn) is the vector of per-class arrival rates, and Φ is the
matching policy. In Figure 1 for instance, there are four item classes numbered from 1 to 4;
classes 2 and 3 are compatible with all classes, while classes 1 and 4 are compatible only
with classes 2 and 3.

λ2

λ3

λ1 λ4

µ1,2

µ1,3

µ2,4

µ3,4

µ2,3

Figure 1 Illustration of a matching model (G, λ, Φ) on the diamond graph.

We consider two performance indicators, namely the stability and the matching rates
along edges. Formally, a matching model (G, λ, Φ) is said to be stable if the associated Markov
chain is positive recurrent. Assuming that this matching model is stable, the matching
rate µk along an edge k ∈ E with endpoints i, j ∈ V is the rate at which class-i items
and class-j items are matched. Our end goal is to characterize the matching rates that
are achievable under stable matching policies and to use this characterization to design
matching policies that achieve certain matching rate vectors. Our results show that these two
performance indicators are sometimes incompatible, in the sense that optimizing a function
of the matching rate vector can lead to instability in some settings.

1.1 Motivation

Besides providing us with criteria to compare the long-term impact of different matching
policies, stability conditions and matching rates have practical value in many instances of
matching models.

2 Detailed definitions of the concepts discussed here will be given in Section 2.
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Maximal reward

First assume that a reward wk is earned every time a match is performed between items
of the classes i and j that are endpoints of edge k, for each k ∈ E, and that we look for
a policy Φ that maximizes the long-run reward rate

∑
k∈E wkµk while making the system

stable. This optimization problem is relevant in applications to organ exchange programs,
where the rewards capture the desirability of a given match, accounting for metrics such as
the quality of life after transplant and the survival rates of the recipients and donors [7].

Perhaps the most natural policy to consider is a priority policy whereby each incoming
item is immediately matched with an unmatched item of the compatible class leading to the
highest reward, if any. Unfortunately, it was observed in [26, Section 5] that such a priority
policy may lead to instability. Furthermore, the use of a matching policy with a specific
priority order for edges does not guarantee that the ordering of the resulting matching rates
is consistent with the edge priorities. Depending on the properties of the compatibility
graph G and the arrival rate vector λ, we will introduce either a stable matching policy that
yields the optimal reward (if such a stable policy exists) or a family of stable policies that we
conjecture get arbitrarily close to the optimal.

Chained matching

Matching rates become also crucial when a stable “first-level” matching model (G, λ, Φ) is
the source of the (non-Poisson) arrival process of a “second-level” matching model (or, more
generally, of another stochastic system). The second-level model consists of a compatibility
graph G′ = (E, E′) whose nodes are the edges of G. In this context, the matching rate vector
µ of the first-level model represents the arrival rate vector in the second-level model. The
ability to control this vector µ becomes instrumental in stabilizing or optimizing performance
in the second-level model. Such two-level matching systems are found in various applications,
such as quantum switches [32, 34] for example.

1.2 Contributions
We propose a unified approach to study two closely-related performance criteria, namely the
stability and the matching rates along edges. The following observation, powerful despite its
simplicity, is fundamental to all our results: under any stable policy, the arrival rate of class-i
items is equal to the departure rate of these items, which in turn is equal to the sum of the
matching rates along the edges that are incident to node i. In other words, the matching
rates satisfy the following conservation equation:∑

k∈Ei

µk = λi, i ∈ V,

where Ei ⊆ E is the set of edges that are incident to node i. In matrix form, this equation
rewrites Aµ = λ, where A is the incidence matrix of the compatibility graph G. The solution
set of this conservation equation is related to the structure of the graph G via the linear
application y ∈ Rm 7→ Ay ∈ Rn, where n is the number of nodes (or classes), and m is the
number of edges. We say that the graph G is surjective (resp. injective, bijective) if the linear
application y ∈ Rm 7→ Ay ∈ Rn is surjective (resp. injective, bijective), and we give simple
equivalent conditions in terms of the graph structure (Definitions 3.1–3.4 and Proposition 3.5).
Our main contributions are threefold, and all rely on these definitions.

We first prove that there exists a direct relation between the form of the solution set of
the conservation equation, the structure of the compatiblity graph, and the existence of a
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stable policy. More specifically, we prove that a compatibility graph G is stabilizable (in
the sense that there exist a vector λ and a policy Φ such that the matching model (G, λ, Φ)
is stable) if and only if the graph G is surjective (Proposition 3.6). We then prove that
a matching problem (G, λ) is stabilizable (in the sense that there exists a policy Φ such
that the matching model (G, λ, Φ) is stable) if and only if the conservation equation has a
solution with positive coordinates (Proposition 3.7). In particular, this allows us to verify
stabilizability in a time that is polynomial in the number of classes and edges.

We next describe the affine space of solutions of the conservation equation and the convex
polytope of solutions with non-negative coordinates. When this convex polytope is reduced
to a single point, we derive a closed-form expression for the solution (Proposition 4.1). When
this convex polytope is not reduced to a single point, we characterize its vertices, again using
the graph structure. We prove in particular that a non-negative solution of the conservation
equation is a vertex of the convex polytope if and only if the subgraph restricted to the
support of this vector is injective (Proposition 5.6).

Lastly, we investigate which parts of the polytope can be achieved by a stable policy. We
first focus on greedy policies, that is, policies that never postpone a feasible match. We show
that greedy policies are limited to the interior of the polytope and that in general, the inclusion
is strict (Propositions 6.2, 6.5, 6.7, and 6.8). In contrast, we conjecture that non-greedy
policies can potentially reach any point within the interior of this polytope (Conjecture 6.12
and Corollary 6.14). Additionally, depending on the bijectivity of subgraphs of G, these
policies can also reach parts or the entirety of the polytope’s boundary (Proposition 6.11
and Conjecture 6.12). To support our conjectures, we have conducted simulations that
provide empirical evidence.

1.3 State of the art
We now review the relevant work related to (static or dynamic) matching problems.

Non-bipartite or general stochastic matching

Our work is part of a broader research effort on the stochastic matching model that was
briefly discussed earlier and will be described in details in Section 2 [5, 6, 12, 15, 22, 26, 28].
Among these works, the following are particularly relevant because directly related to our
results on stability. The paper [26] is the earliest work on this matching model. It derives
necessary and sufficient stability conditions that are instrumental in several of our results,
in particular Propositions 3.6 and 3.7. This work also proves that the match-the-longest
policy is maximally stable (in the sense that it always leads to stability whenever the
matching problem (G, λ) is stabilizable), a result that is also applied in Proposition 3.7. The
papers [15, 28] focus on the first-come-first-matched policy. In particular, [28] proves that
the first-come-first-matched policy is maximally stable, and [15] provides a new sufficient
stability condition we prove to be also necessary in Proposition 3.7.

Other variants of the model were studied recently, and an interesting future work would
consist of generalizing our results to these variants. In particular, the paper [22] considers
item abandonment, the paper [6] considers graphs with self-loops, and the papers [21, 29, 31]
allow matches not limited to two items by replacing the graph with a hypergraph.

The recent paper [5] is perhaps the closest to ours, and we provide a detailed discussion
to highlight the relation with our paper. The first statement in [5, Theorem 1] is synonym
to the equivalence of statements (ii) and (iii) in Proposition 3.7. Our proof is significantly
shorter because it relies more heavily on existing results. Our observation at the beginning
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of Section 4 that the conservation equation has a unique solution if and only if the graph is
bijective (and not surjective-only) summarizes [5, Theorem 3]. Some formulas derived in [5,
Section 9] are special cases of the formulas derived in Proposition 4.1. The non-bipartite
matching model in [5] is slightly more general because it considers graphs with self-loops,
that is, an edge can have identical endpoints, but this paper does not adopt the mixed
graph-theory and linear-algebra approach that supports most of our results.

Bipartite stochastic matching

To the best of our knowledge, the first example of a stochastic matching model with an
infinite time horizon in the literature, which predated the model that we consider, is the
bipartite matching model introduced in [13] and studied in [1, 2, 3, 9, 10, 11, 16]. In this
model, the compatibility graph is bipartite, with two parts that correspond to supply and
demand items, respectively. This bipartite model differs from ours by its arrival process:
time is slotted and, during each time slot, one demand item and one supply item arrive.
Several works have made contributions about stability [2, 9] and matching rates [2], and
they obtained results similar to those derived in the literature on our model. The bipartite
nature of the graph simplifies some calculations, for instance by allowing the application of
flow-maximization algorithms to calculate optimal matching rates.

Static and fractional matching

The static matching problem, in which the nodes of the graph represent items (rather than
classes), has been extensively studied in mathematics, computer science, and economy [25].
Although the questions raised in static and dynamic matching are often different, the
conservation equation that we obtain is reminiscent of several results in static matching.
For example, finding a maximum-cardinality matching in the graph G (that is, a maximum-
cardinality set of edges without common endpoints) is equivalent to finding integers µk ∈ {0, 1}
for each edge k ∈ E that maximize

∑
k∈E µk while satisfying the conservation equation with

λi = 1 for each i ∈ V . The relaxation of this integer linear program leads to the so-called
fractional matching problem, which has been studied in the literature [25, Section 7.2].
Therefore, the fractional matching polytope defined in [25, Section 7.5] is a special case of
the convex polytope that we consider in Section 5.2, and our characterization of this convex
polytope is a natural generalization of existing characterizations of the fractional polytope 3.

1.4 Outline

The remainder of the paper is organized as follows. Section 2 gives a formal definition
of the model. Section 3 introduces the conservation equation and defines the notions of
surjectivity, injectivity, and bijectivity for a graph that will be instrumental throughout the
paper. We use these definitions to formulate new necessary and sufficient stability conditions.
In particular, we show that stability requires the compatibility graph to be surjective (that
is, either bijective or surjective-only). In Section 4, we focus on bijective graphs and give
a closed-form expression of the unique solution of the conservation equation. Section 5
characterizes the solution set of the conservation equation for surjective-only graphs. Lastly,

3 The fractional matching polytope is actually defined using non-strict inequalities rather than equalities.
However, one can verify that these two convex polytopes have the same non-zero vertices.
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in Section 6, we focus on the set of matching rates that are effectively achievable under a
stable matching policy.

2 Stochastic dynamic matching

We consider a stochastic dynamic matching system in which items arrive at random times to
be matched with other items. Each incoming item may be matched with any unmatched
item of a compatible class; in this case, both items disappear immediately. Unmatched items
are gathered in a waiting queue. In this paper, such a stochastic dynamic matching system
will be described by a triplet (G, λ, Φ), where G is the compatibility graph, λ is the vector of
arrival rates, and Φ is the matching policy. We now review each component in details. To
facilitate reference and understanding, we provide a summary of our notation in Table 1.

2.1 Compatibility graph
Compatibility constraints between items are described by a graph G = (V, E), called the
compatibility graph of the model, which is simple (undirected and without self-loop). The
number of nodes is represented by n, while m denotes the number of edges.

We use V = {v1, v2, . . . , vn} to denote the set of nodes, where each node corresponds to a
class in the matching model. In cases where there is no confusion, we may refer to a class vi

simply by its index i. Following the intuition conveyed in Figure 1, we will use the terms
“class i” and “queue i” interchangeably, and refer for instance to the number of unmatched
class-i items as the size of queue i; this is a convenience of terminology, and this does not
prevent matching decisions from being based on additional information, such as the arrival
order of items of different classes (see Section 2.3 for more details on matching decisions).

The set of edges is denoted by E = {e1, e2, . . . , em}. These edges represent compatibility
constraints between item classes, in the sense that a class-i item and a class-j item can
be matched with one another if and only if they are adjacent, that is, if there is an edge
with endpoints i and j. When there is no ambiguity, we may refer to an edge ek ∈ E with
endpoints i, j ∈ V by its index k or by its set of endpoints {i, j}. In Figure 1 for instance,
there are four item classes numbered from 1 to 4. Classes 2 and 3 are compatible with all
classes, but classes 1 and 4 are only compatible with classes 2 and 3. The absence of self-loop
means that an item of a given class cannot be matched with other items of the same class.

Lastly, we let I denote the family of independent sets of the compatibility graph G, where
an independent set of G is a non-empty set of nodes that are pairwise non-adjacent. The family
of independent sets in the compatibility graph of Figure 1 is I = {{1}, {2}, {3}, {4}, {1, 4}}.

2.2 Arrival process
Class-i items arrive according to an independent Poisson process with rate λi > 0, for each
i ∈ V . The vector of arrival rates is denoted by λ = (λ1, λ2, . . . , λn) ∈ Rn

>0. Scaling all
coordinates of λ by the same positive constant is equivalent to changing the time unit, so we
can renormalize λ without changing the dynamics. For example, we will sometimes use the
unit normalization, in which

∑
i∈V λi = 1. We also let I = (It, t ∈ N) denote the sequence

of independent and identically distributed (i.i.d.) item classes, so that It is the class of the
(t + 1)-th item, equal to i with probability λi/(

∑
j∈V λj), for each t ∈ N. The couple (G, λ)

is called a matching problem or simply a problem. Occasionally, when we need to specify the
sequence of incoming items and not merely its distribution, we will also refer to the couple
(G, I) as a (matching) problem.



C. Comte, F. Mathieu, and A. Bušić 7

2.3 Policy and matching dynamics

Most of the paper will focus on deterministic size-based policies, that is, policies whereby
matching decisions are deterministic functions of the queue size vectors. However, as we will
see at the end of this section, our results also apply to a more general definition of a policy.
Throughout the paper, we assume that the system is initially empty, meaning that it starts
with no unmatched item.

2.3.1 Size-based policies

A (deterministic) size-based matching policy is defined formally as a function Φ : Q× V →
V ∪{⊥}, where Q is an infinite subset of Nn that contains the reachable states of the system.
We will delve into further discussion on Q in Sections 2.3.2 and 2.3.3. For each q ∈ Q and
i ∈ V , an incoming class-i item that finds the system in state q is matched with an item of
class Φ(q, i) if Φ(q, i) ∈ V and is added to the class-i queue if Φ(q, i) = ⊥. The matching
policy is assumed to be adapted to the compatiblity graph G in the sense that

Φ(q, i) ∈ {j ∈ Vi : qj ≥ 1} ∪ {⊥}, q ∈ Q, i ∈ V. (1)

The system dynamics is described by a Markov chain Q = (Qt, t ∈ N), called the queue-size
process, where Qt = (Qt,1, Qt,2, . . . , Qt,n) is an n-dimensional vector giving the number of
unmatched items of each class right after the arrival of the t-th item, for each t ∈ N, with
the assumption that the system is initially empty, that is, Q0 = 0. The system dynamics
satisfies the recursion

Qt+1 =
{

Qt + 1It
if Jt = ⊥,

Qt − 1Jt
if Jt ̸= ⊥,

(2)

where Jt+1 = Φ(Qt, It) for each t ∈ N, and 1i is the n-dimensional vector with one in
coordinate i and zero elsewhere, for each i ∈ V . We assume that the policy Φ is such that
the Markov chain Q has state space Q and is irreducible. By unfolding the recursion (2), we
obtain that, for each t ∈ N,

Qt,i = Lt,i −
∑

k∈Ei

Mt,k, t ∈ N, i ∈ V, (3)

where Ei ⊆ E is the set of edges that are incident to node i in the graph G, for each i ∈ V ,
Lt,i is the number of class-i items among the first t arrivals, for each t ∈ N and i ∈ V , and
Mt,k is the number of times that classes i and j are matched over the first t arrivals, for each
t ∈ N and {i, j} = ek ∈ E:

Lt,i =
t−1∑
s=0

1{Is=i}, t ∈ N, i ∈ V, (4)

Mt,k =
t−1∑
s=0

1{{Is,Js}=ek}, t ∈ N, k ∈ E, (5)

with the convention that the sums are zero if t = 0. The triplet (G, λ, Φ) is called a matching
model, or simply a model. Occasionally, when specifying the sequence of incoming item
classes is useful, we will also refer to the triplet (G, I, Φ) as a (matching) model.
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2.3.2 Greedy policies
A policy Φ is called greedy if an incoming item is matched whenever possible, that is, if there
is an unmatched item that is compatible. More formally, the policy Φ is greedy if

Φ(q, i) ̸= ⊥ for each (q, i) ∈ Q× V such that {j ∈ Vi : qj ≥ 1} ≠ ∅. (6)

Equivalently, a policy Φ is greedy if the set of unmatched item classes under this policy is an
independent set of the compatibility graph, meaning that the state space Q of the queue-size
process is equal to

QG = {q ∈ Nn : qiqj = 0 for each i, j ∈ V such that {i, j} ∈ E}. (7)

The following greedy policies will be instrumental in Sections 3 and 6:
Match-the-longest: For each (q, i) ∈ Q×V such that

∑
j∈Vi

qj ≥ 1, we choose Φ(q, i) ∈
arg maxj∈Vi

(qj) (ties are broken arbitrarily). This policy was considered in [26, 6, 22, 5].
Edge-priority: This policy selects matches according to a priority order defined on the
edges. More specifically, if we let ≺ denote a strict total order on the set E of edges, we let
Φ(q, i) = arg minj∈Vi:qj≥1({i, j}) for each (q, i) ∈ Q× V such that

∑
j∈Vi

qj ≥ 1, where
the arg min is to be understood over the ordered set (E,≺). This definition remains valid
if ≺ is a partial order compatible with the possible inputs of arg min, i.e. if all pairs of
edges that are incident to the same node and are not part of a triangle are comparable4.

2.3.3 Non-greedy policies
The state space Q under non-greedy policies is a strict superset of the set QG defined in (7).
In Section 6, non-greedy policies will be obtained by modifying greedy policies as follows:

Filtering: Given a subset E ⊊ E of edges, replace Vi with V i = {j ∈ Vi : {i, j} ∈ E} in
the definition (1) of Φ. Intuitively, we eliminate the edges of E \ E and follow a (greedy
or non-greedy) policy on the subgraph G = (V, E).
Semi-filtering: We consider a modified variant of filtering policies in which the subset
E of edges depends on the system state q at the arrival time. Examples of semi-filtering
policies will be given in Section 6.2.

For instance, under the filtering variant of the match-the-longest policy that eliminates edge
{2, 3} in the matching problem of Figure 1, an incoming class-3 item is either matched with
a class-4 item or added to the queue of class 3 (but it is not matched with a class-2 item).
▶ Remark 2.1 (Random policies). Our choice of notation assumes that the policy is determinis-
tic. A random (size-based) policy Φ can be defined as a function Φ : Q×V ×(V ∪{⊥})→ [0, 1]
such that, for each t ∈ N, Jt is sampled according to the distribution Φ(q, i, ·) given that
Qt = q and It = i. Saying that the policy is adapted to the compatibility graph G is then
equivalent to saying that, for each q ∈ Q and i ∈ V , the support of Φ(q, i, ·) is included into
{j ∈ Vi : qj ≥ 1} ∪ {⊥}. The policy is greedy if Φ(q, i,⊥) = 0 for each (q, i) ∈ Q × V such
that {j ∈ Vi : qj ≥ 1} ≠ ∅ or, equivalently, if Q = QG .

2.3.4 Other policies
Although deterministic size-based policies are notationwise convenient, our results apply to a
broader family of policies that are either random or require a more complex state descriptor,

4 If three classes form a triangle in the compatibility graph, at most one of them can be non-empty under
a greedy policy, so at most one edge of the triangle can be in the input of arg min.
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or both. We now introduce this family of policies, with the goal of being as general as
possible. The remainder of Section 2.3 can be skipped by the first-time reader and referred
to when necessary; in this case, S can be understood as Q in all definitions and results.

Extended defintion

Under this more general definition, the match-maker makes decisions based not only on
the vector of queue sizes, but also (possibly) on additional information that is captured by
the system state. The state space is a couple (S, | · |), where S is a countably infinite set
and | · | : S → Nn is a function that maps any state s ∈ S to the vector giving the number
of unmatched items of each class in that state, denoted by |s| = (|s|1, |s|2, . . . , |s|n). The
existence of the function | · | guarantees that the system state contains enough information
to retrieve the number of unmatched items of each class, which is a classical assumption in
queueing theory (see for instance [24, Section 3.2]). We assume that there exists a unique
state s ∈ S such that |s| = 0. This state is called the empty state and denoted by ∅. This
assumption guarantees that the intuitive notion of system stability will be captured by the
positive recurrence of the Markov chain describing the evolution of the system state5.

The policy is now a function Φ : S × V × (V ∪ {⊥})× S → [0, 1] such that Φ(s, i, j, s′) is
the conditional probability that, given an incoming class-i item finds the system in state s,
the matching decision is j and the new state is s′. More formally, the dynamics are described
by a Markov chain ((St, It, Jt), t ∈ N), where I = (It, t ∈ N) is the sequence of incoming item
classes and, for each t ∈ N, i ∈ V , j ∈ V ∪ {⊥}, and s, s′ ∈ S, we have

P(Jt = j, St+1 = s′ | St = s, It = i) = Φ(s, i, j, s′).

The stochastic process S = (St, t ∈ N) is also a Markov chain, with transition probabilities

P(St+1 = s′ | St = s) =
∑

i∈V λi

∑
j∈V ∪{⊥} Φ(s, i, j, s′)∑

i∈V λi
, t ∈ N, s, s′ ∈ S.

We assume that the Markov chain S has state space S and is irreducible, and that S0 = ∅.
The policy is assumed to be adapted to the compatiblity graph G and consistent in the sense
that, for each (s, i, j, s′) ∈ S × V × (V ∪ {⊥})× S, we have Φ(s, i, j, s′) > 0 only if

j ∈ {j′ ∈ Vi : |s|j′ ≥ 1} ∪ {⊥}, and |s′| =
{
|s|+ 1i if j = ⊥,
|s| − 1j if j ̸= ⊥.

Using this extended definition, the previously defined policy models can be easily expressed.
For example, the matching policy Φ is called size-based if | · | is the identity (implying S ⊂ Nn)
and deterministic if, for each s ∈ S and i ∈ V , there exists (j, s′) ∈ (V ∪ {⊥})× S such that
Φ(s, i, j, s′) = 1. The policy is called greedy if

∑
s′∈S Φ(s, i,⊥, s′) = 0 for each (s, i) ∈ S × V

such that {j ∈ Vi : |s|j ≥ 1} ≠ ∅, and non-greedy otherwise. First-come-first-matched [15, 28]
is a classical example of a deterministic policy that is not size-based: its state space is
a couple (S, | · |) where S is a subset of the set of sequences c = (c1, c2, . . . , cp) made of
a finite but arbitrarily large number p of elements of I, and |c|i is the cardinality of the

5 Without this assumption, one may construct two Markov chains associated with the same system, one
positive recurrent and the other transient, for example if the state of the latter Markov chain embeds
the time t. This assumption is used only in the proofs of Propositions 6.1 and A.1. In both cases, we
can verify that the same conclusion holds as long as the set of states s ∈ S such that |s| = 0 is finite.
Assuming that this set is reduced to a singleton is merely a notational convenience.
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set {q ∈ {1, 2, . . . , p} : cq = i}, for each i ∈ I. A policy that is neither size-based nor
deterministic will appear in the proof of Proposition 6.1.

The stochastic process Q = (Qt, t ∈ N) defined by Qt = |St| for each t ∈ N is called
the queue-size process. This process does not satisfy the Markov property in general, but it
satisfies the evolution equations (2) and (3), with Li = (Lt,i, t ∈ N) and Mk = (Mt,k, t ∈ N)
defined by (4) and (5) for each i ∈ V and k ∈ E. The state space of the queue-size process is
given by Q = {|s|, s ∈ S}. The policy is greedy if Q = QG and non-greedy if Q ⊋ QG , where
QG is still given by (7).
▶ Remark 2.2 (Arrival rates vs. arrival sequence). We will often identify the matching model
(G, λ, Φ) with the Markov chain S. This is a slight abuse of language: the triplet (G, λ, Φ) spec-
ifies the transition diagram of this Markov chain but, even if Φ is deterministic, characterizing
its sample paths requires specifying the sequence I, sampled according to λ = (λ1, λ2, . . . , λn).
This slight abuse of language will not cause confusion when discussing stability and matching
rates, but the distinction will matter in Section 6.
▶ Remark 2.3 (Discrete time vs. continuous time). The discrete-time Markov chain S gives the
sequence of states observed by incoming items, and it was analyzed under various policies
in [22, 26]. Yet in queueing theory, it is more common to consider the continuous-time Markov
chain describing the system state over time. However, as observed in [15, Section 2.2.2], S

is the jump chain of this continuous-time Markov chain, and both Markov chains have the
same stationary measures because the departure rate from each state in the continuous-time
Markov chain is constant equal to

∑
i∈V λi. Therefore, our results are equally relevant to

study performance metrics like the mean queue size or the mean waiting time of items.

Equivalent policies

With our extended definition, a decision rule can be associated with an infinite number of
policies. For instance, it is always possible to artificially expand the state definition, resulting
in an unlimited range of policies. We define here an equivalence relation between policies that
captures the intuitive concepts of yielding identical distributions of matching decisions (for
random policies) and making the same decisions (for deterministic policies). This discussion
will also prepare the ground for Propositions 6.4 and 6.6.

Consider a policy Φ1 adapted to a compatibility graph G = (V, E), and let (S1, | · |1)
denote its state space. Assume that the function | · |1 : S1 → Nn can be written as a
composition of two functions, ⟨·⟩ : S1 → S2 and | · |2 : S2 → Nn, such that S2 is the image of
S1 through ⟨·⟩. Moreover, assume that there exists a policy Φ2 with state space (S2, | · |2),
adapted to the graph G, such that for each s2, s′

2 ∈ S2, i ∈ V , and j ∈ V ∪ {⊥}, we have∑
s′

1∈S1:⟨s′
1⟩=s′

2

Φ1(s1, i, j, s′
1) = Φ2(s2, i, j, s′

2) for each s1 ∈ S1 such that ⟨s1⟩ = s2. (8)

We say that Φ1 can be reduced to Φ2 and that ⟨·⟩ is a reduction function. If we let
((S1,t, It, J1,t), t ∈ N) and ((S2,t, It, J2,t), t ∈ N) denote the Markov chains associated with
policies Φ1 and Φ2, respectively, under the same sequence (It, t ∈ N) of incoming item classes,
then for each t ∈ N, (i) the conditional distribution of (J1,t, ⟨S1,t+1⟩) given that S1,t = s1
and It = i is the same for all states s1 ∈ S1 that have the same image s2 = ⟨s1⟩, and (ii)
(⟨S1,t⟩, It, J1,t) and (S2,t, It, J2,t) have the same distribution. Conclusion (ii) follows from an
inductive argument and implies that policies Φ1 and Φ2 are stable or unstable under the
same conditions and, if stable, yield the same matching rate vector.

The special case where the policy Φ2 is deterministic will be useful in Propositions 6.4
and 6.6. In this case, (8) says that, for each s2 ∈ S2 and i ∈ V , there exist j ∈ V ∪ {⊥} and
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s′
2 ∈ S2 such that

∑
s′

1∈S1:⟨s′
1⟩=s′

2
Φ1(s1, i, j, s′

1) = Φ2(s2, i, j, s′
2) = 1 for each s1 ∈ S1 such

that ⟨s1⟩ = s2. This condition implies that the Markov chains under Φ1 and Φ2 are equivalent
pathwise (i.e., ⟨S1,t⟩ = S2,t and J1,t = J2,t for each t ∈ N) and not just in distribution.

In general, we say that two policies Φ1 and Φ2 adapted to the graph G are equivalent if
there exists a policy Φ adapted to the graph G such that both Φ1 and Φ2 can be reduced to
Φ. This equivalence between Φ1 and Φ2 can be interpreted as indicating that the two policies,
when they are in equivalent states, i.e. states that have the same reduction, yield identical
distributions of matching decisions. It implies that, if we let (Q1,t, t ∈ N) and (Q2,t, t ∈ N)
denote the queue-size processes under Φ1 and Φ2 with the same sequence (It, t ∈ N) of
incoming item classes, then we have P(Q1,t = q) = P(Q2,t = q) for each t ∈ N and q ∈ Q.

2.4 Performance criteria

We now define the two performance indicators that will be the focus of the paper, namely
stability and the matching rate vector. We will see later that the goals of preserving stability
and maximizing a certain function of the matching rate vector are sometimes antagonist.

Stability

We now define the notions of stability and stabilizability, which will be explored in Section 3.

▶ Definition 2.4 (Stability and stabilizability).
(i) A model (G, λ, Φ) is called stable if the Markov chain (St, t ∈ N) is positive recurrent.

In this case, we say that the policy Φ stabilizes the problem (G, λ).
(ii) A problem (G, λ) is called stabilizable if there exists a policy that stabilizes this problem.
(iii) A compatiblity graph G is called stabilizable if there exists a vector λ ∈ Rn

>0 such that
the problem (G, λ) is stabilizable.

Both the match-the-longest and first-come-first-matched greedy policies, discussed in Sec-
tion 2.3.2 and Section 2.3.4, respectively, possess the property of stabilizing all stabilizable
matching problems [26, 28]. When the matching problem (G, λ) is clear from the given
context, we will call a policy (adapted to the graph G) stable if the corresponding model
(G, λ, Φ) is stable.

Matching rates

Consider a stable matching model (G, λ, Φ). We define the matching rate µk along an edge
ek ∈ E with endpoints i and j as the long-run average number of matches between a class-i
item and a class-j item per time unit, that is:(∑

i∈V

λi

)
× 1

t
Mt,k

almost sure−−−−−−−→
t→+∞

µk, k ∈ E. (9)

This quantity is uniquely defined according the ergodic theorem [30, Theorem 1.10.2]. Note
that Mt,k/t is the average number of matches per arrival (out of the first t arrivals), and the
factor

(∑
i∈V λi

)
only serves to convert this result into the average number of matches per

time unit. The vector of matching rates associated with the model (G, λ, Φ) is denoted by
µ = (µ1, . . . , µm) ∈ Rm

⩾0. If confusion can arise, we will use the notation µ(Φ) or µ(G, λ, Φ).
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▶ Remark 2.5 (Zero-rate edges). The following remark will play a key role in Sections 5.2.1
and 6. The matching rate along an edge ek ∈ E with endpoints i and j is given by

µk = λi

∑
s,s′∈S

π(s)Φ(s, i, j, s′) + λj

∑
s,s′∈S

π(s)Φ(s, j, i, s′),

where π is the equilibrium distribution of the Markov chain (St, t ∈ N). Since λi > 0, λj > 0,
and the distribution π is positive on its support S, it follows that the matching rate µk is
zero if and only if Φ(s, i, j, s′) = Φ(s, j, i, s′) = 0 for each s, s′ ∈ S, that is, items of classes i

and j are never matched with one another under policy Φ. In this case, the policy Φ is also
adapted to the subgraph G = (V, E) with E = E \ {ek}.

2.5 Implementation and numerical results
To support the results presented in this paper, we used the Python package Stochastic
Matching [27]. It provides tools to analyze or simulate the behavior of stochastic matching
models. We used it to check the characteristics of the examples presented in Section 5 and
to perform simulations in Section 6. Unless otherwise stated, a matching model is evaluated
by simulating 1010 arrivals.

3 Graph theory and linear algebra

In this section, we present a central result of this paper, the connection between stability and
the structure of the compatibility graph. In details, Section 3.1 introduces the conservation
equation, a system of linear equations satisfied by all vectors of matching rates. Section 3.2
introduces the related concepts of surjectivity, injectivity, and bijectivity that will play a key
role throughout the paper. In Sections 3.3 and 3.4, we combine these concepts to formulate
new necessary and sufficient conditions under which a compatiblity graph G or a matching
problem (G, λ) is stabilizable in the sense of Definition 2.4. Section 3.5 illustrates these
results with early examples.

3.1 Conservation equation
Computing the matching rate vector achieved by a given stable policy or characterizing the
set of matching rate vectors that can be achieved by stable policies is a difficult problem a
priori. To circumvent this difficulty, we first establish a necessary condition known as the
conservation equation. This equation is satisfied by the matching rate vectors achieved by all
stable policies. It asserts that, in a stable system, the arrival of items and their departure
due to matches balance each other in the long run. More formally, given a stable matching
model (G, λ, Φ), the conservation equation (ce) can be derived by dividing (3) by t and
taking the limit as t tends to infinity, and it can be written in two equivalent forms, either
as a system of linear equations (ce–1) or in matrix form (ce–2):∑

k∈Ei

µk = λi, i ∈ V, (ce–1)

Aµ = λ, (ce–2)

where the n × m matrix A = (ai,k)i∈{1,2,...,n},k∈{1,2,...,m} is the incidence matrix of the
graph G, defined by ai,k = 1 if edge ek is incident to node vi and ai,k = 0 otherwise.
The use of a conservation equation is a conventional approach in queueing theory, but our
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General notation

N,N>0,R,R⩾0,R>0 Sets of non-negative integers, positive integers, real numbers, non-
negative real numbers, positive real numbers.

≥, ≤, >, < Coordinate-wise comparison in Rn.
|A| Cardinality of the set A.

Graph notation

G = (V, E) Simple graph G with |V | = n vertices and |E| = m edges.
vi Vertex indexed by i (denoted i if there is not ambiguity).
ek, k, or {i, j} Edge indexed by k, with endpoints vertices i and j.
I Family of independent sets of the graph G.
Vi ⊆ V Set of neighbors of node vi in the graph G.
V (I) =

⋃
i∈I Vi Set of neighbors of the vertices indexed by the independent set I ∈ I.

di,j Distance between nodes i and j.
di,k = min(di,j , di,j′ ) Distance between node i and edge k with endpoints j and j′.
Kℓ Complete graph on ℓ ≥ 3 nodes.
Cℓ Cycle on ℓ ≥ 3 nodes.
Pℓ Path of length ℓ ≥ 0.
KPℓ,r,p Kayak paddle: two cycles Cℓ and Cr attached by a path Pp.

Linear-algebra notation

x = (x1, x2, . . . , xn) Arbitrary vector in Rn. All vectors in Rn are column vectors.
y = (y1, y2, . . . , ym) Arbitrary vector in Rm. All vectors in Rm are column vectors.
A = (ai,k)i∈V,k∈E Incidence matrix of the graph G.
A⊺ = (ak,i)k∈E,i∈V Transpose of the matrix A.
ker(A) = {y ∈ Rm : Ay = 0} Right kernel of the matrix A. Its dimension is called the nullity of A.
ker(A⊺) = {x ∈ Rn : A⊺x = 0} Left kernel of the matrix A. Its dimension is the nullity of A⊺.
d = m − n Dimension of the right kernel of the matrix A if G is surjective.
B = (b1, . . . , bd) A basis of the right kernel of the matrix A if G is surjective.
Π = {y ∈ Rm : Ay = λ} Affine space of the solutions of the conservation equation (ce–2).
Π⩾0 = {y ∈ Rm

⩾0 : Ay = λ} Polytope of non-negative solutions of (ce–2).
Π>0 = {y ∈ Rm

>0 : Ay = λ} Set of positive solutions of (ce–2).

Matching notation

λ = (λi)1≤i≤n Vector of arrival rates of the item classes.
Φ A matching policy.
µ = (µk)1≤k≤m = (µi,j){i,j}∈E Vector of matching rates along the edges.
ΠP Set of matching rates achieved by stable policies.
ΠG Set of matching rates achieved by stable greedy policies.

Table 1 Table of notation.

contributions in this paper primarily stem from the novel mixed approach that combines
graph theory and linear algebra, which we will elaborate on in the following sections.

The conservation equation (ce) holds significant importance throughout this paper. While
our primary focus is to understand the matching rate vector, we often find it beneficial to
temporarily depart from interpreting λ and µ as vectors of arrival and matching rates in a
matching model. Instead, we view the conservation equation as a linear equation with λ as a
free variable and µ as an unknown. This perspective allows us to explore various aspects of



14 Stochastic dynamic matching: A mixed graph-theory and linear-algebra approach

the equation and its implications. In this context, we will sometimes allow the coordinates
of λ and µ to be negative, even if the vectors of arrival and matching rates in a matching
model have non-negative coordinates. More specifically, the remainder of the paper focuses
on the solutions of (ce) and considers, for a given stabilizable problem (G, λ), the following
sets:

Π = {y ∈ Rm : Ay = λ} (studied in Section 5.1),
Π⩾0 = {y ∈ Rm

⩾0 : Ay = λ} (studied in Section 5.2),
Π>0 = {y ∈ Rm

>0 : Ay = λ} (introduced in Section 6),
ΠG = {µ(G, λ, Φ) : Φ is a stable greedy policy adapted to G} (studied in Section 6.1),
ΠP = {µ(G, λ, Φ) : Φ is a stable policy adapted to G} (studied in Sections 5.2.1 and 6.2).

3.2 Surjectivity, injectivity, and bijectivity
Definitions 3.1–3.4 below introduce the notions of surjectivity, injectivity, and bijectivity
of a graph. In a nutshell, a compatibility graph G is said to be surjective (resp. injective,
bijective) if the linear application µ 7→ Aµ defined by its incidence matrix A is surjective
(resp. injective, bijective). Interestingly, simple equivalent conditions exist in terms of the
graph structure. As we will see later, these notions are fundamental to study the stability
of stochastic matching models and the associated matching rate vector. In particular, we
will see that a compatiblity graph G is stabilizable if and only if G is surjective in the sense
of Definition 3.1. Later, we will see that the matching rates in a matching problem (G, λ)
are independent of the matching policy Φ (as long as the model is stable) if and only if G is
bijective in the sense of Definition 3.3. Examples are shown in Figure 2.

1

2

3

4

(a) Graph that is neither surjective nor injective.
The nullity of A⊺ is 1 and the nullity of A is 1.

1

2

3

4

(b) Surjective-only graph.
The nullity of A⊺ is 0 and the nullity of A is 1.

1

2

3 4

(c) Injective-only graph.
The nullity of A⊺ is 1 and the nullity of A is 0.

1

2

3 4

(d) Bijective graph.
The nullity of A⊺ is 0 and the nullity of A is 0.

Figure 2 Examples of graphs.

▶ Definition 3.1 (Surjective graph). Consider a simple graph G = (V, E) with n nodes and
m edges. Let A denote the n×m incidence matrix of G. The graph G is called surjective if
one of the following equivalent conditions is satisfied:

(i) The function µ ∈ Rm 7→ Aµ ∈ Rn is surjective.
(ii) For each λ ∈ Rn, the equation Aµ = λ of unknown µ ∈ Rm has at least one solution.
(iii) The left kernel of the matrix A is trivial.
(iv) Each connected component of the graph G is non-bipartite.
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Proof. The equivalence of (i), (ii), and (iii) is a well-known result in linear algebra. We prove
that conditions (iii) and (iv) are equivalent. This proof is adapted from [17, Lemma 2.2.3].

The key argument consists of observing that a vector x = (x1, x2, . . . , xn) ∈ Rn belongs
to the left kernel of the matrix A if and only if

n∑
i=1

xiai,k = 0, k ∈ {1, 2, . . . , m}.

For each k ∈ {1, 2, . . . , m}, the k-th equation reads xj = −xi, where i and j are the endpoints
of edge k. An induction argument shows that, for every path i1, i2, . . . , ik in the graph G,
we have xip

= (−1)p−1xi1 for each p ∈ {1, 2, . . . , k}.
First assume that condition (iv) is satisfied. Let x ∈ Rn be a vector of the left kernel of

the matrix A. Since each connected component of G is non-bipartite, for each i ∈ V , there
exists a path of length say ℓ that connects node i to a cycle i1, i2, . . . , ip, ip+1 = i1 consisting
of an odd number p of nodes. We then obtain xi = (−1)ℓ+p+ℓxi = −xi, which implies that
xi = 0. Therefore, the left kernel of A is trivial, meaning that condition (iii) is satisfied.

On the contrary, if condition (iv) is not satisfied, then there exists a connected component
of G that is bipartite with parts V+ and V−. We build a non-zero vector in the left kernel
of A by choosing xi = 1 for each i ∈ V+, xi = −1 for each i ∈ V−, and xi = 0 for each
i ∈ V \ (V+ ∪ V−). This implies that condition (iii) is not satisfied. ◀

▶ Definition 3.2 (Injective graph). Consider a simple graph G = (V, E) with n nodes and m

edges. Let A denote the n×m incidence matrix of G. The graph G is called injective if one
of the following equivalent conditions is satisfied:

(i) The function µ ∈ Rm 7→ Aµ ∈ Rn is injective.
(ii) For each λ ∈ Rn, the equation Aµ = λ of unknown µ ∈ Rm has at most one solution.
(iii) The right kernel of the matrix A is trivial.
(iv) Each connected component of the graph G contains at most one odd cycle and no even

cycle; in other words, each connected component of G is either a tree or a unicyclic
graph with an odd cycle.

Proof. The equivalence of conditions (i), (ii), and (iii) is a well-known result in linear algebra.
We now prove that conditions (iii) and (iv) are equivalent.

We first assume that the graph G is connected and distinguish the following two cases:
If G is non-bipartite, according to Definition 3.1, the nullity of A⊺ is 0. The rank-nullity
theorem implies that the rank of A⊺ is n, so that the rank of A is also n. A second
application of the rank-nullity theorem implies that the nullity of A is m−n. In particular,
ker(A) = {0} if and only if m = n.
If G is bipartite, any non-zero vector of the left kernel of A must be parallel (collinear)
to the non-zero vector x constructed in the proof of Definition 3.1. This parallelism is
due to the constraints xi = −xj for all edges {i, j}. Based on this, the nullity of A⊺ is 1,
and we conclude from another double application of the rank-nullity theorem that the
nullity of A is m− n + 1. In particular, ker(A) = {0} if and only if m = n− 1.

All in all, we obtain that condition (iii) is true if and only if either the graph G is non-bipartite
and contains as many edges as nodes, or the graph G is bipartite and contains one less edge
than it contains nodes. This, in turn, is equivalent to condition (iv).

If the graph G is not connected, we can rewrite the matrix A as a bloc matrix in which
each bloc corresponds to a connected component, and we can then use the previous argument
to prove the equivalence for each connected component. ◀
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▶ Definition 3.3 (Bijective graph). Consider a simple graph G = (V, E) with n nodes and
m edges. Let A denote the n×m incidence matrix of G. The graph G is called bijective if
the following equivalent conditions are satisfied:

(i) The function µ ∈ Rm 7→ Aµ ∈ Rn is bijective.
(ii) For each λ ∈ Rn, the equation Aµ = λ of unknown µ ∈ Rm has exactly one solution.
(iii) The matrix A is invertible.
(iv) Each connected component of the graph G contains one cycle and this cycle is odd.

Proof. The function µ ∈ Rm 7→ Aµ ∈ Rn is bijective if and only if it is both surjective and
injective. Hence, the equivalence of conditions (i) to (iv) follows directly from Definitions 3.1
and 3.2. ◀

▶ Definition 3.4 (Surjective-only graph and injective-only graph). A simple graph G is called
surjective-only (resp. injective-only) if G is surjective but not injective (resp. injective but
not surjective).

The following proposition gives necessary conditions for surjectivity and injectivity in terms
of the number of nodes and edges in the graph.

▶ Proposition 3.5. Consider an undirected graph G = (V, E) with n nodes and m edges.
(i) If G is surjective, then n ≤ m.
(ii) If G is injective, then n ≥ m.
(iii) If G is bijective, then n = m.
(iv) If G is surjective, then G is also injective if and only if n = m.
(v) If G is injective, then G is also surjective if and only if n = m.

Proof. These statements (transposed to A) are again well-known in linear algebra. ◀

3.3 Stabilizable compatibility graph

The following proposition gives necessary and sufficient conditions for a graph G to be
stabilizable, in terms of either its structure or its incidence matrix.

▶ Proposition 3.6. Let G be a compatibility graph. The following conditions are equivalent:
(i) The graph G is stabilizable.
(ii) The graph G is surjective.

Proof. Equivalence between Proposition 3.6 (i) and Definition 3.1(iv) has been proved in
[26, Theorem 1]. ◀

In the remainder, we will use the words “stabilizable” and “surjective” interchangeably.
Furthermore, unless stated otherwise, we will assume that the graph G is surjective.

Although the equivalence between Proposition 3.6(i) and Definition 3.1(iv) was already
proved in [26] in the context of stochastic matching models, no prior literature on stochastic
matching models (to the best of our knowledge) has explored the connection between
Proposition 3.6(i) and the alternative definitions of surjectivity introduced in Definition 3.1.
As we will see later, this new characterization of the stabilizability of a graph G will be useful
to analyze the matching rates.
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3.4 Stabilizable matching problem
We now turn to the stabilizability of a matching problem (G, λ). As recalled in Section 2.4,
two examples of greedy policies that stabilize the model whenever this matching problem
is stabilizable are match-the-longest [26] and first-come-first-matched [28]. Proposition 3.7
below provides necessary and sufficient conditions for the matching problem (G, λ) to be
stabilizable; condition (ii) was already derived in [26], but condition (iii) is new.

▶ Proposition 3.7. Consider a matching problem (G, λ) with a surjective graph G. The
following conditions are equivalent:

(i) The matching problem (G, λ) is stabilizable.
(ii) For each independent set I ∈ I, we have

∑
i∈I λi <

∑
i∈V (I) λi.

(iii) The conservation equation (ce) admits a solution µ ∈ Rm
>0 (i.e., a solution with strictly

positive components).

Proof. Equivalence of (i) and (ii) follows from [26, Proposition 2 and Theorem 2]. For
completeness, we observe that [26, Proposition 2] is proved under the assumption that the
matching policy Φ is greedy and deterministic and that the state space (S, |·|) has a particular
form, but we can verify that the argument remains valid under the assumptions of Section 2.
We now prove that (ii) and (iii) are equivalent. Condition (ii) implies condition (iii) because
(a) according to [26], under condition (ii), (G, λ, Φ) is stable if Φ is the match-the-longest
policy, and (b) the associated vector µ of matching rates satisfies condition (iii) by ergodicity.
That condition (iii) implies condition (ii) was proved in [15, Lemma 12]. ◀

One might expect that the time complexity to verify condition (ii) in Proposition 3.7 is
exponential in the general case, considering that the number of independent sets grows
exponentially with the number n of classes. However, in [26, Proposition 1], it was proven
that there exists an O(n3)-time algorithm for verifying this condition. It is worth noting
that this verification process is indirect in the sense that it involves constructing a bipartite
double cover of G. In contrast, condition (iii) provides a more direct approach to verify
the stabilizability of a matching model (G, µ). To present this approach more explicitly, we
differentiate between two cases based on whether the graph G, assumed to be surjective, is
surjective-only or bijective.

▶ Remark 3.8. As observed in [15, Lemma 12], if the graph G is surjective, condition (iii) in
Proposition 3.7 gives a simple way of generating vectors λ ∈ Rn

≥0 such that the problem (G, λ)
is stabilizable: it suffices to take λ = Aµ for some µ ∈ Rm

>0. For instance, if µ = (β, . . . , β)
for some β > 0, then the coordinates of λ are proportional to the degree of each node.

Verify stabilizability when G is bijective

If the graph G is bijective, then the matrix A is invertible, and (ce) has a unique solution,
namely A−1λ. Proposition 3.7 implies that the matching problem (G, λ) is stabilizable if
and only if all coordinates of A−1λ are positive. The special case of bijective graphs will be
investigated in detail in Section 4, where we will provide a more direct expression for A−1λ.

Verify stabilizability when G is surjective-only

If the compatibility graph G is surjective-only, (ce) has multiple solutions. To determine
if one of these solutions is positive, it suffices to solve a linear optimization problem that
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searches for a solution of (ce) whose smallest coordinate is as large as possible:

Maximize
z=(z1,z2,...,zm+1)∈Rm+1

zm+1,

Subject to A(z1, z2, . . . , zm)⊺ = λ,

zi ≥ zm+1, i ∈ {1, 2, . . . , m}.

(11)

Here, the first m coordinates of the vector z are the coordinates of a vector µ ∈ Rm that
satisfies (ce), and the last coordinate of z is a lower bound of the coordinates of this vector µ.
Indeed, the equality constraint means that µ satisfies (ce), and the inequality constraint
means that the last coordinate of z is less than or equal to its other coordinates. The value
to maximize is the last coordinate of the vector z.

If z is a solution of (11), we call the corresponding vector µ ∈ Rm a maximin solution
of (ce). The optimization problem (11) is a textbook linear optimization problem. It can be
solved with a time complexity that is polynomial in the number n of nodes and the number m

of edges using many methods, for instance the interior-point-method [23].
The linear optimization problem (11) has a solution with positive coordinates if and

only if (ce) has a solution with positive coordinates. According to Proposition 3.7, this is
equivalent to saying that the matching problem (G, λ) is stabilizable. Therefore, to verify if a
matching problem (G, λ) is stabilizable, it suffices to find a solution of the linear optimization
problem (11) and to check if its last coordinate is positive.

▶ Remark 3.9. Observe that the optimization problem (11) always has solutions with finite
coordinates. Indeed, the set of vectors that satisfy the constraints of (11) contains at least
one valid solution with real-valued coordinates (this is again a consequence of the surjectivity
of G). We just need to consider an arbitrary solution µ of (ce) (see Section 5.1.2 for a
concrete example using the Moore-Penrose inverse) and to let zµ = (µ1, µ2, . . . , µm, min(µ)),
where min(µ) is the smallest coordinate of the vector µ. Any solution better than zµ has all its
coordinates lower-bounded by min(µ) and upper-bounded by max(λ)−min(0, (n−2) min(µ)).
The latter bound is obtained by observing that, if edge k is incident to node i and if
(µ′

1, µ′
2, . . . , µ′

m, x′) is a solution of (11) such that x′ ≥ min(µ), then µ′
k = λi −

∑
ℓ∈Ei\k µ′

ℓ

by (ce). We then use the inequalities λi ≤ max(λ) and
∑

ℓ∈Ei\k µ′
ℓ ≥ min(0, (n− 2)x′) ≥

min(0, (n−2) min(µ)) (this latter inequality is obtained by distinguishing two cases, depending
on whether min(µ) ≥ 0 or min(µ) < 0). Therefore, the solutions better than zµ belong
to a compact set of Rm+1, which ensures the existence of an optimal solution with finite
coordinates.

3.5 Early examples
We now provide illustrative examples that demonstrate the concepts introduced in Proposi-
tions 3.6 and 3.7 as well as our definitions of surjectivity, injectivity, and bijectivity. These
examples will also introduce useful notions that will be further explored in Sections 4–6.

3.5.1 Bijective graphs
We first consider a compatibility graph G that is both surjective and injective. According to
Definition 3.3, (ce) has a unique solution for each vector λ ∈ Rn of arrival rates. Proposi-
tion 3.7 implies that the matching problem (G, λ) is stabilizable if and only if the coordinates
of this solution are positive. By Remark 3.8, one can easily exhibit a vector λ ∈ Rn

>0 of
arrival rates that satisfies this condition.
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▶ Example 3.10 (Triangle). If the graph G is a triangle graph C3, and the vector λ =
(λ1, λ2, λ3) is given, the solution of (ce) is unique and shown in Figure 3. According
to Proposition 3.7(iii), (G, λ) is stabilizable if and only if all coordinates of this solution
are positive. This condition is indeed equivalent to Proposition 3.7(ii), which states that
λ1 < λ2 + λ3, λ2 < λ1 + λ3, and λ3 < λ1 + λ2. Alternatively, this condition can be expressed
as λ1, λ2, and λ3 being the lengths of the sides of a non-degenerate triangle (which have
to satisfy the triangular inequality). Under these conditions, the model (G, λ, Φ) is stable
under the unique greedy policy Φ (as shown in Proposition 6.4).

1 2

3

λ1+λ2−λ3
2

λ1+λ3−λ2
2

λ2+λ3−λ1
2

Figure 3 Matching rates in the triangle graph C3.

▶ Example 3.11 (Paw graph). If G is a paw graph, the solution of (ce) is again unique
and shown in Figure 4. Here, λ̄3 = λ3 − λ4 represents the remaining rate of class 3 after
accounting for the needs of class 4. After this subtraction, the matching rates along edges
{1, 2}, {1, 3}, and {2, 3} are defined as in the triangle graph of Figure 3.

It is important to note that, while the existence of a matching rate vector with positive
coordinates guarantees the existence of a stable greedy policy like match-the-longest, there
may still exist greedy policies that lead to instability. For instance, again consider the paw
graph of Figure 4 and a edge-priority policy where edges {1, 3} and {2, 3} are preferred over
edge {3, 4}. Intuitively, despite the problem being stabilizable, such a policy may result in a
low matching rate µ3,4 due to the priorities: if µ3,4 < λ4, this situation would even lead to
instability. This observation will be useful in Conjecture 6.10, which requires to develop a
greedy policy that does not stabilize a matching problem (G, λ) even when it is stabilizable.

1

2

3 4λ1+λ2−λ̄3
2

λ1 +λ̄3 −λ22

λ2+λ̄3−λ1

2

λ4

Figure 4 Matching rates in the paw graph. λ̄3 = λ3 − λ4 denotes the residual rate that class 3
can provide to classes 1 and 2.

3.5.2 Bipartite graph (that is neither injective nor surjective)
▶ Example 3.12 (Square graph). Figure 5 shows a square graph G = C4. This graph is
not surjective because it is bipartite with parts {1, 4} (outer part) and {2, 3} (inner part).
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Therefore, according to Proposition 3.6, this graph is not stabilizable. Yet, given a vector
λ = (λ1, λ2, λ3, λ4) of arrival rates, (ce) may still have a solution with positive coordinates.
This does not contradict Proposition 3.7, as statement (iii) is equivalent to statements (i)
and (ii) only if the graph G is surjective. Assuming unit normalization, the conservation
equation (ce–2) has a solution if and only if

λ1 + λ4 = λ2 + λ3 = 1
2. (12)

If (12) is satisfied, the solutions of (ce) can be described with a parameter α as shown
in Figure 5: starting from the particular solution µ = (2λ1λ2, 2λ1λ3, 2λ2λ4, 2λ3λ4), all
solutions can be generated by alternately adding and subtracting α along the (even) cycle
1–2–4–3–1. The positive solutions correspond to values of α such that −2 min(λ1λ2, λ3λ4) <

α < 2 min(λ1λ3, λ2λ4).

1

2

3

4

2λ1λ
2 + α

2λ1λ3 −
α

2λ2λ4 −
α

2λ3λ
4 + α

Figure 5 Matching rates in the square graph C4 with the normalization λ1 + λ4 = λ2 + λ3 = 1
2 .

This graph is not stabilizable.

Focusing on the system dynamics, we can use (3) to prove that the difference in total queue
size between the outer part {1, 4} and the inner part {2, 3} satisfies Qt,1+Qt,4−(Qt,2+Qt,3) =
Lt,1 + Lt,4 − (Lt,2 + Lt,3) for each t ∈ N. Therefore, the Markov chain (Qt,1 + Qt,4 − (Qt,2 +
Qt,3), t ∈ N) is a random walk on the integer number line {. . . ,−2,−1, 0, 1, 2, . . .}, with
transition probability proportional to λ1 + λ4 in the increasing direction and to λ2 + λ3
in the decreasing direction. If (12) is not satisfied, this random walk is transient, and the
difference between the queue sizes of the two parts grows linearly with time. On the other
hand, if (12) is satisfied, then the random walk does not have this bias, but the model is still
unstable because the corresponding Markov chain is null recurrent6.

3.5.3 Surjective-only graphs
We finally consider compatiblity graphs G that are surjective but not injective. In other
words, the graph G is stabilizable and (ce) has an infinite number of solutions. Whether or
not these solutions are achievable by a stable matching policy will be discussed in Section 6.

▶ Example 3.13 (Diamond (double-fan) graph). Figure 6 shows the diamond graph D, that is,
a square graph with an additional edge between nodes 2 and 3. Compared to Example 3.12,
this additional edge makes the graph non-bipartite, and therefore surjective, so that the
graph is stabilizable according to Proposition 3.6. For ease of computation, we assume that
the vector λ = (λ1, λ2, λ3, λ4) of arrival rates is normalized so that λ1 + λ4 = 1

2 . Under

6 Existing studies of matching in bipartite graphs usually solve this issue by coupling arrivals in both
coordinates [2, 9, 13] or by assuming that items have a finite patience time [22].
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this assumption, and with β = 1
2 (λ2 + λ3 − λ1 − λ4) = 1

2 (λ2 + λ3) − 1
4 , λ̄2 = λ2 − β, and

λ̄3 = λ3 − β, the general solution of (ce) can be described with a parameter α as shown in
Figure 6. After subtracting β from λ2 and λ3, the solutions of (ce) for all edges but {2, 3}
are exactly the same as in the square graph of Example 3.12.

1

2

3

4

2λ 1̄λ
2 + α

2λ1 λ̄3 −
α

2λ̄2λ4 − α

2̄λ3λ
4 + α

β

Figure 6 Matching rates in the diamond graph with the normalization λ1 + λ4 = 1
2 . 2β =

λ2 + λ3 − λ1 − λ4 = λ2 + λ3 − 1
2 is the difference between the arrival rates of the inner part {2, 3} and

the outer part {1, 4}. λ̄2 = λ2 − β and λ̄3 = λ3 − β represent the residual rates that classes 2 and 3
can provide to classes 1 and 4, and they are such that λ1 + λ4 = λ̄2 + λ̄3 = 1

2 , as in Example 3.12.

According to Proposition 3.7(ii), the matching problem (D, λ) is stabilizable if and only if

λ2 < λ1 + λ3 + λ4, λ3 < λ1 + λ2 + λ4, λ1 + λ4 < λ2 + λ3, (13)

that is, λ̄3 > 0, λ̄2 > 0, and β > 0. If these inequalities are satisfied, the positive
solutions correspond to values of α such that −2 min(λ1λ̄2, λ̄3λ4) < α < 2 min(λ1λ̄3, λ̄2λ4).
Intuitively, compared to the square graph, stabilizable matching problems (D, λ) have a
positive difference of 2β between the arrival rates of the inner part {2, 3} and the outer part
{1, 4}. This difference is absorbed by the central edge {2, 3}, which has matching rate β.

Like Example 3.10 and unlike Example 3.11, the matching model (D, λ, Φ) is stable for
every greedy policy Φ provided that (13) is satisfied (this will be shown in Corollary A.2).

▶ Example 3.14 (Kayak paddle graph). Figure 7 shows a kayak paddle G = KP3,3,1, consisting
of two triangles linked by an edge. According to Proposition 3.7, the matching problem (G, λ)
is stabilizable if and only if there exists α > 0 such that (λ1, λ2, λ3 − α) and (λ4 − α, λ5, λ6)
are the vectors of arrival rates of two stabilizable triangle graphs C3.

The solutions of (ce) can be described by varying α as shown in Figure 7. Assuming that
the matching problem (G, λ) is stabilizable, the solutions of (ce) with positive coordinates
correspond to the values of α such that

0 < α < min(λ3 − |λ2 − λ1|, λ4 − |λ5 − λ6|).

Intuitively, solutions with positive coordinates have a positive matching rate α along edge
{3, 4}. After subtracting this rate from λ3 and λ4, the subgraphs restricted to nodes 1, 2,
and 3 and to nodes 4, 5, and 6, respectively, behave like the triangle of Figure 3.

Like Example 3.11 and unlike Examples 3.10 and 3.13, the fact that (G, λ) is stabilizable
does not guarantee the stability of all greedy policies.

4 Matching rates in bijective graphs

In the remainder, we will consider exclusively compatibility graphs G that are stabilizable.
According to Definition 3.1 and Proposition 3.6, this implies that the graph G is surjec-
tive, or equivalently, that each connected component of G is non-bipartite. According to
Proposition 3.5(iv) and Proposition 3.7, there are only two possible cases:
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1

2

3 4

5

6

λ1+λ2−λ3+α
2

λ1+λ3−λ2−α

2

λ2 +λ3 −λ1 −α
2

α λ5+λ6−λ4+α
2

λ4+λ5−λ6−α

2

λ4 +λ6 −λ5 −α
2

Figure 7 Matching rates in the kayak paddle KP3,3,1.

1. If n = m, the graph G is also bijective: each connected component of the graph G is a
unicyclic graph, and its (only) cycle is odd. The conservation equation (ce) has a unique
solution given by µ = A−1λ. If all components of this solution are positive, then the
matching problem (G, λ) is stabilizable, and the solution provides the matching rates
achievable by any stable policy.

2. If n < m, the graph G is surjective-only: each connected component of the graph G is
non-bipartite, and at least one of these connected components contains an even cycle or a
pair of odd cycles. The conservation equation (ce) has an infinite number of solutions. If
one of them has all-positive components, then the matching problem (G, λ) is stabilizable.

Case 1 is studied in this section, while case 2 will be studied in Sections 5 and 6.
In Proposition 4.1 below, we give a simpler expression for the unique solution µ = A−1λ

of (ce) in terms of the arrival rate vector λ, under the assumption that the graph G is
bijective. We assume without loss of generality that the graph G is connected, as otherwise
we can consider each connected component independently. Compared to the expression
µ = A−1λ, the advantage of Proposition 4.1 is twofold: it does not require calculating a
matrix inversion, and it highlights the monotonicity of the matching rates with respect to
the arrival rates. This result will be illustrated in Examples 4.2 and 4.3.

▶ Proposition 4.1. Consider a problem (G, λ) with a compatibility graph G = (V, E) that is
connected and bijective, and consider an edge k ∈ E.

(i) If edge k does not belong to the (unique odd) cycle of the graph G, then edge k separates
the graph G into two parts, namely a tree and a unicyclic graph. If Vk ⊂ V denotes
the set of nodes that belong to the tree (including one endpoint of edge k), then the
matching rate along edge k is given by

µk =
∑
i∈Vk

(−1)di,k λi, (14)

where di,k is the distance between node i and edge k, defined as the minimum distance
between node i and an endpoint of edge k.

(ii) If edge k belongs to the (unique odd) cycle of the graph G, then the matching rate along
edge k is given by

µk = 1
2

(∑
i∈V

(−1)di,k λi

)
. (15)

Proof. We first prove (14) for every edge k that does not belong to the cycle. As observed in
the proposition, each edge k that does not belong to the cycle separates the graph into two
parts, one of which is a tree with node set Vk; the rooted tree associated with k is obtained
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by designating the corresponding endpoint of edge k as the root. We now prove (14) by
induction on the height this rooted tree. Equation (14) is true if the height of this tree is zero.
Indeed, in this case, the endpoint of edge k that belongs to the tree, say node i, has no other
incident edge, so that applying (ce–1) to node i yields µk = λi, which is consistent with (14).
Now assume that the assumption is satisfied for each node whose associated rooted tree has
height at most h− 1 for some h ≥ 0, and consider an edge k whose associated rooted tree
has height h. By applying (ce–1) to the root i of this associated rooted tree, we obtain

µk = λi −
∑

ℓ∈Ei\{k}

µℓ. (16)

The induction hypothesis guarantees that (14) is satisfied for every ℓ ∈ Ei \{k} (as the height
of the associated rooted tree is at most h− 1). After injecting this observation to (16), the
result for edge k follows by observing that dj,k = dj,ℓ + 1 for each ℓ ∈ Ei \ {k} and j ∈ Vℓ,
and that Vk = {i} ∪ (

⋃
ℓ∈Ei\{k} Vℓ) (all sets being disjoint).

We now prove (15) for each edge k that belongs to the cycle. Since the graph G is
unicyclic, deleting edge k from G yields a (connected) tree, which can be seen as a bipartite
graph. We let V+ denote set of nodes in the part that contains both endpoints of edge k

(that both endpoints belong to the same part follows from the fact that the cycle is odd) and
V− the set of nodes in the other part. We obtain∑

i∈V+

λi −
∑

i∈V−

λi =
∑

i∈V+

∑
ℓ∈Ei

µℓ −
∑

i∈V−

∑
ℓ∈Ei

µℓ = 2µk.

The first equality follows from (ce–1). The second equality holds because each edge ℓ ∈ E\{k}
has one endpoint in V+ and another in V−, so that µℓ appears exactly once in the first nested
sum and once in the second; on the contrary, since both endpoints of edge k belong to V+,
µk appears twice in the first nested sum and zero times in the second. Equation (15) follows
by observing that di,k is even if and only if i ∈ V+. ◀

We remark that the influence of the arrival rate of a class on the matching rate along an
edge only depends on the parity of the distance between the edge and the node. The actual
distance does not. In particular, even in a very large (bijective) graph, a node far away from
an edge has the same (although possibly reversed) impact as an endpoint of that edge.

▶ Example 4.2 (Cycle graph with 5 nodes). A cycle graph is the simplest bijective graph
that we can consider, as it contains an odd cycle and no other edges. In the cycle graph of
Figure 8, a direct application of Proposition 4.1(ii) yields

µ1,2 = 1
2(λ1 + λ2 − λ3 + λ4 − λ5).

Matching rates along other edges follow by symmetry. From the point of view of edge {1, 2},
we can partition nodes into two sets, namely {1, 2, 4} and {3, 5}. The former (resp. latter)
set contains nodes at an even (resp. odd) distance of edge {1, 2}, and increasing the arrival
rate of these nodes increases (resp. decreases) the matching rate along edge {1, 2}.

▶ Example 4.3 (Lying puppet). We now consider the graph of Figure 9. Edges {1, 2}, {1, 3},
and {2, 3} belong to the cycle, and the other edges do not. According to Proposition 4.1, we
have

µ1,2 = λ1 + λ2 − λ̄3

2 , µ1,3 = λ1 − λ2 + λ̄3

2 , µ2,3 = −λ1 + λ2 + λ̄3

2 ,
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5

λ1+λ2−λ5−λ3+λ4
2

Figure 8 Matching rates in the pentagon graph C5. Only rate µ1,2 is shown for ease of display.
The other rates are deduced by permutation.
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λ1+λ2−λ̄3
2

λ2 +λ̄3 −λ12

λ1+λ̄3−λ2
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λ5
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Figure 9 Matching rates in a “lying puppet” graph with n = 9 nodes and m = 9 edges. The
differences λ̄7 = λ7 − λ8 − λ9, λ̄4 = λ4 − λ5 − λ6 − λ̄7, and λ̄3 = λ3 − λ̄4 are the residual rates that
classes 7, 4, and 3 provide to their neighbors of lower index.

where λ̄3 = λ3 − µ3,4, and

µ4,5 = λ5, µ4,6 = λ6, µ7,8 = λ8,

µ7,9 = λ9, µ4,7 = λ7 − µ7,8 − µ7,9, µ3,4 = λ4 − µ4,5 − µ4,6 − µ4,7.

This second set of equations can be obtained either by a direct application of (14) or by
applying (ce–1) recursively from the leaves. Indeed, applying (ce–1) to nodes 5, 6, 8, and 9
gives directly the values of µ4,5, µ4,6, µ7,8, and µ7,9, then applying (ce–1) to node 7 gives
the value of µ4,7, and finally applying (ce–1) to node 4 gives the value of µ3,4. The values of
µ1,2, µ1,3, and µ2,3 are similar to Example 3.11, where the arrival rate λ3 is again replaced
with the effective arrival rate λ̄3 from the point of view of classes 1 and 2.

5 Solution of the conservation equation in surjective-only graphs

Consider a surjective-only compatibility graph G. According to Definitions 3.1, 3.2, and 3.4,
each connected component of the graph G is non-bipartite, and at least one of these connected
components contains an even cycle or a pair of odd cycles. This means that (ce) has an
infinite number of solutions. This section describes these solutions. Section 5.1 characterizes
the affine space of all real-valued solutions of (ce). Section 5.2 focuses on stabilizable
matching problems and describes the convex polytope made of the solutions with non-
negative coordinates. Whether or not these solutions are achievable by a matching policy
will be discussed in Section 6.
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Note that most of the results stated in this section are also applicable to bijective graphs.
However, due to the uniqueness of the solution, which is already provided in a closed-form
expression in Section 4, bijective graphs hold limited interest in this context. This is why
our focus primarily lies on surjective-only graphs.

5.1 Affine space of real-valued solutions
We first consider the set of solutions of (ce) with real-valued (positive, zero, or negative)
coordinates:

Π = {µ ∈ Rm : Aµ = λ} . (17)

In the following, we delve into the properties of Π. In Section 5.1.1, we observe that Π is
an affine space of dimension d = m− n that can be described as a translation of the kernel
of the incidence matrix A by a particular solution of (ce). Section 5.1.2 gives examples of
particular solutions that can be used. Section 5.1.3 gives an algorithm to construct a basis
for the kernel of the incidence matrix directly from the graph.

5.1.1 Edge basis, kernel basis
The following proposition characterizes the solution set Π of (ce) using the incidence matrix
of the compatibility graph. Equation (18) says that, up to translation, this solution set
depends only on the structure of the compatibility graph G, while the arrival rate vector λ

impacts only the translation vector.

▶ Proposition 5.1. Consider a surjective-only compatibility graph G, and let A denote the
incidence matrix of G. The solution set Π of (ce) is the affine space obtained by translating
the kernel ker(A) of the matrix A by a particular solution µ◦ of (ce), that is,

Π = {µ◦ + µ : µ ∈ ker(A)} . (18)

Furthermore, the vector space ker(A) and the affine space Π have dimension d = m− n.

Proof. That the set Π is of the form (18) is a well-known result in linear algebra. Definition 3.1
about surjectivity implies that the rank of A is n, and we conclude from the rank-nullity
theorem that the nullity of A is d = m − n. The affine space Π has the same dimension
according to (18). ◀

Thanks to Proposition 5.1, given a particular solution µ◦ of (ce) and a basis B = (b1, b2, . . . , bd)
of ker(A), we can rewrite the affice space Π as

Π = {µ◦ + α1b1 + α2b2 + . . . + αdbd : α1, α2, . . . , αd ∈ R} .

In fact, we can define the following affine isomorphism between the coordinate space Rd and
the d-dimensional affine space Π:

α = (α1, α2, . . . , αd) ∈ Rd 7→ µ = µ◦ + α1b1 + α2b2 + . . . + αdbd ∈ Π. (19)

Therefore, given a particular solution µ◦ of (ce) and a basis B = (b1, b2, . . . , bd) of ker(A),
there are two natural bases to represent vectors in Π:

Edge basis: A vector of Π is described by its canonical coordinates µ = (µ1, µ2, . . . , µm) ∈
Rm, where µk represents a candidate matching rate along edge k, for each k ∈ E.
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Kernel basis: A vector of Π is described by its coordinates α = (α1, α2, . . . , αd) ∈ Rd in
the basis B, where d = m− n is the dimension of the affine space Π.

Both bases have advantages. The edge basis, by definition, gives directly the candidate
matching rates. The kernel basis allows us to work in lower dimension (d instead of m) and
to ignore the conservation equation (ce), which is implicitly enforced. In the remainder,
we will often use interchangeably the edge coordinates µ = (µ1, µ2, . . . , µm) and the kernel
coordinates α = (α1, α2, . . . , αd) to describe a given vector in Π. Which basis we are actually
using will be made clear by our choice of letters (either µ or α).

For graphs that have a low kernel dimension d, it is convenient to mix both approaches
and to represent a generic vector of Π, i.e., a generic solution of (ce), in the form µ◦ + α1b1 +
α2b2 + . . .+αdbd. For instance, the solutions on Examples 3.13 and 3.14 are actually displayed
in Figures 6 and 7 using that convention. This representation, along with the possibility to
switch between edge basis and kernel basis, will be used extensively in Sections 5.2 and 6.
▶ Remark 5.2 (Change-of-basis formulas). If B is the m× d matrix giving the coordinates of
the vectors of the basis B in the edge basis, the change-of-basis formulas are as follows:

A vector of Π with coordinates α in kernel basis has coordinates µ◦ + Bα in edge basis;
A vector of Π with coordinates µ in edge basis has coordinates B+(µ − µ◦) in kernel
basis, where B+ is the pseudo-inverse (or Moore-Penrose inverse) of B.

The columns of the matrix B are linearly independent because B is a basis, so that the
pseudo-inverse B+ has the simple expression B+ = (B⊺B)−1B⊺, where the d × d matrix
B⊺B is invertible because ker(B⊺B) = ker(B) = {0}.

5.1.2 Particular solution
We briefly discuss the derivation of a particular solution µ◦ of (ce), which can be used as an
origin for Π. The choice of a basis B of the kernel of the incidence matrix of the compability
graph G will be discussed in Section 5.1.3.

Pseudoinverse

A standard way to simultaneously find a particular solution µ◦ and characterize ker(A) consists
of using the pseudoinverse (or Moore-Penrose inverse) of the matrix A. Definition 3.1 about
surjectivity implies that the rows of A are linearly independent, so that the pseudoinverse A+

of A has the following simple expression:

A+ = A⊺(AA⊺)−1,

where the n× n matrix AA⊺ is invertible because ker(AA⊺) = ker(A⊺) = {0}. We can then
describe a particular solution µ⊥ and the kernel ker(A) as follows:

µ⊥ = A+λ, ker(A) =
{

(Idm×m −A+A)µ : µ ∈ Rm
}

, (20)

where Idm×m is the m-dimensional identity matrix. The vector µ⊥ is the least-squares solution
of (ce), and it is orthogonal to ker(A). In general, some coordinates of this solution can
be negative even if non-negative solutions exist. For example, if G is the diamond graph D

of Example 3.13, then the matching problem (D, λ) with λ = (4, 5, 2, 1) is stabilizable
(µ = ( 7

2 , 1
2 , 1, 1

2 , 1
2 ) is a positive solution), but the solution given by the pseudoinverse is

µ⊥ = ( 11
4 , 5

4 , 1, 5
4 ,− 1

4 ).
Equation (20) shows that the Moore-Penrose inverse also provides an implicit charac-

terization of ker(A). However, this characterization is not very practical as it relies on a
projection from Rm to ker(A). In Section 5.1.3, we will give a more direct characterization
by building a basis for ker(A) based on the structure of the compatibility graph G.
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Maximin solution

Alternatively, we can utilize a maximin solution by solving the linear optimization prob-
lem (11). Recall that the maximin solution allows us to verify if the matching problem (G, λ)
is stabilizable by checking if all edge coordinates of µ◦ are positive.

5.1.3 Basis of the kernel of the incidence matrix
Recall that a vector y ∈ Rm belongs to ker(A) if and only if Ay = 0, which reads

∑
k∈Ei

yk = 0
for each i ∈ V . In other words, a vector y ∈ Rm belongs to ker(A) if and only if, for each
i ∈ V , the sum of the coordinates of y associated with the edges that are incident to
node i is zero. Using this observation, we first give examples of subgraphs that are supports
of vectors that belong to ker(A), and then we give an algorithm that generates a basis
B = (b1, b2, . . . , bd) of ker(A).

First observe that an even cycle, if it exists, is the support of a vector in ker(A): it
suffices to assign alternatively the values +1 and −1 to the edges of this cycle and the
value 0 to all other edges. In the diamond graph of Example 3.13 for instance, if edges are
numbered in lexicographical order, then y = (1,−1, 0,−1, 1) is a vector of the unidimensional
kernel, associated with the even cycle 1–2–4–3 (see Figure 10). Intuitively, even cycles can
be used to move weights between “odd” and “even” edges without modifying the value of
the product Ay. Actually, in this particular example, we can see on Figure 6 that the only
way to increase the matching rate along edges {1, 2} and {3, 4} is if we reduce the matching
rate along edges {1, 3} and {2, 4}, and conversely.
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Figure 10 Vector of the kernel space of the diamond graph.

Apart from even cycles, other structures of interest are kayak paddles KPℓ,r,p in which
the lengths ℓ and r of both cycles are odd. These graphs have a unidimensional kernel, and
a base vector can be found by assigning properly the values +1 and −1 along the cycles and
the values +2 and −2 along the path. Figure 11 shows such an assignment for KP3,5,2.
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Figure 11 Vector of the kernel space of the kayak paddle KP3,5,2.

Surprisingly, for any surjective graph G, one can build a basis of ker(A) using only
subgraphs of G that are even cycles and kayak paddles. This is what Algorithm 1 does. It
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first identifies an edge set E \ (T ∪ {a}) of cardinality d = m− n, where T is a spanning tree
of the graph G and a is an edge in E \ T such that T ∪ {a} contains an odd cycle. Then,
for each edge s ∈ E \ (T ∪ {a}), the algorithm builds a base vector b whose support (i) is
either an even cycle or a kayak paddle and (ii) contains s and is included into T ∪ {a, s}.=
We assume without loss of generality that the graph G is connected (in addition to being
surjective-only). If not, we can apply the algorithm to each connected component separately,
and then we embed the obtained vectors to Rn via zero padding.

Data: A connected surjective-only compatibility graph G = (V, E)
Result: A basis B of the kernel of the incidence matrix A of G

1 B ← ∅
2 T ← the set of edges of a spanning tree of G

3 a← an edge in E \ T such that T ∪ {a} contains an odd cycle
4 for s ∈ E \ (T ∪ {a}) do
5 b← (0, 0, . . . , 0) ∈ Rm

6 if T ∪ {a, s} contains an even cycle Cℓ then
7 c1, . . . , cℓ ← consecutive edges of Cℓ

8 for d ∈ {1, . . . , ℓ} do
9 k ← index of cd in E

10 bk ← (−1)d

11 else
12 T ∪ {a, s} contains a kayak paddle KPℓ,r,p with ℓ odd, r odd, and p ≥ 0
13 vi ← node connecting the kayak’s cycle Cℓ to the kayak central path Pp

14 vj ← node connecting the kayak’s cycle Cr to the kayak central path Pp

15 c1, . . . , cℓ ← consecutive edges of Cℓ, starting and ending at node vi

16 for d ∈ {1, . . . , ℓ} do
17 k ← index of cd in E

18 bk ← (−1)d

19 c1, . . . , cp ← consecutive edges of Pp, starting at node vi and ending at node vj

20 for d ∈ {1, . . . , p} do
21 k ← index of cd in E

22 bk = 2(−1)d+1

23 c1, . . . , cr ← consecutive edges of Cr, starting and ending at node vj

24 for d ∈ {1, . . . , r} do
25 k ← index of cd in E

26 bk ← (−1)d+p+1

27 B ← B ∪ {b}
28 return B

Algorithm 1 Construction of a basis of the kernel of the incidence matrix A of the compatibility
graph G. This algorithm was initially introduced in [20, Section 3] to build a basis of the eigenspace
associated with the eigenvalue −2 of the adjacency matrix of a line graph (i.e., a graph whose nodes
and edges represent, respectively, the edges and their incidence relations in another graph).

Figures 12 and 13 show possible runs of Algorithm 1 on the triamond and codomino
graphs, which both have a two-dimensional kernel. Note that the basis is not unique and
depends on our choice of the spanning tree T and the augmenting edge a (see lines 2 and 3
in Algorithm 1). We now verify that Algorithm 1 termines and yields the desired result.
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Spanning tree T Augmenting edge a

First kernel vector Second kernel vector
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(a) Construction A.
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(d) Construction B.
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(f) Second vector for B (C4).

Figure 12 Two possible constructions of a kernel basis for the triamond graph. Construction A
yields the basis vectors b1 = (1, −1, −1, −1, 1, 1, 0) and b2 = (0, 0, 1, 0, −1, −1, 1). Construction B

yields the basis vectors b1 = (−1, 1, 0, 1, 0, 0, −1) and b2 = (0, 0, −1, 0, 1, 1, −1).

▶ Proposition 5.3. Algorithm 1 terminates and returns a basis of the kernel of the incidence
matrix A of the compatibility graph G.

Proof. See Appendix B. ◀

Importantly, equation (18) states that, given an edge k ∈ E, all solutions of (ce) have the
same value along edge k if and only if edge k does not belong to the support of any basis
vector. According to Algorithm 1, this is equivalent to say that edge k belongs neither to an
even cycle nor to a kayak paddle. In the diamond graph of Example 3.13 for instance, the
edge {2, 3} is the only one that does not belong to the even cycle 1–2–4–3, and it is also the
only one with a fixed value β. In general, if an edge k ∈ E satisfies this unicity condition,
then the matching rate along edge k in a stable matching model (G, λ, Φ) is independent
of the policy Φ. Note that there is no general relation between the number of edges with
uniquely-defined matching rates and the dimensionality d of the affine space Π.

5.2 Convex polytope of positive solutions
In the remainder, we will focus exclusively on matching problems (G, λ) that are stabilizable.
Next, we consider the set Π⩾0 of solutions of (ce) that have non-negative coordinates, defined
as

Π⩾0 = Π ∩ Rm
⩾0 = {µ ∈ Rm : Aµ = λ, µ ≥ 0}. (21)

The set Π⩾0 is a d-dimensional convex polytope in Rm, as it is the intersection of a d-
dimensional affine space with the positive orthant Rm

⩾0, both of which are convex. The
set Π⩾0 is neither empty nor degenerated to a dimension lower than d because the matching
problem (G, λ) is assumed to be stabilizable, which means that Π contains a vector with
positive coordinates (i.e., in the interior of the positive orthant). It is bounded because each
µ ∈ Π⩾0 satisfies 0 ≤ µk ≤ mini∈Vk

(λi) for each k ∈ E.
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Figure 13 Two possible constructions of a kernel basis for the codomino graph. Construction A
yields the vectors b1 = (1, −1, 0, −1, 1, −1, −1, 2) and b2 = (0, 0, 1, −1, 0, −1, 0, 1). Construction B
yields the vectors b1 = (−1, 1, 1, 0, −1, 0, 1, −1) and b2 = (0, 0, −1, 1, 0, 1, 0, −1).

Equation (21) describes Π⩾0 in the edge basis. As Π⩾0 is a subset of Π, we can also
express its elements in the kernel basis introduced in Section 5.1.1. In the kernel basis, Π⩾0
is defined by the vectors whose coordinates belong to

Π̃⩾0 = {α ∈ Rd : µ◦ + α1b1 + α2b2 + . . . + αdbd ≥ 0}. (22)

As Equations (21) and (22) basically represent the same polytope up to the change-of-basis
formulas introduced in Section 5.1.1, in the remainder, we will use the same notation Π⩾0 to
describe both sets; which basis we are (implicitly) using will be made clear by our choice of
letters (µ for the edge basis and α for the kernel basis).

5.2.1 Vertices of the convex polytope
Vertices can be informally defined as the corners or extreme points of a convex polytope.
Definition 5.4 gives a formal definition of a vertex (as well as those of a face and a facet,
which will be useful later).

▶ Definition 5.4 (Vertices and facets, adapted from [33]). Consider a convex polytope Υ
of dimension d ∈ N>0. A (non-empty) face of Υ is a non-empty intersection of Υ with a
hyperplane such that Υ is included into one of the two halfspaces defined by the hyperplane.
A vertex of Υ is a face of dimension 0, while a facet of Υ is a face of dimension d− 1. A
vertex can also be defined as follows: a vector y ∈ Υ is a vertex of Υ if, and only if, it cannot
be written as a convex combination of points in Υ\{y}.

The vertices of Π⩾0 are important if one wants to optimize a linear function of the matching
rate vector, as stated in Proposition 5.5 below. Such optimization problems occur in many
applications of dynamic matching systems (see the first example in Section 1.1).

▶ Proposition 5.5. Let w = (w1, . . . , wm) ∈ Rm be a vector of rewards associated with the
edges of the compatibility graph. Consider the problem of finding a non-negative solution
of (ce) that maximizes the reward rate w⊺µ:

F = {µ ∈ Π⩾0 : w⊺µ = max
z∈Π⩾0

w⊺z}. (23)
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F is a non-empty face of Π⩾0. In particular, there exists a vertex µ ∈ Π⩾0 that maximizes
the reward (i.e., µ ∈ F ).

Proof. This is a standard result from convex optimization. The fact that Π⩾0 is bounded
guarantees the existence of a maximum rmax amongst the rewards associated with vectors
inside Π⩾0. The set F is the intersection of the hyperplane {y ∈ Rm : w⊺y = rmax} with
Π⩾0, and it is therefore a non-empty face of Π⩾0. The fact that any non-empty face contains
a vertex is a consequence of the lattice structure of the faces of polytopes. ◀

The interest of Proposition 5.5 is the following: if for every vertex µ of Π⩾0 one can
provide a stable policy Φ whose matching rate is µ, or is at least arbitrarily close to µ, then
we can maximize any linear reward function (or at least get arbitrarily close to the optimal)
with a stable policy. Finding such policies will be the main focus of Section 6.2.

Proposition 5.6 below gives a simple yet powerful characterization of the vertices of Π⩾0.
The proof of this proposition is borrowed from [14].

▶ Proposition 5.6. Consider a vector µ ∈ Π⩾0. Let E = {k ∈ E : µk > 0} denote the
support of the vector µ and G = (V, E) its support graph. The following statements are
equivalent:

(i) The vector µ is a vertex of Π⩾0.
(ii) The graph G is injective.

Proof. We actually prove that the negations of (i) and (ii) are equivalent. Let A denote the
incidence matrix of G.

By Definition 5.4, if µ is not a vertex of Π⩾0, there exist z1, z2 ∈ Π⩾0\{µ} and 0 < θ < 1
such that µ = θz1 + (1− θ)z2. The coordinates of the vectors z1 and z2 are non-negative, so
this equality implies that their supports are included into the support E of the vector µ. In
particular, if µ and z1 denote the restrictions of µ and z1 to coordinates in E, respectively,
then Aµ = Aµ = λ = Az1 = A z1 with µ ̸= z1, which means that G = (V, E) is not injective.

Conversely, if G is not injective, there exists a non-zero vector z in R|E| such that
A z = 0. If we embed z into R|E| with zero-padding, we obtain a non-zero vector z such
that Az = 0, and whose support is included into that of the vector µ. This implies that
there exists ε > 0 such that both µ− εz and µ + εz belong to Π⩾0. The convex combination
µ = 1

2 (µ− εz) + 1
2 (µ + εz) proves that the vector µ is not a vertex of Π⩾0. ◀

Examples of vertices are shown in Figures 14–16 and will be discussed in details later. For
now, it is sufficient to observe that, since the subgraph restricted to the support of a vertex is
injective, this subgraph is either bijective (as in Figures 14d–14h and 16c–16f) or injective-only
(as in Figures 15d–15f and 16g).

Proposition 5.7 below characterizes the stabilizability of the matching problem (G, λ) for
a vertex µ of Π⩾0, and relates it to the existence of a policy that stabilizes the matching
problem (G, λ) and achieves µ.

▶ Proposition 5.7. Let ΠP be the set of matching rates achieved by stable policies, as defined
in Section 3.1:

ΠP = {µ(G, λ, Φ) : Φ is a stable policy adapted to the compatibility graph G} .

Consider a vertex µ of Π⩾0, and define E and G as in Proposition 5.6. We distinguish two
cases, depending on the value of p = |E|:

(i) If p = n, i.e., exactly d coordinates of the vertex µ are zero, then the subgraph G is
bijective and the matching problem (G, λ) is stabilizable. Moreover, µ ∈ ΠP .
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(ii) If p < n, i.e., strictly more than d coordinates of the vertex µ are zero, then the subgraph
G is injective-only and the matching problem (G, λ) is not stabilizable. Moreover,
µ /∈ ΠP .

Proof. Let A denote the incidence matrix of G. We know from Proposition 5.6 that G is
injective. In particular, the restriction µ of the vector µ to its positive coordinates is the
only solution of the conservation equation A z = λ, of unknown z ∈ Rp. It also follows from
Proposition 3.5 that p ≤ n, and that the subgraph G is bijective if and only if p = n. We
now consider the two cases separately:

(i) If p = n, then G is bijective. Proposition 3.7 implies that the matching problem (G, λ)
is stabilizable, as G is surjective and µ is a solution of the conservation equation Az = λ

with positive coordinates. To prove µ ∈ ΠP , we consider the match-the-longest policy
with a filter on E on the matching problem (G, λ), denoted Φ. Φ behaves exactly like
the greedy match-the-longest policy on the matching problem (G, λ), which is stable
with matching rate µ as we just saw. Hence the matching model (G, λ, Φ) is stable and
its matching rate µ(Φ) is necessarily equal to µ. This proves that µ ∈ ΠP .

(ii) If p < n, then G is injective-only. Proposition 3.6 implies that the matching problem
(G, λ) is not stabilizable. We prove that µ /∈ ΠP by contradiction. Suppose that µ ∈ ΠP ,
and let Φ be a stable policy on the matching problem (G, λ) such that µ(Φ) = µ. Since
µk(Φ) = 0 for each k ∈ E \ E, we know from Remark 2.5 that Φ never performs a
match supported by an edge in E \ E. Hence, Φ also defines a stable policy on the
matching problem (G, λ), which contradicts the instability of the matching problem
(G, λ). Therefore, µ /∈ ΠP . ◀

In a nutshell, Proposition 5.7 states that the vertices with a bijective support graph can be
achieved by stable policies, while those that define an injective-only support graph cannot.
This is the first step towards a full characterization of ΠP , which will be further developed
in Section 6.2.

▶ Remark 5.8. We can further explore the relationship between vertices and their support
graph. Again consider a vertex µ of Π⩾0, and define G and A as in Proposition 5.6. According
to Definitions 3.1, 3.2, and 3.4, the subgraph G is injective if and only if each connected
component of G is either a tree or a unicyclic graph with an odd cycle. For each connected
component of G that is a tree, and therefore a bipartite graph with parts V+ and V−, the
existence of vertex µ implies that∑

i∈V+

λi =
∑

i∈V−

λi. (24)

This equation follows by summing (ce–1) over the nodes in V+ on the one hand, sum-
ming (ce–1) over the nodes in V− on the other hand, and verifying that the left-hand sides
of both equations are equal. In fact, one can verify that the vector λ belongs to the image of
A if and only if λ satisfies (24) for each connected component of G that is a tree. Note that
this condition is void if G is bijective because, in this case, none of the connected components
of G is a tree.

Conversely, one can wonder which injective subgraph G of G defines a vertex of Π⩾0.
Satisfying (24) for each tree connected component of G only guarantees the existence of a
(unique) solution z ∈ Rp to the conservation equation Az = λ. If each component of z is
positive, then we indeed obtain a vertex of Π⩾0 by embedding z in Rm with zero padding;
otherwise, G does not define a vertex of Π⩾0.
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5.2.2 Bijective vertices and facets of the convex polytope
With a slight abuse of notation, we will say that a vertex µ ∈ Π⩾0 is bijective (resp. injective-
only) if the subgraph G induced by µ is bijective (resp. injective-only). As stated above, the
bijectivity of vertices plays an important role in the study of the matching rates that can
be achieved by stable policies, which will be the matter of Section 6. We now detail the
relationship between the bijectivity of vertices and the inequalities that define Π⩾0. While
the remainder of this section helps in Section 6.2 to describe the set of matching rate vectors
that can be achieved by an arbitrary stable policy, it can be skipped on first reading.

Following Proposition 5.7, the bijectivity of a vertex is determined by the number of its
coordinates that are positive in edge coordinates, that is, by the cardinality of the set of edges
that form its support. Recall that the d-dimensional polytope Π⩾0 is actually characterized
by the m inequalities µk ≥ 0 for each k ∈ E. In particular, this polytope has at most m

facets, one for each inequality, but it typically has fewer. Indeed, some inequalities may
be redundant and/or not tight, in a sense that will be defined in Definition 5.9 below. For
example, by looking more closely at the general solution obtained for the diamond graph in
Figure 6, we conclude that:

The inequality µ2,3 ≥ 0 is satisfied trivially by every vector µ ∈ Π, as we have µ2,3 = β > 0.
Therefore, this inequality does not define a facet of Π⩾0.
If λ1λ̄2 < λ̄3λ4, the inequality µ1,2 ≥ 0 supersedes the inequality µ3,4 ≥ 0, and conversely.
If λ1λ̄2 = λ̄3λ4, these two inequalities are equivalent. In both cases, the inequalities
µ1,2 ≥ 0 and µ3,4 ≥ 0 lead to a single facet of Π⩾0.
If λ1λ̄3 < λ̄2λ4, the inequality µ1,3 ≥ 0 supersedes the inequality µ2,4 ≥ 0, and conversely.
If λ1λ̄3 = λ̄2λ4, these two inequalities are equivalent. In both cases, the inequalities
µ1,3 ≥ 0 and µ2,4 ≥ 0 lead to a single facet of Π⩾0.

All in all, the 1-dimensional convex polytope Π⩾0 associated with the diamond graph of
Example 3.13 has two facets, even if it is defined by five inequalities. Definition 5.9 below
will help us relate these notions to the number of zero coordinates of the vertices of the
convex polytope Π⩾0.

▶ Definition 5.9 (Adapted from [4, 33]). Let k ∈ E.
(i) The inequality µk ≥ 0 is said to be tight if there exists a vector µ ∈ Π⩾0 such that

µk = 0, in which case we also say that this inequality is tight for the vector µ.
(ii) The inequality µk ≥ 0 is said to be redundant if removing this inequality does not

change the polytope Π⩾0, in the sense that

Π⩾0 = {µ ∈ Rm : Aµ = λ and µℓ ≥ 0 for each ℓ ∈ E \ {k}}.

Otherwise, this inequality is called irredundant.
(iii) The matching problem (G, λ) is called essential if all tight inequalities are irredundant.
(iv) The polytope Π⩾0 is said to be simple if every vertex of Π⩾0 belongs to exactly d facets,

which is the minimal number of facets a vertex belongs to.

Importantly, the number of positive coordinates of a vertex µ (considered in Proposition 5.7)
is the number of inequalities that are not tight for this vertex. More generally, Definition 5.9
has the following intuitive interpretation. An inequality is tight if the convex polytope Π⩾0
intersects the hyperplane obtained by transforming this inequality into an equality. Non-tight
inequalities are “useless” (and redundant) because they are never satisfied as equalities by
any vector in Π⩾0. The matching problem (G, λ) is essential if each tight inequality defines
a distinct facet of the convex polytope Π⩾0. Under this condition, the number of facets
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that contain a vertex is equal to the number of inequalities that are tight for this vertex.
In particular, as we will see in Proposition 5.13, if the matching problem (G, λ) is essential
and the polytope Π⩾0 is simple, then every vertex satisfies exactly d (tight) inequalities as
equalities, which means that this vertex has d zero coordinates, and therefore n = m − d

positive coordinates, so that this vertex is bijective.
All these notions are illustrated in Examples 5.10–5.12 below, which show in particular

that a matching problem (G, λ) may be essential even if the polytope Π⩾0 is not simple,
and conversely. Consistently with Example 3.13 above, these examples use a kernel basis to
verify effortlessly whether an inequality is tight and/or irredundant.

Edge basis Kernel basis Tight? Irredundant?
µ1,2 ≥ 0 α1 ≤ 2 ✗ ✗

µ1,6 ≥ 0 α1 ≥ −2 ✗ ✗

µ2,3 ≥ 0 α1 − α2 ≥ −1 ✓ ✓

µ2,6 ≥ 0 α2 ≥ −2 ✗ ✗

µ3,4 ≥ 0 α1 ≤ 1 ✓ ✓

µ3,5 ≥ 0 α2 ≥ −1 ✓ ✓

µ4,5 ≥ 0 α1 ≥ −1 ✓ ✓

µ5,6 ≥ 0 α1 + α2 ≤ 1 ✓ ✓

(a) Inequalities.
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(g) Edge coordinates of (−1, −1).
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(h) Edge coordinates of (1, −1).

Figure 14 An essential matching problem (G, λ) with a simple polytope Π⩾0. The vector of arrival
rates is λ = (4, 5, 3, 2, 3, 5) ∈ R6, a particular solution of (ce) is µ◦ = (2, 2, 1, 2, 1, 1, 1, 1) ∈ R8, and
the chosen base vectors for ker(A) are b1 = (−1, 1, 1, 0, −1, 0, 1, −1) and b2 = (0, 0, −1, 1, 0, 1, 0, −1).
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▶ Example 5.10 (Essential matching problem). Figure 14 considers a codomino graph
with the vector of arrival rates λ = (4, 5, 3, 2, 3, 5). A particular solution of (ce) is
µ◦ = (2, 2, 1, 2, 1, 1, 1, 1) ∈ R8, and the basis of ker(A) consists of the vectors b1 =
(−1, 1, 1, 0,−1, 0, 1,−1) and b2 = (0, 0,−1, 1, 0, 1, 0,−1) obtained in construction B of Fig-
ure 13. The generic solution of (ce) is shown in Figure 14b.

The inequalities are listed in Figure 14a. The 2-dimensional polytope Π⩾0, shown in
Figure 14c in kernel basis, is characterized by five tight inequalities which are also irredundant:

−1 ≤ α1 ≤ 1, α2 ≥ −1, α1 − α2 ≥ −1, α1 + α2 ≤ 1.

The matching problem (G, λ) is essential. In kernel basis, the vertices of the convex poly-
tope Π⩾0 are (0, 1), (−1, 0), (1, 0), (−1,−1), and (1,−1), and we can verify on Figure 14c
that each vertex belongs to exactly 2 facets. Therefore Π⩾0 is simple (more generally, all
2-dimensional polytopes are simple). All in all, each vertex of Π⩾0 has 2 zero coordinates
and 6 positive coordinates in edge coordinates, so that this vertex is bijective. These vertices
are represented in edge basis in Figures 14d–14h.

▶ Example 5.11 (Non-essential matching problem). Figure 15 shows the same codomino
graph as in Example 5.10, with the same basis of ker(A), but with the vector of arrival rates
λ = (2, 4, 4, 2, 2, 2). A particular solution of (ce) is µ◦ = (1, 1, 2, 1, 1, 1, 1, 0), and the general
solution is shown in Figure 15b.

The inequalities are listed in Figure 15a. The 2-dimensional convex polytope Π⩾0 is
shown in kernel basis in Figure 15c. All inequalities are tight, but only one is irredundant,
so we conclude that the matching problem (G, λ) is not essential, even if the polytope Π⩾0
is still simple. Correspondingly, even if each vertex belongs to exactly two facets, they all
have more than 2 zero coordinates, so none of them is bijective. For example, the vertex
(1,−1) in kernel basis has coordinates (0, 2, 4, 0, 0, 0, 2, 0) in edge basis (Figure 15f). This
vertex has 5 zero coordinates in edge coordinates (and only 3 positive coordinates) even if it
belongs to only 2 facets.

▶ Example 5.12 (Non-simple polytope). We finally exhibit an essential matching problem
with a non-simple associated polytope. As 2-dimensional polytopes are simple, we need to
consider a more complex example. We consider the matching problem of Figure 16a. The
arrival rate is λ = (3, 3, 6, 3, 4, 4, 6, 3, 4, 4) ∈ R10. The particular solution and kernel basis
are shown on the edges. The set Π⩾0, shown in Figure 16b in kernel basis, is an Egyptian
pyramid characterized by the following tight inequalities:

α3 ≥ 0, 1 + α1 − α3 ≥ 0, 1− α1 − α3 ≥ 0, 1 + α2 − α3 ≥ 0, 1− α2 − α3 ≥ 0.

These five inequalities are irredundant (each one corresponds to exactly one of the five facets),
so we conclude that the matching problem (G, λ) is essential. In kernel basis, the vertices
of this convex polytope are (−1,−1, 0), (1,−1, 0), (1, 1, 0), (−1, 1, 0), and (0, 0, 1). These
vertices are shown in edge basis in Figures 16c–16g. The polytope Π⩾0 is not simple because
the vertex (0, 0, 1) (the “top” of the pyramid) belongs to 4 facets, while the polytope has
dimension 3. Consistently, we can see in Figure 16g that this vertex has 4 zero coordinates
and only 9 positive coordinates in edge basis; the subgraph defined by the support of this
vertex is injective-only.

In light of the examples above, we can give the following characterization of the bijective
vertices of Π⩾0.
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Edge basis Kernel basis Tight? Irredundant?
µ1,2 ≥ 0 α1 ≤ 1 ✓ ✗

µ1,6 ≥ 0 α1 ≥ −1 ✓ ✗

µ2,3 ≥ 0 α1 − α2 ≥ −2 ✓ ✗

µ2,6 ≥ 0 α2 ≥ −1 ✓ ✗

µ3,4 ≥ 0 α1 ≤ 1 ✓ ✗

µ3,5 ≥ 0 α2 ≥ −1 ✓ ✗

µ4,5 ≥ 0 α1 ≥ −1 ✓ ✗

µ5,6 ≥ 0 α1 + α2 ≤ 0 ✓ ✓

(a) Inequalities
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Figure 15 Non-essential matching problem (G, λ) with a simple polytope Π⩾0. The vec-
tor of arrival rates is λ = (2, 4, 4, 2, 2, 2) ∈ R6, a particular solution of (ce) is µ◦ =
(1, 1, 2, 1, 1, 1, 1, 0) ∈ R8, and the chosen base vectors for ker(A) are b1 = (−1, 1, 1, 0, −1, 0, 1, −1)
and b2 = (0, 0, −1, 1, 0, 1, 0, −1).

▶ Proposition 5.13. Let µ be a vertex of Π⩾0. The following statements are equivalent:
(i) µ is bijective.
(ii) µ belongs to exactly d facets of Π⩾0 and none of the inequalities tight for µ is redundant.

In particular, all vertices of Π⩾0 are bijective if, and only if, the matching problem (G, λ) is
essential and the polytope Π⩾0 is simple.

Proof. To prove the equivalence of (i) and (ii), we first remark that the number of zero edge
coordinates of a vector µ ∈ Π⩾0 is by definition the number of inequalities that are tight
for µ. It is in particular at least the number of facets that intersect µ, with equality if, and
only if, none of the inequalities tight for µ is redundant.

If a vector µ is a vertex of Π⩾0, then µ belongs to at least d facets of Π⩾0. Now, the
vector µ is bijective if, and only if, d of its coordinates are zero, which in view of the
remark above is equivalent to say that µ belongs to exactly d facets of Π⩾0 and none of the
inequalities tight for µ is redundant.

As for the last statement, it follows a directly from Definition 5.9. ◀
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(f) Edge coordinates of (−1, 1, 0).
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Figure 16 Essential matching problem (G, λ) with a non-simple polytope Π⩾0. The arrival rate
is λ = (3, 3, 6, 3, 4, 4, 6, 3, 4, 4) ∈ R10. A particular solution and the chosen base vectors for ker(A)
are implicitly shown on the edges of Figure 16a.

6 Matching rates in surjective-only graphs

Section 5 described the polytope Π⩾0, defined as the set of non-negative solutions of (ce). In
this section, we investigate which of these solutions may, or may not, be achieved by a (stable)
policy. Unless stated otherwise, in this section, we consider a stabilizable matching problem
(G, λ) with a surjective-only compatibility graph G, so that the set Π⩾0 of non-negative
solutions of (ce) is non-trivial.

Given a policy Φ that stabilizes the matching problem (G, λ), we let µ(Φ) (resp. α(Φ))
denote the edge (resp. kernel) coordinates of the vector of matching rates in the model
(G, λ, Φ). We consider the set of matching rates achieved by stable policies (resp. by stable
greedy policies), defined as follows:

ΠG = {µ(Φ) : Φ is a greedy policy adapted to the compatibility graph G} ,

ΠP = {µ(Φ) : Φ is a stable policy adapted to the compatibility graph G} .

Section 6.1 focuses on the set ΠG . We show in particular that ΠG ⊆ Π>0, where Π>0 is the
(non-empty) set of positive solutions of (ce) (that is, solutions with positive coordinates). We
also show that, in many cases, the inclusion is strict. In contrast, we observe in Section 6.2
that non-greedy policies can achieve any vector in Π>0, and that filtering policies can even
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approach some faces of Π⩾0. More precisely, we conjecture that Π>0 ⊆ ΠP in general, and
we prove that ΠP = Π⩾0 if the support graph of each vertex of Π⩾0 is bijective. Informally,
these results show that non-greedy policies are more suitable than greedy policies to navigate
the set Π⩾0.

The following result will be useful throughout this section.

▶ Proposition 6.1. The sets ΠG and ΠP are convex.

Proof. See Appendix C.1. ◀

6.1 Greedy policies
Greedy policies are appealing candidates to control matching problems. Some of them,
like match-the-longest or first-come-first-matched, are easy to implement and stabilize all
stabilizable matching problems. Greedy policies may also be more easily accepted socially,
especially in situations involving human beings. We show in this section that, unfortunately,
in general, greedy policies cannot achieve all achievable matching rates. Indeed, although we
do not provide a universal tight description of ΠG (which we believe to be a difficult task),
we provide two simple examples where ΠG is a strict subset of Π>0. In contrast, Section 6.2
will introduce semi-filtering (non-greedy) policies and show that these policies can be used to
achieve every vector in the set Π>0 and some of the faces of the polytope Π⩾0.

Firstly, in Proposition 6.2 below, we show that greedy policies cannot reach the boundary
of the convex polytope Π⩾0.

▶ Proposition 6.2. If the compatibility graph G is surjective-only and the matching problem
(G, λ) is stabilizable, then the set ΠG is non-empty and ΠG ⊆ Π>0.

Proof. The set ΠG is non-empty because, as recalled in Section 2.4, the greedy policies
match-the-longest and first-come-first-matched are stable. We now prove that ΠG ⊆ Π>0.
Consider a stable greedy policy Φ and let µ = (µ1, µ2, . . . , µm) denote the matching rate
vector in the model (G, λ, Φ). Consider an edge ek = {i, j}. Since the policy Φ is greedy, two
items of classes i and j are always matched if the following sequence of events occurs: the
system is in the empty state ∅, then a class-i item arrives, and then a class-j item arrives.
Let p∅ denote the stationary probability that the model (G, λ, Φ) is in the empty state ∅.
We know that p∅ > 0 because the model is stable, and the previous remark implies that
µk ≥ p∅λiλj/

∑
ℓ∈V λℓ > 0. Since this is true for each edge ek ∈ E and each µ ∈ ΠG , we

conclude that ΠG ⊆ Π>0. ◀

Proposition 6.2 has the following consequence regarding the ability of greedy policies to
maximize linear reward functions.

▶ Corollary 6.3. Consider the problem of maximizing an edge-dependent reward defined by
a vector w as stated in Proposition 5.5. Let rmax = maxµ∈Π⩾0 w⊺µ be the optimal reward.
One of the two exclusive statements below is true:

(i) All vectors of Π⩾0 are optimal, i.e., w⊺µ = rmax for each µ ∈ Π⩾0.
(ii) All stable greedy policies are suboptimal, i.e., w⊺µ < rmax for each µ ∈ ΠG.

Proof. We know from Proposition 5.5 that the set of vectors µ ∈ Π⩾0 that maximize the
reward is a non-empty face F of Π⩾0. If F = Π⩾0, we are obviously in case (i) (i.e., all
µ ∈ Π⩾0 are optimal). One can verify that this corresponds to situations where the vector w



C. Comte, F. Mathieu, and A. Bušić 39

is orthogonal to ker(A) (for example, if all coordinates of w are identical7). Otherwise,
because of the lattice structure of the faces of a polytope, F is included into a facet of Π⩾0,
which means that there is at least one edge k ∈ E such that the k-th coordinate of all vectors
in F is zero in the edge basis. In particular, since all coordinates of the matching rate vector
under a stable greedy policy are positive in the edge basis, no greedy policy is optimal. ◀

Proposition 6.2 demonstrates that stable greedy policies can only achieve vectors of
matching rates with positive coordinates in the edge basis, i.e., ΠG ⊆ Π>0. In the remainder
of this section, we show that whether ΠG ⊊ Π>0 or ΠG = Π>0 depends on the matching
problem (G, λ) under consideration. Specifically, we investigate two examples in Sections 6.1.1
and 6.1.2 where ΠG is a strict subset of Π>0. In contract, in Section 6.1.3, we present a
well-chosen example where ΠG = Π>0, illustrating a case where greedy policies cover all
positive solutions of (ce).

6.1.1 Complete graph

We first consider a matching problem (Kn, λ), where Kn is the complete graph with n ≥ 3
nodes. According to Proposition 3.7, this matching problem is stabilizable if and only if
λi < 1

2
∑

j∈V λj for each i ∈ V . Propositions 6.4 and 6.5 below state that greedy policies do
not allow any degree of freedom, in the sense that the queue-size process and the vector of
matching rates are the same under all stable greedy policies. Indeed, the only independent
sets of a complete graph are the singletons, hence by (7) the state space of the queue-size
process under greedy policies is

QG(Kn) = {0} ∪
(⋃

i∈V

{ℓ1i : ℓ ∈ N>0}

)
, (25)

where 1i is the n-dimensional vector with one in coordinate i and zero elsewhere, for each
i ∈ V . This observation implies that greediness restricts the freedom in matching decisions:
all unmatched items belong to the same class, and an incoming item must be matched
with one of them if its class differs. This observation is formalized in Proposition 6.4.
Proposition 6.5 further builds on it to conclude that the set ΠG collapses to a single point
and directly express the unique vector of matching rates achieved by (stable) greedy policies.

In contrast, the polytope Π⩾0 exhibits a dimension d = m− n = n(n−3)
2 , where n = |V |

is the number of classes and m = |E| =
(

n
2
)

= n(n−1)
2 is the number of possible matches. In

particular, for n ≥ 4, the dimension d = m−n of ΠG is at least 2. Therefore, limiting ourselves
to greedy policies dramatically narrows the range of achievable solutions on complete graphs
larger than a triangle.

▶ Proposition 6.4 (Equivalence of greedy policies).
Consider the complete graph Kn with n ≥ 3 nodes.

(i) There is a unique size-based greedy policy that is adapted to the compatibility graph Kn.
This policy, called the natural greedy policy and denoted by ΦG(Kn), is the deterministic

7 Assume that all coordinates of w are identical. Then a vector y ∈ Rm is orthogonal to w if and only
if
∑

k∈E
yk = 0. For each vector y ∈ ker(A), we have Ay = 0, so that in particular

∑
k∈E

(Ay)k = 0.
But by definition of the matrix A, we also know that

∑
k∈E

(Ay)k = 2
∑

k∈E
yk.
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size-based policy defined on QG(Kn)× V by

ΦG(Kn)(q, i) =
{

j if qj ≥ 1 with j ̸= i,
⊥ otherwise.

(26)

(ii) Consider a greedy policy Φ adapted to the graph Kn, and let (S, | · |) denote its state
space. The policy Φ makes the same decisions as the natural greedy policy ΦG in the
sense that∑

s′∈S
Φ(s, i, ΦG(Kn)(|s|, i), s′) = 1, s ∈ S, i ∈ V.

In other words, all greedy policies are equivalent in the sense that they can all be reduced
to ΦG(Kn) (see “Equivalent policies” in Section 2.3.4).

(iii) For each greedy policy Φ adapted to the graph Kn and each sequence I of item classes,
we have (QG)t = Qt for each t ∈ N, where QG and Q are the queue-size processes of
the models (Kn, I, ΦG(Kn)) and (Kn, I, Φ), respectively.

Proof. See Appendix C.2. ◀

▶ Proposition 6.5 (Matching rates under greedy policies).
Consider a stabilizable matching problem (Kn, λ), where Kn is the complete graph with n ≥ 3
nodes, and let Φ denote a greedy policy adapted to Kn.

(i) The model (Kn, λ, Φ) is stable.
(ii) The matching rate vector µG in this model satisfies

(µG)k = λipj + λjpi, ek = {i, j} ∈ E, (27)

where, for each i ∈ V , pi is the stationary probability that queue i is non-empty, given by

pi = λi

(
∑

j ̸=i λj)− λi
p∅, (28)

and p∅ is the stationary probability that the system is empty, given by

p∅ =
(

1 +
∑
i∈V

λi

(
∑

j ̸=i λj)− λi

)−1

. (29)

In particular, we have ΠG = {µG} ⊊ Π>0 whenever n ≥ 4.

Proof. See Appendix C.2. ◀

Figure 17 illustrates this result on a complete graph K4 in which all arrival rates are equal
to 3. The particular solution µ◦ and the basis {b1, b2} of ker(A) that we use are shown on
Figure 17a. In the corresponding kernel basis, the polytope Π⩾0 is defined by the inequalities
α1 ≤ 1, α2 ≤ 1, and α1 + α2 ≥ −1, that is, it is the triangle with vertices (−2, 1), (1,−2),
and (1, 1). Yet, Proposition 6.5 shows that only the solution α = (0, 0) can be achieved by a
greedy policy.
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Figure 17 Matching problem (K4, λ) with λ = (3, 3, 3, 3).

6.1.2 Diamond graph
We now consider the diamond (double fan) graph introduced in Example 3.13, for which
we will show that the set ΠG of matching rate vectors achieved by stable greedy policies is
again a strict subset of the set Π>0 of positive solution of (ce), without being restricted to a
singleton as in Section 6.1.1 either. More specifically, we consider the diamond matching
problem (D, λ) defined as follows:

D = (V, E) with V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}},
λ = (λ1, λ̄2 + β, λ̄3 + β, λ4)

with λ1 > 0, λ̄2 > 0, λ̄3 > 0, λ4 > 0, β > 0, λ1 + λ4 = λ̄2 + λ̄3 = 1
2 ,

B = {(1,−1, 0,−1, 1)},
µ◦ = (2λ1λ̄2, 2λ1λ̄3, β, 2λ̄2λ4, 2λ̄3λ4),
µ = (2λ1λ̄2 + α, 2λ1λ̄3 − α, β, 2λ̄2λ4 − α, 2λ̄3λ4 + α), α ∈ R.

(30)

Parameterizing λ by β (= µ2,4 for each µ ∈ Π) is a notational convenience that does not lead
to any loss of generality: as already observed in Example 3.13, the stabilizability condition (ii)
writes λ̄2 > 0, λ̄3 > 0, and β > 0. We leave it to the reader to verify that our choices for
B and µ◦ are correct. Equation (30) implies in particular that the sets Π⩾0, Π>0, ΠP , and
ΠG are real intervals. We will now prove that the interval ΠG , without being reduced to a
singleton as in a complete graph, is still a strict subset of the interval Π>0.

Equivalence of stable greedy policies

Following the same approach as in Section 6.1.1, we first identify a common behavior shared
by all greedy policies (Proposition 6.6), and then we exploit this behavior to characterize the
matching rates achievable by stable greedy policies (Propositions 6.7 and 6.8). Since {1, 4} is
the only independent set of the diamond graph D that is not a singleton, the possible queue
states under any greedy policy can be partitioned as follows: either all queues are empty, or
exactly one class has a non-empty queue, or (only) classes 1 and 4 have non-empty queues.
In other words, the state space of the queue-size process under greedy policies adapted to
the graph D is

QG(D) = {0} ∪
(⋃

i∈V

{ℓ1i, ℓ ∈ N>0}

)
∪ {ℓ111 + ℓ414 : ℓ1, ℓ4 ∈ N>0} . (31)
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Therefore, greediness entirely determines the decisions made by greedy policies, except if an
item of class 2 or 3 enters while there are unmatched items of classes 1 and 4. Using the fact
that classes 2 and 3 are both compatible with classes 1 and 4, the next proposition shows
that all greedy policies adapted to the diamond graph make the same matching decisions as
the natural greedy policy adapted to the complete graph K3 obtained by “merging” classes 1
and 4 in the diamond graph.

▶ Proposition 6.6 (Equivalence of greedy policies).
Given the diamond graph D, we introduce the following notation:

Queue-size projection: For each q = (q1, q2, q3, q4) ∈ QG(D), we let ⟨q⟩ = (q1 + q4, q2, q3).
Class projection: We let ⟨i⟩ = i for each i ∈ {1, 2, 3,⊥} and ⟨4⟩ = 1.

Every greedy policy Φ adapted to the diamond graph D satisfies the following properties:
(i) If Φ is a deterministic size-based policy, then

⟨Φ(q, i)⟩ = ΦG(K3)(⟨q⟩, ⟨i⟩), (q, i) ∈ QG(D)× V.

where ΦG(K3) is the natural greedy policy (26) adapted to the complete graph K3.
(ii) In general, if Φ is a policy with state space (S, | · |), then∑

s′∈S

∑
j∈V ∪{⊥}:

⟨j⟩=ΦG(K3)(⟨|s|⟩,⟨i⟩)

Φ(s, i, j, s′) = 1, s ∈ S, i ∈ V.

(iii) For each sequence I of item classes, we have ⟨Qt⟩ = (QG)t for each t ∈ N, where Q and
QG are the queue-size processes of the models (D, I, Φ) and (K3, ⟨I⟩, ΦG), respectively,
with ⟨I⟩ = (⟨It⟩, t ∈ N).

Proof. See Appendix C.3. ◀

Loosely speaking, the main take-away of Proposition 6.6(iii) is that, in the matching model
(D, I, Φ), the process ((Qt,1 + Qt,4, Qt,2, Qt,3), t ∈ N) does not depend on the specific greedy
policy Φ that is applied, and it is in fact equal to the queue size process built by applying
the natural greedy policy ΦG(K3) in the complete graph K3 obtained by merging classes 1
and 4 in the diamond graph D.

Matching rates under stable greedy policies

Propositions 6.7 and 6.8 use the equivalence result of Proposition 6.6 to characterize the
matching rate vector under stable greedy policies. These propositions illustrate the com-
plementarity of edge and kernel coordinates: the results of Proposition 6.7 are easier to
state using edge coordinates, while those of Proposition 6.8 are easier to state using kernel
coordinates. The lower bound (32) on the matching rates in the diamond matching problem
are obtained by following a similar approach as in Proposition 6.5(ii).

▶ Proposition 6.7 (Matching rates under greedy policies – Edge coordinates).
Consider the matching model (D, λ, Φ), where (D, λ) is the diamond problem (30) and Φ is a
greedy policy adapted to the graph D.

(i) This matching model is stable.
(ii) The matching rate vector µ = µ(D, λ, Φ) satisfies µ2,3 = β = 1

2 (λ2 + λ3− λ1− λ4), and

µ1,2 ≥ λ1p2 + λ2p1, µ1,3 ≥ λ1p3 + λ3p1,

µ2,4 ≥ λ2p4 + λ4p2, µ3,4 ≥ λ3p4 + λ4p3,
(32)

where pi is the stationary probability that the system contains unmatched items that all
belong to class i, for each i ∈ V .
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(iii) Let p1,4 denote the stationary probability that the system contains unmatched items that
belong to class 1 or 4 (or both). We have

p2 = λ2

λ1 + λ3 + λ4 − λ2
p∅, p3 = λ3

λ1 + λ2 + λ4 − λ3
p∅,

p1,4 = λ1 + λ4

λ2 + λ3 − λ1 − λ4
p∅,

(33)

where p∅ is the stationary probability that the system is empty, whose value follows
from the normalization equation p∅ + p1,4 + p2 + p3 = 1. We also have

p1 >
λ1

λ2 + λ3 + λ4
p∅, p4 >

λ4

λ1 + λ2 + λ3
p∅. (34)

Proof. See Appendix C.3. ◀

Intuitively, the kernel coordinate α given in (30) (also visible in Figure 6) acts like a slider
that determines how much edges {1, 2} and {3, 4} are (dis)favored compared to edges {1, 3}
and {2, 4} in the long run. Remarkably, Proposition 6.8 below shows that the greedy policy
that favors edges {1, 2} and {3, 4} (resp. {1, 3} and {2, 4}) the most in the long run is also
the policy that favors these two edges the most in the short run. This result is proved by a
coupling argument. In addition, Proposition 6.8 uses the lower bound (32) in Proposition 6.7
to prove that, in the limit as β → +∞, all greedy policies yield the same matching rate
vector.

▶ Proposition 6.8 (Matching rates under greedy policies – Kernel coordinates).
Consider the diamond matching problem (D, λ) described in (30).

(i) The intervals Π≥0, Π>0, and ΠG are defined as follows in the kernel basis:

Π≥0 = [−2 min(λ1λ̄2, λ̄3λ4), 2 min(λ1λ̄3, λ̄2λ4)],
Π>0 = (−2 min(λ1λ̄2, λ̄3λ4), 2 min(λ1λ̄3, λ̄2λ4)),
ΠG = [α−, α+],

with −2 min(λ1λ̄2, λ̄3λ4) < α− ≤ α+ < 2 min(λ1λ̄3, λ̄2λ4). Hence, ΠG ⊊ Π>0 ⊊ Π≥0.
(ii) The coordinates α+ and α− satisfy the following properties:

a. α+ = α(Φ+), where Φ+ is the edge-priority policy adapted to the graph D whereby
edges {1, 2} and {3, 4} have the highest priority.

b. α− = α(Φ−), where Φ− is the edges-priority policy adapted to the graph D whereby
edges {1, 3} and {2, 4} have the highest priority.

c. If β → +∞ while λ1, λ̄2, λ̄3, and λ4 remain fixed, we have α+ → 0 and α− → 0.

Proof. See Appendix C.3. ◀

Taken together, Statements (i) and (iic) in Proposition 6.8 show that, as β → +∞, the
interval ΠG becomes reduced to a single point α = 0, meaning that all greedy policies yield
the same vector of matching rates, with edge coordinates µ = (2λ1λ̄2, 2λ1λ̄3, β, 2λ̄2λ4, 2λ̄3λ4).
The rationale behind this result is the following. In the regime where β = µ2,3 → +∞, we see
in (30) that the arrival rates of classes 2 and 3 become large compared to those of classes 1
and 4. As a result, items of classes 1 and 4 are matched (almost) always immediately, and
unmatched items belong to either class 2 or class 3 (but not both at the same time). In
the proof of Proposition 6.8(iic), this intuition is formalized by taking the limit of (33) as
β → +∞, which yields

p∅ −→ 0, p2 −→ 2λ̄2, p3 −→ 2λ̄3, p1,4 −→ 0.
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In this regime, the greediness of the policy allows no degree of flexibility in choosing the class
of the item to which an incoming item is matched, so the matching rates are unique.

▶ Remark 6.9. Some quantities in Proposition 6.8 are functions of the matching rate β = µ2,3,
but this dependency is kept implicit to simplify notation. In particular, the intervals Π⩾0
and Π>0 do not depend on β, but the interval ΠG and the coordinates α+ and α− do.

Numerical results
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Figure 18 Evolution of ΠG as a function of β in the diamond problem (30) with λ1 = λ̄2 =
λ̄3 = λ4 = 1

4 . For each β, ΠG is estimated by simulating the model (D, λ, Φ+) and leveraging the
symmetry of the problem. Π⩾0 and other bounds are displayed for comparison. All results are
expressed in kernel coordinates.

To illustrate Proposition 6.8, Figure 18 shows a symmetric example with λ1 = λ̄2 = λ̄3 =
λ4 = 1

4 . The figure compares Π⩾0 and ΠG with the bounds (32)–(34) (converted in the kernel
coordinates) and the limit α = 0. Each point forming the shape of ΠG = [α−, α+] is obtained
by running a simulation consisting of 1010 steps (as specified in Section 2.5). As announced
by Proposition 6.8, ΠG becomes reduced to a single point α = 0 when β → +∞. We also
notice that the bounds provided by (32)–(34) are not tight when β is small (in the sense that
the difference between α+ and the upper-bound is no longer negligeable compared to the
difference between α+ and the boundary 2 min(λ1λ̄3, λ̄2, λ4) of Π≥0), while at the same time
α+ and α− become arbitrarily close to the borders of Π⩾0 when β tends to zero (which does
not contradict the fact that ΠG is a strict subset of Π⩾0 as long as β > 0). The gap between
ΠG and the bounds (32)–(34) comes from the fact that, to obtain the lower bounds for p1
and p4 in (34), we neglected the case where there are both class-1 and class-4 unmatched
items, and this case is not negligible when β is small.

6.1.3 Fish graph
Sections 6.1.1 and 6.1.2 exhibited two stabilizable matching problems in which the matching
rates achievable by stable greedy policies were bounded away from the faces of the poly-
tope Π⩾0. These two examples may suggest that, in most stabilisable matching problems,
the restrictions imposed by greediness are so strong that we will also obtain ΠG ⊊ Π>0. We
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now consider another matching problem, called the Fish problem, where we conjecture on
the contrary that ΠG = Π>0. The Fish matching problem is defined as follows:

V = {1, 2, 3, 4, 5, 6},
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}, {5, 6}},
λ = (4, 4, 3, 2, 3, 2),
B = {(0, 0, 0, 1,−1,−1, 1)},

µ◦ = (3, 1, 1, 1
2 , 1

2 , 3
2 , 3

2 ),
µ = (3, 1, 1, 1

2 + α, 1
2 − α, 3

2 − α, 3
2 + α), α ∈ R.

(35)

The general solution µ given in (35) is shown in Figure 19. We can verify by a direct
inspection that this matching problem is stabilizable and that Π⩾0 = [− 1

2 , 1
2 ] in kernel

coordinates. As in Section 6.1.2, the kernel coordinate α acts like a slider that is positive
(resp. negative) if matches along edges {3, 4} and {5, 6} are more (resp. less) frequent than
matches along edges {3, 6} and {4, 5}. Conjecture 6.10 below is supported by an intuition of
proof and by extensive simulations discussed later in this section.
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Figure 19 Generic solution of (ce) in the Fish matching problem of (35) with λ = (4, 4, 3, 2, 3, 2).

▶ Conjecture 6.10. In the Fish matching problem of (35), we have ΠG =]− 1
2 , 1

2 [= Π>0.

Intuition of the proof

We build two families of stable greedy policies, denoted by (Φ+
k )k∈N and (Φ−

k )k∈N, such
that limk→+∞ α(Φ+

k ) = 1
2 and limk→+∞ α(Φ−

k ) = − 1
2 . The conclusion then follows from the

convexity of the set ΠG (Proposition 6.1). We focus on the family (Φ+
k )k∈N, as the family

(Φ−
k )k∈N is symmetrical (in the sense that it suffices to exchange classes 4 and 6).
The family (Φ+

k )k∈N is defined as follows. Let Φ+
∞ denote the edge-priority policy where

edges have the following descending priority order: {1, 3}, {2, 3}, {3, 4}, {5, 6}, followed by
all other edges in an arbitrary order. Let Φ+

0 denote the edge-priority policy where edges
have the following descending priority order: {3, 4}, {2, 3}, {1, 3}, {5, 6}, followed by all
other edges in an arbitrary order. The important point is that both policies prioritize edges
{3, 4} and {5, 6} over edges {3, 6} and {4, 5} (with the hope that this lead to a high α), but
that Φ+

∞ gives higher priority to the “tail” while Φ+
0 gives higher priority to the “trunk”.

Now, for each k ∈ N, Φ+
k is the deterministic size-based policy that follows Φ+

∞ when the
queue size of class 4 is at most k− 1 and Φ+

0 when the queue size of class 4 is at least k (that
is, Φ+

k (q, i) = Φ+
∞(q, i) if q4 ≤ k − 1 and Φ+

k (q, i) = Φ+
0 (q, i) if q4 ≥ k).

The rationale behind this definition is as follows. According to (35), α is maximal (i.e.,
equal to 1

2 ) when µ3,4 is equal to 1 and µ3,6 is equal to 0. If we allow non-greedy policies,
α = 1

2 can be achieved by merely applying the edge-filtering variant of match-the-longest
(or any maximally-stable policy) on the bijective subgraph of G obtained by eliminating
edge {3, 6}, that is, by never performing a match between classes 3 and 6. As we will see, the
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Figure 20 Edge-priority (greedy) policies in the Fish matching problem of (35).

family (Φ+
k )k∈N of (stable greedy) policies emulates this (non-greedy) edge-filtering policy by

favoring edge {3, 4} over edge {3, 6} while making the probability that q4 = 0 arbitrary small
as k increases. Roughly speaking, mixing the policies Φ+

∞ and Φ+
0 allows us to control q4:

Φ+
∞ is not stable and makes q4 go to infinity, while Φ+

0 is stable and reduces q4 when it is
large. All in all, Φ+

k keeps the value of q4 around k, so that the probability that q4 = 0 is
low when k is large. In the limit, q4 is always positive, so that the class-3 items that are
not matched with classes 1 or 2 are drained by class 4 (while class 6 is matched only with
class 5), so that µ3,4(Φ+

k ) tends to 1 and µ3,6(Φ+
k ) tends to 0 as k →∞.

We expect that a rigorous proof that µ3,6(Φ+
k ) tends to 0 as k → +∞ will involve the

following steps, some of which may require further investigation or analysis:
1. For each k ∈ N, the matching model (G, λ, Φ+

k ) is stable. We believe that stability can
be proved by applying a fluid-limit argument that generalizes the framework of [18] 8.
Therefore, for each k ∈ N, we can consider a random vector Qk = (Qk,1, Qk,2, . . . , Qk,n)
distributed like the vector of queue sizes in the matching model (G, λ, Φ+

k ) in stationary
regime, and we know that the vector µ(Φ+

k ) is well-defined.
2. For each k ∈ N, by definition of the policy Φ+

k , we have

µ(Φ+
k )3,6 = λ3P (Qk,4 = 0, Qk,6 > 0) + λ6P (Qk,3 > 0, Qk,5 = 0),

≤ (λ3 + λ6)P (Qk,4 = 0),

where the inequality arises because the events (Qk,4 = 0, Qk,6 > 0) and (Qk,3 > 0, Qk,5 =
0) are both included into the event (Qk,4 = 0) (in the latter case, this is because the
greediness of the policy prevents the system from containing unmatched items of classes 3
and 4 at the same time). Consequently, to prove that µ(Φ+

k )3,6 → 0, it suffices to prove
that P (Qk,4 = 0) → 0 as k → +∞. This argument rigorously supports the intuition
that, if class 4 becomes “unstable”, then this class “drains” all class-3 items that are not
matched with classes 1 and 2.

3. To prove that P (Qk,4 = 0)→ 0 as k → +∞, we believe that we can reason as follows:
We can prove that, for each k ∈ N, the conditional average rate at which class 3 is
matched with either class 4 or class 6, given that Qk,4 ≤ k − 1, is upperbounded by
λ3(1 + λ1

λ2+λ3−λ1
+ λ2

λ1+λ3−λ2
)−1 = 9

11 . This upperbound follows by coupling the fish
problem with a “worst-case” matching problem in which there is an infinite backlog of
items of classes 4 and 6 to be matched with class 3. Roughly speaking, this worst-case
matching problem can be obtained by taking λ4 = λ6 = +∞ in the fish problem; then,
focusing on nodes 1, 2, and 3, the system behaves like a paw graph with an unstable
pendant node obtained by merging classes 4 and 6.

8 Formalizing this generalization is outside the scope of this paper and could be the topic of a future work.
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Using this upperbound, we prove that at least one class among classes 4 and 6 becomes
unstable, in the sense that limk→+∞ P (Qk,4 = 0) = 0 or limk→+∞ P (Qk,6 = 0) = 0.
Since we can verify otherwise that class 6 does not become unstable, it follows that
limk→+∞ P (Qk,4 = 0) = 0.

The complete proof is left as an open question for future works. ◀

Numerical results

Figure 21 shows the values of the matching rates of Φ+
k and Φ−

k obtained by simulation,
using the setting described in Section 2.5, as functions of the threshold k ∈ N. The main
take-away is that α(Φ+

k ) and α(Φ−
k ) seem to converge to 1

2 and − 1
2 , respectively, thus

supporting Conjecture 6.10. Figure 21b, which displays µ(Φ+
k )3,6 = 1

2 − α(Φ+
k ), suggests

that the convergence is linear (with a logarithmic scale on the y-axis), meaning that the
rate µ(Φ+

k )3,6 decreases like γk for some 0 < γ < 1. Each curve is obtained by running a
simulation consisting of 1010 steps (as specified in Section 2.5).
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Figure 21 Evolution of the matching rates under Φ+
k and Φ−

k as functions of the threshold k,
as defined in the intuition of proof of Conjecture 6.10. Figure 21a is in kernel coordinates, while
Figure 21b zooms on µ(Φ+

k )3,6 = 1
2 − α(Φ+

k ).

Figure 22 shows the empirical distribution of the queue sizes under Φ+
100. One can observe

in particular that:
The distribution of Qk,4 is centered around k. This illustrates the design of Φ+

k , which
aims at “stabilizing” the number of class-4 items in the system around the value k. As a
consequence, the probability that there is no class-4 item is low.
Typically, the system does not contain items of classes 3 and 5, which is a consequence of
the low probability of having no class-4 items. The presence of class-4 items precludes
the presence of items of classes 3 and 5 because the policy is greedy.
Because of the symmetric roles of classes 1 and 2, the distributions of Qk,1 and Qk,2 are
identical, even though the presence of class-1 and class-2 items is mutually exclusive.

6.2 Arbitrary policies
We now focus on ΠP ⊆ Π⩾0, the set of matching rate vectors that can be achieved by an
arbitrary stable policy. A simple necessary and sufficient condition for a vertex of Π≥0 to
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Figure 22 Empirical complementary cumulative distribution function (CCDF) of the queue sizes
under policy Φ+

k for k = 100.

belong to ΠP was already derived in Proposition 5.7: if µ is a vertex of Π⩾0, then µ ∈ ΠP
if and only if the vertex µ is bijective (in the sense that its support graph is bijective).
Proposition 6.11 uses this result to characterize which faces of the polytope Π⩾0 can be
entirely covered by stable policies.

▶ Proposition 6.11. For each face F of the polytope Π⩾0, we have F ⊆ ΠP if and only if
all vertices of F are bijective. In particular, ΠP = Π⩾0 if and only if the polytope Π⩾0 is
simple and the matching problem (G, λ) is essential.

Proof. The first statement is a consequence of the convexity result of Proposition 6.1 and
the characterization of the vertices of the polytope Π⩾0 in Proposition 5.7. The second
statement is a consequence of Proposition 5.13. ◀

Achieving injective-only vertices

Although Proposition 5.7 shows that injective-only vertices cannot be achieved by stable
policies, we now introduce a sequence of stable policies that we conjecture yield a sequence
of matching rate vectors that are arbitrarily close a vertex of the polytope Π⩾0, even if this
vertex is injective-only. This conjecture is supported by numerical results shown later in this
section.

▶ Conjecture 6.12. Consider a vertex µ of Π⩾0 and let G = (V, E) denote its support graph.
For each k ∈ N, consider the following semi-filtering policy, denoted by Φk(µ):

If the size of the longest queue is less than k, apply the filtering match-the-longest policy
adapted to G with filter E;
Otherwise, apply the greedy match-the-longest policy adapted to G.

Φk(µ) is stable for each k ∈ N and limk→∞ µ(Φk(µ)) = µ.

Intuition of the proof. In essence, the approach is similar to the one that supports Conjec-
ture 6.10: we take a possibly unstable policy that achieves the desired goal (a matching rate
vector equal to µ), and we make it stable by reverting to a stable policy when the queue
sizes become too large. If the threshold is large enough, most matches will be made under
the unstable policy that achieves the desired goal.

We present here a sketch of proof for the case where G is a bipartite graph, more precisely
a tree (like the support graphs of the vertices in Example 3.13 when λ1 = λ̄2 = λ̄3 = λ4).
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The tree case is the most difficult to handle. If G is a unicyclic graph with an odd cycle,
the problem is simplified by the stabilizability of (G, λ). If G is made of multiple connected
components, the proof needs to compare the model to a virtual model where each component
acts independently and accounts for the interactions between the components. For example,
when one the queue is longer than k, all components may interact when decisions follow the
match-the-longest policy on the graph G.

The stability of the model (G, λ, Φk(µ)) for each k ∈ N can be proved using the Lyapunov-
Foster theorem [8, Theorem 1.1 in Chapter 5], using the fact that, outside a finite set of states
(those where all queues are shorter than k), the policy Φk(µ) behaves like the stable match-the-
longest policy on the graph G. Consider a random vector Q = (Q1, Q2, . . . , Qn) distributed
like the vector of queue sizes in the matching model (G, λ, Φk(µ)) in stationary regime, and let
Q+ =

∑
i∈V+

Qi and Q− =
∑

i∈V−
Qi denote the total queue sizes in the parts V+ and V− of

the (bipartite) graph G. Also let L+ = max(Qi, i ∈ V+), L− = max(Qi, i ∈ V−), and L = L+
if L+ ≥ L− and L = −L− if L+ < L−, so that |L| is the size of the longest queue and the
sign of L indicates the part (V+ or V−) to which this queue belongs. The random variable L

will play a crucial role in the proof. Lastly, we let pℓ = P(L = ℓ), ℓ ∈ {. . . ,−2,−1, 0, 1, 2, . . .},
denote its distribution. The dependency of these random variables on k (via the policy Φk(µ))
is left implicite to simplify notation.

To show that limk→∞ µ(Φk(µ)) = µ, we need to upperbound the probability that a match
is performed along an edge that does not belong to the support of the vertex µ. To do this,
we upperbound the probability of applying the greedy match-the-longest policy on the whole
graph G, i.e., the probability

∑
|ℓ|≥k pℓ that the size of the longest queue is k or more.

Intuitively, we expect that the stability of the match-the-longest policy implies a uniform
drift of the size of the longest queue towards the origin whenever this size is larger than k,
provided that k is large enough. Formally, we conjecture that there exist K ∈ N and
0 < ρ < 1 such that, for each k ≥ K, we have under Φk that pℓ+1 ≤ ρpℓ for each ℓ ≥ k and
pℓ−1 ≤ ρpℓ for each ℓ ≤ −k. In particular,

∑
ℓ≥k pℓ ≤ 1

1−ρ pk and
∑

ℓ≤−k pℓ ≤ 1
1−ρ p−k. This

implies that, if pk and p−k go to 0 as k goes to infinity, the probability that the filter on E

is disabled goes to 0 as well.
To control pk and p−k, we now need to consider the cases where the size of the longest

queue is at most k. We argue that, as long as |L| ≤ k, the dynamics of L is mainly controlled
by an unbiased random walk between the two parts of the bipartite graph. More precisely, as
long as |L| ≤ k, the difference Q+ −Q− behaves like an unbiased random walk because any
arrival of a class in V+ increases the difference by one, any arrival of a class in V− decreases
the difference by one, and the arrival rates of V+ and V− are equal (see Equation (24)). We
conjecture that, when |Q+ −Q−| is large enough (while still satisfying |L| ≤ k), a distinctive
structure emerges due to the filtered match-the-longest policy: the queues in one part of
the graph have approximately equal sizes, while the queues in the other part are empty. In
particular, we conjecture that the typical states of the system (when |L| ≤ k) verify (in some
sense) L ≈ Q+−Q−

|V+| if Q+ > Q− and L ≈ Q+−Q−
|V−| if Q+ < Q−. In a true unbiased random

walk over a bounded range of integers, all states have equal probabilities. By comparing
the evolutions of L and Q+ − Q− and taking into account the border cases (|L| = k), we
conjecture that there exist K ′ ∈ N and c > 0 such that, if k ≥ K ′, then pℓ ≥ c max(pk, p−k)
for all ℓ ∈ {−k, . . . ,−1, 0, 1, . . . , k}. In particular, both pk and p−k should be upperbounded
by (c(2k + 1))−1 when k is large enough.

By combining the two cases |L| ≥ k and |L| ≤ k, we get
∑

|ℓ|≥k pℓ = O(1/k). In other
words, the probability that the size of the longest queue is greater than k tends to 0 as k goes
to infinity. As matchings outside E occur only when the size of the longest queue is greater
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than k, we conclude that the matching rate of an edge outside E goes to 0, which by continuity
of the conservation principle and injectivity of G implies that limk→∞ µ(Φk(µ)) = µ. ◀

One drawback of the semi-filtering policies introduced in Conjecture 6.12 is that, as
k → +∞ and we approach an injective-only vertex, the average size of the longest queue
tends to grow. Therefore, there is a trade-off between approaching an injective-only vertex
and minimizing the waiting time. This issue is similar to the threshold-based greedy policies
introduced in Conjecture 6.10, where the vertices of Π⩾0 could be reached asymptotically by
increasing the average size of a queue.

▶ Remark 6.13. In [29], a family of policies is introduced to optimize a reward function on
edges. The goal is similar to ours, with two main differences: first, the aim is to optimize a
reward function on matching rates without providing a description of the limit rate vector,
while we show that the limit rate vector is a vertex of Π⩾0; second, each policy of the
family makes decisions based on a utility function that is a convex combination of the
edge-dependent reward and the queue size, and matching decisions are based on virtual
queues that can become negative. The policies are indexed by the coefficient β of the convex
combination, which determines the trade-off between maximizing the reward and minimizing
the queue size, and which is the counterpart of the threshold k. Yet, the authors also notice
in their simulations that the queue sizes grow as 1/β, which is the counterpart of our k.

If Conjecture 6.12 holds, which we strongly believe and will support with numerical
results, we obtain a simple characterization of the matching rates that can be achieved by a
stable policy.

▶ Corollary 6.14. Any positive solution of the conservation equation (ce–2) can be obtained
by a stable policy. In other words,

Π>0 ⊆ ΠP ⊆ Π⩾0.

Proof. We establish that ΠP ⊆ Π⩾0 by recalling that any stable policy yields a matching
rate vector that satisfies (ce) and has non-negative coordinates.

We now prove that Π>0 ⊆ ΠP . The closure of ΠP is convex, as ΠP itself is convex.
According to Conjecture 6.12, the closure of ΠP contains all the vertices of Π⩾0, thereby
encompassing Π⩾0 as well by convexity. Consequently, still by virtue of convexity, ΠP
contains the interior9 of its closure, which includes the interior of Π⩾0, denoted as Π>0. ◀

Numerical results

To provide a numerical support for Conjecture 6.12, we evaluated Φk(µ) for some injective-
only vertices. We first considered the the diamond problem (30) with λ1 = λ̄2 = λ̄3 = λ4 = 1

4
and β = 1

8 . The two vertices of Π≥0 have injective-only support graphs that are identical
up to permutation of nodes 2 and 3. We choose to focus on the vertex µ = ( 1

8 , 0, 1
8 , 0, 1

8 ):
its support consists of the line {1, 2}, {2, 3}, {3, 4} (a simple example of a tree), so that the
edges {1, 3} and {2, 4} should be avoided. Each curve is obtained by running a simulation
consisting of 1010 steps (as specified in Section 2.5).

Figure 23 shows the convergence of µ(Φk(µ)) to µ by measuring as a function of k the
leaking rate µ1,3(Φk(µ)) + µ2,4(Φk(µ)), i.e., the total matching rates observed along the

9 Here the notion of interior is relative to the canonic topology of the d-dimensional affine space of the
solutions of the conservation equation.
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forbidden edges {1, 3} and {2, 4}. The convergence seems to be logarithmic, i.e., like 1/k.
This is in line with the intuition of the proof of Conjecture 6.12, which states that the
probability to enable forbidden edges should behave like O(1/k). The leaking rate achievable
by Φ+, the greedy edge-priority policy defined in Proposition 6.8, is displayed for comparison
purposes. Φ+ minimizes the leaking rate among all greedy policies. As expected, Φk(µ)
yields a lower leaking rate than Φ+ for large values of k. However, it can be observed that
Φ0(µ) exhibits a higher leaking rate. This is actually expected: when k = 0, filtering is
completely disabled, and thus Φ0(µ) represents the match-the-longest (greedy) policy, which
does not attempt to reduce matchings along the forbidden edges.
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Figure 23 Total matching rate along the forbidden edges under policy Φk(µ) in the diamond prob-
lem of (30), with λ1 = λ̄2 = λ̄3 = λ4 = 1

4 and β = 1
8 . The vertex µ has support {1, 2}, {2, 3}, {3, 4},

so that the edges to avoid are {1, 3} and {2, 4}. The performance of the greedy edge-priority policy
Φ+ is displayed for comparison.

As mentioned previously, approaching an injective-only vertex should cause the queues to
become arbitrarily large. To support this assertion, we studied by simulation the empirical
distributions of the queue sizes. Although we do not believe that the sizes of all four classes
of the model (D, λ, Φk(µ)) follow the same distribution, the difference was not visible in our
observations because it is only of second order compared to the overall increase of queue size
as k increases. Figure 24a presents, for various values of k, the unique observed distribution.
For a given class i, the following comments can be made:

The queue is empty half of time. Referring to the intuition of the proof of Conjecture 6.12,
this is related to our observation that, as long as the maximum queue size is below k,
there is always one part of the bipartite subgraph whose queues are empty, and the
difference Q+ −Q− in total queue size between the two parts behaves like an unbiased
random walk. This is due to the fact that the total arrival rates within each part are
equal to each other. See Example 3.12 and Remark 5.8 for more insights.
Otherwise, the size of queue i appears to follow a uniform distribution on {1, 2, . . . , k}.
The probability that the size of queue i exceeds k seems to be negligible (as observed in
Figure 23, we conjecture a decrease in O(1/k)).

These observations align with the intuition of proof that supports Conjecture 6.12. In
particular, most of the time, the queue sizes are short (i.e., below k) and we apply a filtering
policy, so that the evolution of the queue sizes resembles an unbiased random walk truncated
by k. The difficulty in distinguishing between the distributions of different queue sizes can be
attributed to the fact that all distributions are primarily influenced by this unbiased random
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walk. In comparison, Figure 24b presents the empirical CCDF of the queue sizes under Φ+,
yielding the following insights:

The queue sizes are smaller under Φ+ compared to Φk(µ).
Due to symmetry in the matching model, Q1 and Q4 follow the same distribution, as do
Q2 and Q3. These two distributions are clearly distinguished by the simulations.
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Figure 24 Queue distributions of Φk(µ) and Φ+ for the diamond problem (30).

We made the same experiments on the codomino matching problem of Example 5.11.
We choose the injective-only vertex µ depicted in Figure 15f: its support consists of three
non-adjacent edges {1, 6}, {2, 3}, {4, 5}, that is, three connected components that are all
bipartite. Edges {1, 2}, {2, 6}, {3, 4}, {3, 5}, and {5, 6} should be avoided.

Figure 25 measures the leaking rate of Φk(µ) along the five forbidden edges as k increases.
As before, the convergence seems to be logarithmic, i.e., of order 1/k. We also designed for
comparison a greedy policy similar to Φ+ but adapted to the codomino. This policy, which
we also call Φ+ by convenience, is the edge-priority policy adapted to the codomino graph
whereby: edges {1, 6}, {2, 3}, {4, 5} have the highest priority; edges {2, 6} and {3, 5} have
the lowest priority. We leave it to the reader to verify that this policy is properly defined in
the sense that all possible matching decisions are unambiguous. As for the diamond problem,
we observe that Φk(µ) yields a lower leaking rate than Φ+ except for k = 0, where it behaves
like the match-the-longest policy and does not take the vertex µ into account at all.

Figure 26 presents the empirical distribution of the queue sizes. Like for the diamond
problem, the simulations do not show visible differences between the distributions of different
classes. Figure 26a shows the (unique) empirical distribution for various values of k. We
observe again that the queues are empty half of time, and that otherwise they follow
a (relatively) uniform distribution on {0, 1, 2, . . . , k}. In comparison, the queues under
policy Φ+, displayed in Figure 26b, are more compact. That Q1, Q2, and Q5 have the same
distribution as Q4, Q3, and Q6, respectively, is a consequence of the model symmetry.
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A Minimal stability region for greedy matching policies

The following result gives a sufficient stability condition for greedy matching policies. The
proof relies on a linear Lyapunov function. This result can be seen as the counterpart of [9,
Proposition 5.1] for non-bipartite matching models.

▶ Proposition A.1. Consider a matching problem (G, λ) with a connected graph G. If∑
i∈V (I)

λi >
1
2
∑
i∈V

λi, I ∈ I, (36)

then the matching model (G, λ, Φ) is stable for every greedy matching policy Φ.

Proof. Consider a matching problem (G, λ) that satisfies (36) and a greedy matching policy Φ
adapted to the graph G. Since the Markov chain (St, t ∈ N) associated with the matching
model (G, λ, Φ) depends on the vector λ only up to a positive multiplicative constant, we
can assume without loss of generality that

∑
i∈V λi = 1. Let S denote the state space of

this Markov chain and | · | the corresponding queue-size function. We consider the Lyapunov
function F : S → R defined by F (s) =

∑
i∈V |s|i (that is, F (s) is the number of unmatched

items in state s) for each s ∈ S. For each t ∈ N and s ∈ S, we have

E (F (St+1) | St = s)− F (s) =
∑

i∈V \V (I)

λi −
∑

i∈V (I)

λi = −

 ∑
i∈V (I)

λi −
∑

i∈V \V (I)

λi

 ,
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where I = {i ∈ V : |s|i ≥ 1} is the set of classes of unmatched items in state s. Importantly,
if F (s) > 0 (that is, s ̸= ∅), then I is an independent set of the compatibility graph G

because it is non-empty and the policy Φ is greedy. It follows that, for each s ∈ S \ {∅},

E (F (St+1) | St = s)− F (s) ≤ −ε, with ε = min
I∈I

 ∑
i∈V (I)

λi −
∑

i∈V \V (I)

λi

 .

Equation (36) implies that ε > 0. Using the Lyapunov-Foster theorem [8, Theorem 1.1 in
Chapter 5], we conclude that the matching model (G, λ, Φ) is stable. ◀

As one would expect, any matching problem (G, λ) that satisfies (36) is stabilizable in the
sense of Definition 2.4. Indeed, (36) implies Proposition 3.7(ii) because I ⊆ V \ V (I) for
each I ∈ I. Corollary A.2 below shows that, conversely, whether a stabilizable matching
problem satisfies (36) depends on the structure of the graph G: conditions (i) and (ii) exhibit
compatibility graphs G such that (36) is satisfied whenever the matching problem (G, λ) is
stabilizable, while conditions (iii) and (iv) exhibit stabilizable compatibility graphs G for
which (36) is never satisfied.

▶ Corollary A.2. Consider a matching problem (G, λ).
Under the following two conditions, the stabilizability of the matching model (G, λ) implies
that (36) is satisfied, and therefore that the matching model (G, λ, Φ) is stable under every
greedy policy Φ adapted to G:

(i) G is a complete graph with n ≥ 3 nodes.
(ii) G is the diamond graph of Example 3.13.

Under the following conditions, (36) is never satisfied:
(iii) The graph G has diameter greater than or equal to 3.
(iv) The graph G contains a leaf (that is, a node with degree 1).

Proof. We first need to prove that, under either condition (i) or condition (ii), the matching
model (G, λ) is stabilizable if and only if (36) is satisfied. We proceed by verifying that,
under either of these two conditions, Proposition 3.7(ii) and (36) are equivalent:

(i) First assume that condition (i) is satisfied. The independent sets of a complete graph Kn

are the singletons. Using this observation, we can verify that Proposition 3.7(ii) and (36)
are both equivalent to λi < 1

2
∑

i∈V λi for each i ∈ V .
(ii) Now assume that condition (ii) is satisfied, that is, G is the diamond graph. The

conclusion follows by recalling that Proposition 3.7(ii) simplifies to (13), and then by
observing that (13) and (36) are equivalent.

To prove that (36) cannot be satisfied under either condition (iii) or (iv), we proceed by
contradiction:
(iii) First assume that condition (iii) is satisfied, and let i and j denote two nodes that are

at distance 3 or more. In particular, the sets Vi and Vj are disjoint. If (36) is satisfied,
then applying this equation to both {i} and {j} and summing the inequalities yields∑

i′∈Vi∪Vj
λi′ >

∑
i′∈V λi′ , which is a contradiction since Vi ∪ Vj ⊆ V . Hence, (36)

cannot be satisfied by both {i} and {j}.
(iv) Now assume that condition (iv) is satisfied. Let i denote a leaf node of G and j the

(only) neighbor of i. Then again, applying (36) to both {i} and {j} and summing the
inequalities yields

∑
i∈Vj∪{j} λi′ >

∑
i′∈V λi′ , which is again a contradiction.

◀
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B Proof of Proposition 5.3

The proof is based mainly on the notion of cycle space in a graph. We briefly summarize the
concepts that are useful to understand the proof (see [19, Section 1.9] for details).

A spanning subgraph of a graph G = (V, E) is a subgraph G′ = (V, E′) with E′ ⊆ E.
Importantly, G and G′ have the same set of nodes. A subgraph is Eulerian if every
vertex has an even degree (possibly zero). In particular, if E′ is a set of edges that form
a cycle in G, then the graph (V, E′) is Eulerian. The cycle space of G is the vector
space made of all Eulerian spanning subgraphs of G, using the symmetric difference of
the edge sets for addition and the two-element field for scalar multiplication. Equivalently,
the cycle space can be described as a vector space of the finite field Z/2Z: each vector
g = (g1, g2, . . . , gm) in this vector space satisfies

∑
k∈Ei

gk = 0 (modulo 2) for each i ∈ V ,
and the addition and multiplication are the usual operations in Z/2Z. For example, if G is
the codomino graph of Figure 13, the spanning subgraphs G1, G2, and G3 of G with edge sets
E1 = {{1, 2}, {1, 6}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, E2 = {{2, 3}, {2, 6}, {3, 5}, {5, 6}}, and E3 =
{{1, 2}, {1, 6}, {2, 6}}, respectively, belong to the cycle space of G. The edge set of the addition
G1+G2 is the set {{1, 2}, {1, 6}, {2, 6}, {3, 4}, {3, 5}, {4, 5}} of edges that are either in E1 or in
E2, but not in both. Similarly, the edge set of G1 + G3 is {{2, 3}, {2, 6}, {3, 4}, {4, 5}, {5, 6}},
and the edge set of G2 + G3 is {{1, 2}, {1, 6}, {2, 3}, {3, 5}, {5, 6}. One can verify that
{G1, G2, G3} forms a basis of the cycle space of G. Importantly, in general, the dimension of
the cycle space is m− n + 1.

Proof that Algorithm 1 terminates. We first prove the existence of edge a defined on line 3
of Algorithm 1. By definition of a spanning tree, T contains n− 1 edges and, for each edge
a ∈ E \T , T ∪{a} contains a unique cycle. The m−n + 1 = |E \T | cycles thus obtained are
independent in the sense that each cycle contains at least one edge (a) that is not contained
in the other cycles. Therefore, these m− n + 1 cycles form a basis of the cycle space of G.
Since a linear combination of even cycles cannot produce a subgraph consisting of a single
odd cycle10, and since G contains an odd cycle (as it is non-bipartite), then at least one of
the m− n + 1 basis cycles is odd.

We now verify that, for each s ∈ E \ (T ∪{a}), T ∪{a, s} contains either (i) an even cycle
Cℓ or (ii) a kayak paddle KPℓ,r,p with two odd cycles. By construction, T ∪ {a} contains a
unique cycle Cr, which is odd, and T ∪ {s} contains a unique cycle Cℓ. T ∪ {a, s} contains
both Cr and Cℓ. We now proceed by elimination:

If Cℓ is even, then Cℓ is an even cycle included into T ∪ {a, s}, and we are in case (i).
If Cℓ is odd and shares at least one edge with Cr, then the symmetric difference of Cr and
Cℓ is an even cycle, and it is again included into T ∪ {a, s}, so we are again in case (i).
If Cℓ is odd and Cr and Cℓ have no edge in common, then we are in case (ii). ◀

Proof that Algorithm 1 returns the correct result. We finally prove that the family B re-
turned by Algorithm 1: (i) has cardinality m − n, (ii) is linearly independent, and (iii) is
included into the kernel of A. We prove each item one after another:

(i) The family B has cardinality m− n: It suffices to observe that B has same cardinality
as E \ (T ∪ {a}), which we already mentioned has cardinality m− n.

10 A linear combination of even cycles may produce a subgraph consisting of an even number of disjoint
odd cycles, as illustrated by G1 + G2 in the example above, but not a subgraph consisting of one odd
cycle. Indeed, the symmetric difference of two edge sets contains an even number of edges if both edge
sets contain an even number of edges.
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(ii) The family B is linearly independent: For each s ∈ E \ (T ∪ {a}), the basis vector
constructed from edge s is the only vector in B whose support contains this edge.

(iii) The family B is included into the kernel of A: Let b ∈ B. Our goal is to prove that b

belongs to the kernel of A, i.e., that
∑

k∈Ei
bk = 0 for each i ∈ V . First observe that,

for each i ∈ V , we have
∑

k∈Ei
bk =

∑
k∈Ei∩S bk, where S is the support of the vector b.

In particular, we have immediately
∑

k∈Ei
bk = 0 for each i ∈ V such that Ei ∩ S = ∅.

Now consider a node i ∈ V such that Ei∩S ̸= ∅. We make a case disjunction depending
on the support S of b:

If S is an even cycle Cℓ, then Ei ∩S = {k1, k2}, where k1 and k2 are two consecutive
edges of the cycle Cℓ. Line 10 in the algorithm implies that bk1 = −bk2 ∈ {1,−1}.
It follows that

∑
k∈Ei

bk = bk1 + bk2 = 0.
If S is a kayak paddle KPℓ,r,p with odd cycles Cℓ and Cr and central path Pp, p ∈ N,
we again distinguish several cases:
Node i does not belong to the central path: If Ei ∩ S ⊆ Cℓ or Ei ∩ S ⊆ Cr, we

conclude as before.
Node i does not belong to a cycle: If Ei ∩ S ⊆ Pp, then Ei ∩ S = {k1, k2} where

k1 and k2 are two consecutive edges of the path Pp. Line 22 of the algorithm
implies that bk1 = −bk2 ∈ {2,−2}. It follows that

∑
k∈Ei

bk = bk1 + bk2 = 0.
Node i belongs to a cycle and the central path: The only remaining case is when

Ei∩S intersects several sets among Cℓ, Cr, and Pp. If p = 0, that is, if the central
path is the node i, then Ei∩S = {k1, k2, k3, k4}, where k1 and k2 (resp. k3 and k4)
are two consecutive edges in Cℓ (resp. Cr). Lines 18 and 26 yield bk1 = bk2 = −1
and bk3 = bk4 = 1, which implies that

∑
k∈Ei

bk = bk1 + bk2 + bk3 + bk4 = 0. If
p ≥ 1, then Ei ∩ S = {k1, k2, k3}, where k1 and k2 are two consecutive edges of
either Cℓ or Cr, and k3 is an edge in Pp. Lines 18, 22, and 26 of the algorithm
imply that bk1 = bk2 ∈ {1,−1} and hat bk3 = −2bk1 , so that we conclude again
that the desired sum is zero. ◀

C Proofs of the results of Section 6.1

C.1 Proof of Proposition 6.1
Consider a stabilizable matching problem (G, λ) and let ΠP (resp. ΠG) denote the set of
vectors of matching rates achievable by stable policies (resp. by stable greedy policies) adapted
to the compatibility graph G.

Convexity of ΠP

Consider two (extended) policies Φ1 and Φ2 that stabilize the matching problem (G, λ). The
state-space, queue-size function, and empty state of Φ1 (resp. Φ2) are denoted by S1, | · |1,
and ∅1 (resp. S2, | · |2, and ∅2). Given 0 < β < 1, our goal is to build a matching policy Φβ

that also stabilizes the matching problem (G, λ) and satisfies µ(Φβ) = βµ(Φ1) + (1−β)µ(Φ2).
Intuitively, the policy Φβ will consistently follow the decisions of either Φ1 or Φ2 as long

as the system is non-empty, and switch between these two policies each time the system
becomes empty (therefore, at renewal times). The probability of choosing either policy after
visiting the empty state will be chosen to achieve the desired matching rate vector on the
long run. More formally, the policy Φβ will have the following characteristics:

State space Sβ = (S1 × {∅2}) ∪ ({∅1} × S2).
Queue-size function | · |β defined by |(s1, s2)|β = |s1|1 + |s2|2 for each (s1, s2) ∈ Sβ .
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Empty state: ∅β = (∅1,∅2).
For some 0 < γβ < 1 that will be specified later, the matching policy Φβ is defined as follows:

Φβ((∅1,∅2), i, j, (s1,∅2)) = γβΦ1(∅1, i, j, s1), s1 ∈ S1, i ∈ V, j ∈ V ∪ {⊥},
Φβ((∅1,∅2), i, j, (∅1, s2)) = (1− γβ)Φ2(∅2, i, j, s2), s2 ∈ S2, i ∈ V, j ∈ V ∪ {⊥},
Φβ((s1,∅2), i, j, (s′

1,∅2)) = Φ1(s1, i, j, s′
1), s1 ∈ S1 \ {∅1}, s′

1 ∈ S1,

Φβ((∅1, s2), i, j, (∅1, s′
2)) = Φ2(s2, i, j, s′

2), s2 ∈ S2 \ {∅2}, s′
2 ∈ S2.

The first two equations say that, when the system is empty, we next apply Φ1 with probability
γβ and Φ2 with probability 1− γβ . The third (resp. fourth) equation says that, once we start
applying policy Φ1 (resp. Φ2), we keep applying this policy until we re-visit the empty state.

The stability of the policies Φ1 and Φ2 implies that of the policy Φβ . According to the
elementary renewal theorem for renewal reward processes, the vector giving the long-run
average matching rates under the policy Φβ is given by

µ(Φβ) = γβT1µ(Φ1) + (1− γβ)T2µ(Φ2)
γβT1 + (1− γβ)T2

,

= γβT1

γβT1 + (1− γβ)T2
µ(Φ1) + (1− γβ)T2

γβT1 + (1− γβ)T2
µ(Φ2).

where T1 (resp. T2) denotes the mean number of matches between two successive visits to
the empty state ∅1 (resp. ∅2) in the matching model (G, λ, Φ1) (resp. (G, λ, Φ2)). We let
the reader verify that the following value of γβ yields µ(Φβ) = βµ(Φ1) + (1− β)µ(Φ2):

γβ = βT2

(1− β)T1 + βT2
.

Convexity of ΠG

It suffices to observe that, if the policies Φ1 and Φ2 are greedy, so is the policy Φβ .

C.2 Proof of the results of Section 6.1.1 for the complete graph
Proposition 6.4(i)

Consider a (possibly random) size-based greedy policy Φ : QG(Kn)× V × (V ∪ {⊥})→ [0, 1],
as defined in Remark 2.1, where QG(Kn) is given in (25). Given (q, i) ∈ QG(Kn)× V , the
definition of QG(Kn) implies that {j ∈ Vi : qj ≥ 1} is either a singleton or the emptyset. In
the former case, letting j denote the unique element of the singleton, we have Φ(q, i,⊥) = 1
if i = j, while the greediness of Φ implies that Φ(q, i, j) = 1 if i ̸= j. In the latter case, we
have directly Φ(q, i,⊥) = 1. In all cases, the matching decision is deterministic and makes
the same decisions as in (26).

Proposition 6.4(ii)

The same argument can be repeated for an arbitrary greedy policy Φ with state space (S, | · |).
Given (s, i) ∈ S × V , we know that |s| ∈ QG(Kn), so that {j ∈ Vi : |s|j ≥ 1} is either a
singleton or the emptyset. In the former case, letting j denote the unique element of the
singleton, we have

∑
s′∈S Φ(s, i,⊥, s′) = 1 if i = j, while the greediness of Φ implies that∑

s′∈S Φ(s, i, j, s′) = 1 if i ̸= j. In the latter case, we have directly
∑

s′∈S Φ(s, i,⊥, s′) = 1.
In all cases, we have

∑
s′∈S Φ(s, i, ΦG(|s|, i), s′) = 1.
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Proposition 6.4(iii)

This statement follows directly from Proposition 6.4(ii) and from the fact that, under any
matching policy, the dynamics of the queue-size process is fully specified by the sequence of
incoming item classes and the matching decisions via (2).

Proposition 6.5(i)

Proposition 6.5(i) is a consequence of Corollary A.2(i).

Proposition 6.5(ii)

We can focus without loss of generality on the first-come-first-matched policy, as Proposi-
tion 6.4(iii) implies that all greedy matching policies yield the same vector of matching rates.
Equation (27) follows by observing that, for each edge ek = {i, j} ∈ E, a match between
classes i and j happens in one of the following two cases:

a class-i item arrives while queue j is non-empty, which happens at rate λipj ;
a class-j item arrives while queue i is non-empty, which happens at rate λjpi.

Equations (28) and (29) follow from [15, Proposition 5]. Indeed, for each i ∈ V , applying
[15, Equation (10)] to the independent set {i} yields (28), and the value of p∅ given in (29)
follows from the normalizing equation. This result may also be obtained more directly by
observing that, for each i ∈ V , the restriction of the transition diagram of the Markov chain
(Kn, λ, ΦG) to the states where all queues but queue i are empty is similar to a (discrete-time)
birth-and-death process with birth probability λi and death probability

∑
j ̸=i λj .

C.3 Proof of the results of Section 6.1.2 for the diamond graph

Proposition 6.6(i)

We leave it to the reader to verify that QG(K3) is the image of QG(D) by the application
q = (q1, q2, q3, q4) 7→ ⟨q⟩ = (q1 + q4, q2, q3). This means in particular that q1 + q4, q2, and
q3 cannot be positive simultaneously if q ∈ QG(D). Since the diamond graph D has only
four nodes, we can then conclude by enumerating all relevant cases, depending on the
support of ⟨q⟩ = (q1 + q4, q2, q3). For example, if q1 + q4 ≥ 1 and q2 = q3 = 0, then we
have immediately Φ(q, i) = ⊥ if i ∈ {1, 4}, and the greediness of the policy Φ implies that
Φ(q, i) ∈ {1, 4} if i ∈ {2, 3}; in other words, we have ⟨Φ(q, i)⟩ = ⊥ if ⟨i⟩ = 1 and ⟨Φ(q, i)⟩ = 1
if ⟨i⟩ ∈ {2, 3}. Similarly, if q1 + q4 = q3 = 0 and q2 ≥ 1, then Φ(q, i) = ⊥ if i = 2 and
Φ(q, i) = 2 if i ∈ {1, 3, 4}, that is, ⟨Φ(q, i)⟩ = ⊥ if ⟨i⟩ = 2 and ⟨Φ(q, i)⟩ = 2 if ⟨i⟩ ∈ {1, 3}. In
all cases, we can verify that ⟨Φ(q, i)⟩ is equal to ΦG(K3)(⟨q⟩, ⟨i⟩).

Alternatively, by taking a step back, we can prove Proposition 6.6(i) more directly by
observing that, for each (q, i) ∈ QG(D)×V , (i) the support of ⟨q⟩ is a singleton {j} whenever
q ̸= 0, and (ii) whether or not j ∈ Vi depends on i only via ⟨i⟩.

Proposition 6.6(ii)

The same argument can be repeated for an arbitrary greedy policy Φ with state space (S, | · |).
As in the proof of Proposition 6.4(ii), the key argument consists of observing that we still
have q = |s| ∈ QG(D) for each (s, i) ∈ S × V , so that q1 + q4, q2, and q3 cannot be positive
simulatenously.
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Proposition 6.6(iii)

The conclusion follows in much the same way as in the proof of Proposition 6.4(iii), by
injecting statements (i) and (ii) from Proposition 6.6 into (2).

Proposition 6.7(i)

This is a consequence of Corollary A.2(ii).

Proposition 6.7(ii)

The equation µ2,3 = β = 1
2 (λ2 + λ3 − λ1 − λ4) is a direct consequence of (ce). The

inequalities (32) for µ1,2, µ1,3, µ2,4, and µ3,4 follow by observing that, for each edge {i, j} ∈
{{1, 2}, {1, 4}, {2, 3}, {3, 4}}, a match between classes i and j happens at least in one of the
following cases:

a class-i item arrives while the system contains unmatched items that all belong to class j,
a class-j item arrives while the system contains unmatched items that all belong to class i,

These events occur at rates λipj and λjpi, respectively. Equations (32) are not equalities
in general because the above list is not exhaustive. For example, depending on the greedy
policy, a match between classes 1 and 2 may happen if a class-2 item arrives while the system
contains unmatched items of class 1 and unmatched items of class 4.

Proposition 6.7(iii)

The expressions for p∅, p2, p3, and p1,4 follow directly by combining Proposition 6.6(iii) with
Equations (28) and (29) in Proposition 6.5. We now derive the lower bound (34) for p1. The
one for p4 follows by symmetry.

First assume that the greedy policy Φ is deterministic and size-based, so that it satisfies
Proposition 6.6(i). For each q ∈ QG(D), let πq denote the probability that the Markov chain
(D, λ, Φ) is in state q in stationary regime. The probability that we want to lower-bound is

p1 =
+∞∑
ℓ=1

πℓ11 . (37)

Now let ℓ ∈ N>0 and consider the balance equation for state ℓ11, given by

(λ1 + λ2 + λ3 + λ4)πℓ11 = λ1π(ℓ−1)11 + (λ2 + λ3)π(ℓ+1)11 + C, (38)

where C is a non-negative real that depends on the model parameters, the integer ℓ, and the
policy Φ, and that accouts for the flow to state ℓ11 from state ℓ11 + 14, if any. It follows
that (λ1 + λ2 + λ3 + λ4)πℓ11 > λ1π(ℓ−1)11 . An inductive argument allows us to conclude that

πℓ11 >

(
λ1

λ1 + λ2 + λ3 + λ4

)ℓ

p∅, ℓ ∈ N>0. (39)

Injecting this inequality into (37) allows us to conclude:

p1 >

+∞∑
ℓ=1

(
λ1

λ1 + λ2 + λ3 + λ4

)ℓ

p∅ = λ1

λ2 + λ3 + λ4
p∅. (40)

If Φ is an extended policy with state space (S, | · |), we can still write (37)–(40) and reach
the same conclusion. The only difference is that π can no longer be defined as the stationary
distribution of a Markov chain: instead, we define πq =

∑
s∈S:|s|=q ϖs for each q ∈ QG(D),

where ϖs is the probability that the Markov chain (D, λ, Φ) is in state s in stationary regime,
for each s ∈ S.
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Proposition 6.8(i)–(iia)–(iib)

The diamond graph D has n = 4 nodes and m = 5 edges. Therefore, according to Proposi-
tions 5.1 and 6.1, the sets Π⩾0, Π>0, and ΠG have dimension d = m− n = 1, meaning that
they are intervals in R. The equations for the intervals Π≥0 and Π>0 follow directly from
the change-of-basis equation µ = (2λ1λ̄2 + α, 2λ1λ̄3 − α, β, 2λ̄2λ4 − α, 2λ̄3λ4 + α) from (30).
That ΠG is also an interval is a consequence of Proposition 6.1. The (non-strict) inequality
−2 min(λ1λ̄2, λ̄3λ4) ≤ α− ≤ α+ ≤ 2 min(λ1λ̄3, λ̄2λ4) is a consequence of Proposition 6.2,
which states that ΠG ⊆ Π>0. The first and third inequalities are also strict because α+ and
α− belong to ΠG (see below), while 2 min(λ1λ̄3, λ̄2λ4) and −2 min(λ1λ̄2, λ̄3λ4) do not belong
to Π>0. That ΠG is a closed interval of the form ΠG = [α−, α+] and that α+ and α− are
as given in Proposition 6.8(iia) –(iib) are consequences of Lemma C.1 below, which will be
proved by a coupling argument later in this appendix.

▶ Lemma C.1. Consider the edge-priority policy Φ+ adapted to the diamond graph D whereby
edges {1, 2} and {3, 4} have the highest priority. For each greedy policy Φ adapted to the
compatibility graph D, we have

µ1,2(Φ) ≤ µ1,2(Φ+), µ3,4(Φ) ≤ µ3,4(Φ+),
µ1,3(Φ) ≥ µ1,3(Φ+), µ2,4(Φ) ≥ µ2,4(Φ+),

(41)

Equivalently, in kernel coordinates, we have α(Φ) ≤ α(Φ+).

Proof. See later in this appendix. ◀

Proposition 6.8(iic)

Most of the quantities we consider in this proof are functions of β, but this dependency is
left implicit to simplify notation. In particular, we let µ denote (the edge coordinates of) the
matching rate vector in the matching model (D, λ, Φ+), where λ = (λ1, λ̄2 + β, λ̄3 + β, λ4),
with λ1 + λ4 = λ̄2 + λ̄3 = 1

2 , and Φ+ is the greedy edge-priority policy defined in Lemma C.1.
By combining (32) with the conservation equation µ1,2 + µ1,3 = λ1, we obtain the following
lower and upper bounds for µ1,2:

λ1p2 + λ2p1 ≤ µ1,2 ≤ λ1 − (λ1p3 + λ3p1). (42)

In addition, injecting the definition (30) of λ into (33) and (34) shows that, in the model
(D, λ, Φ+), we have

p2 = p∅
λ̄2 + β

2λ̄3
, p3 = p∅

λ̄3 + β

2λ̄2
, p1,4 = p∅

1
3β

,

p1 > p∅
λ1

1
2 + λ4 + 2β

, p4 > p∅
λ4

1
2 + λ1 + 2β

,

(43)

with, by the normalization equation p∅ + p2 + p3 + p1,4 = 1,

p∅ =
(

1 + 1
3β

+ λ̄2 + β

2λ̄3
+ λ̄3 + β

2λ̄2

)−1

. (44)

Taking the limit of (43) and (44) as β → +∞, we conclude that both the lower-bound and
the upper-bound in (42) tend to 2λ1λ̄2 as β → +∞. Then combining (42) with the squeeze
theorem allows us to conclude that µ1,2 also tends to 2λ1λ̄2 as β → +∞. By symmetry, we
obtain directly µ1,3 −→ 2λ1λ̄3, µ2,4 −→ 2λ̄2λ4, and µ3,4 −→ 2λ̄3λ4 as β → +∞. According to
the change-of-basis equation µ = (2λ1λ̄2 + α, 2λ1λ̄3 − α, β, 2λ̄2λ4 − α, 2λ̄3λ4 + α) from (30),
this means that α+ −→ 0 as β → +∞.
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Lemma C.1

Consider a greedy policy Φ adapted to the graph D. We will prove the inequality relations
in (41) using a coupling argument. More specifically, we will compare the matching models
(D, I, Φ) and (D, I, Φ+), where I = (It, t ∈ N) is a sequence of i.i.d. classes, such that It = i

with probability λi/(λ1 + λ2 + λ4 + λ3) for each t ∈ N and i ∈ V .
Considering the model (D, I, Φ), we let Qt denote the vector of queue sizes at time t,

Lt,i the number of class-i items among the first t arrivals, and Mt,{i,j} (or Mt,i,j for short)
the number of times that classes i and j are matched over the first t arrivals, for each t ∈ N
and i, j ∈ V , as defined in (2)–(5). We introduce similar notation for the model (D, I, Φ+),
the only difference being that all quantities have superscript +. Since both models have the
same sequence of incoming items, we have Lt,i = L+

t,i for each t ∈ N and i ∈ V . As usual, we
also assume that Q0 = Q+

0 = 0. Neither (Qt, t ∈ N) nor (Q+
t , t ∈ N) need be Markov chains

for our argument to hold.
Our end goal is to prove that the following inequalities are satisfied at each time t ∈ N:

Mt,1,2 ≤M+
t,1,2, (45–1,2)

Mt,3,4 ≤M+
t,3,4, (45–3,4)

Mt,1,3 ≥M+
t,1,3, (45–1,3)

Mt,2,4 ≥M+
t,2,4. (45–2,4)

Injecting these inequalities into the definition (9) of the matching rates yields the inequali-
ties (41). We will prove (45) by induction over time t ∈ N. The following equations will be
instrumental to prove the induction step:

Qt,1 + Qt,4 = Q+
t,1 + Q+

t,4, Qt,2 = Q+
t,2, Qt,3 = Q+

t,3, (46)
Lt,1 = Qt,1 + Mt,1,2 + Mt,1,3 = Q+

t,1 + M+
t,1,2 + M+

t,1,3, (47)
L4,t = Qt,4 + Mt,2,4 + Mt,3,4 = Q+

t,4 + M+
t,2,4 + M+

t,3,4. (48)

Equation (46) follows from Proposition 6.6(iii), while (47) and (48) follow from our assumption
that the arrivals in both models are coupled. Furthermore, given the definition of QG(D)
in (31), we know that only one integer among Qt,1 + Qt,4, Qt,2, and Qt,3 can be positive, for
each t ∈ N.

We now proceed to the induction step. Let t ∈ N. We now prove that, assuming that the
inequalities (45) are satisfied at time t, these inequalities are also satisfied at time t + 1. We
distinguish several cases depending on the value of It:
Case It = 1: We have directly Mt+1,i,j = Mt,i,j and M+

t+1,i,j = M+
t,i,j for (i, j) ∈ {(2, 4), (3, 4)},

hence the induction assumption implies that (45–2,4) and (45–3,4) hold at time t + 1.
Since the policy Φ is greedy, we only have three mutually-exclusive cases:
Case Qt,2 ≥ 1: The class-1 item is matched with a class-2 item already present, and we

obtain Mt+1,1,2 = Mt,1,2 + 1 and Mt+1,1,3 = Mt,1,3.
Case Qt,3 ≥ 1: The class-1 item is matched with a class-3 item already present, and we

obtain Mt+1,1,2 = Mt,1,2 and Mt+1,1,3 = Mt,1,3 + 1.
Case Qt,2 = Qt,3 = 0: The class-1 item is left unmatched, and we obtain Mt+1,1,2 =

Mt,1,2 and Mt+1,1,3 = Mt,1,3.
Since the policy Φ+ is also greedy, we can repeat the same argument for the quantities
associated with Φ+. Combining this observation with (46) yields Mt+1,1,2 −M+

t+1,1,2 =
Mt,1,2−M+

t,1,2 and Mt+1,1,3−M+
t+1,1,3 = Mt,1,3−M+

t,1,3. Hence, the induction assumption
implies directly that (45–1,2) and (45–1,3) are satisfied at time t + 1.
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Case It = 2: We have directly Mt+1,i,j = Mt,i,j and M+
t+1,i,j = M+

t,i,j for (i, j) ∈ {(1, 3), (3, 4)},
hence the induction assumption implies that (45–1,3) and (45–3,4) hold at time t + 1.
Proving that (45–1,2) and (45–2,4) also hold at time t + 1 is more intricate, and we will
distinguish three mutually-exclusive cases depending on the values of Qt,1, Qt,4, Q+

t,1,
and Q+

t,4:
Case Q+

t,1 + Q+
t,4 = 0: Under both policies, the class-2 item is either matched with a

class-3 item or added to the queue. In particular, we obtain Mt+1,i,j = Mt,i,j and
M+

t+1,i,j = M+
t,i,j for (i, j) ∈ {(1, 2), (2, 4)}, so that (45–1,2) and (45–2,4) are again

satisfied at time t + 1 thanks to the induction assumption.
Case Q+

t,1 + Q+
t,4 ≥ 1: We again subdivide this case into three mutually-exclusive cases:

Case Q+
t,1 ≥ 1 and Q+

t,4 ≥ 1: We have M+
t+1,1,2 = M+

t,1,2 + 1 and M+
t+1,2,4 = M+

t,2,4
by definition of the policy Φ+, while for the policy Φ we only know that Mt+1,1,2 ∈
{Mt,1,2, Mt,1,2 + 1} and Mt+1,2,4 ∈ {Mt,2,4, Mt,2,4 + 1}. We can verify that (45–1,2)
and (45–2,4) hold at time t + 1 thanks to the induction assumption.

Case Q+
t,1 = 0 and Q+

t,4 ≥ 1: By greediness, the policy Φ+ matches the incoming
class-2 item with a class-4 item, and we obtain M+

t+1,1,2 = M+
t,1,2 and M+

t+1,2,4 =
M+

t,2,4 + 1. If the policy Φ makes the same decision, then we also have Mt+1,1,2 =
Mt,1,2 and Mt+1,2,4 = Mt,2,4 + 1, hence (45–1,2) and (45–2,4) hold at time t + 1
thanks to the induction assumption. Otherwise, the policy Φ matches the class-2
item with a class-1 item, meaning that Mt+1,1,2 = Mt,1,2 + 1 and Mt+1,2,4 = Mt,2,4.
Importantly, this is only possible if Qt,1 ≥ 1. We now prove (45–1,2) and (45–2,4)
as follows:

Proving (45–1,2) boils down to proving M+
t,1,2 ≥Mt,1,2 +1. We have successively:

M+
t,1,2 −Mt,1,2 = (Qt,1 −Q+

t,1) + (Mt,1,3 −M+
t,1,3) ≥ 1 + 0 = 1,

where the equality follows from (47) and the inequality follows from the induction
assumption and the fact that Qt,1 ≥ 1 and Q+

t,1 = 0.
Proving (45–2,4) boils down to proving M+

t,2,4 + 1 ≤Mt,2,4. We have successively

Mt,2,4 −M+
t,2,4 = (Q+

t,4 −Qt,4) + (M+
t,3,4 −Mt,3,4) ≥ 1 + 0 = 1,

where the equality follows from (48) and the inequality follows from the induction
assumption and the observation that Q+

t,4 −Qt,4 = Qt,1 −Q+
t,1 ≥ 1.

Intuitively, the only way that an incoming class-2 item is matched at time t with a
class-1 item under the policy Φ and with a class-4 item under the policy Φ+ is if, in
the past, the policy Φ+ had made one more match along edge {1, 2} and one less
match along edge {2, 4} compared to the policy Φ.

Case Q+
t,1 ≥ 1 and Q+

t,4 = 0: This case is symmetrical to the previous case.
Case It = 3: This case is symmetrical to the case It = 2.
Case It = 4: This case is symmetrical to the case It = 1.
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