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Abstract. The cores of the subtropical anticyclonic gyres
are characterized by their oligotrophic status and minimal
chlorophyll concentration, compared to that of the whole
ocean. These zones are unambiguously detected by space
borne ocean color sensors thanks to their typical spectral re-
flectance, which is that of extremely clear and deep blue wa-
ters. Not only the low chlorophyll (denoted [Chl]) level, but
also a reduced amount of colored dissolved organic matter
(CDOM or “yellow substance”) account for this clarity. The
oligotrophic waters of the North and South Pacific gyres,
the North and South Atlantic gyres, and the South Indian
gyre have been comparatively studied with respect to both
[Chl] and CDOM contents, by using 10-year data (1998–
2007) of the Sea-viewing Wide field-of-view Sensor (Sea-
WiFS, NASA). Albeit similar these oligotrophic zones are
not identical regarding their [Chl] and CDOM contents, as
well as their seasonal cycles. According to the zone, the
averaged [Chl] value varies from 0.026 to 0.059 mg m−3,
whereas theay(443) average (the absorption coefficient due
to CDOM at 443 nm) is between 0.0033 and 0.0072 m−1.
The CDOM-to-[Chl] relative proportions also differ between
the zones. The clearest waters, corresponding to the low-
est [Chl] and CDOM concentrations, are found near Easter
Island and near Mariana Islands in the western part of the
North Pacific Ocean. In spite of its low [Chl], the Sar-
gasso Sea presents the highest CDOM content amongst the
six zones studied. Except in the North Pacific gyre (near
Mariana and south of Hawaii islands), a conspicuous sea-
sonality appears to be the rule in the other 4 gyres and af-
fects both [Chl] and CDOM; both quantities vary in a ratio
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of about 2 (maximum-to-minimum). Coinciding [Chl] and
CDOM peaks occur just after the local winter solstice, which
is also the period of the maximal mixed layer depth in these
latitudes. It is hypothesized that the vertical transport of un-
bleached CDOM from the subthermocline layers is the main
process enhancing the CDOM concentration within the up-
per layer in winter. In summer, the CDOM experiences its
minimum which is delayed with respect to the [Chl] mini-
mum; apparently, the solar photo-bleaching of CDOM is a
slower process than the post-bloom algal Chl decay. Where
they exist, the seasonal cycles are repeated without notable
change from year to year. Long term (10 y) trends have not
been detected in these zones. These oligotrophic gyres can
conveniently be used for in-flight calibration and comparison
of ocean color sensors, provided that their marked seasonal
variations are accounted for.

1 Introduction

Waters extremely transparent to visible and near ultraviolet
solar radiation were found (Morel et al., 2007a, b) in the
vicinity of Easter Island within the South Pacific anticyclonic
gyre during the BIOSOPE cruise (BIogeochemistry and Op-
tics SOuthPacific Experiment; Claustre et al., 2008). The
hyperoligotrophic waters of this gyre are perhaps the “clear-
est” natural waters in the world ocean. Such an extreme
clarity primarily results from the very low level of the phy-
toplanktonic biomass; indeed, the chlorophyll concentration
determined in the upper layer was below 0.03 mg m−3 (in
November 2004; see Ras et al., 2008). The exceptional trans-
parency within this oceanic water body also originates from
the extremely low level of chromophoric dissolved organic
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Fig. 1. Annual composite (year 2006) of SeaWiFS data for
the global ocean. Upper panel: chlorophyll concentration, [Chl]
(mg m−3); middle panel: chromophoric dissolved matter index,
8 (dimensionless). Both these quantities are provided and dis-
tributed by NASA. Lower panel: map of the absorption coefficient
at 443 nm,ay (m−1) of the chromophoric dissolved organic matter,
CDOM, computed from [Chl] and8 via Eq. (1). Each panel has
its own color scale. The (yellow) boxes superimposed on the maps
show the oligotrophic zones selected for the present study (see also
Table 1 for the exact locations and meaning of the identifiers). The
black box in a mesotrophic zone off Portugal (P) is selected for a
comparison (see text).

material, CDOM (or “yellow substance”, or “Gelbstoff”), as
attested by the particularly low values of the attenuation co-
efficient for downward irradiance in the ultraviolet spectral
domain (Morel et al., 2007a; Swan et al., 2009), and also at-
tested by spectroscopic determinations (Bricaud et al., 2010).
The special clarity of these waters results in a deep blue color
due to the reflectance enhancement in the blue, violet, and
UV parts of the spectrum. Space borne Ocean Color sensors
are able to detect this enhancement. The recurrent detec-
tion from space of a huge “blue hole” denoting a hyperolig-
otrophic system within the South Pacific gyre was largely at
the origin of the BIOSOPE project (Claustre and Maritorena,
2003).

Of course, the question arises about the possible oc-
currence of similar situations in other parts of the world

ocean, not only in terms of algal concentration, but also
in terms of yellow substance content. Other subtropical
gyres also characterized by anticyclonic circulation, down-
welling, and thicker thermoclines, are obvious candidates,
since the depressed nutricline limits the algal development
and subsequent biological/biochemical processes. These ex-
tensive oligotrophic gyres are well known in both hemi-
spheres within the subtropical Atlantic and Pacific oceans
(see e.g., Sverdrup et al., 1963; Tomczak and Godfrey, 1994).
The south Indian ocean is also the seat of a subtropical anti-
cyclonic system, while in the northern Indian ocean the mon-
soon regime impedes the regular development of such a sim-
ilar feature. These desert oceanic areas have unambiguously
been detected by ocean color sensors; their huge extension,
and their chlorophyll concentration have been documented
and monitored (see e.g., McClain et al., 2004; Polovina et al.,
2008). Indeed, while the biological activity is comparatively
small in these areas, their vast size makes their contribution
to the global productivity and biogeochemistry definitely sig-
nificant (see e.g., Antoine et al., 1996).

These ultramarine oceanic zones were also selected as of-
fering wide and homogeneous targets allowing in-flight cal-
ibration of space ocean color sensors to be performed via
the Rayleigh scattering calibration method (Fougnie et al.,
2002). In this study, based on Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) data, the low chlorophyll level
(thereafter denoted [Chl]) within several gyres was con-
firmed and documented. No attempt, however, was made to
comparatively assess the CDOM content. Yet, some years
later, actually when the “GSM” algorithm (Siegel et al.,
2002, 2005b) was applied to remotely sensed ocean color
data, relative minima in near-surface CDOM abundance were
also detected in the subtropical gyres. Therefore, a system-
atic study of these zones, with both their low [Chl] and low
CDOM levels, can provide an answer to the initial ques-
tion: from an optical viewpoint, do waters identical to, or
approaching those encountered near Easter Island exist else-
where in the world ocean? More generally, and from a bio-
geochemical viewpoint, the trophic status of these zones,
their seasonality, their systematic difference or resemblance,
and the interannual stability of their characteristics are also
the topics of the present study.

A newly proposed technique allows the chromophoric or-
ganic material content to be quantified from remotely sensed
data of ocean color (Morel and Gentili, 2009a). This tech-
nique will be applied in parallel with the [Chl] retrieval to
carry out a comparative study of the various oligotrophic sub-
tropical gyres. The location and extension of the selected
zones inside each of the gyres (Table 1 and Fig. 1) were de-
limited in order to contain the most oligotrophic inner core.
Note that these zones are far less extended than the ecological
domains as defined in the sub-tropical regions by Longhurst
(1995), or than the entire gyres as studied by McClain et
al. (2004).
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Table 1. Geographical information for the six oligotrophic zones selected for the present study (see also map in Fig. 1); in addition, are
included a mesotrophic site off Portugal, used for comparison (see text), as well as a sub-zone near Easter Island, denotedEf , where an
Argo float has been deployed during about 3 years.

Location Notation Longitude Latitude Area (106 km2)

Easter Island zone E −125.0 −100.0 −30.0 −20.0 2.794
Mariana Islands zone M 150.0 165.0 10.0 20.0 1.787
Brasilian Atlantic gyre B −32.0 −25.0 −22.5 −12.5 0.823
South-Sargasso Sea S −70.0 −45.0 22.0 27.0 1.404
South Indian gyre I 70.0 90.0 −30.0 −21.0 2.004
Hawaii Islands zone H −170.0 −150.0 10.0 18.0 1.916
Atlantic off Portugal P −25.0 −15.0 34.0 40.0 0.591
Argo float (E) Ef −115.0 −101.0 −29.0 −24.0 0.773

2 Data and methods

Satellite imagery (SeaWiFS) over the 1998–2007 period is
considered for the present study. Yearly, monthly or eight-
day L3 composites (9Km) of the [Chl] distribution, the
PAR(0) distribution (the daily Photosynthetically Available
Radiation at the surface), and distribution of the CDOM in-
dex (chromophoric dissolved organic matter ) were used;
they are the last products of the most recent NASA repro-
cessing (2009.1). The CDOM index is the factor defined
and studied in Morel and Gentili (2009a), and denoted8.
The meaning of this8 index can be summarized as follows.
In case 1 waters, there exists a “mean” relationship between
the CDOM content and the chlorophyll concentration [Chl]
(Morel, 2009) of the form

ay(λ) = α(λ)[Chl]0.63

where the CDOM content is expressed as an absorption
coefficient (unit m−1) at a certain wavelength,ay(λ). At
the wavelengthλ = 443 nm for instance, theα coefficient
amounts to 0.0316. Natural variability around the mean
ay ↔ [Chl] relationship is rather large; it is conveniently rep-
resented by introducing the index8 (dimensionless) which
modulates the mean relationship according to

ay(443) = 0.03168[Chl]0.63 (1)

The particular value8 = 1 stands for the mean Case 1 waters
conditions. If CDOM is in “excess” compared to its mean
value as expected from the [Chl] value, then8 is > 1; 8

can as well be< 1, when the CDOM content is below its
expected average value.

The derivation of the8 index from ocean color radiomet-
ric data is briefly recalled in what follows. It results from the
simultaneous consideration of the spectral reflectance,R(λ),
at four wavelengths (λ = 412, 443, 490 and 555 nm), and
then by forming the two independent ratios,R(412)/R(443)
and R(490)/R(555), hereafter denotedR412

443 and R490
555. In

mean case 1 waters, i.e., when8 = 1, a univocal relation-
ship linksR412

443 to R490
555, and is represented by a unique curve

within theR412
443−R490

555 plane. In this plane, a family of sim-
ilar curves is produced when8 is given various discrete val-
ues around 1 (Fig. 2, in Morel and Gentili, 2009a). For each
pixel of the SeaWiFS imagery,8 is simply obtained by con-
sidering the two ratiosR412

443 and R490
555 computed from the

reflectances retrieved at this pixel, and by comparing them
with the curves drawn within theR412

443− R490
555 plane (see

also discussion in Appendix A). In practice, an interpola-
tion into a 2-D lookup table, which is numerically equiv-
alent to the family of curves, allows the determination of
the 8 index (available atftp///oceane.obs-vlfr/pub/gentili/
CDM-index-Table.interpol). Once8 has been determined,
the coefficient ay(443) can be computed through Eq. (1) by
using the [Chl] value determined at the same pixel via the
standard algorithm (actually the OC4 algorithm used in the
last NASA reprocessing, labeled 2009.1). For the sake of
concision, the quantityay(443) is also denoteday, since there
is no ambiguity about the wavelength.

As a consequence of the presence of yellow substance in
varying proportions with respect to [Chl] (i.e., as a conse-
quence of varying8 values), the [Chl] values retrieved by
using a standard univocal algorithm may be erroneous. In-
deed, standard algorithms (as for instance OC4 presently
used to retrieve [Chl]) implicitly suppose that the average
proportions between CDOM and [Chl] are respected; in other
words they imply that8 ∼ 1. When8 differs from unity,
the [Chl] estimate is subsequently biased (Siegel et al., 2005;
Hu et al., 2006; Morel and Gentili, 2009a, their Fig. 9). An
overestimation occurs when8 > 1, since the “excess” of
CDOM is converted through the nominal algorithm into an
increased [Chl] value; therefore the correction to be applied
is a negative one. The converse holds true if8 < 1. The
corrected [Chl] values are conveniently obtained through the
use of a lookup table with8 and the initial (uncorrected)
Chl value as entries, available atfttp///oceane.obs-vlfr/pub/
gentili/ChlCorrected-Table.interpol.

An additional remark is useful and deals with nomencla-
ture and the meaning of the so-called quantities CDM and
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Fig. 2. Time series (1998–2007) of the three parameters, [Chl],ay(443), and8, as established from the monthly composites and by averaging
the values of all pixels over each of the six selected zones (identifiers as in Table 1); to facilitate direct comparisons, the scales are identical
for the six panels; green scale: [Chl] as mg m−3; red scaleay(443) as m−1; black scale, in the middle,8, dimensionless.

CDOM. When developing the GSM method (Maritorena et
al., 2002; Siegel et al., 2002), the CDM acronym, with the
meaning of “coloreddetrital material”, was introduced. It
represents the combined absorption of colored detrital parti-
cles and of dissolved organic material. The latter component,
which largely dominates the absorption process, is com-
monly referred to as CDOM (for Chromophoricdissolvedor-
ganic matter, i.e., the matter able to pass through a membrane
filter with 0.2 µm pore size). The quantity which is retrieved
here and used in the present study is close to CDOM (and
is referred to as such), even if it does not exactly fulfill the
definition (which involves filtration; see discussions in Morel
and Gentili, 2009a; Bricaud et al., 2010).

3 The selected geographic zones

Six quadrangular domains within the five major anticyclonic
gyre systems of the three oceans (McClain et al., 2004) were
considered. These zones (except the Hawaiian zone – see
comments below) were selected to coincide with the most
oligotrophic cores of each gyres in the Northern and South-
ern Hemispheres (Fig. 1 and Table 1 provide their locations
and limits). The central parts of the gyres were delimited

somewhat arbitrarily by considering the monthly [Chl] com-
posites encompassing firstly the whole gyre systems, and
then by progressively reducing (down to∼1–3× 106 km2)

the area under consideration, in order to isolate the “cores”
of each system. The core is assumed to be typified by min-
imal [Chl] concentrations, compared to the values of the en-
tire gyre in the same month, and, if possible, it must be
spatially sufficiently homogeneous. Simple statistical tools
guide this process, by examining the evolution of the [Chl]
means and standard deviations while progressively shrink-
ing the boundaries of the quadrangular zones. The standard
deviations (sd), describe the inter-pixel variability, and the
coefficients of variation, cv (cv = sd/mean, in %) thus pro-
vide a quantification of the spatial heterogeneity within each
zone and for a given month. These coefficients are generally
comprised for the six zones between 20 and 40% in terms
of [Chl]; exceptionally, higher values (∼ 60%) are observed
during the blooming period (see below); in terms ofay, the
spatial distribution is more homogeneous, with cv between
10 and 20%. This method is similar to that described in
Fougnie et al. (2002).

In such central positions within the anticyclonic circula-
tions, the lateral advective exchanges are supposedly reduced
to their minimum in the selected zones. The low [Chl] values
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do not imply a constancy in the concentration. Actually, a
seasonal [Chl] signal clearly occurs in four of the six selected
zones (as discussed later on), while in the two others (both in
the North Pacific), this signal fluctuates rather irregularly and
is spatially less homogeneous.

At first sight (Fig. 1), the CDOM distribution in the up-
per layer bears a rough resemblance to the phytoplanktonic
chlorophyll distribution. The modulation introduced by the
variation of the8 factor (Eq. 1) impedes a tight correlation
between the two quantities. Anyhow, the oligotrophic areas
selected on the basis of their low [Chl] content, appear also
to be characterized by loway values.

The South Pacific gyre is the largest subtropical anticy-
clonic gyre of the world ocean; its hyperoligotrophic charac-
ter was already acknowledged (Claustre et al., 2008; Morel
et al., 2007a). Its central zone, around Easter Island, is
presently selected. Its counterpart in the Northern Hemi-
sphere is a huge anticyclonic system, extending from Hawai-
ian Islands to Mariana Islands. The examination of ocean
color imagery showed that the really oligotrophic waters are
lying in the westernmost part of the gyre, i.e., east of Mariana
Islands; this zone, actually within the so-called warm pool,
was thus selected.

In the Atlantic ocean, the generally low level of phyto-
plankton in the Sargasso Sea has been known for a long time
(Menzel and Ryther, 1960, 1961), and regularly documented
(Bermuda Atlantic Time-Series Study or “BATS” program;
see e.g., Michael and Knap, 1996). The area presently se-
lected in the southern Sargasso Sea, between 22◦ and 27◦ N,
lies south of the BATS deployment area (∼ 31◦40 N), where
the [Chl] level may be moderately high in winter (Garver and
Siegel, 1997). The selected area is thus close to the site stud-
ied by Hu et al. (2006) and presumably more stable. Indeed,
the mesoscale eddy activity, which may include intermittent
drift of cold core rings at the latitude of Bermuda, is weaken-
ing southward, at the selected (< 27◦ N) latitudes (Steinberg
et al., 2001).

The South Atlantic gyre off Brazil is similarly character-
ized by a low algal content with apparently a limited E-W
extension probably due to the remote influence of the eu-
trophic Benguela system (Fig. 1). Data obtained along the
Atlantic Meridional Transect (Aiken et al., 2009) have regu-
larly confirmed the low [Chl] values in this area. Midway be-
tween Madagascar and Australia, in the South Indian ocean,
the scarcely documented anticyclonic gyre is systematically
seen by ocean color sensor as an oligotrophic zone, and thus
was retained for the present study.

Finally, another area situated south of the Hawaiian Is-
lands has also been considered. Actually, this area which
belongs also to the North Pacific subtropical gyre system, is
no longer located in its center, but at its eastern periphery. It
does not exhibit the lowest [Chl] level in the North Pacific,
which, as said before, are found westward, near the Mari-
ana islands, in the quieter center of the gyre. This area was
nevertheless considered for a possible comparative study, in

particular because in situ data are regularly gathered at the
ALOHA reference station, and at the MOBY instrumented
site, devoted to satellite calibration and validation activities
and optical measurements. The region finally kept, how-
ever, is more in the south (between 18 and 10◦ N), about
500–1300 km south of the Hawaiian archipelago. If it is out-
side of the eddy activity field in the lee of the islands (Calil
and Richards, 2010), it lies yet inside the eastern branch of
the North Equatorial current, driven westward by the trade
winds (Wyrtki and Kilonsky, 1984). Lateral advection and
occurrence of eddy-related random fluctuations cannot be ex-
cluded in this zone.

4 Results

The monthly [Chl] and8 SeaWiFS values have been spa-
tially averaged over each of the six zones. With these values,
the corresponding CDOM absorption values,ay(443), have
been straightforwardly derived via Eq. (1). These monthly
quantities are displayed in Fig. 2 from January 1998 to De-
cember 2007. Then, mean annual cycles (Fig. 3) were pro-
duced for each zone by cumulating and averaging the cycles
observed during the ten years (those in Fig. 2); the standard
deviation which is computed and displayed as vertical bars
characterizes, for each month, the year-to-year variability of
the quantity involved, [Chl],ay, and8. Finally, a general
annual mean value for each zone, and the pooled standard
deviations (the average of the monthly standard deviations)
were also produced from the cycles shown in Fig. 3; the re-
sults are given in Table 2, where the 6 zones have been ranked
according to increasing [Chl] values.

When needed, the eight-day [Chl],8, and PAR compos-
ites have also been examined (“PAR” means “photosyntheti-
cally available radiation”, from 400 to 700 nm).

4.1 The chlorophyll concentration

The permanent oligotrophic character is confirmed within
the six selected areas. Indeed, the annual mean [Chl] values
(Table 2), which are below 0.05 mg m−3 in all zones except
near Hawaii (0.06 mg m−3), are low compared with the mean
value for the deep global ocean amounting to 0.193 mg m−3

(Wang et al., 2005).
The South Pacific gyre (Easter Island, E) definitely ap-

pears to be hyperoligotrophic (mean [Chl] 0.026 mg m−3).
The western part of North Pacific gyre (near Mariana Islands,
M) is similarly and steadily hyperoligotrophic. In contrast,
the highest mean [Chl] value is observed near Hawaii (H),
at the eastern periphery of the gyre. The South Atlantic (B)
and Indian (I) gyres, as well as the Sargasso Sea (S) are in in-
termediate position, with annual mean [Chl] values ranging
from 0.038 to 0.049 mg m−3. Compared to the seasonal [Chl]
values in the BATS and HOT sites (Figs. 1 and 2 in Werdell
et al., 2007), the present values in H and S are notably lower,
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Table 2. Annual mean values over the ten years (1998–2007) period of the quantities [Chl] (mg m−3), 8 (dimensionless), anday(443)
(m−1), for each zone, including “P” (Portugal) and “Ef ” (the sub-zone in the E zone). The (12) average monthly values of the same
quantities for each zone, as displayed on Fig. 3, are used to obtain the annual mean values. The pooled standard deviations are simply the
average of the standard deviations pertinent to each month (those shown in Fig. 3).

Chl corr. Chl 8 ay
mean st.dev. mean st.dev. mean st.dev. mean st.dev.

E 0.026 0.003 0.026 0.003 1.085 0.041 0.0033 0.0003
M 0.034 0.003 0.037 0.003 0.891 0.038 0.0031 0.0002
B 0.038 0.004 0.036 0.004 1.256 0.043 0.0048 0.0003
S 0.046 0.004 0.038 0.003 1.681 0.064 0.0071 0.0005
I 0.049 0.006 0.043 0.006 1.457 0.085 0.0065 0.0006
H 0.060 0.012 0.061 0.012 1.009 0.053 0.0050 0.0006
P 0.169 0.037 0.124 0.033 2.153 0.304 0.0204 0.0041

Ef 0.024 0.006 0.028 0.006 1.077 0.086 0.0032 0.0006

Fig. 3. Climatological annual cycles (temporal resolution: one
month) of the three parameters, [Chl],8, anday(443) within each
zone; the cycles are obtained by averaging over 10 years the time
series displayed in Fig. 2. Same symbols, colors, units, and scales
as in Fig. 2. The vertical bars correspond to±1 standard deviation
computed for each month over the 10y period, and express the year-
to-year variability of the monthly mean values inside each zone.

as expected from their location southwardly shifted with re-
spect to the BATS and HOT sites.

The [Chl] time series for each zone can be seen in Fig. 2
over the 10 y period, and the mean annual cycles in Fig. 3.
The interannual variability is reflected by the pooled stan-
dard deviation around the mean annual value (theσ val-
ues in Table 2). The corresponding coefficients of variation
(σ /mean) amount to about 10% everywhere, apart from the
Hawaiian region where it reaches 20%. In the E, B, I, and

Fig. 4. For the left hand column (sites in the Southern Hemisphere)
the year starts with January (Ja); for the right hand column (North-
ern Hemisphere) the year starts with July (Ju); by this way, the win-
ter solstice is in the middle of the figures, whatever the hemisphere.
(a) Spatially averaged quantities [Chl] (via OC4 algorithm), and
ay(443) (via Eq. 1) from eight-day composites for each zone; the
dashed curve represents the relationship when8 = 1; above and be-
low this curve are the domains where8 is > 1 or< 1, respectively.
(b) Corrected [Chl] versus nominal [Chl] for each zone; the black
line is the 1:1 line.

S zones seasonal [Chl] cycles occur (Fig. 2) and are regular
repeated from year to year. In contrast, the seasonal [Chl]
signals are rather irregular in the North Pacific gyre (M and
H). While in M the [Chl] signal is very weak and its mean
level low (Fig. 2), in H, [Chl] values may intermittently ex-
ceed 0.08 mg m−3, and inter-annual disparities are obvious
(see also Fig. 4).

Biogeosciences, 7, 3139–3151, 2010 www.biogeosciences.net/7/3139/2010/
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4.2 The CDOM content

The CDOM absorption coefficient in surface waters exhibits
in the six zones low annual mean values. They agree with
field values in the South Pacific gyre (Bricaud et al., 2010),
and qualitatively, with those measured at 325 nm by Nelson
et al. (2010). The presentay(443) values range from about
0.0031 to∼ 0.0071 m−1 (Table 2); these low values are to
be compared with the median value for the whole ocean
amounting to∼ 0.009 m−1 (Morel and Gentili, 2009a). From
this point of view, the selection of the oceanic zones, which
has been made on the basis of [Chl], would have remained
almost unchanged if, instead, a criterion based on CDOM
absorption was used (compare upper and lower panels in
Fig. 1). The ordering of the zones would have been dif-
ferent, however. Indeed, the8 values are either below or
above 1, so that the relative [Chl] –ay proportions vary from
one area to another one. With the highest average8 value
(∼ 1.68± 0.30) in the Sargasso Sea, there is a permanent
CDOM “excess”, and the meanay(443) value amounts to
∼ 0.0071 m−1, versus 0.0045 m−1, the value to be expected
if 8 was unity for a [Chl] value equal to 0.046 mg m−3.

Conversely,8 is notably< 1 near the Mariana Islands,
which denotes a CDOM content steadily below the average;
the meanay(443) value found in this zone (0.0031 m−1) ac-
tually is the lowest one, even slightly below the value near
Easter Island. The region south of Hawaii also exhibits rather
low ay(443) values. In the Northern Hemisphere, the differ-
ence between the Pacific and Atlantic oceans is striking, as
also shown by Fig. 3. The interannual coefficients of varia-
tion for ay(443) (σ /mean, taken in Table 2) are, as for [Chl],
about 10% or slightly less.

The diversity of the various oligotrophic domains with re-
spect to their respective [Chl] and CDOM contents is also
indirectly illustrated by Fig. 4a, where the eight-day mean
[Chl] and contemporaneousay(443) values are displayed.
The relative proportions CDOM-to-[Chl], (i.e., the8 index)
appear to be a typical trait of each region.

4.3 The8 index and corrected [Chl] values

In the three Pacific zones (E, M, H), the8 index is close to,
or even below unity, while it is above 1 in the Atlantic and
Indian gyres (Fig. 4a). It also exhibits a seasonal pattern (ex-
cept near Hawaii) to be discussed later. The amplitude of the
variations in8 is less than it is for the other quantities, which
means that CDOM and [Chl] remain partly correlated in their
variations. The interannual coefficient of variation (cv) for
8 amounts to about 4–5%, i.e., half those for CDOM and
[Chl. If, as noted above, the CDOM-to-[Chl] proportions are
rather site specific, they nevertheless exhibit periodic varia-
tions (shown in Figs. 2 and 3).

As in the present study8 is never far from 1, the cor-
rections (in both directions) to be applied to the initial [Chl]
values remain small (Table 2), except in the Sargasso Sea

Fig. 5. Monthly values of the depth (m) of the mixed layer (Zml)

extracted from the climatology published by de Boyer Montegut et
al. (2004), when the variable density criterion is used (the DReqDT-
0.2 product) and when the reference depth is set at 10 m; theZml
values which are displayed are obtained by averaging theZml data
(2◦ by 2◦ grid) over each box shown in Fig. 1. As in Fig. 3, the
month scale begins with January, for the Southern Hemisphere (left
panel); and in July for the Northern Hemisphere (right panel). Note
that the site “P” (off Portugal) is not within an oligotrophic regime
(see text).

and Indian Ocean, where the subtractive corrections amount
to ∼ 15–20%. In North Pacific (M and H), there is practi-
cally no correction, as it can be seen on Fig. 4b (derived from
Fig. 4a) where the corrected [Chl] values are plotted versus
the (OC4) initial [Chl] values.

4.4 Similarities and differences between the
oligotrophic gyres

The [Chl] anday(443) seasonal variations within the six
zones over the 1998-2007 decade (Figs. 2 and 3) present two
kinds of patterns, which can be distinguished as follows:

1. A first group includes four zones, namely the S-Pacific,
S-Atlantic, S-Indian gyres, and the southern sector of
the Sargasso Sea (E, B, I, S). In these zones the seasonal
cycles are strongly printed, with roughly coincident
maxima in both [Chl] anday. A factor of ∼ 2 charac-
terizes the amplitude (maximum-to-minimum) of these
seasonal cycles, for [Chl] as well as for CDOM. These
maxima occur within the two months following the win-
ter solstice of the corresponding hemisphere; they ap-
proximately coincide with the maximal extent of the
mixed layer (Fig. 5, where the monthly average mixed
layer,Zml, are displayed for the six zones). The [Chl]
and CDOM seasonal signals, of sinusoidal and symmet-
rical appearance, are very similar in the three locations
of the Southern Hemisphere, with a wider amplitude in
the Indian Ocean. Although regular, the seasonal pat-
terns in the Sargasso Sea appear more complicated, in
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particular because a secondary maximum occurs at the
end of September and concerns both [Chl] anday . The
seasonal cycles of the8 index are also regular; despite
the rather parallel evolutions ofay and [Chl], their rela-
tive proportions are not constant, but seasonally slightly
changing. As a general rule, the8 maximum is shifted
(about one month) with respect to theay maximum; a
similar shift also affects the minima.

2. The second group includes the two locations in the
North Pacific (M and H), where the variations in [Chl]
anday appear less regular, partly correlated in H and
rather uncorrelated in M; in both sites, the8 anday cy-
cles remain concomitant, however. Actually, there are
important differences between M and H. Whereas the
average [Chl] value in H is the highest found in olig-
otrophic areas (Table 2), the [Chl] value in M is among
the lowest ones; the spatial heterogeneity in terms of
[Chl] remains high (cv∼ 50%) in all seasons, and low
(∼ 20%) foray. In M, a situation reversed with respect
to those encountered in the first group prevails. Indeed,
instead of a coincident phasing, there is a half year shift
between the (weak) maximum in [Chl] in July, and the
distinct maximum inay occurring in January. South of
Hawaii, the strong and concomitant [Chl] anday fluc-
tuations (Fig. 2) appear somewhat erratic; in absence
of significant pycnocline motion (Fig. 5), they proba-
bly are the consequence of lateral advective intrusions
and mesoscale eddy activity. In support to this second
hypothesis, it can be noted that [Chl] anday fluctuate
globally in phase, while the8 index remains close to
1. The mean annual cycles (Fig. 3) tend to reveal in H
and M a weak [Chl] maximum in summer (June–July),
with a particularly low maximum-to-minimum [Chl] ra-
tio (∼ 1.2); the CDOM maxima are in January (and
perhaps anotheray maximum occurs in July, south of
Hawaii).

It is worth noting that the presence (Sargasso Sea) and the
quasi-absence (Hawaii) of seasonality inay were already
pointed out by Siegel et al. (2002), who produced and studied
time series of CDM in the BATS and HOT sites. Their CDM
values are slightly above the presentay values. Actually the
algorithms providing CDM anday differ, possibly leading
to a small divergence (with CDM> ay) as already noticed
(Fig. 7 in Morel and Gentili, 2009a). Besides, the selected S
and H zones were both southwardly shifted compared to the
BATS and HOT sites, with , as discussed above, the intent of
isolating the most oligotrophic cores.

5 Analysis of the seasonal variations

According to the subtropical latitude of the zones under
study, the winter vertical mixing, that generally occurs
shortly after the winter solstice (Fig. 5), is much less intense

Fig. 6. (a)The three parameters, [Chl],ay(443), and8, are plotted
with the same symbols and scales as in Fig.2, but they are com-
puted from the 8-day SeaWiFS L3 composites, and for a sub-zone
(109◦–115◦ W, 24◦–29◦ S) inside the E zone, where an ARGO float
(WMO # 3000302) was deployed and has provided data at the 10-
day frequency during the years 2005–2007. The depth (m) of the
mixed layer (Zml) was computed from the T-S data recorded by
this float, and by using a density criterion (1σ = 0.03); the corre-
sponding results are shown as the (thin) blue curve. The thick blue
curve represents theZml values computed for the same zone from
the climatology (de Boyer Montegut et al., 2004).(b) for the same
years, [Chl], ay (443), and8 are plotted also at 8-day resolution, for
the zone “P” (off Portugal, see Tables 1 and 2). Note the change of
scales between panel (a) and panel (b) (see also values in Table 2).
The blue (thick) curve represents the climatologicalZml values for
the “P” zone (from data in de Boyer Montegut et al., 2004).

than in temperate mid-latitudes. Despite its limited ampli-
tude, the deepening of the pycnocline is apparently sufficient
to allow some underlying waters, with their nutrients and un-
bleached yellow substance content, to shoal and to be ex-
posed to solar radiation. The response in terms of chloro-
phyll concentration (perhaps influenced by photo-adaptation
in wintertime – see discussion below) is fast, so that the [Chl]
and CDOM peaks associated with vertical mixing events are
simultaneous. This simultaneity, even at high frequency,
is supported by the detailed examination of the SeaWiFS
data obtained at the eight-day resolution near Easter Island
(Fig. 6a); the mixed layer depth, as derived from the data
recorded in this zone by an Argo float at a ten-day resolution
(see legend), is also displayed on this figure.

The E zone represents the typical scenario among the
zones within group 1, which regularly exhibit a winter
[Chl] maximum, thus a pelagic seasonality consistent with
Longhurst’s (1995) Model 3. The progressive development
of the bloom begins in fall; it culminates in July–August
in the Southern Hemisphere and in January in the Sargasso
Sea; then [Chl] declines smoothly. Compared to stronger
mid-latitude “spring blooms”, the subtropical winter bloom
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Fig. 7. The panels(a) and (b) are for the same zones as repre-
sented in Fig. 6a and b, and the depths of the mixed layer are repro-
duced from these panels. In addition are displayed the surface daily
PAR(0) values provided by NASA and averaged over the zones in
question (the solid lines), andPAR, the mean values computed for
the mixed layer (the doted lines; see Appendix B). Note that the
scales are the same in both panels.

appears modest, as the ratio between the [Chl] maximum
and its minimum barely reaches 2.5. The temporal evolu-
tion of the CDOM content mimics that of [Chl] with coin-
ciding peaks and a maximum-to-minimum ratio also of about
2. Theay – [Chl] proportions are periodically changing, as
demonstrated by the8 cycles which generally experience
their maximum about one month (8 to 40 days) after the
[Chl] peak. This time lag could mean that the decrease in
CDOM, presumably due to the photo-bleaching process, is
slower than the [Chl] decline. It may also indicate that a cer-
tain amount of CDOM is locally produced by algae during
their degradation. This phase lag persists during the whole
summer, since8 does not reach its minimum before October
(N-Hemishere) or April (S-Hemisphere), i.e., when [Chl] has
already begun to increase again. Similar observations of time
lags were made by Hu et al. (2006) in a location within the
Sargasso Sea (65◦ W–27.5◦ N). In passing, it is worth noting
that their ag-443 values (Hu et al’s notation), within the range
0.0035–0.009 m−1, and the presentay(443) values are in ex-
cellent agreement as regards their magnitude and seasonality.

There is also another systematic and rather enigmatic fea-
ture appearing in the8 cycles (Fig. 2): it consists of a “shoul-
der” occurring when [Chl] approaches its minimum around
January (E, B, and I), or in June–July within the Sargasso
Sea; in this Sea, this feature is particularly well developed.
Its origin remains unclear.

For the second group (M and H), the situation and tem-
poral evolution markedly differ from those observed within
the first group, and the regularity of the seasonal cycling (for

[Chl] and CDOM) is to a large extent broken. In these zones,
the supply of nutrients and unbleached CDOM to the upper
layer seems to be hampered, with the consequence that the
seasonality in the signals is smoothed out. In H,Zml is al-
most constant during the year (around 60 m, see Fig. 5); ver-
tical mixing events are thus limited or inexistent; the episodic
strong [Chl] peaks, occurring in mid-summer, are not related
to such improbable events and have another cause (see be-
low). In M, from about 40 m in summer, the MLD reaches
80 m in January, as in the Sargasso Sea where a strong sea-
sonality in optical properties is observed; in contrast, such a
seasonality is not observed in the Mariana zone. Maybe, in
this zone, the maximal MLD is insufficient to reach the nutri-
cline, or the nutrient reservoir is partly depleted (e.g., Palter
et al., 2005). Also, due to heavy rainfall in this zone, the ex-
istence of strong haloclines could impede active convection,
in such a way that the near-surface salinity-stratified layers
are insulated from the thermocline itself by the presence of
relatively thick barrier layers (Maes et al., 2006; Sato et al.,
2004).

As for CDOM, the common trait of the M and H zones
is a rather flat annual mean (Fig. 3). In M, bothay and8

are low all the year round within the less saline well-lit sur-
face waters of the warm pool. A seasonal CDOM cycling,
however, is clearly detected in M along the 10 years record
(Fig. 2), with a weak maximum observed in winter (January),
and a systematic minimum in summer (April to September)
when the solar bleaching is particularly effective. It is worth
noting that, for unclear reason, the weakay and [Chl] max-
ima are in opposite phase (Figs. 2 and 3). On the contrary,
south of Hawaii, the main CDOM maxima, in June–July, co-
incide with the [Chl] pulses. More generally, the rather er-
ratic ay fluctuations in H (Fig. 2) roughly parallel those of
[Chl], suggesting that the common cause would be some lat-
eral advective processes inside the turbulent eastern branch
of the North Equatorial current (Wyrtki and Kilonsky, 1984).

6 Discussion and conclusion

With significantly differing [Chl] and CDOM content, the six
zones are not identical from an optical viewpoint.

The South Pacific gyre, the world’s largest oceanic desert,
is the area where the clearest waters were found so far (Morel
et al., 2007a). The area near Mariana islands, with a slightly
higher mean [Chl] content and a similar low CDOM content
(see also fluorescence measurements in Omori et al., 2010),
is probably of exceptional clarity regardless of the season.
According to the present results, no other oligotrophic gyres,
beside these Pacific systems, exhibit such low pigment and
yellow substance contents. In particular, the Sargasso Sea
which is often considered as an archetype for oligotrophic
regimes, is certainly not the bluest sea. Even if the lowest
CDOM values in the North Atlantic were observed in this
zone (Nelson et al., 2007), they still are the highest ones
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among the six zones presently considered. Note that a sim-
ilar statement was already formulated for the Mediterranean
Sea despite its renowned oligotrophy; in effect, the Mediter-
ranean waters are not as blue as it could be expected from
their low [Chl] level, essentially because of a relative CDOM
excess (Morel and Gentili, 2009b).

For in-flight calibration or inter-comparison of ocean color
space sensors over known targets, the seasonal variations
here described have to be accounted for, as they modulate the
water reflectance in the blue and UV spectral domains. The
seasonality is rather reproducible from year to year in four
sites (E, B, I, and S) and thus predictable for calibration pur-
poses. The site near Mariana Islands, deprived of seasonal
signals, is very stable and would be especially convenient for
ocean color calibration (when cloud free).

Recent studies (see e.g. Behrenfeld et al., 2006; Martinez
et al., 2009; Boyce et al., 2010), showed that long-term trends
or decadal oscillations can be detected in oceanic phyto-
plankton biomass. According to Polovina et al. (2008; see
also Irwin and Oliver, 2009), the ocean’s most oligotrophic
waters would be expanding. As a possible consequence, the
centers of the main oligotrophic gyres are perhaps becom-
ing even more oligotrophic. Yet, the attempt to detect such
a temporal evolution over the 10-year time series has not
revealed any significant trend inside the oligotrophic cores
themselves.

From a biochemical viewpoint, the oligotrophic regimes
in the subtropical gyres are akin without being identical; in
particular, the two groups defined above exhibit distinctive
features. In the two North Pacific sites, the seasonal signals
for both [Chl] anday are either erratic (in H) or featureless
(in M), and there is no clear explanation to such behaviors,
probably related to the permanence of a rather thin mixed
layer and the absence of deep convection. In contrast, within
the four sites of the first group (i.e., E, B, I, and S), repeti-
tive seasonal signatures appear, and the concomitance of the
[Chl] and CDOM annual cycling, in phase and relative am-
plitudes, is striking. This feature calls for a comment, and an
attempt to find an explanation. Several scenarios are possible
and three will be examined. They involve as main processes
the local production of CDOM by algae, the algal photoac-
climation (at low light) on a par with the reduction of the
bleaching during winter, and finally, the vertical flux of nu-
trients and CDOM associated with the winter convection.

To explain the simultaneous rise in [Chl] and CDOM, it
is tempting to imagine that the dissolved colored matter is
straightforwardly produced by the algal population, either di-
rectly (cell lysis, excretion), or indirectly (through prompt
“sloppy” feeding and heterotrophic activity). The CDOM
content would thus go along with the phytoplankton growth.
Such an explanation implies that the production of CDOM
by algae is an extremely fast process. Actually, this hypoth-
esis was adopted by Hu et al. (2006). These authors also
based their interpretation on the small time lag (by about two
weeks) they have observed between the [Chl] maximum and

the development of a CDOM maximum. The results obtained
here, even at the eight-day resolution, do not show that such
a lag is systematic nor is a significant feature; at this reso-
lution, the highestay values remain closely associated with
the highest [Chl] values (Fig. 2; see also Fig. 6a). Actually,
the coincidence between the (Chl) and theay peaks, which
seems to be shared by the subtropical areas, is not, by far, a
general rule; a previous result, summarized as follows, has
to be considered. In temperate latitude, namely in the West-
ern Mediterranean Sea, as well as in the entire zonal 30◦–
45◦ N belt, (Morel and Gentili, 2009b), it has been observed
that the onset of the CDOM increase occurs when the au-
tumnal process of the thermocline erosion begins, so that the
CDOM maximum (in January), precedes the vernal bloom
(in March). For a detailed confirmation of this process, an
area was selected in the transition zone at latitudes between
34◦ and 40◦ N, off Gibraltar and outside of the Portuguese
upwelling (Fig. 1, Table 1). The corresponding time series at
eight-day resolution, displayed in Fig. 6b, clearly shows that
the maximum in CDOM, which is in phase with the deepest
convection (see Fig. 5), precedes the vernal [Chl]-bloom by
about 6–8 weeks. Such a delay between the CDOM peak and
the [Chl] peak is obviously not in favor of a fast production
of CDOM by the blooming algal standing stock.

A second hypothesis which can also be considered is re-
lated to the diminishing solar irradiation during winter. At
the subtropical latitudes, the daily photosynthetically avail-
able radiation at the surface, PAR(0), is roughly reduced by
a factor 2 in winter, compared to its value in summer; an ex-
ample for the zone in the vicinity of Easter Island is provided
by Fig. 7a. This reduction is not considerable; but, if it is
assumed that the phytoplanktonic cells are passively trans-
ported by turbulence within the entire extended mixed layer,
the radiant energy they receive on average, denotedPAR, is
much less (see Appendix B for its computation). Actually,
the PAR value in winter is reduced by a factor of about 10
compared to its value in summer, as a consequence of the
deepening of the mixed layer (Fig. 6c, and Appendix). This
reduction in radiant energy may have two consequences, on
the [Chl] value, and on the CDOM value. Indeed, it cannot be
excluded that an algal photoacclimation process (at low irra-
diance level) intervenes and results in an increase in chloro-
phyll cellular content and thus in [Chl], whereas the algal
biomass would stay essentially unchanged (see e.g., Winn
et al., 1995). According to this scenario, the progressive
[Chl] increase during winter as detected by ocean color im-
agery would be mainly an effect of photoacclimation. For the
same reason, the solar bleaching which affects the CDOM
becomes less efficient when exerted upon the entire mixed
layer. Therefore unbleached CDOM brought upward by the
progressive vertical mixing is able to persist without major
damage during the winter period.

The third scenario is simply based on the vertical mixing,
which begins in fall when the heat budget becomes negative,
and progressively brings upward both unbleached CDOM
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and nutrients (but see Palter et al., 2005). The CDOM pool
within the upper layer is thus progressively built up. Thanks
to the subsurface delivery of nutrients, phytoplankton may
develop. According to the classical scheme, the light limi-
tation, and a lack of stratification at moderate (or high) lati-
tudes, generally prevent algae from growing actively; there-
fore, the bloom itself is delayed until spring, when light and
stability are sufficient. It is postulated here that these limi-
tations (the light level, especially) are less stringent in sub-
tropical zones (the Longhurst’s “model 3”), so that the time
lag between the CDOM and [Chl] maxima vanishes. In this
scheme, the coincidence of the two maxima would not be
the straight expression of a causal relationship (i.e., instanta-
neous CDOM production by developing algae), but the con-
sequence of the same cause (i.e., the convective mixing).
This conjecture is supported by the observations of the op-
posite situation: in absence of efficient vertical mixing (in
the site M, especially), [Chl] and the CDOM content stay
permanently at their lower level (Table 2 and Fig. 4) and are
uncorrelated. Such an explanation involving as the main fac-
tor the vertical transport of CDOM is congruent with previ-
ous observations (Nelson et al., 1998) showing that CDOM
is essentially produced in the subthermocline layer by lo-
cal heterotrophic processes leading to a remineralization of
sinking particulate organic matter. Recent findings (Swan et
al., 2009; Nelson et al., 2010) show that this oxidative pro-
cess in deep waters is reflected by the correlation observed
between CDOM and AOU, the apparent oxygen utilization.
Less deep, within the subthermocline layer, the production
of colored dissolved material is probably related to the aver-
age photosynthetic production within the upper well-lit layer
which governs the downward vertical flux of materials. Such
a link could explain the differences between the sites in terms
of average CDOM level (note that this explanation fails in the
case of the Sargasso Sea, since [Chl] in the surface layer is
low while CDOM is relatively high, as in other parts of the
North Atlantic).

The complex interactions regulating the upper layer
CDOM concentration were already hypothesized by Siegel et
al. (2002, their Fig. 6, for instance). Nevertheless the respec-
tive weight of the various processes (local production versus
vertical transport, accumulation versus photo-degradation) is
largely unknown. The three scenarios above have been in-
dependently described for the sake of clarity. It is not only
plausible but highly probable that they can coexist. Detailed
vertical profiles of both quantities, [Chl] and CDOM, as well
as of nutrients and physical/optical conditions, as soon avail-
able with profilers (such as Bio-Argo profilers), are needed
to get a better understanding of the interwoven processes at
play and of their respective contribution.

Appendix A

A family of curves (numerically a 2-D lookup table) repre-
senting the relationship between the ratiosR412

443 and R490
555

within the R412
443−R490

555 plane is produced when8 is given
various discrete values around 1; these curves form a “grid”
which is represented on Fig. 2b in Morel and Gentili (2009a).
These computations are made by using the semi-analytical
reflectance model described in Morel and Maritorena (2001).
When8 differs from unity, it is necessary to adopt a spectral
dependency for the CDOM absorption, which is, as usual,
expressed according to

ay(λ) = ay(λ0)exp[−S(λ−λ0)]

where λ0 is a reference wavelength, and S (nm−1) is
the exponential decay within the spectral range considered
(412–555 nm). The average slope S presently adopted is
0.018 nm−1. A sensitivity study with respect to this S value is
based on the grids which are obtained when S is given other
plausible values. The same couples of ratiosR412

443 andR490
555

introduced into these differing grids provide differing8 val-
ues. Actually they do not differ much: when S is changed
from 0.018 to 0.022 nm−1, 8 is diminished by, at the most,
10% for8 between 1 and 2; or, conversely, it is increased by,
at the most, 10% when8 is between 1 and 0.5. These figures
are to be inverted for an opposite change in S, from 0.018 to
0.014 nm−1. In the present study, with values never far from
unity, the effect of the hypothesis made for S is largely neg-
ligible. The discrepancies on the resulting8 values become
more important (±25%) when8 strongly deviates from 1
and approaches values like 0.2 or 5. These effects are inde-
pendent of the [Chl] values.

Appendix B

The average value of the Photosynthetically Available Radi-
ation, denotedPAR within a layer is the average value of the
integral of the PAR(z) profile over the layer in question; here
the layer considered is the mixed layer of thicknessZml, so
that

PAR= (1/Zml)PAR(0)

Zml∫
0

exp(−KPARZ)dZ

PAR/PAR(0) = (KPARZml)
−1

[1−exp(−KPARZml)]

where PAR(0) is the PAR value just below surface,KPAR is
the downward attenuation coefficient for PAR. The PAR(0)
used here is the daily irradiation (as Einstein m−2) derived
from the SeaWiFS data;KPAR can be derived from the
Kd(490) the downward attenuation coefficient for the irra-
diance at 490 nm, or as well from [Chl] (see Eqs. 8 and 9′ in
Morel et al., 2007). Such a computation is only an approx-
imation (e.g.,KPAR considered as constant along the depth
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and along the day), but it suffices for what it is intended
for. For typical clear waters, withKPAR∼ 0.05 m−1, the ratio
PAR/PAR(0) is 0.2 or 0.63 whenZmld = 100 or 20 m, respec-
tively. The stronger reduction (by the factor 0.2) applies in
winter, whenZmld is maximal and PAR(0) minimal.
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