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Abstract
Stochastic dynamic matching problems have recently drawn attention in the stochastic-modeling
community due to their numerous applications, ranging from supply-chain management to kidney
exchange programs. In this paper, we consider a matching problem in which items of different classes
arrive according to independent Poisson processes. Unmatched items are stored in a queue, and
compatibility constraints are described by a simple graph on the classes, so that two items can be
matched if their classes are neighbors in the graph. We analyze the efficiency of matching policies,
not only in terms of system stability, but also in terms of matching rates between different classes.

Our results rely on the observation that, under any stable policy, the matching rates satisfy a
conservation equation that equates the arrival and departure rates of each item class. Our main
contributions are threefold. We first introduce a mapping between the dimension of the solution set
of this conservation equation, the structure of the compatibility graph, and the existence of a stable
policy. In particular, this allows us to derive a necessary and sufficient stability condition that is
verifiable in polynomial time. Secondly, we describe the convex polytope of non-negative solutions
of the conservation equation. When this polytope is reduced to a single point, we give a closed-form
expression of the solution; in general, we characterize the vertices of this polytope using again the
graph structure. Lastly, we study the parts of the polytope that can be achieved by a stable policy.
We show that greedy policies are limited to the interior of the polytope, with a strict inclusion in
general. In contrast, non-greedy policies can reach any point of the interior of this polytope, and
also reach the boundary of the polytope depending on a simple condition on the vertices.

2012 ACM Subject Classification Mathematics of computing → Queueing theory; Mathematics of
computing → Markov processes; Mathematics of computing → Matchings and factors

Keywords and phrases stochastic dynamic matching, graph theory, linear algebra, stability, matching
rates, conservation equation

1 Introduction

Stochastic dynamic matching problems, in which items arrive at random instants to be
matched with other items, have recently drawn a lot of attention in the stochastic-modeling
community. These challenging control problems are indeed highly relevant in many applica-
tions, including supply-chain management, pairwise kidney exchange programs, and online
marketplaces. In pairwise kidney exchange programs for example, each item represents a
donor-receiver pair, and two pairs can be matched if the donor of each pair is compatible with
the receiver of the other pair. In online marketplaces, items are typically divided into two
categories, called demand and supply, and the objective is to maximize a certain long-term
performance criteria by appropriately matching demand items with supply items.
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In this paper, we consider the following dynamic matching problem. Items of different
classes arrive according to independent Poisson processes. Compatibility constraints between
items are described by a simple graph on their classes, such that two items can be matched
if their classes are neighbors in the graph. Unmatched items are stored in the queue of their
class, and the matching policy decides which matches are performed and when. All in all,
a stochastic matching model is described by a triplet (G, µ, Φ), where G = (V, E) is the
compatibility graph, µ = (µ1, µ2, . . . , µn) is the vector of per-class arrival rates, and Φ is the
matching policy. In Figure 1 for instance, there are four item classes numbered from 1 to 4;
classes 2 and 4 are compatible with all classes, while classes 1 and 3 are only compatible
with classes 2 and 4.

µ2

µ4

µ1 µ3

λ1,2

λ1,4

λ2,3

λ3,4

λ2,4

Figure 1 Illustration of a matching model (G, µ, Φ) on the diamond graph.

We propose a unified approach to study two closely-related performance criteria, namely
the stability and the matching rates along edges. Formally, a matching model (G, µ, Φ) is said
to be stable if the associated continuous-time Markov chain is positive recurrent. Assuming
that the matching model (G, µ, Φ) is stable, the matching rate λk along an edge k ∈ E with
endpoints i, j ∈ V is the rate at which class-i items and class-j items are matched.

1.1 Contributions
The following observation is powerful despite its simplicity, and it is fundamental to all our
results. Under any stable policy, the arrival rate of class-i items is equal to the departure rate
of these items, which in turn is equal to the sum of the matching rates along the edges that
are incident to node i. In other words, the matching rates satisfy the following conservation
equation:∑

k∈Ei

λk = µi, i ∈ V,

where Ei ⊆ E is the set of edges that are incident to node i. In matrix form, this equation
rewrites Aλ = µ, where A is the incidence matrix of the compatibility graph G. The solution
set of this conservation equation is related to the structure of the graph G via the linear
application y ∈ Rm 7→ Ay ∈ Rn, where n is the number of nodes (or classes), and m is the
number of edges. We say that the graph G is surjective (resp. injective, bijective) if the linear
application y ∈ Rm 7→ Ay ∈ Rn is surjective (resp. injective, bijective), and we give simple
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equivalent conditions in terms of the graph structure (Definitions 2.3–2.6 and Proposition 2.7).
Our main contributions are threefold, and all rely on these definitions.

We first prove that there exists a direct relation between the possible solutions of the
conservation equation, the structure of the compatiblity graph, and the existence of a stable
policy. More specifically, we prove that a compatibility graph G is stabilizable (in the sense
that there exist a vector µ and a policy Φ such that the matching model (G, µ, Φ) is stable)
if and only if the graph G is surjective (Proposition 3.1). We then prove that a matching
problem (G, µ) is stabilizable (in the sense that there exists a policy Φ such that the matching
model (G, µ, Φ) is stable) if and only if the conservation equation has a solution with positive
components (Proposition 3.2). In particular, this allows us to verify stabilizability in a time
that is polynomial in the number of classes and edges.

We next describe the affine space of solutions of the conservation equation and the convex
polytope of solutions with non-negative components. When this convex polytope is reduced
to a single point, we derive a closed-form expression for the solution (Proposition 4.1). When
this convex polytope is not reduced to a single point, we characterize its vertices, again using
the graph structure. We prove in particular that a non-negative solution of the conservation
equation is a vertex of the convex polytope if and only if the subgraph restricted to the
support of this vector is injective (Proposition 5.5).

Lastly, we investigate the parts of the polytope that can be achieved by an actual stable
policy. We first focus on greedy policies, i.e. policies that never postpone a feasible match.
We show that greedy policies are limited to the interior of the polytope and that in gen-
eral, the inclusion is strict (Propositions 6.2, 6.4, and 6.5 and Corollary 6.6). In contrast,
non-greedy policies can reach any point of the interior of this polytope (Proposition 6.13
and Corollary 6.14). They can also reach part or all the boundary of this polytope, depend-
ing on conditions that are again expressed in terms of the bijectivity of subgraphs of G

(Proposition 6.11 and Corollary 6.12).

1.2 State of the art

We now review the relevant work related to (static or dynamic) matching problems.

Non-bipartite or general stochastic matching

Our work is part of a broader research effort on the stochastic matching model that will
be described in details in Section 2.1 [5, 6, 11, 14, 20, 23, 25]. Among these works, the
following are particularly relevant because directly related to our results on stability. The
paper [23] is the earliest work on this matching model. It derives several necessary and
sufficient stability conditions that are instrumental in several of our results, in particular
Propositions 3.1 and 3.2. This work also proves that the match-the-longest policy is maximally
stable (in the sense that always leads to stability whenever the matching problem (G, µ) is
stabilizable), a result that is also applied in Proposition 3.2. The papers [14, 25] focus on the
first-come-first-matched policy. In particular, [25] proves that the first-come-first-matched
policy is maximally stable, and [14] provides a new sufficient stability condition we prove to
be also necessary in Proposition 3.2.

Other variants of the model were studied recently, and an interesting future work would
consist of generalizing our results to these variants. In particular, the paper [20] consider
item abandonments, the paper [6] considers graphs with loops, and the papers [19, 26, 27]
allow matches between several items by replacing the graph with a hypergraph.
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The recent paper [5] is perhaps the closest to ours, and we provide a detailed discussion
to highlight the relation with our paper. The equivalence of statements (ii) and (iv) in [5,
Theorem 1] is synonym to the equivalence of statements 2 and 3 in Proposition 3.2. Our
proof is significantly shorter because it relies more heavily on existing results. [5, Theorem 4]
is a special case of our observation at the beginning of Section 4 that the conservation
equation has a unique solution if and only if the graph is bijective (and not surjective-only).
Several other formulas derived in [5, Section 7] are special cases of the formulas derived in
Proposition 4.1. The model in [5] is slightly more general because it consider graphs with
loops, that is, an edge can have identical endpoints, but this paper does not adopt the mixed
graph-theory and linear-algebra approach that supports most of our results.

Bipartite stochastic matching

The first example of a stochastic matching model in the literature, which predated the
model that we consider, is the bipartite matching model introduced in [12] and studied
in [1, 2, 3, 8, 9, 10, 15]. In this model, the compatibility graph is bipartite, with two parts
that correspond to supply and demand items, respectively. This bipartite model differs from
ours by its arrival process: time is slotted and, during each time slot, one demand item
and one supply item arrive. Several works have made contributions about stability [2, 8]
and matching rates [2], and obtained results similar to those derived in the literature on
our model. The bipartite nature of the graph simplifies some calculations, for instance by
allowing the application of flow-maximization algorithms to calculate optimal matching rates.

Static and fractional matching

The static matching problem, in which the nodes of the graph represent items (rather than
classes), has been extensively studied in mathematics, computer science, and economy [22].
Although the questions raised in static and dynamic matching are often different, the
conservation equation that we obtain is reminiscent of several results in static matching.
For example, finding a maximum-cardinality matching in the graph G (that is, a maximum-
cardinality set of edges without common endpoints) is equivalent to finding integers λk ∈ {0, 1}
for each edge k ∈ E that maximize

∑
k∈E λk while satisfying the conservation equation with

µi = 1 for each i ∈ V . The relaxation of this integer linear program leads to the so-called
fractional matching problem, which has been studied in the literature [22, Section 7.2].
Therefore, the fractional matching polytope defined in [22, Section 7.5] is a special case of
the convex polytope that we consider in Section 5.2, and our characterization of this convex
polytope is a natural generalization of existing characterizations of the fractional polytope 2.

1.3 Outline
The remainder of the paper is organized as follows. Section 2 gives a formal definition of
the model and explains our approach. In particular, we introduce the conservation equation
and define the notions of surjective, injective, and bijective graph that will be instrumental
in the rest of the paper. In Section 3, we give necessary and sufficient stability conditions
in terms of the solutions of the conservation equation. Sections 4 and 5 characterize the
solution set of the conservation equation and give a closed-form expression of the solution

2 The fractional matching polytope is actually defined using non-strict inequalities rather than equalities.
However, one can verify that both convex polytopes have the same non-zero vertices.
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when it is unique. Lastly, in Section 6, we study the set of matching rates that are effectively
achievable under a stable matching policy.

2 Model and approach

We now provide a detailed description of our model and introduce the concepts of injective,
surjective, and bijective compatibility graphs.

2.1 Stochastic dynamic matching
Consider a stochastic dynamic matching system in which items arrive at random times to
be matched with other items. Each incoming item may be matched with any unmatched
item of a compatible class; in this case, both items disappear immediately. Unmatched items
are gathered in a waiting queue. In this paper, such a stochastic dynamic matching system
will be described by a triplet (G, µ, Φ), where G is the compatibility graph, µ is the vector
of arrival rates, and Φ is the matching policy. We now review each component in details.
Notation is summarized in Table 1, and an example is shown in Figure 1.

2.1.1 Compatibility graph
Compatibility constraints between items are described by a graph G = (V, E), called the
compatibility graph of the model, which is simple (undirected and without loop). We let n

denote the number of nodes and m the number of edges. The set of nodes is denoted by
V = {v1, v2, . . . , vn}, and each node corresponds to a class in the matching model. When
there is no ambiguity, for ease of notation, we will refer to a class vi using its index i. The set
of edges is denoted by E = {e1, e2, . . . , em}. These edges represent compatibility constraints
between item classes, in the sense that a class-i item and a class-j item can be matched
with one another if and only if there is an edge with endpoints i and j in the graph. When
there is no ambiguity, for ease of notation, we will refer to an edge ek ∈ E with endpoints
i, j ∈ V using either its index k or its set of endpoints {i, j}. In Figure 1 for instance, there
are four item classes numbered from 1 to 4. Classes 2 and 4 are compatible with all classes,
but classes 1 and 3 are only compatible with classes 2 and 4. The absence of loop means
that an item of a given class cannot be matched with other items of the same class.

2.1.2 Vector of arrival rates
Class-i items arrive according to an independent Poisson process with rate µi > 0, for each
i ∈ V . The vector of arrival rates is denoted by µ = (µ1, µ2, . . . , µn) ∈ Rn

>0. Scaling all
components of µ by the same positive constant is equivalent to changing the time unit, so
we can renormalize µ without changing the system dynamics. In this paper, we will often
use the unit normalization in which

∑
i∈V µi = 1. The couple (G, µ) is called a matching

problem.

2.1.3 Matching policy
Given a matching problem (G, µ), the policy specifies, upon each item arrival, which matches
are performed depending on the system state and the class of the incoming item. The nature
of the information that the state needs to retain in order to obtain a continuous-time Markov
chain depends on the policy that we consider. To overcome this difficulty, we assume that
the state descriptor is an integral part of the definition of a policy.
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Formally, a matching policy Φ is a tuple (C, π), where C is a countably infinite state space
and π is a function that defines transitions. More specifically, for each c ∈ C and i ∈ V ,
π(·|c, i) : C → R⩾0 is a probability distribution on C, so that π(d|c, i) is the probability that
the system jumps from state c to state d upon the arrival of a class-i item. We assume that
the matching policy is adapted to the matching problem (G, µ), in the sense that only items
with compatible classes are matched, and matches occur only upon item arrivals. In the rest
of the paper, we will focus exclusively on matching policies that satisfy Assumption 1 below.

▶ Assumption 1. We assume that the matching policy Φ satisfies the following assumptions:
1. The evolution of the system state defines a continuous-time irreducible Markov chain with

state space C.
2. The system state contains enough information to calculate the sizes of the waiting queues

of the system, i.e. the number of unmatched items of each class. In other words, there
exists a function h : C → Nn such that, for each c ∈ C and i ∈ V , the i-th component of
the vector h(c) is the number of unmatched class-i items in state c.

3. The state space C contains a state ∅ such that h(∅) = 0, and we have h(c) ̸= 0 for each
c ∈ C \ {∅}. We call ∅ the empty state.

Statement 1 in Assumption 1 is standard [8, 23]. Statements 2 and 3 guarantee that the
intuitive notion of system stability is indeed captured by the positive recurrence of the Markov
chain {X(t), t ≥ 0}, as formalized in Definition 2.1 below. These two statements will be
applied in the proofs of Propositions 6.4, 6.5, and A.1 and Corollary 6.6. These proofs remain
valid if there are multiple empty sets, as long as the preimage h−1(0) = {c ∈ C : h(c) = 0}
of the vector 0 ∈ Nn is a finite set. Statement 3 will also be applied in the proof of
Proposition 6.1. Not all policies have an empty state; for example, this statement rules out
policies that match an incoming item only when there are already at least two unmatched
items (assuming the initial state is not empty).

We call (h(c))i, the number of unmatched class-i items in state c, the queue size of i in c

(c is ommitted if it is clear in the context). Similarly, we say that queue i is empty (resp.
non-empty) to express that (h(c))i = 0 (resp. (h(c))i > 0).

We now introduce some examples of policies that will be used in the paper.

Greedy policies

A policy is said to be greedy if an incoming item is matched as soon as it arrives if possible,
that is, when there is an unmatched item that is compatible. Equivalently, a policy is greedy
if the set of unmatched items classes under this policy is always an independent set of the
compatibility graph. Here are two examples of deterministic greedy policies:

Match-the-longest: an incoming item is matched immediately with an item of the
compatible class that has the longest queue, if any. The system state q = (q1, q2, . . . , qn)
gives the queue size of each class, and its state space is C = {q ∈ Nn : qiqj = 0 if j ∈ Vi},
where Vi ⊂ V is the set of nodes adjacent to node i, for each i ∈ V . The transition
probabilities are as follows:

if there is j ∈ Vi such that qj > 0, then π(q−ej∗ |q, i) = 1, where j∗ = argmaxj∈Vi
(qj , j)

(we use the class index to tie-break queues of same size) and ej∗ is the n-dimensional
vector with 1 in component j∗ and 0 elsewhere;
otherwise, π(q + ei|q, i) = 1.

As a state of match-the-longest is exactly the sizes of the queues, its function h is the
identity (h(q) = q).
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First-come-first-matched: an incoming item is matched immediately with the compat-
ible item that has been waiting the longest, if any. The system state c = (c1, c2, . . . , cp)
gives the sequence of unmatched item classes, ordered by arrival times, so that c1 is the
class of the oldest unmatched item. The state space C ⊆ V ∗ is made of all finite sequences
that do not contain items from compatible classes. In other words, C =

⋃
I∈I I∗, where I

is the set of independent sets of the graph G. The transition probabilities are as follows:
if there exists r ∈ {1, 2, . . . , p} such that cr ∈ Vi, π(c′|c, i) = 1 with c′ = (c1, . . . , cr∗−1,

cr∗+1, . . . , cp), where r∗ = min{r ∈ {1, 2, . . . , p} : cr ∈ Vi};
otherwise, π(c′|c, i) = 1 with c′ = (c1, c2, . . . , cp, i).

The function h associated to a first-come-first-matched policy is just a counter function:
(h(c))i = |{j ∈ c : j = i}|.

Note that an empty state ∅ exists for every greedy policy as long as the compatibility
graph G has no isolated node: from any state with unmatched items, an empty state can be
reached with an appropriate sequence of incoming items.

Filtering policies

A policy is said to be filtering if there exists E′ ⊊ E such that for any state c ∈ C and arrival
node i ∈ V , the probability to choose e /∈ E′ when the state is c and an item of class i arrives
is 0. Informally, a filtering policy operates on a subgraph G′ = (V, E′) of G. The edges from
E′ (resp. from E \ E′) are called the allowed edges (resp. the forbidden edges) of the policy.

A policy is said to be semi-filtering with a threshold k if there exists E′ ⊊ E such that
for any state c ∈ C such that maxj∈V (h(c))j < k and arrival node i ∈ V , the probability to
choose e /∈ E′ when the state is c and an item of class i arrives is 0. Informally, a semi-filtering
policy acts as a filtering policy as long as the queue sizes are not too big.

A greedy policy like match-the-longest can be turned into a filtering or semi-filtering
policy by making it operate on a subgraph G′ (up to a threshold k for the semi-filtering
case). In general, the resulting policy is not greedy (on G), but it still admits an empty state
∅ as long as the subgraph G′ has no isolated node.

Filtering and semi-filtering versions of match-the-longest will be used in Section 6.

Stability

In the remainder, we will identify the matching model (G, µ, Φ) with the continuous-time
Markov chain {X(t), t ≥ 0}. This allows us to define the notions of stability, stabilizability,
and maximal stability in Definition 2.1 below.

▶ Definition 2.1 (Stability, Stabilizability, and Maximal stability).
1. A matching model (G, µ, Φ) is called stable if the associated Markov process {X(t), t ≥ 0}

is positive recurrent.
2. A compatiblity graph G is called stabilizable if there exist a vector µ ∈ Rn

>0 of arrival
rates and a matching policy Φ such that the matching model (G, µ, Φ) is stable.

3. A matching problem (G, µ) is called stabilizable if there exists a matching policy Φ such
that the matching model (G, µ, Φ) is stable.

4. A generic policy is a function Φ that associates, to each compatibility graph G, a matching
policy Φ(G) adapted to G. A generic policy Φ is called maximally stable if the matching
model (G, µ, Φ(G)) is stable whenever (G, µ) is stabilizable.
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With a slight abuse of language, we also use the term generic policy to describe the matching
policy Φ(G) for any compatibility graph G. The greedy policies match-the-longest and
first-come-first-matched introduced above are obviously generic. They were proved to be
maximally stable in [23, 25].
▶ Remark 2.2. On a broader note, our definition of a matching policy is intended to be general,
but we still impose several limitations for ease of notation. For instance, our assumption that
items can only be matched upon arrivals rules out policies that perform matches in batches
at fixed time intervals. We believe that all our results can be extended to other policies if
necessary on a case-by-cases basis.

2.1.4 Vector of matching rates and conservation equation
If the matching model (G, µ, Φ) is stable, the matching rate λk along edge ek = {i, j} is
defined as the long-run average number of matches between a class-i item and a class-j item
per time unit. Let λ(G, µ, ϕ) = (λ1, . . . , λm) ∈ Rm

⩾0 denote the vector of matching rates
associated with (G, µ, ϕ). For ease of notation, in the rest of the paper, we will use λ(Φ) or λ,
instead of λ(G, µ, Φ), if the underlying matching problem or model is clear in the context.
These matching rates satisfy the following conservation equation:∑

k∈Ei

λk = µi, i ∈ V, (1)

where Ei ⊆ E is the set of edges that are incident to node i, for each i ∈ V . In matrix form,
this conservation equation writes

Aλ = µ, (2)

where the n×m matrix A = (ai,k)i∈V,k∈E is the incidence matrix of the graph G, defined
by ai,k = 1 if edge k is incident to node i and ai,k = 0 otherwise. The majority of the results
presented here are deeply connected to the conservation equation (2). In particular, the
last part of the paper focuses on the solutions of (2) and considers, for a given stabilizable
problem (G, µ), the following sets:

Λ = {y ∈ Rm : Ay = µ} (studied in Section 5.1),
Λ⩾0 = {y ∈ Rm

⩾0 : Ay = µ} (studied in Section 5.2),
Λ>0 = {y ∈ Rm

>0 : Ay = µ} (introduced in Section 6),
ΛG = {λ(Φ) : Φ is a stable greedy policy} (studied in Section 6.1),
ΛP = {λ(Φ) : Φ is a stable policy} (studied in Section 6.2).

Note that, while it is not the main focus of the present work, long-term matching rates can
usually be defined even if the matching model (G, µ, Φ) is unstable. In that case, the sum
of matching rates along the edges incident to a node are at most equal to the arrival rates,
that is, Aλ ≤ µ. Lemma 6.10 shows an example of an unstable policy that admits a limit
matching rate.

2.1.5 Numerical evaluation
To support the results presented in this paper, especially the ones from Section 6, simulations
were performed using the Python package Stochastic Matching [24]. Unless otherwise stated,
a matching model is evaluated by simulating 1010 arrivals.
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General notation

N,R,R⩾0,R>0 Sets of non-negative integers, real numbers, non-negative real numbers,
positive real numbers.

≥, ≤, >, < Component-wise comparison in Rn.
|A| Cardinality of the set A.

Graph notation

G = (V, E) Simple graph G with |V | = n vertices and |E| = m edges.
vi Vertex indexed by i (denoted i if there is not ambiguity).
ei,j , {i, j}, or ek Edge between vertices i and j, indexed by k.
I Family of independent sets of the graph G.
Vi ⊆ V Set of neighbors of node vi in the graph G.
V (I) =

⋃
i∈I Vi Set of neighbors of the vertices indexed by the independent set I ∈ I.

di,j Distance between nodes i and j.
di,k = min(di,j , di,j′ ) Distance between node i and edge k with endpoints j and j′.
Kℓ Complete graph of size ℓ ≥ 3.
Cℓ Cycle of size ℓ ≥ 3.
Pℓ Path of length ℓ ≥ 0.
KPℓ,r,p Kayak paddle: two cycles Cℓ and Cr attached by a path Pp.

Matching notation

µ = (µi)1≤i≤n Vector of arrival rates of the item classes.
Φ A matching policy.
λ = (λk)1≤k≤m = (λi,j){i,j}∈E Vector of matching rates along the edges.
ΛP Set of matching rates achieved by stable policies.
ΛG Set of matching rates achieved by stable greedy policies.

Linear-algebra notation

x = (x1, x2, . . . , xn) A vector in Rn. All vectors in Rn are column vectors.
y = (y1, y2, . . . , ym) A vector in Rm. All vectors in Rm are column vectors.
A = (ai,k)i∈V,k∈E Incidence matrix of the graph G.
A⊺ = (ak,i)k∈E,i∈V Transpose of the matrix A.
ker(A) = {y ∈ Rm : Ay = 0} Right kernel of the matrix A. Its dimension is called the nullity of A.
ker(A⊺) = {x ∈ Rn : A⊺x = 0} Left kernel of the matrix A. Its dimension is the nullity of A⊺.
d = m − n Dimension of the right kernel of the matrix A if G is surjective.
B = (b1, . . . , bd) Basis of the right kernel of the matrix A if G is surjective.
Λ = {y ∈ Rm : Ay = µ} Affine space of the solutions of the conservation equation (2).
Λ⩾0 = {y ∈ Rm

⩾0 : Ay = µ} Polytope of non-negative solutions of (2).
Λ>0 = {y ∈ Rm

>0 : Ay = µ} Set of positive solutions of (2).
Table 1 Table of notation

2.2 Surjectivity, injectivity, and bijectivity

Definitions 2.3–2.6 below introduce the notions of surjectivity, injectivity, and bijectivity of a
graph. In a nutshell, a compatibility graph G is said to be surjective (resp. injective, bijective)
if the linear application defined by its incidence matrix A is surjective (resp. injective,
bijective). Interestingly, we find equivalent conditions in terms of the graph structure. As we
will see later, these notions are fundamental to study the stability of stochastic matching
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models and the associated matching rates. In particular, we will see in Section 3 that a
compatiblity graph G is stabilizable if and only if G is surjective in the sense of Definition 2.3.
Later, in Sections 3 and 4, we will see that the matching rates in a matching problem (G, µ)
are independent of the matching policy Φ (as long as the model is stable) if and only if G is
bijective in the sense of Definition 2.5. Examples are shown in Figure 2.

1

2

4

3

(a) Graph that is neither surjective nor injective.
The nullity of A⊺ is 1 and the nullity of A is 1.

1

2

4

3

(b) Surjective-only graph.
The nullity of A⊺ is 0 and the nullity of A is 1.

1

2

3 4

(c) Injective-only graph.
The nullity of A⊺ is 1 and the nullity of A is 0.

1

2

3 4

(d) Bijective graph.
The nullity of A⊺ is 0 and the nullity of A is 0.

Figure 2 Examples of surjective and injective graphs.

▶ Definition 2.3 (Surjective graph). Consider a simple graph G = (V, E) with n nodes and
m edges. Let A denote the n×m incidence matrix of G. The graph G is called surjective if
one of the following equivalent conditions is satisfied:
1. The function y ∈ Rm 7→ Ay ∈ Rn is surjective.
2. The equation Ay = µ of unknown y ∈ Rm has at least one solution for each µ ∈ Rn.
3. The left kernel of the matrix A is trivial.
4. Each connected component of the graph G is non-bipartite.

Proof. The equivalence of conditions 1, 2, and 3 is a well-known result in linear algebra. We
prove that conditions 3 and 4 are equivalent. This proof is adapted from [16, Lemma 2.2.3].

Let a1, a2, . . . an denote the rows of the matrix A, so that ai = (ai,k)k∈{1,...,m}, where
ai,k = 1 if node i is an endpoint of edge k, and ai,k = 0 otherwise. A vector x =
(x1, x2, . . . , xn) ∈ Rn belongs to the left kernel of the matrix A if and only if

x1a1 + x2a2 + . . . + xnan = 0.

For each k ∈ {1, . . . , m}, the k-th component of this equation reads xj = −xi, where i and j

are the endpoints of edge k. An induction argument shows that, for every path i1, i2, . . . , ik

in the graph G, we have xip = (−1)pxi1 for each p ∈ {1, 2, . . . , k}.
First assume that each connected component of G is non-bipartite, and let V ′ denote the

set of nodes in a given connected component. Since this component is non-bipartite, there
exists a cycle i1, i2, . . . , ik, ip+1 = i1 consisting of an odd number p of nodes. The previous
remark implies that xi1 = 0, which in turn implies that xi = 0 for each i ∈ V ′.

On the contrary, if there exists a connected component of G that is bipartite with parts
V+ and V−, then we build a non-zero vector by choosing xi = 1 for each i ∈ V+, xi = −1 for
each i ∈ V−, and xi = 0 for each i ∈ V \ (V+ ∪ V−). ◀

▶ Definition 2.4 (Injective graph). Consider a simple graph G = (V, E) with n nodes and m

edges. Let A denote the n×m incidence matrix of G. The graph G is called injective if one
of the following equivalent conditions is satisfied:



C. Comte, F. Mathieu, and A. Bušić 11

1. The function y ∈ Rm 7→ Ay ∈ Rn is injective.
2. The equation Ay = µ of unknown y ∈ Rm has at most one solution for each µ ∈ Rn.
3. The right kernel of the matrix A is trivial.
4. Each connected component of the graph G contains at most one odd cycle and no even

cycle; in other words, each connected component of G is either a tree or a unicyclic graph
with an odd cycle.

Proof. The equivalence of conditions 1, 2, and 3 is a well-known result in linear algebra. We
now prove that conditions 3 and 4 are equivalent.

Let us assume for now that the graph G is connected. We first remark that the proof of
Definition 2.3 shows that the nullity of A⊺ is 0 if G is non-bipartite and 1 if G is bipartite.
We therefore distinguish two cases:

If G is non-bipartite, the nullity of A⊺ is 0. The rank-nullity theorem implies that the
rank of A⊺ is n, so that the rank of A is also n. A second application of the rank-nullity
theorem implies that the nullity of A is m− n. In particular, ker(A) = {0} if and only if
m = n.
If G is bipartite, the nullity of A⊺ is 1, and we conclude similarly that the nullity of A is
m− n + 1. In particular, ker(A) = {0} if and only if m = n− 1.

All in all, we obtain that condition 3 is true if and only if either the graph G is non-bipartite
and contains as many edges as nodes, or the graph G is bipartite and contains one less edge
than it contains nodes. This, in turn, is equivalent to condition 4.

If the graph G is not connected, we can rewrite the matrix A as a bloc matrix in which
each bloc corresponds to a connected component, and we can then use the previous argument
to prove the equivalence for each connected component. ◀

▶ Definition 2.5 (Bijective graph). Consider a simple graph G = (V, E) with n nodes and
m edges. Let A denote the n×m incidence matrix of G. The graph G is called bijective if
the following equivalent conditions are satisfied:
1. The function y ∈ Rm 7→ Ay ∈ Rn is bijective.
2. The equation Ay = µ of unknown y ∈ Rm has exactly one solution for each µ ∈ Rn.
3. The matrix A is invertible.
4. Each connected component of the graph G contains one cycle and this cycle is odd.

Proof. The function y ∈ Rm 7→ Ay ∈ Rn is bijective if and only if it is both surjective and
injective. Hence, the equivalence of conditions 1 to 4 follows directly from Definitions 2.3
and 2.4. ◀

▶ Definition 2.6 (Surjective-only graph and injective-only graph). A simple graph G is called
surjective-only (resp. injective-only) if G is surjective but not injective (resp. injective but
not surjective).

The following proposition gives necessary conditions for surjectivity and injectivity in terms
of the number of nodes and edges in the graph.

▶ Proposition 2.7. Consider an undirected graph G = (V, E) with n nodes and m edges.
1. If G is surjective, then n ≤ m.
2. If G is injective, then n ≥ m.
3. If G is bijective, then n = m.
4. If G is surjective, then G is also injective if and only if n = m.
5. If G is injective, then G is also surjective if and only if n = m.

Proof. These statements are again well-known results in linear algebra. ◀
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3 Stability conditions

This section gives necessary and sufficient conditions under which a compatiblity graph G or
a matching problem (G, µ) is stabilizable in the sense of Definition 2.1.

3.1 Stabilizable graph
The following proposition gives necessary and sufficient conditions for a graph G to be
stabilizable, in terms of either its structure or its incidence matrix.

▶ Proposition 3.1. Let G be an undirected graph. The following conditions are equivalent:
1. The graph G is stabilizable.
2. The graph G is surjective.

Proof. Equivalence between condition 1 in Proposition 3.1 and condition 4 in Definition 2.3
has been proved in [23, Theorem 1]. ◀

Unless stated otherwise, in the rest of the paper, we assume that the graph G is surjective.
The equivalence between condition 1 in Proposition 3.1 and condition 4 in Definition 2.3

was already proved in [23] in the context of stochastic matching models. However, to the
best of our knowledge, the equivalence between condition 1 in Proposition 3.1 and the other
definitions of surjectivity introduced in Definition 2.3 has not been considered in the literature
on stochastic matching models yet. As we will see later, this new characterization of the
stabilizability of a graph G will be useful to analyze the matching rates.

3.2 Stabilizable arrival rates
We now turn to the stabilizability of a matching problem (G, µ). As recalled in Section 2.1,
two examples of greedy policies that stabilize the model whenever this matching problem
is stabilizable are match-the-longest [23] and first-come-first-matched [25]. Proposition 3.2
below provides necessary and sufficient conditions for the matching problem (G, µ) to be
stabilizable; condition 2 was already derived in [23], but condition 3 is new.

▶ Proposition 3.2. Consider an undirected surjective graph G and a vector µ ∈ Rn
>0. The

following conditions are equivalent:
1. The matching problem (G, µ) is stabilizable.
2. For each I ∈ I, we have

∑
i∈I µi <

∑
i∈V (I) µi.

3. The conservation equation (2) has a solution λ ∈ Rm
>0 (i.e., with all components positive).

Proof. Equivalence of conditions 1 and 2 follows from Lemma 1, Proposition 2, and Theorem 2
in [23]. We now prove that conditions 2 and 3 are equivalent. Condition 2 implies condition 3
because: (i) according to [23], under condition 2, (G, µ, Φ) is stable if Φ is the match-the-
longest policy, and (ii) the associated vector λ of matching rates satisfies condition 3 by
ergodicity. That condition 3 implies condition 2 was proved in [14, Lemma 12]. ◀

One might imagine that the time complexity to verify condition 2 in Proposition 3.2 is
exponential in the number n of classes in general, as the number of independent sets itself is
exponential in n. Yet it was proved in [23, Proposition 1] that there exists an O(n3)-time
algorithm to verify this condition. Unfortunately, this verification is indirect in the sense
that it requires constructing a second graph called the bipartite double cover of G. From this
perspective, condition 3 gives a more direct way of verifying whether a graph G is stabilizable.
We make a case disjunction, depending on whether the graph G (which we have assumed to
be surjective) is surjective-only or bijective.
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▶ Remark 3.3. As observed in [14, Lemma 12], if the graph G is surjective, one can always
find an particular vector µ ∈ Rn

≥0 such that the matching problem (G, µ) is stabilizable by
choosing µ = Ay for some y ∈ Rm

>0. A simple example is y = (β, . . . , β) for some β > 0,
which corresponds to having the components of µ proportional to the degree of each node.

Checking stability on bijective graphs

If the graph G is bijective, then the matrix A is invertible and the conservation equation (2)
has a unique solution A−1µ. This implies that the matching problem (G, µ) is stabilizable if
and only if all components of A−1µ are positive. The special case of bijective graphs will be
investigated in details in Section 4, including a direct expression of A−1µ.

Checking stability on surjective-only graphs

If the compatibility graph G is surjective-only, the conservation equation (2) has multiple
solutions. To determine if one of these solutions is positive, it suffices to solve a linear
optimization problem that maximizes the smallest component of a solution of (2). In
block-matrix notation, this linear optimization problem can be written as:

Maximize
z∈Rm+1

[
01×m 1

]
z,

Subject to
[
A 0n×1

]
z = µ,[

Im×m −1m×1
]

z ≥ 0m×1,

(3)

where, for clarity, we let 0p×q denote the p× q zero matrix, 1p×q the p× q all-ones matrix,
Ip×p the p-dimensional identity matrix. Here, the first m components of the vector z are
the components of a vector y ∈ Rm that satisfies (2), and the last component of z is a lower
bound of the components of this vector y. The equality constraint means that y satisfies (2),
and the inequality constraint means that the last component of z is less than or equal to its
other components. The value to maximize is the last component of the vector z.

The linear optimization problem (3) has a solution with positive components if and only
if the conservation equation (2) has a solution with positive components. According to
Proposition 3.2, this is equivalent to saying that the matching problem (G, µ) is stabilizable.
Therefore, to verify if a matching problem (G, µ) is stabilizable, it suffices to find a solution
of the linear optimization problem (3) and to check if all its components are positive.

Observe that the optimization problem (3) always has solutions with finite components.
Indeed, the set of vectors that satisfy the constraints of (3) contains at least one valid solution
with real-valued components (this is again a consequence of the surjectivity of G). We just
need to consider an arbitrary solution y of the conservation equation (2) (see Section 5.1.2 for
a concrete example using the Moore-Penrose inverse) and to let zy = (y1, y2, . . . , ym, min(y)).
Any solution better than zy has all its components lower-bounded by min(y) and upper-
bounded by max(µ) −min(0, (n − 1) min(y)). The latter bound is obtained by observing
that, if edge k is incident to node i and if (y′

1, y′
2, . . . , y′

m, x′) is a solution of (3) such that
x′ ≥ min(y), then y′

k = µi −
∑

ℓ∈Ei\k y′
ℓ by (2). We then use the inequalities µi ≤ max(µ)

and
∑

ℓ∈Ei\k y′
ℓ ≥ min(0, (n− 1)x′) ≥ min(0, (n− 1) min(y)). Therefore, the solutions better

than zy belong to a compact set of Rm+1, which ensures the existence of an optimal solution
with finite components.

The optimization problem (3) is a textbook linear optimization problem. It can be solved
with a time complexity that is polynomial in the number n of nodes and the number m of
edges using many methods, for instance the interior-point-method [21].
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If z is a solution of (3), we call the corresponding y ∈ Rm a maximin solution of the
conservation equation Equation (2).

3.3 Early examples
We now illustrate Propositions 3.1 and 3.2 on a few toy examples that will also introduce
useful notions for Sections 4–6.

3.3.1 Bijective graphs
We first consider a compatibility graph G that is both surjective and injective. According to
Definition 2.5, the conservation equation (2) has a unique solution for each vector µ ∈ Rn of
arrival rates. Proposition 3.2 implies that the components of this solution are positive if and
only if the matching problem (G, µ) is stabilizable. By Remark 3.3, one can always exhibit a
vector µ ∈ Rn

>0 of arrival rates that satisfies this condition.

▶ Example 3.4 (Triangle). If the graph G is a triangle graph C3 and the vector µ = (µ1, µ2, µ3)
is given, the solution of the conservation equation (2) is unique and showed in Figure 3.
According to condition 3 in Proposition 3.2, (G, µ) is stabilizable if and only if all components
of this solution are positive. This is indeed equivalent to condition 2 in Proposition 3.2,
which reads µ1 < µ2 + µ3, µ2 < µ1 + µ3, and µ3 < µ1 + µ2. Note that an alternate way to
express this condition consists of saying that µ1, µ2, and µ3 are the lengths of the sides of
a non-degenerate triangle. Under these conditions, the matching model (G, µ, Φ) is stable
under the unique greedy policy Φ (this will be shown in Proposition 6.4).

1 2

3

µ1+µ2−µ3
2

µ1+µ3−µ2
2

µ2+µ3−µ1
2

Figure 3 Matching rates in the triangle graph C3.

▶ Example 3.5 (Paw graph). If G is a paw graph, the solution of the conservation equation (2)
is again unique and showed in Figure 4. µ̄3 = µ3−µ4 represents the remaining rate of class 3
after the needs of class 4 have been deduced. After this subtraction, the matching rates
along edges {1, 2}, {1, 3}, and {2, 3} are as defined in the triangle graph of Figure 3.

Note that, if positive matching rates guarantee the existence of stable greedy policies like
match-the-longest, some greedy policies can be unstable. Lemma 6.9 will give a “recipe” that
can be used to build an unstable greedy policy on a stabilizable matching problem (G, µ)
with a paw graph G.

3.3.2 Bipartite graph (that is neither injective nor surjective)
▶ Example 3.6 (Square graph). Figure 5 shows a square graph G = C4. This graph is not
surjective because it is bipartite between {1, 3} (odd component) and {2, 4} (even component).
Therefore, according to Proposition 3.1, this graph is not stabilizable. Yet, given a vector
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1

2

3 4µ1+µ2−µ̄3
2

µ1 +µ̄3 −µ22

µ2+µ̄3−µ1

2

µ4

Figure 4 Matching rates in the paw graph. µ̄3 = µ4 − µ3 denotes the residual rate that class 3
can provide to classes 1 and 2.

µ = (µ1, µ2, µ3, µ4) of arrival rates, the conservation equation (2) may still have a solution
with positive components. This does not contradict Proposition 3.2, as the three statements in
this proposition are equivalent only if the graph G is surjective. Assuming unit normalization,
the conservation equation (2) has a solution if and only if

µ1 + µ3 = µ2 + µ4 = 1
2 . (4)

If (4) is not satisfied, the difference between the numbers of unmatched items from the
odd and even components evolves like a biased random walk on the integer number line
{. . . ,−2,−1, 0, 1, 2, . . .}. This implies that the underlying Markov process is transient, as the
number of unmatched items in the component with the highest arrival rate grows linearly
with time. On the other hand, if (4) is satisfied, then the random walk is unbiased, but the
system is still unstable because the corresponding Markov chain is null recurrent. (Existing
studies of matching in bipartite graphs usually solve this issue by coupling arrivals in both
components [2, 8, 12] or by assuming that items have a finite patience time [20].)

If (4) is satisfied, the solutions of the conservation equation (2) can be described with a
parameter α as shown in Figure 5. The positive solutions correspond to values of α such
that −2 min(µ1µ2, µ3µ4) < α < 2 min(µ2µ3, µ1µ4).

1

2

4

3

2µ1µ
2 + α

2µ1µ4 − α

2µ2µ3 −
α

2µ3µ
4 + α

Figure 5 Matching rates in the square graph C4 (not stabilizable), with the normalization
µ1 + µ3 = µ̄2 + µ̄4 = 1

2 .

3.3.3 Surjective-only graphs
We finally consider compatiblity graphs G that are surjective but not injective. In other
words, the graph G is stabilizable and the conservation equation (2) has an infinite number
of solutions. Whether or not these solutions are achievable by a matching policy will be
discussed in Section 6.
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▶ Example 3.7 (Diamond (double-fan) graph). Figure 6 shows a diamond graph, that is, a
square graph with an additional edge between nodes 2 and 4. Compared to Example 3.6,
this additional edge makes the graph non-bipartite, and therefore surjective, so that the
graph is stabilizable according to Proposition 3.1. For ease of computation, we assume that
the vector µ = (µ1, µ2, µ3, µ4) of arrival rates is normalized so that µ1 + µ3 = 1

2 . According
to condition 2 in Proposition 3.2, the matching problem (G, µ) is stabilizable if and only if

µ2 < µ1 + µ3 + µ4, µ4 < µ1 + µ2 + µ3, µ1 + µ3 < µ2 + µ4 (5)

With β = 1
2 (µ2 + µ4 − µ1 − µ3) = 1

2 (µ2 + µ4) − 1
4 , µ̄2 = µ2 − β, and µ̄4 = µ4 − β, these

conditions rewrite:

µ̄4 > 0, µ̄2 > 0, β > 0. (6)

If these inequalities are satisfied, the general solution of the conservation equation (2) can
be described with a parameter α as shown in Figure 6. In particular, the positive solutions
correspond to values of α such that −2 min(µ1µ̄2, µ3µ̄4) < α < 2 min(µ̄2µ3, µ1µ̄4).

1

2

4

3

2µ1µ̄
2 + α

2µ1 µ̄4 −
α

2µ3 µ̄2 −
α

2µ3µ̄
4 + α

β

Figure 6 Matching rates in the diamond graph, with the normalization µ1 + µ3 = 1
2 . 2β =

µ2 + µ4 − µ1 − µ3 = µ2 + µ4 − 1
2 is the difference between the arrival rates of the even and odd

components. µ̄2 = µ2 − β and µ̄4 = µ4 − β represent the residual rates that classes 2 and 4 can
provide to classes 1 and 3.

Intuitively, compared to the square graph, stabilizable matching problems (G, µ) have
a positive difference of 2β between the arrival rates of the even and odd components.
This difference is absorbed by the central edge {2, 4}, which has matching rate β. After
subtracting β from µ2 and µ4, the solutions of the conservation equation (2) are exactly the
same as in the square graph of Example 3.6.

Like Example 3.4 and unlike Example 3.5, the matching model (G, µ, Φ) is stable for
every greedy policy Φ provided that (6) is satisfied (this will be shown in Corollary A.2).

▶ Example 3.8 (Kayak paddle graph). Figure 7 shows a kayak paddle G = KP3,3,1, consisting
of two triangles linked by an edge. According to Proposition 3.2, the matching problem (G, µ)
is stabilizable if and only if there exists α > 0 such that (µ1, µ2, µ3 − α) and (µ4 − α, µ5, µ6)
are the vectors of arrival rates of two stabilizable triangle graphs C3.

The solutions of the conservation equation (2) can be described by varying α as shown in
Figure 7. Assuming that the matching problem (G, µ) is stabilizable, the solutions of the
conservation equation (2) with positive components correspond to the values of α such that

0 < α < min(µ3 − |µ2 − µ1|, µ4 − |µ5 − µ6|).

Intuitively, solutions with positive components have a positive matching rate α along edge
{3, 4}. After subtracting this rate from µ3 and µ4, the subgraphs restricted to nodes 1, 2,
and 3 and to nodes 4, 5, and 6, respectively, behave exactly like the triangle of Figure 3.
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1

2

3 4

5

6

µ1+µ2−µ3+α
2

µ1+µ3−µ2−α

2

µ2 +µ3 −µ1 −α
2

α µ5+µ6−µ4+α
2

µ4+µ5−µ6−α

2

µ4 +µ6 −µ5 −α
2

Figure 7 Matching rates in the kayak paddle KP3,3,1.

Like Example 3.5 and unlike Examples 3.4 and 3.7, the fact that (G, µ) is stabilizable
does not guarantee the stability of any greedy policy.

4 Matching rates in bijective graphs

In the remainder, we will consider exclusively matching problems (G, µ) that are stabilizable.
According to Proposition 3.1 and Definition 2.3, this implies that the graph G is surjective, or
equivalently, that each connected component of G is non-bipartite. According to statement 4
in Proposition 2.7 and to Proposition 3.2, there are only two possible cases:
1. If n = m, the graph G is also bijective. The conservation equation (2) has a unique

solution given by λ = A−1µ. This solution, which has positive components, gives the
matching rates achieved by any stable policy. Each connected component of the graph G

is a unicyclic graph, and its unique cycle is odd.
2. If n < m, the graph G is surjective-only. The conservation equation (2) has an infinite

number of solutions, one of which has positive components. Each connected component
of the graph G is non-bipartite, and at least one of these connected components contains
an even cycle or a pair of odd cycles.

Case 1 is studied in this section, while case 2 will be studied in Sections 5 and 6.
In Proposition 4.1 below, we give a simpler expression for the unique solution λ = A−1µ

of the conservation equation (2) in terms of the arrival rate vector µ, under the assumption
that the graph G is bijective. We assume without loss of generality that the graph G is
connected, as otherwise we can consider each connected component independently. Compared
to the expression λ = A−1µ, the advantage of Proposition 4.1 is twofold: it does not require
calculating a matrix inversion, and it highlights the monotonicity of the matching rates with
respect to the arrival rates. This result will be illustrated in Examples 4.2 and 4.3.

▶ Proposition 4.1. Consider a matching problem (G, µ) with a compatibility graph G = (V, E)
that is connected and bijective, and consider an edge k ∈ E.
1. If edge k does not belong to the (unique odd) cycle of the graph G, then edge k separates

the graph G into two parts, namely a tree and a unicyclic graph. If Vk ⊂ V denotes the
set of nodes that belong to the tree (including one of the endpoints of edge k), then the
matching rate along edge k is given by

λk =
∑
i∈Vk

(−1)di,k µi. (7)
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2. If edge k belongs to the (unique odd) cycle of the graph G, then the matching rate along
edge k is given by

λk = 1
2

(∑
i∈V

(−1)di,k µi

)
, (8)

where di,k is the distance between node i and edge k, that is, the minimum distance
between node i and an endpoint of edge k.

Proof. We first prove (7) for every edge k that does not belong to the cycle. As observed
in the proposition, each edge k that does not belong to the cycle separates the graph into
two parts, one of which is a tree with node set Vk; the rooted tree associated with k is
obtained by designating the corresponding endpoint of edge k as the root. We now prove (7)
by induction on the height this rooted tree. Equation (7) is true if the depth of this tree is
zero. Indeed, in this case, the endpoint of edge k that belongs to the tree, say node i, has
no other incident edge, so that applying (1) to node i yields λk = µi, which is consistent
with (7). Now consider an edge k so that the associated rooted tree has height h ≥ 1. By
applying (1) to the root i of this associated rooted tree, we obtain

λk = µi −
∑

ℓ∈Ei\{k}

λℓ.

The induction hypothesis guarantees that (7) is satisfied for every ℓ ∈ Ei \ {k} (as the height
of the associated rooted tree is at most h− 1). The result for edge k follows by observing
that dj,k = dj,ℓ + 1 for each ℓ ∈ Ei \ {k} and j ∈ Vℓ and that Vk = {i} ∪ (

⋃
ℓ∈Ei\{k} Vℓ) (all

sets being disjoint).
We now prove (8) for each edge k that belongs to the cycle. Since the graph G is unicyclic,

deleting edge k from G yields a (connected) tree, which can be seen as a bipartite graph.
We let V+ denote set of nodes in the part that contains both endpoints of edge k (that both
endpoints belong to the same part follows from the fact that the cycle is odd) and V− the
set of nodes in the other part. We obtain∑

i∈V+

µi −
∑

i∈V−

µi =
∑

i∈V+

∑
ℓ∈Ei

λℓ −
∑

i∈V−

∑
ℓ∈Ei

λℓ = 2λk.

The first equality follows from (1). The second equality holds because each edge ℓ ∈ E \ {k}
has one endpoint in V+ and another in V−, so that λℓ appears exactly once in the first nested
sum and once in the second; on the contrary, since both endpoints of edge k belong to V+,
λk appears twice in the first nested sum and zero times in the second. Equation (8) follows
by observing that di,k is even if and only if i ∈ V+. ◀

We remark that the influence of the arrival rate of a node on an edge matching rate only
depends on the parity of the distance between the edge and the node. The actual distance
does not. In particular, even in a very large (bijective) graph, a node far away from an edge
has the same (although possibly reversed) impact as an endpoint of that edge.

▶ Example 4.2 (Cycle graph with 5 nodes). A cycle graph is the simplest bijective graph
that we can consider, as it contains an odd cycle and no other edges. In the cycle graph of
Figure 8, a direct application of statement 1 in Proposition 4.1 yields

λ1,2 = 1
2(µ1 + µ2 − µ3 + µ4 − µ5).
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Matching rates along other edges follow by symmetry. From the point of view of edge {1, 2},
we can partition nodes into two sets, namely {1, 2, 4} and {3, 5}. The former (resp. latter)
set contains nodes at an even (resp. odd) distance of edge {1, 2}, and increasing the arrival
rate of these nodes increases (resp. decreases) the matching rate along edge {1, 2}.

4

3

21

5

µ1+µ2−µ5−µ3+µ4
2

Figure 8 Matching rates in the pentagon graph C5. Only rate λ1,2 is shown for ease of display.
The other rates are deduced by permutation.

▶ Example 4.3 (Lying puppet). We now consider the graph of Figure 9. Edges {1, 2}, {1, 3},
and {2, 3} belong to the cycle, and the other edges do not. According to Proposition 4.1, we
have

λ1,2 = µ1 + µ2 − µ̄3

2 , λ1,3 = µ1 − µ2 + µ̄3

2 , λ2,3 = −µ1 + µ2 + µ̄3

2 ,

where µ̄3 = µ3 − λ3,4, and

1
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3 4
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9

µ1+µ2−µ̄3
2

µ2 +µ̄3 −µ12

µ1+µ̄3−µ2

2

µ̄4

µ5

µ6

µ̄7

µ8

µ9

Figure 9 Matching rates in a “lying puppet” graph with n = 9 nodes and m = 9 edges. The
differences µ̄7 = µ7 − µ8 − µ9, µ̄4 = µ4 − µ5 − µ6 − µ̄7, and µ̄3 = µ3 − µ̄4 are the residual rates that
classes 7, 4, and 3 provide to their neighbors of lower index.

λ4,5 = µ5, λ4,6 = µ6, λ7,8 = µ8,

λ7,9 = µ9, λ4,7 = µ7 − λ7,8 − λ7,9, λ3,4 = µ4 − λ4,5 − λ4,6 − λ4,7.

This second set of equations can be obtained either by a direct application of (7) or by
applying (1) recursively from the leaves. Indeed, applying (1) to nodes 5, 6, 8, and 9 gives
directly the values of λ4,5, λ4,6, λ7,8, and λ7,9, then applying (1) to node 7 gives the value of
λ4,7, and finally applying (1) to node 4 gives the value of λ3,4. The values of λ1,2, λ1,3, and
λ2,3 are similar to Example 3.5, where the arrival rate µ3 is again replaced with the effective
arrival rate µ̄3 from the point of view of classes 1 and 2.
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5 Solution of the conservation equation in surjective-only graphs

Consider a stabilizable matching problem (G, µ) with a surjective-only compatibility graph G.
According to Definitions 2.3, 2.4, and 2.6, each connected component of the graph G is
non-bipartite, and at least one of these connected components contains an even cycle or a
pair of odd cycles. This means that the conservation equation (2) has an infinite number
of solutions, and that at least one of these solutions has positive components. This section
describes these solutions. Section 5.1 characterizes the affine space of all real-valued solutions
of the conservation equation (2), while Section 5.2 focuses on the convex polytope made of
the solutions with non-negative components. Whether or not these solutions are achievable
by a matching policy will be discussed in Section 6.

Note that the results stated in this section are also applicable to bijective graphs but
they are of little interest in that case: the solution is unique and Section 4 already gives a
closed-form expression for it. This is why we focus on surjective-only graphs.

5.1 Affine space of real-valued solutions
Let Λ denote the set of solutions of the conservation equation (2), with positive, zero, or
negative components, that is

Λ = {y ∈ Rm : Ay = µ} . (9)

In Section 5.1.1 we observe that Λ is an affine space of dimension d = n−m that can
be described as a translation of the kernel of the incidence matrix by a solution of the
conservation equation (2). Section 5.1.2 gives possible solutions that can be used. 5.1.3 gives
an algorithm to construct a basis for the kernel of the incidence matrix directly from the
graph.

5.1.1 Edge basis, kernel basis
The following proposition characterizes the set of solutions of the conservation equation (2)
using the incidence matrix.

▶ Proposition 5.1. Consider a stabilizable matching problem (G, µ) with a surjective-only
compatibility graph G. Let A denote the incidence matrix of G. The solution set Λ of the
conservation equation (2) is the affine space obtained by translating the kernel of the matrix A

by a particular solution y◦ of the conservation equation (2), that is,

Λ = {y◦ + y : y ∈ ker(A)} . (10)

Furthermore, the linear space ker(A) and the affine space Λ have dimension d = m− n.

Proof. That the set Λ is of the form (10) is a well-known result in linear algebra. Definition 2.3
about surjectivity implies that rank(A) = n, and we conclude from the rank-nullity theorem
that the nullity of A is d = n −m. The affine space Λ has the same dimension according
to (10). ◀

Equation (10) tells that, up to translation, Λ is only defined by the structure of the graph
G. The vector of arrival rates µ only impacts the translation y◦.

Thanks to Proposition 5.1, given a particular solution y◦ of the conservation equation (2),
and a basis B = (b1, b2, . . . , bd) of ker(A), we can rewrite the affice space Λ as

Λ = {y◦ + α1b1 + α2b2 + . . . + αdbd : α1, α2, . . . , αd ∈ R} .
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Said differently, we can define the following affine isomorphism between the coordinate space
Rd and the d-dimensional affine space Λ:

α = (α1, α2, . . . , αd) ∈ Rd 7→ y = y◦ + α1b1 + α2b2 + . . . + αdbd ∈ Λ. (11)

Therefore, for given y◦ and B, there are two natural basis to represent vectors in Λ:
Edge basis: A vector of Λ is described by a vector y = (y1, y2, . . . , ym) ∈ Rm, where yk

represents a potential matching rate along edge k, for each k ∈ E.
Kernel basis: A vector of Λ is described by a vector α = (α1, α2, . . . , αd) ∈ Rd, where
d = m− n is the dimension of the affine space Λ.

If B is the m× d matrix that represents B in the edge basis, the change-of-basis formulas
are as follows:

A vector of Λ with coordinates α in kernel basis has coordinates y◦ + Bα in edge basis;
A vector of Λ with coordinates y in edge basis has coordinates B+(y− y◦) in kernel basis,
where B+ is the pseudo-inverse of B.

As B is a basis, the columns of B are independent, so that the pseudo-inverse B+ has
the following simple expression:

B+ = (B⊺B)−1B⊺,

where the d× d matrix B⊺B is invertible because ker(B⊺B) = ker(B) = {0}.
In practice, which basis we are actually using will be made clear by our choice of letters

(either y or α). Both basis have their benefits. The edge basis, by definition, gives directly
the potential matching rates. The kernel basis allows to work in lower dimension (d instead
of m) and to ignore the conservation equation (2), which is implicitly enforced.

For graphs that have a low kernel dimension d, it is convenient to mix both approaches and
to represent a generic vector of Λ, i.e. a generic solution of the conservation equation (2), in
the form y◦ + Bα. For instance, the solutions on Examples 3.7 and 3.8 are actually displayed
in Figures 6 and 7 using that convention. This representation, along with the possibility to
switch between edge basis and kernel basis, will be used extensively in Sections 5.2 and 6.

We now focus on y◦ (the chosen origin for Λ) and B.

5.1.2 Particular solution
A standard way to simultaneously find a particular solution y◦ and characterize ker(A) consists
of using the pseudoinverse (or Moore-Penrose inverse) of the matrix A. Definition 2.3 about
surjectivity implies that the rows of A are linearly independent, so that the pseudoinverse A+

of A has the following simple expression:

A+ = A⊺(AA⊺)−1,

where the n× n matrix AA⊺ is invertible because ker(AA⊺) = ker(A⊺) = {0}. We can then
describe a particular solution y⊥ and the kernel ker(A) as follows:

y⊥ = A+µ, ker(A) =
{

(Im×m −A+A)y : y ∈ Rm
}

,

where Im×m is the m-dimensional identity matrix. The vector y⊥ is the least-squares solution
of the conservation equation (2), and it is orthogonal to ker(A). In general, the components
of this solution are not non-negative even if non-negative solutions exist. For example, if G
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is the diamond graph of Example 3.7, then the matching problem (G, µ) with µ = (4, 5, 1, 2)
is stabilizable, but the solution given by the pseudoinverse is y⊥ = ( 11

4 , 5
4 , 1, 5

4 ,− 1
4 ).

If one prefers a positive solution for y◦, one alternate possibility is to use a maximin
solution by solving the linear optimization problem Equation (3). Remind that to ensure
the existence of a maximin solution we used the fact that at least one solution exists, which
justifies the introduction of the solution based on the Moore-Penrose inverse.

As stated above, the Moore-Penrose inverse also provides an implicit characterization of
ker(A). However, this characterization is not very practical as it relies on a projection from
Rm to ker(A). We now give a more direct characterization by building a basis for ker(A)
based on the structure of the compatibility graph G.

5.1.3 Basis of the kernel of the incidence matrix
Recall that a vector y ∈ Rm belongs to ker(A) if and only if Ay = 0, which reads

∑
k∈Ei

yk = 0
for each i ∈ V . In other words, a vector y ∈ Rm belongs to ker(A) if and only if the sum of
the components of y associated with the edges incident to the same node is zero. Using this
observation, we first give examples of subgraphs that are supports of vectors that belong
to ker(A), and then we give an algorithm that generates a basis B = (b1, b2, . . . , bd) of ker(A).

First observe that an even cycle, if it exists, defines a vector in ker(A): it suffices to assign
alternatively the values +1 and −1 to the edges of this cycle and the value 0 to all other edges.
In the diamond graph of Example 3.7 for instance, if edges are numbered in lexicographical
order, then y = (1,−1,−1, 0, 1) is a vector of the unidimensional kernel, associated with the
even cycle 1–2–3–4 (see Figure 10). Intuitively, even cycles can be used to move weights
between “odd” and “even” edges without modifying the value of the product Ay. Actually,
in this particular example, the only way to increase the matching rate along edges {1, 2} and
{3, 4} is to reduce the matching rate along edges {2, 3} and {1, 4}, and conversely.

1

2

4

3

1

−1

−1

1

0

Figure 10 Vector of the kernel space of the diamond graph.

Apart from even cycles, other structures of interest are kayak paddles KPℓ,r,p in which
the lengths ℓ and r of both cycles are odd. These graphs have a unidimensional kernel, and
a base vector can be found by assigning properly the values +1 and −1 along the cycles and
the values +2 and −2 along the path. Figure 11 shows such an assignment for KP3,5,2.

Surprisingly, for any surjective graph G, one can build a basis of ker(A) using only
subgraphs of G that are even cycles and kayak paddles. This is what Algorithm 1 does.
It finds m − n distinct edges and associates to each one either an even-cycle base vector
or a kayak-paddle base vector. We assume without loss of generality that the graph G is
connected (in addition to being surjective-only). If not, we can apply the algorithm to each
connected component separately, and then we embed the obtained vectors via zero padding.

Figures 12 and 13 show possible runs of Algorithm 1 on the triamond and codomino
graphs, both of which have a two-dimensional kernel. Note that the basis is not unique and
depends on our initial choice of the spanning tree T and the augmenting edge a (see lines
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Figure 11 Vector of the kernel space of the kayak paddle KP3,5,2.

2 and 3 in Algorithm 1). We now verify that Algorithm 1 termines and yields the desired
result.

Spanning tree Augmenting edge
First kernel vector Second kernel vector

1 2 3

5 4

a

s1

s2

(a) Construction A.

1 2 3

5 4
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−1 1

−1

−1 1
0

(b) First vector for A (KP3,3,0).

1 2 3

5 4

0

0 0
1

−1
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−1

(c) Second vector for A (C4).
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5 4

a s1s2

(d) Construction B.

1 2 3

5 4

−1

1 1
−1

0

0

0

(e) First vector for B (C4).

1 2 3

5 4

0

0 0
−1

1

−1

1

(f) Second vector for B (C4).

Figure 12 Two possible constructions of a kernel basis for the triamond graph.

▶ Proposition 5.2. Algorithm 1 terminates and returns a basis of the kernel of the incidence
matrix A of the compatibility graph G.

Proof. See Appendix B. ◀

Importantly, given an edge k ∈ E, all solutions of the conservation equation (2) have the
same value along edge k if and only if edge k does not belong to the support of any basis
vector. According to Algorithm 1, this is equivalent to say that edge k belongs neither to an
even cycle nor to a kayak paddle. In the diamond graph of Example 3.7 for instance, the
edge {2, 4} is the only one that does not belong to the even cycle 1–2–3–4, and it is also the
only one with a fixed value β. In general, if an edge k ∈ E satisfies this unicity condition,
then the matching rate along edge k in a stable matching model (G, µ, Φ) is independent
of the policy Φ. Note that there is no general relation between the number of edges with
uniquely-defined matching rates and the dimensionality d of the affine space Λ.
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Data: A connected surjective-only graph G = (V, E)
Result: A basis B of the kernel of the incidence matrix A of G

1 B ← ∅
2 T ← the set of edges of a spanning tree of G

3 a← an edge in E \ T such that T ∪ {a} contains an odd cycle
4 for s ∈ E \ (T ∪ {a}) do
5 b← 0m×1
6 if T ∪ {a, s} contains an even cycle Cℓ then
7 c1, . . . , cℓ ← edges of Cℓ, numbered from an arbitrary starting point
8 for d ∈ {1, . . . , ℓ} do
9 k ← index of cd in E

10 bk = (−1)d

11 else
12 T ∪ {a, s} contains a kayak paddle KPℓ,r,p with ℓ odd, r odd, and p ≥ 0
13 vi ← node connecting the kayak cycle Cℓ to the kayak central path
14 vj ← node connecting the kayak cycle Cr to the kayak central path
15 c1, . . . , cℓ ← edges of Cℓ, numbered starting from node vi

16 for d ∈ {1, . . . , ℓ} do
17 k ← index of cd in E

18 bk = (−1)d

19 c1, . . . , cp ← edges of the central path, numbered starting from node vi

20 for d ∈ {1, . . . , p} do
21 k ← index of cd in E

22 bk = 2(−1)d+1

23 c1, . . . , cr ← edges of Cr, numbered starting from node vj

24 for d ∈ {1, . . . , r} do
25 k ← index of cd in E

26 bk = (−1)d+p+1

27 B ← B ∪ {b}

Algorithm 1 Construction of a basis of the kernel of the incidence matrix A of the graph G. This
algorithm was initially introduced in [18, Section 3] to build a basis of the eigenspace associated
with the eigenvalue −2 of the adjacency matrix C of a line graph L.

5.2 Convex polytope of positive solutions
We now consider the set Λ⩾0 of solutions of the conservation equation (2) that have non-
negative components, that is,

Λ⩾0 = Λ ∩ Rm
⩾0 = {y ∈ Rm : Ay = µ, y ≥ 0}. (12)

The set Λ⩾0 is a d-dimensional convex polytope in Rm, as it is the intersection of a d-
dimensional affine space with the positive orthant Rm

⩾0, both of which are convex. The
set Λ⩾0 is neither empty nor degenerated to a dimension lower than d because the matching
problem (G, µ) is assumed to be stabilizable, which means that Λ contains a point with
positive components (i.e. in the interior of the positive orthant). It is bounded because each
y ∈ Λ⩾0 satisfies 0 ≤ yk ≤ mini∈Vk

(µi) for each k ∈ E.
Equation (12) describes Λ⩾0 in the edge basis. As Λ⩾0 is a subset of Λ, we can also

express its elements in the kernel basis introduced in Section 5.1.1. In the kernel basis, Λ⩾0
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Figure 13 Two possible constructions of a kernel basis for the codomino graph.

is defined by the vectors whose coordinates belong to

Π⩾0 = {α ∈ Rd : y◦ + Bα ≥ 0}. (13)

As Equations (12) and (13) basically represent the same polytope up to the change-of-basis
formulas introduced in Section 5.1.1, in the remainder, we will use the same letter Λ⩾0 to
describe both sets; the implicit basis we are actually using will be made clear by our choice
of letters (y for the edge basis or α for the kernel basis).

5.2.1 Vertices of the convex polytope
Vertices can be informally defined as the corners or extreme points of a convex polytope.
Definition 5.3 gives a formal definition of a vertex (as well as those of a face and a facet,
which will be useful later).

▶ Definition 5.3 (Vertices and facets, adapted from [28]). A face of a convex polytope Π is
an intersection of Π with a hyperplane such that the polytope Π is entirely contained in one
of the two halfspaces determined by the hyperplane. A vertex of Π is a face of dimension 0,
while a facet of Π is a face of dimension d− 1. A vertex can also be defined as follows: a
vector y ∈ Π is a facet of Π if, and only if, it cannot be written as a convex combination of
points in Π\{y}.

The vertices of Λ⩾0 are important if one wants to optimize some linear function of the
matching rate, as stated by Proposition 5.4. This kind of optimization occurs in many
problems related to dynamic matching systems (see for example [26] and references within).

▶ Proposition 5.4. Let w = (w1, . . . , wm) ∈ Rm be a reward function associated to the edges
of the compatibility graph. Consider the problem of finding the non-negative solutions of the
conservation equation (2) that maximizes the reward:

F = {y ∈ Λ⩾0 : w⊺y = max
z∈Λ⩾0

w⊺z}. (14)

F is a non-empty face of Λ⩾0. In particular, there exists a vertex y ∈ Λ⩾0 that maximizes
the reward (i.e. y ∈ F ).
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Proof. This is a standard convex optimization result. The fact that Λ⩾0 is bounded
guarantees the existence of a maximum rmax amongst the rewards inside Λ⩾0. F , which is
the intersection of the hyperplane {y ∈ Rm : w⊺y = rmax} and Λ⩾0, is hence a non-empty
face of Λ⩾0. The fact that any non-empty face contains a vertex is a consequence of the
latice structure of the faces of a polytope. ◀

The interest of Proposition 5.4 is the following: if for any vertex v of Λ⩾0 one can provide
a stable policy Φ whose matching rate is v, or at least arbitrarily close to v, then we can
optimize with a stable policy any linear reward function (or at least be arbitrarily close to
the optimal). Finding such policies will be the main focus of Section 6.2.

Proposition 5.5 below gives a simple yet powerful characterization of vertices. The proof
of this proposition is borrowed from [13].

▶ Proposition 5.5. Consider a vector y ∈ Λ⩾0. Let Ey = {k ∈ E : yk > 0} denote the
support of the vector y and Gy = (V, Ey) the subgraph of G obtained by deleting the edges
that are not in Ey. The following statements are equivalent:
1. The vector y is a vertex of Λ⩾0.
2. The graph Gy is injective.

Proof. Let Ay denote the incidence matrix of Gy. By Definition 5.3, if y is not a vertex,
there exist z1, z2 ∈ Λ⩾0\{y} and 0 < θ < 1 such that y = θz1 + (1− θ)z2. The components
of the vectors z1 and z2 are non-negative, so this equality implies that their supports are
included into the support of the vector y. In particular, if y′ and z′

1 denote the restrictions
of y and z1 to components in Ey, respectively, we obtain Ayy′ = Ay = µ = Az1 = Ayz′

1 with
y′ ̸= z′

1, which means that Gy = (V, Ey) is not injective.
Conversely, if Gy is not injective, there exists a non-zero vector z′ in R|Ey| such that

Ayz′ = 0. If we embed z′ into R|E| with zero-padding, we obtain a non-zero vector z such
that Az = 0, and whose support is included into that of the vector y. This implies that
there exists ε > 0 such that both y − εz and y + εz belong to Λ⩾0. The convex combination
y = 1

2 (y − εz) + 1
2 (y + εz) proves that the vector y is not a vertex of Λ⩾0. ◀

Examples of vertices are shown in Figures 14–16 and will be discussed in details later.
For now, it is sufficient to observe that, since the subgraph restricted to the support of a
vertex is injective, this subgraph is either bijective (as in Figures 14d–14h and 16c–16f) or
injective-only (as in Figures 15d–15f and 16g).

Corollary 5.6 below characterizes the stabilizability of (Gy, µ) for a vertex y. This will be
useful in Section 6.2, where the construction of a stable policy on G to achieve a vertex y

will depend on the bijectivity of Gy.

▶ Corollary 5.6. Consider a vertex y of Λ⩾0, and define Ey and Gy as in Proposition 5.5.
We distinguish two cases, depending on the value of p = |Ey|:
1. If p = n, i.e. exactly d components of y are null, then the subgraph Gy is bijective and

the matching problem (Gy, µ) is stabilizable.
2. If p < n, i.e. strictly more than d components of y are null, then the subgraph Gy is

injective-only and the matching problem (Gy, µ) is not stabilizable.

Proof. Let Ay denote the incidence matrix of Gy. We know from Proposition 5.5 that Gy is
injective. In particular, the restriction y′ of the vector y to its positive components is the
only solution of the conservation equation Ayz = µ, of unknown z ∈ Rp. It also follows from
Proposition 2.7 that p ≤ n, and that the subgraph Gy is bijective if and only if p = n. We
know consider the two cases separately:
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1. If p = n, then Gy is bijective. Proposition 3.2 implies that the matching problem (Gy, µ)
is stabilizable, as G is surjective and y′ is a solution of the conservation equation Ayz = µ

with positive components.
2. If p < n, then Gy is injective-only. Proposition 3.1 implies that the matching problem

(Gy, µ) is not stabilizable.
◀

▶ Remark 5.7. Again consider a vertex y of Λ⩾0, and define Gy and Ay as in Proposition 5.5.
According to Definitions 2.3, 2.4, and 2.6, the subgraph Gy is injective if and only if each
connected component of Gy is either a tree or a unicyclic graph with an odd cycle. For each
connected component of Gy that is a tree, and therefore a bipartite graph with parts V+ and
V−, the existence of vertex y implies that∑

i∈V+

µi =
∑

i∈V−

µi. (15)

Equation (15) follows by summing (1) over the nodes in V+ on the one hand, summing (1)
over the nodes in V− on the other hand, and verifying that the left-hand sides of both
equations are equal. In fact, one can verify that the vector µ belongs to the image of Ay if
and only if µ satisfies (15) for each tree connected component of Gy. Note that this condition
is empty if Gy is bijective, as each connected component of Gy then contains an odd cycle.

Conversely, one can wonder which injective surgraph G′ of G defines a vertex of Λ⩾0.
Satisfying (15) for each tree connected component of G′ only guarantees the existence of a
(unique) solution z ∈ Rp to the conservation equation Ayz = µ. If each component of z is
positive, then we indeed obtain a corner of Λ⩾0 by embedding z in Rm with zero padding;
otherwise, G′ does not define a vertex of Λ⩾0.

5.2.2 Bijective vertices and facets of the convex polytope
By a slight abuse of notation, we will say that a vertex y ∈ Λ⩾0 is bijective (resp. injective-
only) to express that Gy is bijective (resp. injective-only). As stated above, the bijectivity
of vertices plays an important role in the study of the matching rates that can be achieved
by stable policies, which will be the matter of Section 6. We now detail the relationship
between the bijectivity of vertices and the inequalities that define Λ⩾0.

Following Corollary 5.6, the bijectivity of a vertex is determined by the number of its
components that are positive in edge coordinates. Recall that the d-dimensional polytope
Λ⩾0 is actually characterized by the m inequalities yk ≥ 0 for each k ∈ E. In particular, this
polytope has at most m facets, one for each inequality, but it typically has fewer. Indeed,
some inequalities may be redundant and/or not tight, in a sense that will be defined in
Definition 5.8 below. For example, by looking more closely at the general solution obtained
for the diamond graph in Figure 6, we conclude that:

The inequality y2,4 ≥ 0 is satisfied trivially by every vector y ∈ Λ, as we have y2,4 = β > 0.
Therefore, this inequality does not define a facet.
If µ1µ̄2 < µ3µ̄4, the inequality y1,2 ≥ 0 supersedes the inequality y3,4 ≥ 0, and conversely.
If µ1µ̄2 = µ3µ̄4, these two inequalities are equivalent. In both cases, the inequalities
y1,2 ≥ 0 and y3,4 ≥ 0 lead to a single facet.
If µ1µ̄4 < µ3µ̄2, the inequality y1,4 ≥ 0 supersedes the inequality y2,3 ≥ 0, and conversely.
If µ1µ̄4 = µ3µ̄2, these two inequalities are equivalent. In both cases, the inequalities
y1,4 ≥ 0 and y2,3 ≥ 0 lead to a single facet.
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All in all, the 1-dimensional convex polytope Λ⩾0 associated with the diamond graph of
Example 3.7 has two facets, even if it is defined by five inequalities. Definition 5.8 below will
help us relate these notions to the number of zero components of the vertices of the convex
polytope Λ⩾0.

▶ Definition 5.8 (Adapted from [4, 28]). Let k ∈ E.
1. The inequality yk ≥ 0 is said to be tight if there exists a vector y ∈ Λ⩾0 such that yk = 0,

in which case we also say that this inequality is tight for the vector y.
2. The inequality yk ≥ 0 is said to be redundant if removing this inequality does not change

the polytope Λ⩾0, in the sense that

Λ⩾0 = {y ∈ Rm : Ay = µ, yℓ ≥ 0 for each ℓ ∈ E \ {k}}.

Otherwise, this inequality is called irredundant.
3. The matching problem (G, µ) is said to be essential if all tight inequalities are irredundant.
4. The polytope Λ⩾0 is said to be simple if every vertex of Λ⩾0 belongs to exactly d facets,

which is the minimal number of facets a vertex belongs to.
Importantly, the number of positive components of a vertex y (considered in Corollary 5.6)
is the number of inequalities that are not tight for this vertex. More generally, Definition 5.8
has the following intuitive interpretation. An inequality is tight if the convex polytope Λ⩾0
intersects the hyperplane obtained by transforming this inequality into an equality. Non-tight
inequalities are “useless” (and redundant) because they are never satisfied as equalities by
any vector in Λ⩾0. The matching problem (G, µ) is essential if each tight inequality defines
a distinct facet of the convex polytope Λ⩾0. Under this condition, the number of facets
that contain a vertex is equal to the number of inequalities that are tight for this vertex.
In particular, as we will see in Proposition 5.12, if the matching problem (G, µ) is essential
and the polytope Λ⩾0 is simple, then every vertex satisfies exactly d (tight) inequalities as
equalities, which means that this vertex has d zero components, and therefore n = m− d

positive components, so that this vertex is bijective.
All these notions are illustrated in Examples 5.9–5.11 below, which show in particular

that a matching problem (G, µ) may be essential even if the polytope Λ⩾0 is not simple, and
conversely. Consistently with Example 3.7 above, these examples use a kernel basis to verify
effortlessly whether an inequality is tight and/or irredundant.

▶ Example 5.9 (Essential matching problem). Figure 14 considers a codomino graph with
the vector of arrival rates µ = (4, 5, 3, 2, 3, 5). A particular solution of the conservation
equation (2) is y◦ = (2, 2, 1, 2, 1, 1, 1, 1) ∈ R8, and the basis of ker(A) consists of the vectors
b1 = (−1, 1, 1, 0,−1, 0, 1,−1) and b2 = (0, 0,−1, 1, 0, 1, 0,−1) obtained in construction B of
Figure 13. The generic solution of the conservation equation (2) is shown in Figure 14b.

The inequalities are listed in Figure 14a. The 2-dimensional polytope Λ⩾0, shown in
Figure 14c in kernel basis, is characterized by five tight inequalities which are also irredundant:

−1 ≤ α1 ≤ 1, α2 ≥ −1, α1 − α2 ≥ −1, α1 + α2 ≤ 1.

The matching problem (G, µ) is essential. In kernel basis, the vertices of the convex poly-
tope Λ⩾0 are (0, 1), (−1, 0), (1, 0), (−1,−1), and (1,−1), and we can verify on Figure 14c
that each vertex belongs to exactly 2 facets. Therefore, like all 2-dimensional polytopes, Λ⩾0
is simple. All in all, each vertex of Λ⩾0 has 2 zero components and 6 positive components in
edge coordinates, so that this vertex is bijective. These vertices are represented in edge basis
in Figures 14d–14h.
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Edge basis Kernel basis Tight? Irredundant?
y1,2 ≥ 0 α1 ≤ 2 ✗ ✗

y1,6 ≥ 0 α1 ≥ −2 ✗ ✗

y2,3 ≥ 0 α1 − α2 ≥ −1 ✓ ✓

y2,6 ≥ 0 α2 ≥ −2 ✗ ✗

y3,4 ≥ 0 α1 ≤ 1 ✓ ✓

y3,5 ≥ 0 α2 ≥ −1 ✓ ✓

y4,5 ≥ 0 α1 ≥ −1 ✓ ✓

y5,6 ≥ 0 α1 + α2 ≤ 1 ✓ ✓

(a) Inequalities.
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Figure 14 An essential matching problem (G, µ) with a simple polytope Λ⩾0. The vector of
arrival rates is µ = (4, 5, 3, 2, 3, 5) ∈ R6, a particular solution of the conservation equation (2) is
y◦ = (2, 2, 1, 2, 1, 1, 1, 1) ∈ R8, and the chosen base vectors for ker(A) are b1 = (−1, 1, 1, 0, −1, 0, 1, −1)
and b2 = (0, 0, −1, 1, 0, 1, 0, −1).

▶ Example 5.10 (Non-essential matching problem). Figure 15 shows the same codomino
graph as in Example 5.9, with the same basis of ker(A), but with the vector of arrival
rates µ = (2, 4, 4, 2, 2, 2). A particular solution of the conservation equation (2) is y◦ =
(1, 1, 2, 1, 1, 1, 1, 0), and the general solution is shown in Figure 15b.

The inequalities are listed in Figure 15a. The 2-dimensional convex polytope Λ⩾0 is
shown in kernel basis in Figure 15c. All inequalities are tight, but only one is irredundant,
so we conclude that the matching problem (G, µ) is not essential, even if the polytope Λ⩾0
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Edge basis Kernel basis Tight? Irredundant?
y1,2 ≥ 0 α1 ≤ 1 ✓ ✗

y1,6 ≥ 0 α1 ≥ −1 ✓ ✗

y2,3 ≥ 0 α1 − α2 ≥ −2 ✓ ✗

y2,6 ≥ 0 α2 ≥ −1 ✓ ✗

y3,4 ≥ 0 α1 ≤ 1 ✓ ✗

y3,5 ≥ 0 α2 ≥ −1 ✓ ✗

y4,5 ≥ 0 α1 ≥ −1 ✓ ✗

y5,6 ≥ 0 α1 + α2 ≤ 0 ✓ ✓

(a) Inequalities
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(f) Edge coordinates of (1, −1).

Figure 15 Non-essential matching problem (G, µ) with a simple polytope Λ⩾0. The vector of
arrival rates is µ = (2, 4, 4, 2, 2, 2) ∈ R6, a particular solution of the conservation equation (2) is
y◦ = (1, 1, 2, 1, 1, 1, 1, 0) ∈ R8, and the chosen base vectors for ker(A) are b1 = (−1, 1, 1, 0, −1, 0, 1, −1)
and b2 = (0, 0, −1, 1, 0, 1, 0, −1).

is still simple. Correspondingly, even if each vertex belongs to exactly two facets, they all
have more than two zero components, so none of them is bijective. For example, the vertex
(1,−1) in kernel basis has coordinates (0, 2, 4, 0, 0, 0, 2, 0) in edge basis (Figure 15f). This
vertex has five zero components in edge coordinates (and only three positive components)
even if this vertex belongs to only two facets.

▶ Example 5.11 (Non-simple polytope). We finally exhibit an essential matching problem
with a non-simple associated polytope. As 2-dimensional polytopes are simple, we need to
consider a more complex example. We consider the matching problem of Figure 16a. The
arrival rate is µ = (3, 3, 6, 3, 4, 4, 6, 3, 4, 4) ∈ R10. The particular solution and kernel basis
are shown on the edges. The set Λ⩾0, shown in Figure 16b in kernel basis, is an Egyptian
pyramid characterized by the following tight inequalities:

α3 ≥ 0, 1 + α1 − α3 ≥ 0, 1− α1 − α3 ≥ 0, 1 + α2 − α3 ≥ 0, 1− α2 − α3 ≥ 0.

These five inequalities are irredundant (each one corresponds to exactly one of the five facets),
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(f) Edge coordinates of (−1, 1, 0).
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Figure 16 Essential matching problem (G, µ) with a non-simple polytope Λ⩾0. The arrival rate
is µ = (3, 3, 6, 3, 4, 4, 6, 3, 4, 4) ∈ R10. A particular solution and the chosen base vectors for ker(A)
are implicitly shown on the edges of Figure 16a.

so we conclude that the matching problem (G, µ) is essential. In kernel basis, the vertices
of this convex polytope are (−1,−1, 0), (1,−1, 0), (1, 1, 0), (−1, 1, 0), and (0, 0, 1). These
vertices are shown in edge basis in Figures 16c–16g. The polytope Λ⩾0 is not simple because
the vertex (0, 0, 1) (the “top” of the pyramid) belongs to 4 facets, while the polytope has
dimension 3. Consistently, we can see in Figure 16g that this vertex has four zero components
and only nine positive components in edge basis; the subgraph defined by the support of this
vertex is injective-only.

In light of the examples above, we can give the following characterization of the bijective
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vertices of Λ⩾0.

▶ Proposition 5.12. Let y be a vertex of Λ⩾0. The following statements are equivalent:
1. y is bijective.
2. y belongs to exactly d facets of Λ⩾0 and none of the inequalities tight for y is redundant.
In particular, all vertices of Λ⩾0 are bijective if, and only if, the matching problem (G, µ) is
essential and the polytope Λ⩾0 is simple.

Proof. We first remark that the number of null components of an element y ∈ Λ⩾0 are by
definition the number of inequalities that are tight for y. It is in particular at least the
number of facets that intersect y, with equality if, and only if, none of the inequalities tight
for y is redundant.

If y is a vertex, y belongs to at least d facets. It is bijective if, and only if, d of its
components are null, which in view of the remark above is equivalent to say that y belongs
to exactly d facets of Λ⩾0 and none of the inequalities tight for y is redundant.

As for the last statement, it follows a directly from Definition 5.8. ◀

6 Matching rates in surjective-only graphs

Section 5 describes Λ⩾0, the set of non-negative solutions of the conservation equation (2).
In this section, we investigate which of these solutions may, or may not, be achieved by a
(stable) policy. There are many cases where this question matters:

As stated in Proposition 5.4, if an edge-dependent reward is earned each time a match
is performed, the long-term reward is maximized by favoring edges with the maximal
reward and, more precisely, by achieving a vector on a face of the polytope Λ⩾0.
In chained matching, the matches performed in the stable matching model (G, µ, Φ) form
the (non-Poisson) arrival process of another matching model, with a compatibility graph
G′ = (E, E′) (the edges of G are the nodes of G′). In particular, the matching rate vector
λ of the first model is the vector of arrival rates in the second model. Being able to
control the vector λ can therefore help stabilize the second model.

Unless otherwise stated, we consider a stabilizable matching problem (G, µ) with a surjective-
only compatibility graph G, so that the set Λ⩾0 of non-negative solutions of the conservation
equation (2) is non-trivial.

Given a policy Φ that stabilizes the matching problem (G, µ), we let λ(Φ) denote the
vector of matching rates in the matching model (G, µ, Φ). We consider the set of matching
rates achieved by stable policies (resp. of stable greedy policies), defined as follows:

ΛP = {λ(Φ) : Φ is a stable policy of the matching model (G, µ)} ,

ΛG = {λ(Φ) : Φ is a stable greedy policy of the matching model (G, µ)} .

Section 6.1 focuses on the set ΛG . We show in particular that ΛG ⊆ Λ>0, where Λ>0 is the
(non-empty) set of solutions of the conservation equation (2) with positive components. We
also show that, in many cases, the inclusion is strict. Informally, this result shows that greedy
policies are not very good at navigating inside Λ⩾0. In contrast, we show in Section 6.2 that
filtering policies can be used to reach some faces of Λ⩾0. In particular, if all vertices of Λ⩾0
are bijective, we have ΛP = Λ⩾0. Finally, in Section 6.2, we also use semi-filtering policies to
show that Λ>0 ⊆ ΛP .

The following result will be useful throughout this section.

▶ Proposition 6.1. The sets ΛP and ΛG are convex.
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Proof. We first show the convexity of ΛP . Let Φ1 = (C1, π1) and Φ2 = (C2, π2) be two
stable policies and 0 < β < 1 be a linear coefficient. To build a stable policy Φβ such that
λ(Φβ) = βλ(Φ1) + (1− β)λ(Φ2), we combine Φ1 and Φ2 in proper proportions.

Let ∅1 ∈ C1 (resp. ∅2 ∈ C2) denote the empty state of Φ1 (resp. Φ2), as defined in
Section 2.1. Let T1 (resp. T2) be the mean return time to the empty state ∅1 (resp. ∅2) in
the matching model (G, µ, Φ1) (resp. (G, µ, Φ2)). We construct the policy Φβ on the state
space C1 × C2 with empty state (∅1,∅2). On the arrival of an item of class i ∈ V :

If the current state is (c1,∅2) with c1 ∈ C1 \ {∅1}, then we apply the policy Φ1, that is,
we choose a new state c′

1 ∈ C1 according to π1(·|c1, i) and move to the state (c′
1,∅2).

If the current state is (∅1, c2) with c2 ∈ C2 \ {∅2}, then we apply the policy Φ2, that is,
we choose a new state c′

2 ∈ C2 according to π2(·|c2, i) and move to the state (∅1, c′
2).

If the current state is (∅1,∅2), then we apply Φ1 with probability p1 = βT2
βT2+(1−β)T1

and Φ2 otherwise. In other words, the next state is (c1,∅2) with probability p1 and
(∅1, c2) with probability 1 − p1, where c1 is chosen according to π1(·|∅1, i) and c2 is
chosen according to π2(·|∅2, i).

In essence, every time the system is in state (∅1,∅2), the policy Φβ selects either the policy
Φ1 or the policy Φ2 and follows this policy until the next passage in the empty state (∅1,∅2).
Importantly, if we only consider the time intervals when the policy Φ1 (resp. Φ2) is applied,
the evolution is exactly the same as under policy Φ1 (resp. Φ2). In particular, the long-term
matching rate observed on these intervals is λ(Φ1) (resp. λ(Φ2)). This guarantees that the
evolution of the state (c1, c2) under the policy Φβ defines an irreducible continuous-time
Markov chain with state space C1 × C2, and that the matching model (G, µ, Φβ) is stable.

By construction, the long-run fraction of time that Φ1 (resp. Φ2) is chosen is proportional
to βT2 (resp. (1− β)T1). This implies that the fractions of decisions taken according to Φ1
and Φ2 are proportional to β and (1−β), respectively. As the matching rate when Φβ behaves
like Φ1 (resp. Φ2) is λ(Φ1) (resp. λ(Φ2)), we conclude that λ(Φβ) = βλ(Φ1) + (1− β)λ(Φ2).

This proves that ΛP is convex. To prove the convexity of ΛG , it suffices to observe that,
if the policies Φ1 and Φ2 are greedy, so is the policy Φβ . ◀

6.1 Greedy policies
Greedy policies are appealing candidates when one wants to choose a policy for a matching
problem (G, µ): they are usually simple to implement and some of them, like match-the-longest
or first-come-first-matched, are maximally stable on stable graphs.

However, this section will show that they are not very flexible in terms of achievable
matching rates. Although we do not provide a universal tight description of ΛG (which
we believe to be a difficult task), we do provide several examples that indicate that ΛG is
generally (but not always) reduced relative to Λ⩾0.

For a start, as stated by Proposition 6.2, greedy policies cannot reach the boundaries of
the convex polytope Λ⩾0.

▶ Proposition 6.2. If the compatibility graph G is surjective-only and the matching problem
(G, µ) is stabilizable, then the set ΛG is non-empty and ΛG ⊆ Λ>0.

Proof. The set ΛG is non-empty because the greedy policies match-the-longest [23] and
first-come-first-matched [25] are known to be stable.

We now prove that ΛG ⊆ Λ>0. Consider a stable greedy policy Φ and let λ = (λk : k ∈ E)
denote the corresponding vector of matching rates. Consider an edge ek = {i, j}. Since the
policy Φ is greedy, two items of classes i and j are always matched if the following sequence
of events occurs: the system is in the empty state ∅, a class-i item arrives, and a class-j
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item arrives. Let p∅ denote the stationary probability that the matching model (G, µ, Φ) is
in the empty state ∅. We now that p∅ > 0 because this matching model is stable, and the
previous remark implies that λk ≥ p∅µiµj/

∑
ℓ∈V µℓ > 0. Since this is true for each edge

ek ∈ E, we conclude that λ ∈ Λ>0. ◀

Proposition 6.2 has a consequence on the capacity of greedy policies to maximize some
reward function.

▶ Corollary 6.3. Consider the problem of maximizing an edge-dependent reward defined by a
vector w as stated in Proposition 5.4. Let rmax = maxy∈Λ⩾0 w⊺y be the optimal reward. One
of the two exclusive statements below is true:
1. All vectors of Λ⩾0 are optimal, i.e. ∀y ∈ Λ⩾0, w⊺y = rmax.
2. All stable greedy policies are suboptimal, i.e. ∀λ ∈ ΛG , w⊺λ < rmax.

Proof. We know from Proposition 5.4 that the set of y ∈ Λ⩾0 that maximize the reward
is a non-empty face F of Λ⩾0. If F = Λ⩾0, we are obviously in the first case (all y ∈ Λ⩾0
are optimal). One can verify that this corresponds to situations where w is orthogonal to
ker(A) (for example if all components of w are identical). Otherwise, because of the lattice
structure of the faces of a polytope, F belongs to a facet of Λ⩾0, which means that there
is at least one edge that is null for all vectors of F . In particular, as all components of the
matching rates of a stable greedy policy are positive, no greedy policy is optimal. ◀

To further support the intuition that greedy policies are not very good at navigating the
set Λ⩾0, Sections 6.1.1 and 6.1.2 study two examples where ΛG is a strict subset of Λ>0.
However, this is not a universal result, as Section 6.1.3 gives a (well-chosen) counter-example
where ΛG = Λ>0.

Section 6.2 will show how the introduction of (semi-)filtering policies drastically improves
things and allows us to reach Λ>0 and some of the faces of Λ⩾0.

6.1.1 Complete graph
Proposition 6.4 below essentially states that greedy policies do not allow any degree of
freedom in the case of complete graphs, in the sense that all stable greedy policies lead to
the same dynamics and the same vector of matching rates. In contract, the polytope Λ⩾0
has dimension m− n = n(n−3)

2 , where n is the number of classes and m =
(

n
2
)

= n(n−1)
2 is

the number of possible matches.

▶ Proposition 6.4. Consider the complete graph Kn with n ≥ 3.
1. The matching problem (Kn, µ) is stabilizable if and only if µi < µ̄

2 for each i ∈ V , where
µ̄ =

∑
i∈V µi is the total arrival rate.

2. All greedy policies are equivalent in the sense that the evolution of h(c) (the vector counting
the number of unmatched items of each class) defines a continuous-time Markov chain
with the same transition diagram and state space N ⊆ N, given by

N = {0} ∪
(⋃

i∈V

{xδi, x ∈ N∗}

)
,

where, for each i ∈ V , δi is the n-dimensional vector with one in component i and zero
elsewhere, and N∗ is the set of positive integers. We let ΦG denote the greedy policy with
minimal state space C = N .
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3. If the matching problem (Kn, µ) is stabilizable, then the matching model (Kn, µ, ΦG) is
stable, and the associated matching rates are given by

λk = µipj + µjpi, ek = {i, j} ∈ E, (16)

where pi is the stationary probability that the queue i is non-empty, given by

pi =
µi

µ̄−2µi

1 +
∑n

ℓ=1
µℓ

µ̄−2µℓ

, i ∈ V. (17)

In particular, we have ΛG ⊊ Λ>0 for each n ≥ 4.
Proof. Statement 1 is a direct consequence of Proposition 3.2.

We now prove statement 2. Since the compatibility graph is complete, two items can be
matched if and only if they belong to different classes. As a result, a greedy policy can only
reach states in which at most one queue is non-empty. Moreover, under a greedy policy, if a
class-i item arrives and finds a non-empty queue j ̸= i, the incoming class-i item is matched
with a class-j item, and the queue size of j is decreased by 1. Otherwise, the queue size of i

is increased by 1. This is sufficient to prove statement 2.
The proof of statement 3 builds upon the previous observation. The natural greedy policy

ΦG is an instance of the match-the-longest policy, which is known to be maximally stable [23].
Equation (16) follows from the PASTA property and the observation that, for each i, j ∈ V

with i ̸= j, a match between classes i and j happens in one of the following two cases:
a class-i item arrives while the queue j is non-empty, which happens at rate µipj ;
a class-j item arrives while the queue i is non-empty, which happens at rate µjpi.

To prove (17), it suffices to observe that the Markov chain defined in statement 1 has a very
specific structure: for each i ∈ V , the restriction of the transition diagram of this Markov
chain to the states where all queues but i are empty defines a birth-and-death process with
birth rate µi (a class-i item arrives) and death rate µ̄− µi (an item of a class j ̸= i arrives
and is matched with a class-i item). If p∅ denotes the stationary probability of the empty
state, it follows that

pi = p∅
∑
c≥1

(
µi

µ̄− µi

)c

= p∅
µi

µ̄− 2µi
, i ∈ V.

The value of p∅ follows from the normalizing equation p∅ +
∑

i∈V pi = 1. ◀

Figure 17 illustrates this result on a complete graph K4 in which all arrival rates are equal
to 3. In kernel basis, the polytope Λ⩾0 is defined by the inequalities α1 ≤ 1, α2 ≤ 1, and
α1 +α2 ≥ −1, i.e. it is a triangle of vertices (−2, 1), (1,−2), and (1, 1). Yet, only the solution
α = (0, 0) can be achieved by a greedy policy.

6.1.2 Diamond graph
Proposition 6.5 and Corollary 6.6 below focus on the diamond graph. We show that the set
ΛG of vectors reachable by a greedy policy, while not reduced to a single vector like for a
complete graph, is still a strict subset of the set Λ>0.
▶ Proposition 6.5. Consider the matching problem (G, µ) of Example 3.7, with the normal-
ization µ1 + µ3 = µ̄2 + µ̄4 = 1

2 . We define the following values:

q1,3 = 1
4β

, q1 = µ1

µ3 + 2β
, q3 = µ3

µ1 + 2β
,

q2 = µ̄2 + β

2µ̄4
, q4 = µ̄4 + β

2µ̄2
, p∅ = 1

1 + q1,3 + q2 + q4
.
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Figure 17 Matching problem (K4, µ) with µ = (3, 3, 3, 3).

The matching problem (G, µ) is stable for all greedy policies. Moreover, the matching rates
under any greedy policy verify:

λ2,4 = β, λ1,2 > p∅µ1q2 + p∅µ2q1, λ1,4 > p∅µ1q4 + p∅µ4q1,

λ3,2 > p∅µ3q2 + p∅µ2q3, λ3,4 > p∅µ3q4 + p∅µ4q3.
(18)

In particular, if we let β grow to infinity without changing the values of µ1, µ̄2, µ3, and µ̄4,
we have

lim
β→+∞

λ1,2 = 2µ1µ̄2, lim
β→+∞

λ1,4 = 2µ1µ̄4,

lim
β→+∞

λ3,2 = 2µ3µ̄2, lim
β→+∞

λ3,4 = 2µ3µ̄4.
(19)

Proof. While for the complete graph, a greedy policy has no decision to take, here a greedy
policy makes decisions on two occasions:

a class-2 item arrives while queues 1 and 3 are non-empty;
a class-4 item arrives while queues 1 and 3 are non-empty.

In all other situations, the decision of the policy is automatic. In particular, the evolution of
the queue size of 2, the queue size of 4, and the sum of queue sizes of 1 and 3 (i.e. the number
of unmatched items that belong to class 1 or 3, without distinction) are independent of the
greedy policy considered. We will leverage this to prove (18). Let p∅ denote the stationary
probability of the empty state. We can partition the reachable states of the system into three
M/M/1 queues sharing the same empty state:

The states where all queues but 2 are empty behave like a M/M/1 queue with load
ρ2 = µ̄2+β

1+β−µ̄2
. In particular, the probability that queue 2 is non-empty is p∅

ρ2
1−ρ2

= p∅q2.
The states where all queues but 4 are empty behave like a M/M/1 queue with load
ρ4 = µ̄4+β

1+β−µ̄4
. In particular, the probability that queue 4 is not empty is p∅

ρ4
1−ρ4

= p∅q4.
The states where queues 2 and 4 are empty, partitioned by the sum of the queue sizes of 1
and 3, behave like a M/M/1 queue with load ρ1,3 = 1

1+4β . In particular, the probability
that the queue 1 or the queue 3 is non-empty is p∅

ρ1,3
1−ρ1,3

= p∅q1,3.
It follows that the probability of the empty state is p∅ = 1

1+q2+q4+q1,3
.

Now consider the matches between classes 1 and 2. There are two cases where these
matches occur:

A class-1 item arrives while 2 is not empty. This happens with intensity µ1p∅q2.
A class-2 item arrives and is matched with a class-1 item. The exact intensity depends
on the policy but a strict lower bound is p∅q1µ2 (p∅q1 is a strict lower bound of the
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probability that 1 is the only non-empty class; it comes from discarding the cases where 1
is not empty after one remaining item 3 has been removed; the remaining cases behave
like a M/M/1 queue with load µ1

1/2+2β ).
In other words, λ1,2 > p∅µ1q2 +p∅µ2q1. The lower bounds for λ1,4, λ3,2, and λ3,4 are derived
the same way. The equality λ2,4 = β has already been observed in Example 3.7. It comes
from the fact that the edge {2, 4} does not belong to ker(A) and has the same matching rate
in all stable policies.

Lastly, we need to prove Equation (19). First observe that limβ→+∞ p∅µ1q2 = 2µ1µ̄2
and limβ→+∞ p∅µ1q4 = 2µ1µ̄4, while limβ→+∞ p∅µ2q1 = limβ→+∞ p∅µ4q1 = 0. Hence if
we add the two first inequalities in Equation (18) and take the limit we get

lim
β→+∞

λ1,2 + λ1,4 ≥ 2µ1µ̄2 + 2µ1µ̄4 = µ1.

By conservation principle we always have λ1,2 + λ1,4 = µ1, which implies the two first
lines in (19). The two last lines are obtained the same way by considering λ3,2 and λ3,4. ◀

Propositions 6.4 and 6.5 show that there are matching problems (G, µ) where no greedy
policy can approach a border of Λ⩾0 beyond a certain point. This suggests in particular that
greedy policies are not always adapted to optimize cost functions of the matching rates.

One interpretation of Equation (19) is as follows: as the matching rate? β between
classes 2 and 4 grows, all other things being equal, the probability that queue 1 or queue 3
is non-empty goes to 0 as the only dominant cases are: queue 2 is non-empty (p2 ≈ 2µ̄2);
queue 4 is not empty (p4 ≈ 2µ̄4). This means that the probability that one particular policy
has an actual decision to make goes to 0: all greedy policies tend to behave the same way.

The following characterizes the vertices of ΛG .

▶ Corollary 6.6. Consider the matching problem (G, µ) of Example 3.7, again with the
normalization µ1 + µ3 = µ̄2 + µ̄4 = 1

2 . In kernel basis, we have

Λ⩾0 = [−2 min(µ1µ̄2, µ3µ̄4), 2 min(µ̄2µ3, µ1µ̄4)].

Let Φ+ and Φ− denote the greedy policies that give priority to edges {1, 2} and {3, 4} and
to edges {2, 3} and {1, 4}, respectively. If we let α+ (resp. α−) denote, in kernel basis, the
matching rates under policy Φ+ (resp. Φ−), we have:

− 2 min(µ1µ̄2, µ3µ̄4) < α− ≤ α+ < 2 min(µ̄2µ3, µ1µ̄4),

ΛG = [α−, α+] ⊊ Λ>0 (in kernel basis),

lim
β→+∞

α− = lim
β→+∞

α+ = 0

Proof. We only need to prove that ΛG = [α−, α+], as the rest of the corollary is a rephrasing
of Proposition 6.5 in kernel basis.

We first prove that the policy Φ+ maximizes the matching rates along edges {1, 2} and
{3, 4} among all stable greedy policies. We consider a greedy policy Φ and couple the
matching models (G, µ, Φ) and (G, µ, Φ+) to have the same arrival processes. The key is to
notice that the queue size of 2, the queue size of 4, and the sum of the queue sizes of 1 and 3
have the exact same evolution (cf proof of Proposition 6.5) in both policies. To monitor the
different behaviors, we can just observe the difference d between the queue size of 1 in Φ+
and the queue size of 1 in Φ. Upon arrival of a class-i item, consider the different possibilities
of evolution for d:
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d has the same value before and after the arrival: that means that Φ+ and Φ have taken
the same matching decision.
Otherwise, one of the policy matched an item from class 1 while the other matched an
item from class 3. In particular the arriving item is of class 2 or 4. We then distinguish
four subcases:

1. d was non-negative and increased. That means that Φ+ matched an item from class 3
while Φ matched an item from class 1. The queue 1 in Φ+ was non-empty (because of
the sign of d), so the arrival item was of class 4 (otherwise Φ+ would have matched an
item from class 1). We can conclude that Φ+ matched a pair {3, 4} while Φ matched
a pair {1, 4}.

2. d was positive and decreased.
3. d was non-positive and decreased. That means that Φ+ matched an item from class 1

while Φ matched an item from class 3. The queue 3 in Φ+ was non-empty (because of
the sign of d), so the arrival item was of class 2 (otherwise Φ+ would have matched an
item from class 3). We can conclude that Φ+ matched a pair {1, 2} while Φ matched
a pair {3, 2}.

4. d was negative and increased.

Assuming that we started from the empty state, we can conclude that the number of
matches along edges {1, 2} and {3, 4} is always greater or equal in Φ+ than in Φ: the only
situations where Φ selects {1, 2} or {3, 4} and Φ+ does not necessarily correspond to case 2
or case 4 above. These cases can be associated in a one-to-one basis with a past case 1 or a
past case 3, where Φ+ selects {1, 2} or {3, 4} and Φ does not. This shows that, among all
greedy policy, Φ+ maximizes α. Using a similar reasoning with Φ−, it follows that in kernel
basis the vector of matching rates associated with any stable greedy policy belongs to the
interval [α−, α+]. The conclusion follows by applying Proposition 6.1. ◀

To illustrate Corollary 6.6, we consider in Figure 18 a symmetric example where µ1 =
µ̄2 = µ3 = µ̄4 = 1

4 . The figure compares Λ⩾0 and ΛG with the bounds (18) and limits (19)
(converted in kernel basis). We observe, as announced by Corollary 6.6, that ΛG converges to
0 when β grows. We also notice that the bounds from Equation (18) are not tight when β is
small, but that Φ+ and Φ− seem to be able to be as close as we want to the borders of Λ⩾0
when β is small enough (this does not contradict the fact that for any given β, ΛG is strictly
inside Λ⩾0). The reason for the gap is that to get Equation (18), we discarded some cases
where both queues 1 and 3 are non-empty (cf the second case of the proof for λ1,2): these
situations become not negligible when β is small.

6.1.3 Fish graph
In view of the examples above, one can start to understand how the constraint of greediness
makes difficult to adjust the matching rate of a greedy policy. In most stabilizable surjective-
only matching problems, one should expect ΛG ⊊ Λ>0. However, as shown by Proposition 6.7
and Corollary 6.8, there is at least one counter-example of a stabilizable surjective-only
matching model where ΛG = Λ>0.

▶ Proposition 6.7. Consider the matching problem (G, µ) depicted Figure 19. (G, µ) is
stabilizable and Λ⩾0 = [0, 1] (in kernel basis).

For k ≥ 0, let Φk be the greedy matching policy defined by:
if the queue size of 4 is less than k, choose by decreasing order of priority edges {1, 3},
{2, 3}, {3, 4}, {5, 6}, or one of the other edges;
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Figure 18 Evolution of ΛG as a function of β for the diamond graph with µ1 = µ̄2 = µ3 = µ̄4 = 1
4 .

For each β, ΛG is estimated by a simulation of Φ+, leveraging the symmetry of the matching problem.
Λ⩾0 and other bounds are displayed for comparison. All results are expressed in kernel basis.

otherwise choose by decreasing order of priority edges {3, 4}, {5, 6}, {1, 3}, {2, 3}, or one
of the other edges.

We have:
(G, µ, Φk) is stable for all k ≥ 0;
if α+(k) denotes the matching rate of Φk in kernel basis, limk→∞ α+(k) = 1.

▶ Corollary 6.8. For the matching problem (G, µ) described in Figure 19, we have ΛG =
]0, 1[= Λ>0.

1

2

3

4

5

6

3
1

1 α
2−

α

1 + α1− α

Figure 19 Generic solution of the conservation equation (2) on a fish graph with arrival rates
µ = (4, 4, 3, 2, 3, 2).

The proof of 6.7 requires three main steps:
1. We first need to show that using priorities, one can limit the matching rates between

class-3 items and class-4 or class-6 items;
2. Using this limitation, we build an unstable greedy policy Φ+∞ for which the matching

rate at edge {3, 6} is null;
3. We then show that the family of stable greedy policies Φk that can be arbitrarily close to

Φ+∞ in the sense that the matching rate at edge {3, 6} can be arbitrarily close to zero.

Notice that Φk is uniquely defined: all decisions that may occur in Figure 19 are uniquely
determined. The fact that (G, µ) is stabilizable is a direct consequence of the existence of



40 Stochastic dynamic matching: A mixed graph-theory and linear-algebra approach

positive solutions (e.g. α = 1/2). The fact that Λ⩾0 = [0, 1] can be immediately deduced
from the generic solution of the conservation equation (2) in Figure 19.

The first step for proving Proposition 6.7 is Lemma 6.9 below: the matching rate between
class 3 and (class 4 or class 6) is limited when the priority of {1, 3} and (2, 3) is high.

▶ Lemma 6.9. Let (G, µ) be a matching problem that contains the triangle subgraph depicted
in Figure 20 (the triangle is only connected to the rest of G through node 3). Let Φ be a
greedy policy where vertex 3 always prefer 1 or 2 over any other edge (the behavior of Φ for
other decisions can be arbitrary). If β > 1/2, we have:

The process of the queue sizes at 1, 2, and 3 is positive recurrent;
The total matching rate λ3,X between 3 and nodes other than 1 and 2 is limited (i.e.
upper-bounded) by 1

1+2β .

1

2

3β − 1−λ3,X

2

1−λ3,X2

1−λ3,X

2

Figure 20 Triangle sub-graph, with arrival rates µ = (β, β, 1, . . .). Node 3 is the unique bridge
between the triangle and the rest of the graph. λ3,X = µ3 − λ2,3 − λ1,3 denotes the sum of matching
rates between 3 and the rest of the graph.

Proof. Consider some β > 1/2. We first observe that the queue size of 3 is stable as it is
controlled by 2β > 1 (nodes 1 and 2 are not linked to anyone but each other and 3). To prove
the stability of the queues 1 and 2, we must show that {1, 3} and {2, 3} have positive rates,
which is the case if λ3,X < 1. To do that, we associate to each arrival sequence of items 1, 2,
and 3 the following virtual policy Ψ: the item are matched as in Φ, with the assumption
that 3 always has a non-empty neighbor in the rest of the graph. Within Ψ, the rest of the
graph acts like a “black hole” so whenever an item 3 arrives and 1 and 2 are empty, it is
matched with some node from the rest of the graph. We can easily check that the number
of matches {3, X} made under Φ is always at most the number of matches {3, X} under Ψ.
Under Ψ, 3 is always empty (all arrivals are instantly matched) and we can partition the
state of queues in 1, 2, and 3 into two M/M/1 queues sharing the same empty state, each
one having load ρ := β

1+β . It follows that the probability of the empty state is

p∅ = 1
1 + 2 ρ

1−ρ

= 1
1 + 2β

.

The matching rate of {3, X} in Ψ is exactly p∅ (arrival of a class-3 item while queues 1 and
2 are empty), so the matching rate λ3,X in the original policy Φ checks

λ3,X ≤
1

1 + 2β
< 1.



C. Comte, F. Mathieu, and A. Bušić 41

In particular, the queues 1 and 2 are stable. ◀

The second step for proving Proposition 6.7 is Lemma 6.10 below, which consists of
producing a greedy policy that is unstable with respect to node 4 but stable for the other
nodes.

▶ Lemma 6.10. In the matching (G, µ) depicted Figure 21, let Φ∞ be the greedy matching
policy defined by: choose by decreasing order of priority edges {1, 3}, {2, 3}, {3, 4}, {5, 6}, or
one of the other edges. We have:

(G, µ, Φ∞) is unstable;
The process defined by the queue sizes of all nodes but 4 is positive recurrent;
The matching rates achieved by the system are the ones from Figure 21 (the conservation
equation (2) does not hold).

1

2

3

4

5

6

32
11 12

11

1211
9
11 1

20

Figure 21 Matching rates under the unstable policy Φ+∞ (µ = (4, 4, 3, 2, 3, 2)). The unstable
node 4 does not satisfy the conservation equation (2), as its total matching rate is 20

11 < 2.

Proof. We first apply Lemma 6.9 on vertices 1 to 3, using a scaling of 3 and β = 4/3. It
shows that 1, 2, and 3 are stable and that λ3,X is at most 3 1

1+2 4
3

= 9
11 .

We now focus on the even cycle 3–4–5–6. The rate from classes 4, and 6, µ4 + µ6 = 4
needs to be absorbed by items from classes 3 and 5 but the rate of class 5 is 3 and the rate
that class 3 can allocate to the cycle is at most 9

11 < 1. We deduce that the sum of the queue
sizes of 4 or 6 is transient. However, 5 always chooses class 6 if it can and µ5 > µ6 so the
queue size 6 is stable. This means that queue size of 4 is the unique transient process and
that the queue size 5 is stable.

In fact, as the queue size of 4 is non-empty with probability 1, the queue sizes of 3 and 5
are empty with probability 1. It also means that Φ∞ behaves like the virtual policy Ψ (cf
proof of Lemma 6.9) for nodes 1, 2, and 3. This gives λ1,2, λ1,3, λ2,3, and λ3,X . Because of
the priority rule, λ3,4 = λ3,X and λ3,6 = 0. The last matching rates are obtained by using
the conservation principle on the (stable) nodes 6 and 5. ◀

We now perform the last step and prove Proposition 6.7.

Proof of Proposition 6.7. We first need to prove that Φk is stable. The queue size of 4
is positive recurrent: as soon as it is greater than k, all arrival from 3 are matched to
class-4 items so the departure rate becomes greater than the arrival rate (µ3 = 3 > µ4 = 2).
Stability of other vertices ensues. Call p∅(k) the probability that 4 is empty under Φk. As
Φk behaves for 4 like the transient process of Φ∞ up to size k, we have limk→∞ p∅(k) = 0.
A match {3, 6} can only occur when an item 3 or 6 arrives while vertex 4 is empty so we
have 0 ≤ 1− α+(k) ≤ 5p∅(k), which concludes the proof. ◀
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(b) Evolution of α−(k) in logarithmic scale.

Figure 22 Evolution of α−(k) and α+(k) as a function of the threshold k, as defined in Proposi-
tion 6.7 and Corollary 6.8 and proofs. All results are expressed in kernel basis.

Proof of Corollary 6.8. We proved that there is a family of greedy policies such that their
matching rate can be arbitrarily close to 1 (in kernel basis). We just need to exhibit another
family such that the matching rate, in kernel basis, can be arbitrarily close to 0 and use the
convexity of ΛG to conclude. For k ≥ 0, let Φ−k be the greedy matching policy defined by:

if there are less than k items of type 4 in the system, choose by decreasing order of
priority edges {1, 3}, {2, 3}, {3, 6}, {4, 5}, or one of the other edges;
otherwise choose by decreasing order of priority edges {3, 6}, {4, 5}, {1, 3}, {2, 3}, or one
of the other edges.

Using exactly the same proof than for Proposition 6.7 (Φ−k is Φk after switching the
labels 4 and 6), we get that if α−(k) denotes the matching rate of Φ−k in kernel basis,
limk→∞ α−(k) = 0. ◀

Figure 22 shows α−(k) and α+(k), obtained by simulation. We can observe that they
converge to 0 and 1 respectively, validating Corollary 6.8. Moreover the convergence seems
linear, i.e. like ρk for some 0 < ρ < 1, as hinted by Figure 22b.

6.2 Arbitrary policies
We now investigate ΛP ⊆ Λ⩾0, the subset of matching rates that can be achieved by an
arbitrary stable policy. As ΛP is convex, we first focus on its relation with the vertices of
Λ⩾0, which is given by Proposition 6.11.

▶ Proposition 6.11. Let y be vertex of Λ⩾0.
If y is bijective, y ∈ ΛP ;
If y is injective-only, y /∈ ΛP .

Proof. Let Gy = (V, Ey) be the subgraph of G associated to y. The first part is straightfor-
ward by considering a match-the-longest policy with a filter on Ey, denoted Φ(y). (Gy, µ) is
stabilizable and y is its unique matching rate. Φ(y) behaves like a greedy match-the-longest
policy on Gy, so (G, µ, Φ(y)) is stable and its matching rate is y. The second part is obtained
by noticing that if y is injective-only, Gy admits at least a bipartite component (more
specifically a tree). The arrival drift between the two parts of the bipartite component makes
impossible the existence of a stable policy. ◀
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Proposition 6.11 essentially states that bijective vertices are easy to reach, while injective-
only vertices are not due to a “bipartite curse”. This gives us a first partial characterization
of ΛP .

▶ Corollary 6.12. If a face F of Λ⩾0 contains only bijective vertices, F ∈ ΛP . In particular,
ΛP = Λ⩾0 if and only if Λ⩾0 is simple and (G, µ) is essential.

Proof. We just use the Proposition 6.1 (convexity of ΛP) and Proposition 6.11. The last
statement comes from Proposition 5.12. ◀

To go further, we propose to introduce a family of stable policies that is able to arbitrarily
approach a vertex of Λ⩾0 event if it is injective-only.

▶ Proposition 6.13. Let y be a vertex of Λ⩾0. For k ≥ 0, consider the following semi-filtering
policy, denoted Φk(y):

If the size of the longest queue is less than k, apply a filtering match-the-longest policy
on Gy = (V, Ey);
Otherwise, apply a greedy match-the-longest policy.

Φk(y) is stable and limk→∞ λ(Φk(y)) = y.

Sketch of proof. In essence, the technique is similar to the one used for Proposition 6.7: we
take an unstable policy that achieves the desired goal and make it stable by reverting to a
stable policy when the queue sizes become too large. If the threshold is high enough, most of
the matchings will be made under the unstable policy.

We present here a sketch of proof for the hard case where Gy is a tree (like in Example 3.7
when µ1µ̄2 = µ3µ̄4). When Gy has multiple connected components, bijective or injective-only,
the proof needs to be adapted accordingly.

The stability of Φk(y) comes from the fact that apart from a finite set of states (the
states where the queue sizes are less than k), Φk(y) behaves like a stable policy.

Let pℓ be the probability that the longest queue of the system has size ℓ. If we look
at ℓ ≥ k, the stability induces a negative drift, which means that we have

∑
ℓ≥k pℓ ≤ Cpk

for a constant C that does not depend on k. Conversely, for ℓ ≤ k, the size of the longest
queue is mostly controlled by the drift of an unbiased random walk between the two parts of
the bipartite graph, which means pℓ ≥ cpk for another constant c. By combining the two,
we get that the probability that the longest queue of the system has a size greater than k

tend to 0 when k goes to infinity. As matchings outside Ey only occur when the longest
queue is greater than k, we conclude that the matching rate of an edge outside Ey goes
to 0, which by continuity of the conservation principle and injectivity of Gy means that
limk→∞ λ(Φk(y)) = y. ◀

One drawback of Proposition 6.13 is that the average size of the longest queue will tend to
grow with k when the vertex is injective-only. In other words, there exists a trade-off between
approaching an injective-only vertex and the minimization of the waiting time. This issue
is somehow similar to the threshold-based greedy policies we introduce for Proposition 6.7,
where the vertices of Λ⩾0 could be asymptotically reached by making the average queue size
of a given node grow.

Note that in [26], a family of policies is introduced to optimize a reward function on
edges. Their goal is similar to ours, with two main differences: first they aim at optimizing a
reward function on matching rates but do not provide any description of the limit rate, while
we show that the limit rate is a vertex of Λ⩾0; second their family is a linear combination
of a reward-based policy and a virtual queue policy, parameterized by a balance factor β,
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while we rely on semi-filtering greedy policies with a threshold cut k. Yet, they also notice
in their solution that the system has an average queue size that grows in 1/β, which is the
equivalent of our k.
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Figure 23 Evaluation of a semi-filtering policy applied to the matching problem described in
Example 5.10. The target vertex is the one from Figure 15f.

To illustrate 6.13, we evaluated Φk(y) on the codomino matching problem from Ex-
ample 5.10. Figure 23 presents the results for the vertex y depicted in Figure 15f. y

is injective-only: its support is three non-adjacent edges ({1, 6}, {2, 3}, {4, 5}), i.e. three
connected components that are all bipartite.

Figure 23a shows the complementary cumulative distribution function (CCDF) for the
size of queue 1 (the other nodes have a similar distribution) for different value of k. We
observe the following:

Half of time, the queue is empty. It can be related to the cases where the unbiased drift
between the number of class-1 arrivals and the number of class-6 arrivals favors class 6,
so the queue 6 is non-empty and items from class 1 are matched on arrival.
The rest of time, the size of queue 1 seems to be uniformly distributed between 0 and k.
The cases where the queue size is greater than k seem negligible.

These observations are consistent with the proof of Proposition 6.13: most of the time, a
semi-filtering policy is in its filtering regime, and the evolution of queues within this regime
looks like an unbiased random walk capped by k.

Figure 23b shows the convergence of λ(Φk(y)) to y by measuring as a function of
k the leaking rate, i.e. the total matching rates observed along the forbidden edges
({1, 2}, {2, 6}, {3, 4}, {3, 5}, {5, 6}). The convergence seems to be logarithmic, i.e. like k−1.
This is in line with the fact that the probability to have a queue size greater than k, e.g. to
disable the filtering, is in k−1.

▶ Corollary 6.14. Any positive solution of the conservation equation (2) can be obtained by
a stable policy. In other words,

Λ>0 ⊆ ΛP ⊆ Λ⩾0.

Proof. Obviously ΛP ⊆ Λ⩾0 because any stable policy must respect the conservation principle.
From Proposition 6.13, we know that any vertex of Λ⩾0 is part of the closure of ΛP , so by
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convexity of ΛP this closure is Λ⩾0. In particular, ΛP contains the interior of Λ⩾0, which is
Λ>0. ◀
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A Minimal stability region for greedy matching policies

The following result gives a sufficient stability condition for greedy matching policies. The
proof relies on a linear Lyapunov function. This result can be seen as the counterpart of [8,
Proposition 5.1] for non-bipartite matching models.

▶ Proposition A.1. Consider a matching problem (G, µ) with a connected graph G. If∑
i∈V (I)

µi >
1
2
∑
i∈V

µi, I ∈ I, (20)

then the matching model (G, µ, Φ) is stable for every greedy matching policy Φ.

Proof. Consider a greedy matching policy Φ and its continuous-time Markov chain {C(t), t ≥
0}, with state space C, and let (Ck)k∈N denote the discrete time chain obtained by uniformiza-
tion with rate 1. We consider the Lyapunov function L : C → R defined by L(c) = ||h(c)||1,
that is, the number of unmatched items in state c. For each k ∈ N and c ∈ C, we have

E (L(Ck+1) | Ck = c)− L(c) =
∑

i∈V \V (I)

µi −
∑

i∈V (I)

µi = −

 ∑
i∈V (I)

µi −
∑

i∈V \V (I)

µi,
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where I = {i ∈ I : h(c)i > 0} is the set of unmatched customer classes in state c. Importantly,
if L(c) > 0 (that is, c ̸= ∅), then I is an independent set of the compatibility graph G

because the policy Φ is greedy. It follows that, for each c ̸= ∅, we have

E (L(Ck+1) | Ck = c)− L(c) ≤ −ε, with ε = min
I∈I

 ∑
i∈V (I)

µi −
∑

i∈V \V (I)

µi,

 .

Equation (20) implies that ε > 0. Using the Lyapunov-Foster theorem [7, Theorem 1.1], we
conclude that the matching model (G, µ, Φ) is stable. ◀

As one out expect, any matching problem (G, µ) that satisfies (A.1) is stabilizable in the sense
of Definition 2.1. Indeed, (A.1) implies condition 2 in Proposition 3.2 because I ⊆ V \ V (I)
for each I ∈ I. Corollary A.2 below shows that, conversely, whether a stabilizable matching
problem satisfies (A.1) depends on the structure of the graph G: statements 1 and 2 exhibit
compatibility graphs G such that (A.1) is satisfied whenever the matching problem (G, µ) is
stabilizable, while statements 3 and 4 exhibit stabilizable compatibility graphs G for which
(A.1) is never satisfied.

▶ Corollary A.2. Consider a matching problem (G, µ).
1. If G is a complete graph Kn with n ≥ 3 (that is, a graph with diameter 1), then (20) is

satisfied, and therefore the matching model (G, µ, Φ) is stable for each greedy policy Φ.
2. If G is the diamond graph of Example 3.7, then (20) is satisfied, and therefore the

matching model (G, µ, Φ) is stable for each greedy policy Φ.
3. If G has diameter greater than or equal to 3, then (20) is not satisfied.
4. If G contains a leaf (that is, a node with degree 1), then (20) is not satisfied.

Proof. We prove the four statements one after another.
1. The independent sets of a complete graph Kn are the singletons. Therefore, we verify that

equation (20) and condition 2 in Proposition 3.2 are both equivalent to µi < 1
2
∑

i∈V µi,
which proves statement 1.

2. Statement 2 follows by observing that (5) and (20) are equivalent for the diamond graph.
3. Assume that G contains two nodes i and j that are at distance 3 or more, so that the

sets Vi and Vj are disjoint. Therefore, applying (5) to both {i} and {j} and summing the
inequalities yields

∑
i∈U µi′ >

∑
i′∈V µi′ , with U = Vi ∪ Vi ⊆ V . This is a contradiction,

so (5) cannot be satisfied by both {i} and {j}. This proves statement 3.
4. If the graph G contains a leaf, that is, a node i with a single neighbor j, then again

applying (5) to both {i} and {j} and summing the inequalities yields
∑

i∈U µi′ >∑
i′∈V µi′ , where U = Vj ∪ {j} ⊆ V , which is again a contradiction.

◀

B Proof of Proposition 5.2

The algorithm is mainly based on the notion of cycle space of a graph, whose main notions
we recall (cf [17, Section 1.9] for details).

A spanning subgraph of a graph G = (V, E) is a subgraph G = (V, E′) with E′ ⊆ E. the
same set of nodes. A subgraph is Eulerian if every vertex has an even degree. In particular,
if E′ are the edges of a cycle of G, then (V, E′) is Eulerian. The cycle space of G is the vector
space made of all Eulerian spanning subgraphs of G, using symmetric difference for addition
and the two-element field for scalar multiplication. Its dimension is m− n + 1.
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Proof that Algorithm 1 terminates. We first prove the existence of edge a defined on line 3
of Algorithm 1. By definition of a spanning tree, T ∪ {a} contains a unique cycle for each
a ∈ E \ T . The m− n + 1 cycles thus obtained are independent (each one contains a distinct
a) so they form a basis of the cycle space of G. Since the linear combination of even cycles
cannot produce an odd cycle and G contains at least one (it is non-bipartite), one of the
basis vector must be an odd cycle.

We now verify that, for each s ∈ E \ (T ∪{a}), T ∪{a, s} contains either (i) an even cycle
Cℓ or (ii) a kayak paddle KPℓ,r,p with two odd cycles. By construction, T ∪ {a} contains a
unique cycle Cr, which is odd, and T ∪ {s} contains a unique cycle Cℓ. T ∪ {a, s} contains
both Cr and Cℓ. We now proceed by elimination:

If Cℓ is even, then this is an even cycle included into T ∪ {a, s}, and we are therefore in
case (i).
If Cℓ is odd, and Cr and Cℓ have at least one edge in common, then the symmetric
difference of Cr and Cℓ is an even cycle, and it is again included into T ∪ {a, s}, so we
are again in case (i).
If Cℓ is odd, and Cr and Cℓ have no edge in common, then we are in case (ii).

◀

Proof that Algorithm 1 returns the correct result. We finally prove that the vectors v gen-
erated (i) belong to the kernel of A, (ii) are independent, and (iii) there are m− n of them.
Statement (iii) is straightforward because the cardinality of E \ (T ∪ {a}) is m − n. To
verify (i), is suffices to observe that Av = 0, e.g. that for each node the total of its edges
weighted with v is 0:

Any node not adjacent to the support of v has only null edges;
Any cycle node apart from vi and vj has non-zero weights (−1, 1);
Any path node apart from vi and vj has non-zero weights (−2, 2);
If p > 0, vi has non-zeros weights (−1,−1, 2); vj has non-zeros weights (−1,−1, 2) if p is
odd or (1, 1,−2) if p is even;
If p = 0, vi is vj . It has non-zeros weights (−1,−1, 1, 1).

Lastly, to verify (ii),we observe that, for each s ∈ E \ (T ∪ {a}), s belongs to the cycle or
kayak paddle used, so the vector constructed from edge s is the only one with a non-zero
value in s. ◀
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