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Abstract: A parameterization of the volume scattering function (VSF) 

specific to coastal waters is proposed. We have found that the standard VSF 

parameterizations proposed by Fournier-Forand and Petzold do not fit our 

measurements obtained with a high angular resolution VSF-meter for water 

samples taken in the Black Sea coastal zone. We propose modeling VSF as 

a linear function of scattering, backscattering and particulate absorption. 

The statistical techniques employed allow us to retrieve the variability of 

VSF and to demonstrate the significance of the estimates obtained. The 

results of independent validation and the comparison with other commonly 

used parameterizations are provided. 
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1. Introduction 

The remote sensing of sea coastal waters is widely used in different applications of ecological 

monitoring, climate modeling, fishing and many others for the retrieval of parameters 

characterizing the content of particulate and dissolved substances. The spectral remote 

sensing reflectance (Rrs) measured by satellite instruments is used as an input parameter in 

solving the related forward and inverse problems of radiative transfer for the system “sea 

water – atmosphere”. The volume scattering function (VSF) is one of the basic inherent 

optical properties (IOP) [1] influencing the flux of radiation upwelling from the water surface. 

Presently the most advanced algorithms for the processing and the interpretation of satellite 

imagery employ VSF to solve radiative transfer equation. On the other hand, the 

measurements reveal the high variability of VSF for different types of sea water, especially in 

coastal areas. Thus, the case specific VSF modeling is needed. 

A theoretical model proposed by Fournier-Forand (FF) [2] can be used for VSF 

simulation. This technique is based on an analytical expression for the phase function of 

spherical Mie scatterers with a hyperbolic (Junge-type) particle size distribution. The FF 

phase function is expressed by two parameters, real index of refraction n  and slope of the 

Junge particle size distribution µ . These assumptions do not perfectly correspond to the real 

waters with suspended complex particles. In coastal waters (case 2 waters according to Morel 

[3]) with a high content of suspended inorganic matter, the theoretical VSF simulations are 

not exact enough and the standard remote sensing algorithms fail. 

At present there are only a few VSF parameterisations based on real measurements. One 

of the commonly used was proposed by Petzold [4]. The parameterisation is based on data 

collected more than 30 years ago and comprises three VSF model curves for different water 

types. The first was obtained for the turbid water of San Diego Harbor, California; the second 

comes from near-shore coastal water in San Pedro Channel, California. The third presents 

very clear water in the Tongue of the Ocean, Bahama Islands. The employed measurements 

were taken at one wavelength and have a relatively poor angular and spectral resolution. 

Another recent parameterisation presented at [5] is based on Kopelevich model [1, 6], and 

measurements obtained by VSF-meter in the coastal northern Adriatic Sea. This model 
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separates the contributions by “small” and “large” particles to the particulate scattering. Small 

particles are taken to be mineral particles less than 1 µm in size with an index of refraction 

(relative to water) of n = 1.15; large particles are biological particles larger than 1 µm in size 

with an index of refraction of n = 1.03. The Kopelevich model parameters are estimated as 

linear functions of the total scattering [5]. A new method of VSF modeling including 

backscattering, scattering and the absorption data is presented in a recent paper [7]. This 

technique is based on fitting FF theoretical functions to the measurement data. We will 

discuss the applicability of this approach to our data in section 4. Unlike the work [7] we 

propose the statistical modeling of VSF as a function of the scattering, backscattering and 

spectral absorption. 

The construction and validation of the proposed parameterization are based on our data 

obtained during the field measurement campaigns carried out in 2002, 2003 and 2004 on the 

oceanographic platform located in the Black Sea. More than 1000 coastal water samples from 

different depths were collected with a VSF-meter developed by Marine Hydrophysical 

Institute (Ukraine) [8, 9] The VSF was measured over a large range of angles and at high 

angular resolution for different wavelengths. We use multivariate statistical estimation 

techniques to simulate VSF as a function of scattering, backscattering and spectral absorption 

coefficient. 

This paper is organised as follows: in section 2 we start with the definition of the VSF, 

phase function, scattering and backscattering and introduce the basic statistical methods used 

in our model. The description of our measurements and results of the statistical analysis of the 

data are presented in section 3. In section 4 we derive our VSF parameterization on the basis 

of the data collected in 2002 and then we perform the analysis of our parameterization in 

section 5. Finally, in section 6, we discuss the results of validation on the data of 2002-2004 

and compare it with FF parameterization and Petzold data. 

2. Theoretical backgrounds 

2.1 Light transmission in medium 

The light propagation in water is defined by the spectral absorption coefficient and volume 

scattering function [1]. Consider a small volume V∆ , of thickness r∆ , illuminated by a 

narrow collimated monochromatic light beam. 

The spectral absorption 
1

a m
−    is defined as ratio of incident ( )i

λΦ  and absorbed 

energy ( )a
λΦ  divided by thickness of the absorbing layer: 

 ( ) ( ) ( )
0

/
lim .

a i

r
a

r

λ λ
λ

∆ →

Φ Φ
=

∆
 (1) 

Similarly, the volume scattering function 
1 1

m srβ − −    is the portion of energy scattered at 

the angle θ  with respect to the transmitted light direction: 

 ( ) ( ) ( )
0 0

, /
, lim lim .

s i

r r
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=
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The integral of VSF with θ  over the whole unit sphere or backward hemisphere gives 

respectively spectral scattering b and backscattering 
b

b  coefficients: 

 ( ) ( ) ( )
0

2 , sin ,b d

π

λ π β θ λ θ θ= ∫  (3) 
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2 , sin .bb d

π

π
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The spectral volume scattering phase function ( ),β θ λɶ  is defined by 

 ( ) ( )
( )

,
, .

b

β θ λ
β θ λ

λ
=ɶ  (5) 

2.2 Statistical linear estimations and bootstrapping technique 

In our model the VSF, scattering, backscattering and (optionally) absorption coefficient data 

are considered as linearly dependent random variables. We employed statistical techniques 

such as optimal linear estimation [10–13] and the bootstrapping [14] to fit the unknown 

parameters and verify the results. In general case, the model can be written as 

 ( )0 0ˆ ˆ ,− = ⋅ −β β R b b  (6) 

where R̂  is an estimate of multiple linear regression matrix (“^” denotes an estimate), β̂  is a 

vector of the dimension M with VSF values at different angles, b  is the vector with elements 

representing the measured values of scattering, backscattering and absorption coefficient, 

( )0
E=β β , ( )0

E=b b , E  denotes an expectation. 

In the simple multiple linear regression method the optimal matrix R  is found 

analytically by the minimization of the residual variances [10, 11, 13]. It can be written as 

follows: 

 ,
-1

βb b
R = S S  (7) 

where the covariance ( )( )( )T

E= 0 0

βbS β -β b - b  and ( )( )( ).T

E= 0 0

bS b - b b - b  In practice, 

exact covariance matrices are unknown. Thus, some optimal estimates obtained from 

statistical data are used instead of the exact one and in this case we consider the estimate R̂  

of the matrix R . We suppose here and below, that square covariance matrixes are 

nondegenerate and well-conditioned. The important property of the multivariate regression is 

that the estimate β̂  belongs to the same linear subspace that the exact vector β . 

In the case when the linear dependence of b  on β  exists, that is: 

 ,b = Aβ  (8) 

A is a matrix, Eq. (7) can be transformed taking into account that 
T

βb β
S = S A , 

( )( )( )0 0
T

E= − −βS β β β β  to the following expression: 

 ( )-1
-1

.
T T TA

b β β β bR = S A AS A = S A S  (9) 

This estimation coincides with maximum likelihood solution [12] or optimal interpolation 

estimate [12, 15, 16] when Eq. (8) is exact. In this case the matrix ˆ A

b
R  satisfies: 

 ,A

b
AR = I  (10) 

where I  is a unit matrix, and 

 ˆ .Aβ = b  (11) 

If variables are not consistent with a normal distribution, one cannot successfully apply 

the standard methods for constructing confidence intervals that are commonly based on 
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Student’s distribution or F distribution (see [11] for a complete description of the standard 

statistical methods). Therefore the so-called “bootstrap method” [14] was used to estimate the 

confidence intervals for the stochastic quantities. 

Parametric techniques calculate a distribution function of the estimated parameter from the 

distribution function of the population, which is supposed to be known. In contrast, the 

bootstrap method allows us to estimate confidence intervals without this latter hypothesis. The 

bootstrap method is based on the generation of several sets of samples (so-called bootstrap 

samples) using the original measurements. Each bootstrap sample is created using a random 

sampling of the measured data. Every sample is returned to the original data set after 

selection. Therefore, when constructing a bootstrap sample, a particular data point from the 

original data set could appear multiple times. Using the various generated bootstrap samples, 

the procedure allows us to resample the measurement data as many times as we need for the 

construction of an empirical cumulative distribution function that enables us to establish the 

uncertainty of the statistical estimates. 

3. Materials, measurements and data processing 

In situ measurements of the VSF were carried out during field experiments conducted in the 

Black Sea coastal area in summers 2002, 2003 and 2004. In total more than 1000 VSF 

profiles were obtained for a variety of meteorological conditions. Here we give a brief 

description of the experiment and refer to [17–19] for more details. The data were collected 

from an oceanographic platform located 600 m off the southern coast of the Crimean 

peninsula. Seawater samples were collected at depths of 0, 4, 8, 12, 16, and 20 m at 11:00 and 

14:00, local time. The VSF was measured using the VSF-meter (VSM) [8, 9], (developed by 

the Marine Hydrophysical Institute, Ukraine, in cooperation with Satlantic Inc. Canada). The 

VSM allows measurements of the VSF ( )νβ θ  from 0.7° to 178° with an angular resolution 

of about 0.3°. The VSM is equipped with a revolving wheel of three colour filters with centre 

wavelengths at 443 nm, 490 nm, 555 nm and 620 nm and therefore it allows us to measure 

VSF in 4 spectral channels with the bandwidth of 10 nm. 

Since one of the objective of the VSF parameterization proposed in the current study is to 

account for the dependence between the absorption and scattering processes in the water the 

absorption coefficients values which is collocated with VSF measurements are required. 

Therefore, only VSF data for which absorption values were available were analyzed for this 

study. Such a restriction significantly reduces the number of selected VSF measurements. 

Typically 40% of VSF measurements were rejected due to this constraint. 

Then, once the selection of VSF data together with available absorption data was 

performed, a filtration procedure was applied to VSF measurements to remove data that were 

affected by unrealistic peaks or noise. These data are meaningless from a physical point of 

view. They needed to be removed from the data set so that only reliable VSF measurements 

having a physical meaning were used for the study. Two criteria were used to filter the VSF 

data. Only samples that satisfied the two following inequalities were selected: 

 ( )
2

2

1
0.6 , ,

d
p q

d

β
β θ

β θ
≥ ° ≤ ≤  (12) 

where 
1 1

200 m srp
− − =    and 

2
5 degq

− =   . Note that the values of p and q were derived 

after several tests. The first inequality in Eq. (12) is used to remove the unrealistic peaks of 

the VSF at small scattering angles. In other words, it allows restricting the maximum VSF 

value at small angles within a realistic physical range. The second criterion (i.e., the second 

inequality in equation Eq. (12)) deals with the smoothness of the VSF. The VSF data showing 

significant noise at some angle were filtered and removed. as an example, the application of 

Eq. (12) led to the removal of 40 VSF data out of 444 measurements for the data set collected 
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in 2002. Note that the low rate of rejection also illustrates the good quality of the data 

provided by the VSM instrument (i.e., low noise in the instrument). 

We checked if the measured VSF values are consistent with a normal distribution using 

Lilliefors and Jarque-Bera tests [11]. The hypothesis that the distribution is normal was 

rejected at 5% significance level at nearly all angular range for each wavelength (see Fig. 1). 

Thus the commonly used tests based on the assumption of normality of the population 

distribution are inapplicable. Thus, the use of bootstrapping technique [14] rather than 

parametric tests for the confidence intervals estimation is justified. 

 

Fig. 1. Tests of normal distribution for the components of VSF. The second column represents 

the results of the test of Jarque–Bera, the third represents the Lilliefors test for the full angular 

range at different wavelengths. The significance level is 0.05. 

The mean VSF values calculated from data of 2002 at four wavelengths are presented in 

Fig. 2. The doubled standard deviation interval at 555 is also depicted in the figure by the 

dotted line. These data are also tabulated in the Table 1. The last two columns (in boldface) 

present the mean value and the standard deviation averaged over the wavelengths. The values 

of VSF at angles less than 0.6 and more than 178 degrees were obtained by the extrapolation. 

They are italicized in the Table 1. 
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Fig. 2. Averaged VSF at 443, 490, 555 and 620 nm and the doubled standard deviation at 555 

nm as a function of scattering angle, based on field experiment data at coastal area of Black 

Sea in July – August 2002. 

To test the reliability of the statistical estimates, we calculated the confidence intervals by 

using the bootstrapping technique. It appears that the width of the confidence interval for the 

average VSF is about 10% of mean VSF value, and 35% for the standard deviation at the 5% 

significance level. 

The VSF was interpolated to the grid to provide an angular resolution of 0.1° and 

extrapolated up to the angular values 0.01° and 180°. It should be mentioned that scattering 

values and, therefore, the parameterization strongly depend on the type of interpolation and 

extrapolation at extreme angles. We apply the approach of Mobley et al [20] for VSF 

extrapolation and spline technique for interpolation [21]. 

To characterise our data set, we compared our mean phase function with FF theoretical 

functions and Petzold measurements (Fig. 3 and Fig. 4). The central thick curve corresponds 

to our measurements of 2002 with bandwidth of 10 nm and the dashed lines depict doubled 

standard deviation. 

As we can see in Fig. 3, the shapes of all the VSF are in general similar; nevertheless 

some details can be noticed at high angles. The increase of VSF at high angles (more than 

170°) is greater than was estimated from Fournier-Forand functions or by extrapolations of 

Petzold measurements. One can also notice a small hump at 155 degrees. 
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Table 1. The mean VSF β0 [m
−−−−1sr−−−−1] and the standard deviation σ(β) as a function of 

angle: at fixed wavelengths (columns 2-9) and the values of these parameters averaged 

over the wavelengths (last two bold columns), based on 2002 data*. 

λ, nm 443 490 555 620 Averaged 

θ, ° Mean Std Mean Std Mean Std Mean Std Mean Std 

0.01 7.45E3 3.25E4 6.52E3 1.40E4 7.27E3 1.51E4 1.08E4 1.94E4 8.01E3 2.15E4 

0.1 417.86 462.43 449.36 318.79 451.14 330.02 585.71 412.74 476.02 389.58 

0.3 127.33 62.27 136.18 53.83 130.97 55.30 157.97 67.84 138.11 61.02 

0.6 62.37 19.72 65.57 18.80 61.53 19.52 70.83 23.06 65.08 20.59 

1 36.39 9.00 37.64 8.44 34.80 9.02 38.56 9.93 36.85 9.19 

1.5 22.83 6.31 23.24 5.96 21.31 6.30 23.20 6.64 22.65 6.33 

2 14.20 3.93 14.26 3.63 13.05 3.85 14.03 3.87 13.88 3.84 

3 6.22 1.63 6.13 1.46 5.50 1.53 5.84 1.49 5.92 1.55 

5 1.84 0.46 1.79 0.40 1.55 0.41 1.58 0.40 1.69 0.44 

10 3.42E-1 8.46E-2 3.38E-1 7.60E-2 2.98E-1 7.55E-2 2.96E-1 7.28E-2 3.18E-1 8.01E-2 

15 1.33E-1 3.37E-2 1.34E-1 3.26E-2 1.19E-1 3.40E-2 1.17E-1 3.16E-2 1.26E-1 3.39E-2 

20 6.46E-2 1.57E-2 6.54E-2 1.51E-2 5.96E-2 1.64E-2 5.94E-2 1.51E-2 6.23E-2 1.58E-2 

25 3.57E-2 8.34E-3 3.65E-2 8.00E-3 3.31E-2 9.01E-3 3.39E-2 7.84E-3 3.48E-2 8.39E-3 

30 2.23E-2 5.33E-3 2.25E-2 5.20E-3 2.04E-2 5.54E-3 2.11E-2 5.03E-3 2.16E-2 5.33E-3 

40 1.01E-2 2.33E-3 1.02E-2 2.34E-3 9.21E-3 2.51E-3 9.51E-3 2.38E-3 9.75E-3 2.42E-3 

50 5.59E-3 1.30E-3 5.78E-3 1.29E-3 5.12E-3 1.43E-3 5.30E-3 1.33E-3 5.45E-3 1.36E-3 

60 3.43E-3 7.95E-4 3.64E-3 8.50E-4 3.21E-3 8.83E-4 3.32E-3 8.60E-4 3.40E-3 8.60E-4 

70 2.33E-3 5.39E-4 2.47E-3 5.94E-4 2.18E-3 6.14E-4 2.25E-3 6.02E-4 2.31E-3 5.96E-4 

80 1.78E-3 3.84E-4 1.82E-3 4.44E-4 1.60E-3 4.62E-4 1.65E-3 4.61E-4 1.71E-3 4.46E-4 

90 1.49E-3 3.13E-4 1.47E-3 3.41E-4 1.28E-3 3.71E-4 1.33E-3 3.74E-4 1.39E-3 3.61E-4 

100 1.30E-3 2.66E-4 1.25E-3 2.91E-4 1.06E-3 3.14E-4 1.10E-3 3.09E-4 1.18E-3 3.11E-4 

110 1.22E-3 2.42E-4 1.12E-3 2.62E-4 9.47E-4 2.82E-4 9.74E-4 2.63E-4 1.07E-3 2.84E-4 

120 1.16E-3 2.40E-4 1.08E-3 2.52E-4 8.93E-4 2.66E-4 9.28E-4 2.46E-4 1.02E-3 2.73E-4 

130 1.15E-3 2.37E-4 1.12E-3 2.66E-4 9.04E-4 2.69E-4 9.49E-4 2.50E-4 1.03E-3 2.76E-4 

140 1.19E-3 2.47E-4 1.22E-3 2.85E-4 9.72E-4 2.85E-4 1.03E-3 2.52E-4 1.10E-3 2.87E-4 

150 1.22E-3 2.59E-4 1.33E-3 2.95E-4 1.08E-3 2.99E-4 1.16E-3 2.69E-4 1.20E-3 2.95E-4 

155 1.14E-3 2.32E-4 1.33E-3 2.59E-4 1.13E-3 2.85E-4 1.20E-3 2.54E-4 1.20E-3 2.70E-4 

160 1.16E-3 2.53E-4 1.35E-3 2.70E-4 1.13E-3 2.89E-4 1.20E-3 2.56E-4 1.21E-3 2.80E-4 

165 1.22E-3 2.85E-4 1.35E-3 3.00E-4 1.06E-3 3.01E-4 1.12E-3 2.74E-4 1.19E-3 3.09E-4 

170 1.29E-3 3.18E-4 1.43E-3 3.25E-4 1.11E-3 3.27E-4 1.17E-3 2.85E-4 1.25E-3 3.36E-4 

172 1.45E-3 3.56E-4 1.61E-3 3.55E-4 1.25E-3 3.57E-4 1.35E-3 3.08E-4 1.41E-3 3.68E-4 

174 1.75E-3 4.11E-4 1.92E-3 4.20E-4 1.50E-3 4.12E-4 1.67E-3 3.65E-4 1.71E-3 4.30E-4 

175 1.97E-3 4.72E-4 2.14E-3 4.84E-4 1.68E-3 4.67E-4 1.90E-3 4.30E-4 1.92E-3 4.91E-4 

176.1 2.30E-3 5.75E-4 2.49E-3 6.15E-4 1.96E-3 5.65E-4 2.25E-3 5.63E-4 2.25E-3 6.07E-4 

177 2.54E-3 6.90E-4 2.70E-3 7.68E-4 2.16E-3 6.69E-4 2.49E-3 7.18E-4 2.47E-3 7.37E-4 

177.3 2.60E-3 7.44E-4 2.74E-3 8.29E-4 2.20E-3 7.13E-4 2.52E-3 7.75E-4 2.52E-3 7.88E-4 

177.6 2.66E-3 8.12E-4 2.75E-3 8.95E-4 2.24E-3 7.67E-4 2.53E-3 8.34E-4 2.55E-3 8.47E-4 

178 2.73E-3 9.35E-4 2.76E-3 9.91E-4 2.29E-3 8.58E-4 2.53E-3 9.23E-4 2.58E-3 9.43E-4 

179 2.73E-3 9.39E-4 2.76E-3 9.92E-4 2.29E-3 8.59E-4 2.53E-3 9.25E-4 2.58E-3 9.45E-4 

180 2.73E-3 9.39E-4 2.76E-3 9.92E-4 2.29E-3 8.59E-4 2.53E-3 9.25E-4 2.58E-3 9.45E-4 

*The extrapolated values are in italics. Two last bold columns contain the values averaged over all wavelengths. The 

data are provided with a low angular resolution. The high resolution data can be obtained on request to the authors. 
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Fig. 3. Comparisons of Black Sea 2002 mean phase function with Fournier-Forand analytical 

phase functions. Scattering to backscattering ratio for our VSF (the black curve) is about 0.019. 

 

Fig. 4. Comparisons of Black Sea 2002 mean phase function with phase functions derived from 

Petzold measurements. 

It has been shown in a previous paper [18] based on calibration experiments using 

spherical beads that the uncertainties of the instrument that was used to acquire the VSF 

measurements employed in the current study are within 5%. These experiments showed that 
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there is no significant biases between Mie theory and VSF measurements in the angular range 

170-180° and at 155°. 

A similar version of the VSM instrument was used in 2004 in the coastal northern Adriatic 

Sea [5]. As in the Black Sea campaign, Berthon et al.’s calibration experiment [5] did not 

show any specific features of the VSF in the angular range 170-180 deg. Therefore, based on 

these calibration experiments, one could think that the increase of the VSF in the range 170-

180° observed in the data presented in the current study should not be due to significant 

uncertainties of the VSM instrument but more likely to some effects of particles scattering. 

The VSF shape observed around a scattering angle of 155° is probably due to the optical 

properties of the particles encountered in the Black Sea waters. Indeed, since such a behaviour 

was not observed during the Black Sea calibration beads experiments [18] and in other waters 

like Adriatic Sea as well [5]. It is likely that the hump at 155° is not due to an artefact of the 

VSM instrument. The hump of VSF observed at this scattering angle could be due to high 

proportion of suspended mineral-like particles with high refractive index in coastal waters. 

Mie calculations of VSF for waters showing a prevailing composition of highly refractive 

particles (i.e., refractive index greater than 1.2) were performed and confirmed that such type 

of particles can lead to the occurrence of a hump around the scattering angle of 155°. 

The influence of the hump observed in the VSF around 155° on the backscattering values 

Eq. (4) is weak (our calculations showed that it is less than 2%) because of the occurrence of 

the sinus function in Eq. (4). 

The integration of β  over whole unit sphere and the backward hemisphere provides the 

scattering b  and backscattering 
b

b  coefficients. The mean values and the standard deviations 

of b  and 
b

b  are presented in Table 2 for each wavelength and for the averaged by wavelength 

values (in boldface). In some applications it is common to employ a phase function instead of 

VSF. The mean phase functions 0βɶ  can be easily obtained from Eq. (5) by using the data in 

Table 1 and Table 2. 

Table 2. The average values and standard deviations of scattering bλ
0 [m−−−−1] and 

backscattering bbλ
0 [m−−−−1] at various wavelength calculated by the VSFs measured in 

2002*. 

λ, nm 443 490 555 620 Averaged 

 Mean Std Mean Std Mean Std Mean Std Mean Std 

bλ
0,m−1 0.38 0.11 0.38 8.9E-2 0.34 9.2E-2 0.37 9.9E-2 0.366 9.8E-2 

bbλ
0,m−1 7.7E-3 1.6E-3 7.6E-3 1.8E-3 6.4E-3 1.8E-3 6.7E-3 1.8E-3 7.12E-3 1.84E-3 

*Two last bold columns contain the values averaged over all wavelengths. 

Our measurements exhibit significant variability with respect to the average value. The 

ratio of the standard deviation of the VSF and mean value of the VSF is nearly constant (see 

Fig. 5) for non-interpolated VSF values: 

 ( )
( )( )
( )( )

0.26.
E

σ β θ
θ

β θ
∆ = ≈  (13) 
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Fig. 5. The estimation of the ratio of standard deviation of VSF to mean VSF ∆(θ) and 95% 

confidence interval. The value averaged over the angles presented by the dashed line. 

To account for this variability, we have created a VSF model based on scattering, 

backscattering and (optionally) on absorption data. The spectral particulate absorption was 

measured simultaneously with VSF values using the methods described in [22–24]. The 

description and statistical characteristics of our absorption data set can be found in [17, 19]. In 

our model we considered the absorption at 412, 440, 488, 510, 532, 555, 650, 676 and 715 

nm, which corresponds to channels of Wetlabs AC-9 instrument (Wetlabs Inc.). The mean 

values and the standard deviations of absorption calculated by the 2002 data are presented in 

Table 3. 

Table 3. The average values and standard deviations of absorption measured in 2002. 

The wavelengths correspond to channels of Wetlabs AC-9 instrument. 

λ , nm 412 440 488 510 532 555 650 676 715 

aλ
0, m−1 11.7E-2 10.8E-2 7.3E-2 5.4E-2 3.9E-2 2.7E-2 1.1E-2 2.2E-2 1.6E-3 

σ(aλ
0),m−1 3.7E-2 3.1E-2 1.8E-2 1.4E-2 1.1E-2 8.8E-3 3.6E-3 7.8E-3 5.2E-4 

4. Development of the VSF model 

We propose here a model based on the data of 2002 that calculates the VSF as a function of 

the scattering and backscattering. This model gives an estimate of the VSF with the specified 

scattering and backscattering values like the FF parameterization. The model can also take 

additional absorption data into account. We developed the same parameterization for all VSF 

wavelengths as far as shapes of VSF measured for different wavelengths are similar and the 

difference is significantly less than standard deviation (see Table 1). 

To construct the optimal estimate of the VSF β  as a function of scattering b  and 

backscattering 
b

b , we have to note that b  and 
b

b  are linear functions of β . Indeed, the 

operations of numerical integration of Eq. (3) and Eq. (4) are the weighted summation of the 

components of VSF vector β , which has a dimension M : 
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90

0

,

,

M
b

i i

i

M
bb

b i i

i M

b

b

α β

α β

=

=

=

=

∑

∑
 (14) 

where 
90

M  is the index corresponding to angle value closest to / 2π . The weights b

i
α  and 

bb

i
α  are the rows of matrix A  in the Eq. (8), they are defined by the integration scheme, 

( ),
T

b
b b=b . We employed the trapezoidal numerical integration scheme to calculate b

i
α  and 

bb

i
α  [21]. 

Equation (14) defines N-2 dimensional subspace in the N-dimensional space of the 

components of VSF. The best estimate of the VSF in that subspace obtained on the basis of 

the statistical data is defined by expressions in Eq. (6) and Eq. (9): 

 ( )0 0

,
ˆ ˆ ,bb b = + ⋅A

bβ β R b - b  (15) 

where 0
β  presented in the Table 1, ( ),

T

b
b b=b  is a measured vector containing 

backscattering and scattering. The averaged components of ( ) ( )0 0 0
,

T

bE b b= =b b are 

presented in the Table 2. The values of the elements of matrix ˆ A

b
R  calculated on the basis of 

Eq. (9) can be found in the Appendix. 

To control the statistical quality of the proposed parameterization, we studied the ratio of 

the residual variance and the variance: 

 
( )
( )

tr
,

tr

δ δ
χ =

β β

ββ

S

S
 (16) 

where 
ββ

S  and δ δβ β
S  are the covariance matrices of measured VSFs and errors of our model, 

Eq. (15) and 
, ,

ˆ
bb b bb b

= −δβ β β . This ratio for our parameterization and the 95% confidence 

interval estimated by bootstrapping technique are: 

 
,

0.57,
bb b

χ =  (17) 

 ( ) ( ),CI 0.36;0.75 .bb bχ =  (18) 

The confidence interval shows that the estimate ˆ A

b
R  is statistically stable. 

The proposed parameterization requires the values of the backscattering coefficients and 

the scattering coefficients which necessarily depend on the wavelength. Thus, the spectral 

variation of the VSF is obviously taken into account within the methodology. The final 

parameterization could be used at any wavelengths. The averaging that is used in the 

proposed method mostly concerns the average carried out over the number of VSF data (i.e. 

number of samples) and not necessarily over the spectral range of the VSF. It should be 

highlighted that the main goal of the parameterization developed in this study is to use in situ 

measurements to account for the major physical processes responsible for the variations of the 

VSF in natural waters (e.g., size distribution of particles, refractive index). The variability in 

the VSF (see Table 1 and Fig. 2), scattering and backscattering (see Table 2 and [17]) due to 

changes in the optical properties of the particles (e.g., nature and composition of the particles) 

at a given wavelength is much higher than the spectral variability in the VSF, scattering and 

backscattering Therefore, even if the spectral variation of the VSF would not be correctly 
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taken into account in our methodology (which is not the case), the impact of this spectral 

variation will be minor in the parameterization of the VSF since the latter will be much more 

influenced by the size and composition of the particles. 

The approach described in this study can be easily applied for another data set and 

generalized for other types of scattering measurements. If some measurements are available, 

which have explicit linear dependence on VSF – Eq. (8), the matrix ˆ A

b
R  in Eq. (9) can be 

easily computed by our data. An example is the data of the ECO-VSF instrument designed by 

Wet Labs Inc., which performs the measurements of the scattered radiation at three fixed 

angles at low angular resolution. Similar to scattering and backscattering, these measurements 

can be expressed explicitly as integrals of the VSF which should be retrieved. 

The more precise VSF model can be constructed with the use of some supplementary data 

in addition to scattering and backscattering, which has no explicit linear dependence on VSF. 

In that case we cannot calculate the rows of matrix A  like in Eq. (14); thus, we should use 

Eq. (7) rather than Eq. (9) to calculate the regression matrix. 

In some numerical models of radiative transfer in water such as Hydrolight [25], the VSF 

is calculated as a function of Chlorophyll concentration - ( )chl
Cβ  [25, 26]. As far as we have 

in situ chlorophyll concentration data corresponding to VSF measurements we tried to 

improve the VSF simulation using correlations with chlorophyll. It appears, however, that the 

scattering process is defined in general by non-algal particles and correlations between β  and 

chl
C  are weak (less than 0.4). 

During the experiment at the platform the particulate spectral absorption was also 

regularly measured. The absorption and scattering processes are both defined by the 

properties of suspended matter. Thus VSF, scattering, backscattering and absorption are 

interconnected quantities. On the other hand, there is no exact linear dependence between 

scattering and absorption coefficients. Thus, one can expect significant partial correlations 

between VSF and spectral absorption given the scattering and backscattering. This fact is 

confirmed by previous studies [17, 18]. 

Finally we selected scattering, backscattering and spectral particular absorption at the 

wavelengths of the AC-9 instrument as the arguments for the VSF model. This is quite 

natural, because it is easier to measure scattering, backscattering and spectral absorption than 

VSF. 

The same predictors were used in recent parameterization [7] of Freda and Piskozub. This 

work is based on fitting of FF phase functions to the VSFs measured in the Southern Baltic. 

Each FF phase function can be defined by two parameters: by Junge slope µ  and refractive 

index n . Many phase functions were calculated for a wide range of µ  and n  values. After 

that only the ( ),nµ  pairs that fitted VSF were selected. A linear dependency was found 

between the absorption coefficient a  measured by the mean of AC-9 values and 

( ) ( )1 / 3n µ− −  factor. Finally the ( ),nµ  pair is retrieved by this linear fitting and by the 

backscatter fraction /
p b

B b b= . That defines the parameterization output - final FF phase 

function. 

It appears that FF phase function generated by ( ),nµ  pairs fits well our VSF data. 

Nevertheless the hypothesis of linear dependence of absorption data and ( ) ( )1 / 3n µ− −  

factor can be rejected (see Fig. 6). The 95% confidence interval comprises a horizontal line, 

thus linear dependence cannot be established. We also fail to find other combinations of 

spectral absorptions which provide linear dependence. Thus, the method proposed in [7] 

cannot be applied to our data. 
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Fig. 6. The factor (n-1)/(µ-3) plotted with absorption coefficients for a wavelength 555 nm and 

the attempt of linear fitting. The horizontal line lies within 95% confidence interval and a 

linear dependence cannot be established. 

In our parameterization we used the linear estimation technique to account for the 

absorption data. The idea is to obtain more accurate VSF estimate than 
,

ˆ
bb b
β  in Eq. (15) by 

the additional absorption data, 

 
, , , , ,

ˆ ˆ ˆ ,
bb b a bb b bb b a

δ= +β β β  (19) 

provided that the specific backscattering and scattering values are conserved: 

 , ,
ˆ .

b

bb b a

b

b

 
=  

 
Aβ  (20) 

We use again the regression estimation like in Eq. (6), Eq. (7): 

 ( )0

, ,
ˆ ˆ ,bb bδ = ⋅ −a aβ R a a  (21) 

 ˆ ,δ= -1

a βa a
R S S  (22) 

where δβ  is the error of parameterization defined in Eq. (15), 

 
,

ˆ ,
bb b

δ = −β β β  (23) 

( )0
E=a a , δβa

S  and 
a

S  are the covariance matrixes. 

The final expression for the parameterization which account for backscattering, scattering 

and absorption data is: 

 ( ) ( )0 0 0

, ,
ˆ ˆ ˆ ,bb b = + ⋅ − + ⋅ −A

a b aβ β R b b R a a  (24) 
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where mean values of VSF 0β , backscatter and scatter ( )0 0 0
,

T

bb b=b , particulate spectral 

absorption 0a  are presented in Table 1, Table 2, Table 3 respectively. The matrixes ˆ A

b
R  and 

ˆ
a

R can be found in Appendix. 

Multiplying the Eq. (23) by matrix A  we can find by Eq. (8) and Eq. (11) that δβ  is 

orthogonal to the rows of A . 

 0.δ⋅ =A β  (25) 

As far as the regression estimate 
, ,

ˆ
bb b

δ
a

β  in Eq. (21) belongs to the same subspace as the 

initial δβ , 
, ,

ˆ
bb b

δ
a

β  and is also orthogonal to the rows of A : 

 
, ,

ˆ 0.
bb b

δ⋅ =
a

A β  (26) 

Multiplying Eq. (24) by A  subject to Eq. (21) and Eq. (10) we find that the Eq. (20) is 

satisfied. Hence our parameterization conserves scattering and backscattering values. 

We calculated again the value χ  (16), 
, , , ,

ˆ
bb b bb b

δ = −
a a

β β β  and the 95% confidence 

interval: 

 
, ,

0.51,
bb b

χ =
a

 (27) 

 ( ) ( ), ,CI 0.32;0.68 .bb bχ =a  (28) 

The values calculated for the parameterization presented by Eq. (24) are less than for the 

parameterization without absorption defined in Eq. (15). It proves that employing absorption 

measurements accounts for more of the VSF variability.. 

We applied the cross-validation method to avoid the overfitting problem. The point 

estimates of the error variance normalized by VSF variance obtained from the cross-

validation and calculated by the standard method from the total ensemble are shown in Fig. 7. 

The confidence intervals are also constructed at the 0.95 confidence level for the cross-

validation error estimate. We can see that the values of normalized error variance calculated 

by total ensemble lies within the cross-validation confidence interval. It shows that the 

difference between the point estimates is not significant. Thus, we can rely that the standard a 

priori estimate of the parameterization error is not underestimated due to the overfiting 

problem. 
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Fig. 7. Confidence intervals and point estimates for normalized error variances obtained by 

cross-validation method and by the standard method from the total calibration ensemble. 

The error of the parameterization strongly depends on the scattering angle. The most 

significant errors are concentrated at extreme angles, because the extrapolation [20] is used 

for this angular range. The error growth at 155° corresponds to a small VSF hump, the 

particularity of our data set (see Fig. 3 and Fig. 4). 

5. Elements of linear estimation matrix 

As far as the numerical values of VSF, backscattering, scattering and absorption ranges from 
410  to 310− , it is not convenient to directly consider the elements of ˆ A

b
R  and ˆ

a
R . Instead, we 

analyzed the elements of modified matrixes A

b
Rɶ  and 

a
Rɶ , which relate normalised VSF, VSF 

error Eq. (23) and normalised backscattering, scattering and absorption. After the transforms 
-1

β
β = ∆ βɶ  and -1

b
b = ∆ bɶ , we can find that these matrixes are represented as follows: 

 ( )( ) ( )( )ˆ , diag , diag ,σ σ= =A -1 A

b β b b β bR = ∆ R ∆ ∆ β ∆ bɶ  (29) 

 ( )( ) ( )( ),
ˆˆ , diag - , diag ,

bb bδ σ σ= =-1

a δβ a a β a
R = ∆ R ∆ ∆ β β ∆ aɶ  (30) 

where ( )diag σ  denotes diagonal matrix with elements of σ  on the diagonal, σ  is a vector 

of standard deviations. 

The elements of matrix A

b
Rɶ  presented in Fig. 8. Large absolute values correspond to 

significant contribution to VSF variability. We can see that the backscattering provides 

information over the entire angular range with the exception of small angles (< 30°). 

Meanwhile, the scattering contributes at the angles smaller than 10°. This can be explained by 

huge VSF values at small angles, so the majority of light is scattered to the small angles. We 

note also that backscattering and scattering contribution to VSF variability is less at angular 

ranges (10°, 30°) and (150°, 180°) . That can be explained by ( )sin θ  term in Eq. (3) and Eq. 

(4). 
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Fig. 8. Elements of transposed matrix 
A

b
Rɶ . 

The elements of matrix 
a

Rɶ , presented in Fig. 9, shows that a portion of information on 

the VSF variability at small angles (5°, 50°) and high angles (165°-180°) can be retrieved 

from absorption data. That’s why the parameterization in Eq. (24), which accounts for 

absorption data is in general more exact at extreme angles than the other technique in Eq. 

(15), the reduction of error reaches up to 10% of the total VSF value at high angles. The 

channels from 440 nm (maximum of chlorophyll absorption) to 555 nm (minimum of 

chlorophyll absorption) are the most informative. 

 

Fig. 9. Elements of transposed matrix 
a

Rɶ . 

We note again, that our parameterization conserves scattering and backscattering in a 

similar manner to the FF approach. It means that scattering and backscattering calculated by 

the simulated VSF profile are equal to input scattering and backscattering. 

6. Results and discussion 

We used two quantities for the estimation of the accuracy of the following VSF modeling 

methods: the first is our parameterization, then scaling of the mean VSF measured in 2002, 

scaling of Petzold measurements [4] and FF fitting [2]. 

The expression for the relative error ( )δ θ , which is a relative root mean square error at 

angle θ  is the following: 
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 ( ) ( ) ( )
( )

( )
2

1

ˆ1
sin ,

m
i iN

i
im

N

β θ β θ
δ θ θ

β θ=

 −
= ⋅ 

 
 

∑  (31) 

where 
m

N  is the number of VSF measurements ( )iβ θ  and ( )ˆ iβ θ  are respectfully a 

measurement and a simulation. The relative error ( )δ θ  presented in Fig. 10 for the full range 

of angles. We introduce here the weight ( )sin θ  similar to the definitions of scattering Eq. (3) 

and backscattering Eq. (4). Following the results of Freda and Piskozub [7] this is necessary 

for reducing the sensitivity of ( )δ θ  to errors at extreme angles, where the measurements are 

less stable. 

 

Fig. 10. The relative error δ(θ) of the considered VSF parameterizations calculated by the data 

of 2002. 

The total relative error 
tot

δ , that characterises the total performance of the 

parameterization is the root mean square value of ( )jδ θ : 

 ( )2

1

1
,

M

tot j

jM
δ δ θ

=

= ∑  (32) 

where 600M ≈  is the number of angles resolved by the VSM, and is equal to the dimension 

of non-extrapolated vectors νβ  and 0

νβ , [ ]0.7 ,178
j

θ ∈ ° ° . 

The values of total relative error 
tot

δ  calculated for the considered models on the basis of 

the data of 2002 are presented in the second row of Table 4. Our model gives the best result at 

full range of angles. The rescaling of mean value also gives a good result because the shapes 

of measurements at 2002 are similar. The FF parameterization that was designed to fit well 

the backscattering is, as expected, more precise at 90θ > ° . The retrieval based on 

recalibration of Petzold phase function is the less exact. 
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Table 4. The total relative error δtot in percent of the retrieval by different techniques.* 

Year Number of 

samples 
Our model Rescaling of 

mean VSF 2002 

Rescaling of 

Petzold VSF 

(coastal ocean) 

Fournier-Forand 

backscattering to 

scattering fitting 

2002 404 12% 40% 54% 39% 

2003 140 11% 53% 24% 18% 

2004 54 9% 36% 23% 25% 

*The proposed model (third column marked by boldface) and rescaling technique (fourth column) are based on data 

of 2002. The data measured in 2002, 2003 and 2004 were used for the validation. 

In order to estimate the reliability of our parameterization, we carried out an independent 

validation. We employed the VSF data measured during the campaign of 2003 and 2004. We 

obtained 140 samples for the data of 2003 and 54 samples for 2004 after the selection of the 

samples for which we had the absorption data and the application of the filtration procedure 

Eq. (12). The instrument calibration was slightly changed and there is no perfect coincidence 

of the forms of VSF especially at high angles. In addition, the measurements of 2004 are less 

stable and the VSFs have some oscillations. 

The proposed technique was compared again with rescaling, Petzold, and FF fitting. We 

have calculated again the values of total relative error 
tot

δ  Eq. (32) for the data of 2003 and 

2004. These results are presented in the third and fourth rows of Table 4. In general the 

accuracy of all the techniques remained at the same level or increased. The possible 

explanation is a diversity of the meteorological conditions and the complexity of water types 

in the data of 2002 in comparison with the data of 2003 and 2004. So the parameterisations 

fit, in general, better the data of 2003 and 2004. The typical examples of the retrieved and the 

original VSF measured in 2003 are presented in Fig. 11. 

The angular dependence of the relative error ( )δ θ  for 2003 and 2004 data is shown in 

Fig. 12 and Fig. 13 respectively. The curves are similar to the relative error of 2002 (Fig. 10). 

The obtained results also attest that the proposed parameterization is suitable to reproduce the 

VSF of a variety of water types similar to the Black Sea coastal area. 

 

Fig. 11. Example of retrieval of VSF measured in 2003 at 555 nm. The mean of VSF 2003 and 

doubled root mean squared deviation is also presented. 
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Fig. 12. The relative error δ(θ) of the VSF parameterizations calculated by the data of 2003. 

 

Fig. 13. The relative error δ(θ) of the VSF parameterizations calculated by the data of 2004. 

Conclusions and perspectives 

We have proposed a parameterization based on real VSF measurements in the Black Sea 

coastal area. If the measurements of scattering, backscattering and (optionally) absorption are 

known, the VSF can be retrieved with relative error value less than 15%. The proposed 

parameterization is constructed of a representative measurement data set and has the 

important property of conserving the scattering and backscattering values. The comparisons 

showed that for the waters similar to Black sea coastal waters our technique is more powerful 

than common Petzold and Fournier-Forand fitting. Our model can be used for Rrs simulations 

by different radiative transfer codes such as, for instance, Hydrolight. 
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Appendix. 

Table 5. Elements of Matrix Rb
A *. 

−6.38E+06 1.74E+05 

−1.23E+05 3.81E+03 

−1.71E+04 6.72E+02 

−4.03E+03 2.31E+02 

−3.64E+02 8.66E+01 

−9.40E+01 5.80E+01 

9.89E+01 3.42E+01 

1.37E+02 1.28E+01 

7.96E+01 3.02E+00 

2.24E+01 3.88E-01 

1.05E+01 1.31E-01 

4.96E+00 5.95E-02 

2.90E+00 2.85E-02 

2.01E+00 1.57E-02 

1.01E+00 5.71E-03 

6.05E-01 2.48E-03 

4.05E-01 1.15E-03 

2.96E-01 5.46E-04 

2.34E-01 1.58E-04 

1.94E-01 1.87E-05 

1.73E-01 −1.21E-04 

1.60E-01 −1.59E-04 

1.54E-01 −1.60E-04 

1.52E-01 −3.30E-05 

1.54E-01 7.34E-05 

1.46E-01 3.48E-04 

1.21E-01 4.60E-04 

1.25E-01 4.96E-04 

1.48E-01 4.24E-04 

1.58E-01 5.12E-04 

1.69E-01 5.47E-04 

1.98E-01 1.53E-04 

2.22E-01 −1.78E-04 

2.59E-01 −7.95E-04 

2.95E-01 −2.04E-03 

3.09E-01 −2.66E-03 

3.24E-01 −3.37E-03 

3.47E-01 −4.36E-03 

3.47E-01 −4.38E-03 

3.47E-01 −4.38E-03 

*The rows correspond to angles presented in Table 1. The columns correspond to scattering and backscattering. 
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Table 6. Elements of Matrix Ra *. 

d3.88E+5 −1.16E+6 3.26E+6 −7.68E+6 6.68E+6 2.93E+5 −7.53E+6 2.63E+6 5.88E+6 

5.57E+3 −1.26E+4 2.36E+4 −7.55E+4 7.93E+4 4.55E+3 −9.49E+4 3.58E+4 8.65E+4 

3.15E+2 −6.89E+2 7.15E+2 −3.89E+3 6.12E+3 −7.98E+2 −6.42E+3 2.43E+3 7.09E+3 

−1.87E+2 2.83E+2 −4.14E+1 1.90E+2 4.57E+2 −9.39E+2 8.48E+2 −5.30E+2 −4.28E+2 

−1.17E+2 1.31E+2 2.65E+2 3.27E+2 −4.05E+2 −6.77E+2 1.22E+3 −5.64E+2 −5.76E+2 

−2.01E+2 3.78E+2 −1.16E+2 2.52E+2 −2.35E+2 −4.32E+2 1.62E+3 −7.82E+2 −1.88E+3 

−1.13E+2 2.39E+2 −1.88E+2 2.62E+2 −2.06E+2 −1.87E+2 1.09E+3 −4.75E+2 −1.39E+3 

−2.79E+1 7.36E+1 −1.30E+2 2.26E+2 −1.86E+2 −2.57E+1 3.71E+2 −1.37E+2 −4.53E+2 

−1.47E+0 1.02E+1 −3.92E+1 8.07E+1 −8.39E+1 2.27E+1 4.73E+1 −1.34E+1 −5.11E+1 

1.05E+0 −6.98E-1 −5.47E+0 1.30E+1 −1.63E+1 8.47E+0 −3.16E+0 2.89E+0 1.50E+1 

8.38E-1 −1.29E+0 −1.54E+0 5.37E+0 −5.83E+0 2.33E+0 −2.28E+0 2.14E+0 8.39E+0 

5.17E-1 −9.51E-1 −3.31E-1 2.47E+0 −2.57E+0 8.75E-1 −1.75E+0 1.19E+0 3.78E+0 

2.82E-1 −6.18E-1 1.04E-1 8.52E-1 −8.03E-1 2.14E-1 −7.37E-1 5.45E-1 1.74E+0 

1.47E-1 −3.71E-1 9.05E-2 4.29E-1 −1.73E-1 −9.99E-2 −2.34E-1 2.02E-1 4.71E-1 

5.03E-2 −1.26E-1 9.52E-3 2.12E-1 −9.28E-2 −4.63E-2 −1.28E-1 7.19E-2 3.14E-1 

3.58E-2 −9.32E-2 3.22E-2 1.27E-1 −8.81E-2 −3.00E-4 −1.17E-1 6.60E-2 1.89E-1 

1.80E-2 −4.62E-2 3.01E-2 2.90E-2 −1.68E-2 −5.44E-3 −1.01E-1 4.47E-2 1.64E-1 

9.91E-3 −2.54E-2 1.94E-2 1.02E-2 −1.52E-2 1.08E-2 −5.12E-2 2.32E-2 3.53E-2 

6.02E-3 −1.40E-2 1.31E-2 −4.64E-4 −1.52E-2 1.86E-2 −2.40E-2 1.16E-2 2.07E-3 

4.34E-3 −1.14E-2 1.29E-3 3.06E-2 −4.00E-2 2.24E-2 −2.05E-2 1.12E-2 −1.02E-2 

2.30E-3 −5.72E-3 7.67E-3 −2.28E-3 −1.19E-2 1.45E-2 −2.49E-2 9.48E-3 3.88E-2 

3.91E-4 −2.93E-4 3.01E-3 −6.56E-3 −3.39E-3 8.34E-3 −7.89E-3 3.68E-3 3.54E-4 

−1.94E-3 7.42E-3 −6.94E-3 −6.81E-3 5.79E-3 −1.91E-4 1.75E-2 −6.63E-3 −2.26E-2 

−1.13E-3 1.84E-3 −1.63E-3 2.35E-3 3.35E-4 −4.14E-3 1.03E-2 −3.33E-3 −2.29E-3 

−1.81E-3 4.81E-3 −4.33E-3 −3.15E-3 1.32E-2 −1.35E-2 1.87E-2 −7.22E-3 −9.79E-3 

−1.51E-3 3.58E-3 −5.89E-3 3.12E-3 1.61E-2 −1.98E-2 1.23E-2 −6.04E-3 2.12E-3 

−3.60E-4 −6.90E-4 −4.24E-3 1.50E-2 3.84E-3 −1.56E-2 6.34E-3 −2.47E-3 −6.10E-3 

−8.90E-4 4.72E-4 1.74E-3 −4.78E-3 2.51E-2 −2.83E-2 2.09E-2 −9.23E-3 4.42E-3 

−4.88E-4 −2.34E-4 −4.68E-3 1.65E-3 3.27E-2 −3.40E-2 7.51E-3 −4.32E-3 2.27E-2 

−1.03E-3 1.56E-3 −7.69E-3 −7.01E-4 4.33E-2 −4.22E-2 1.70E-2 −8.85E-3 1.09E-2 

−2.70E-3 2.71E-3 2.35E-4 −1.98E-2 5.44E-2 −3.56E-2 1.74E-2 −1.49E-2 −4.13E-2 

−3.34E-3 −2.84E-3 2.30E-2 −5.06E-2 5.65E-2 −4.01E-3 −2.79E-2 −9.73E-3 −1.27E-1 

−2.61E-3 −1.00E-2 4.19E-2 −7.05E-2 5.50E-2 1.88E-2 −6.35E-2 −3.45E-3 −1.73E-1 

−2.11E-3 −2.31E-2 8.03E-2 −1.04E-1 4.72E-2 5.70E-2 −1.37E-1 1.23E-2 −2.36E-1 

−2.44E-3 −3.42E-2 1.24E-1 −1.43E-1 2.19E-2 1.14E-1 −2.16E-1 3.04E-2 −3.06E-1 

−2.19E-3 −3.83E-2 1.41E-1 −1.57E-1 6.17E-3 1.40E-1 −2.49E-1 3.97E-2 −3.23E-1 

−1.31E-3 −4.33E-2 1.59E-1 −1.74E-1 −1.32E-2 1.70E-1 −2.86E-1 5.12E-2 −3.34E-1 

8.97E-4 −5.11E-2 1.86E-1 −1.99E-1 −4.38E-2 2.16E-1 −3.36E-1 6.77E-2 −3.37E-1 

1.10E-3 −5.15E-2 1.87E-1 −2.00E-1 −4.44E-2 2.17E-1 −3.36E-1 6.80E-2 −3.37E-1 

1.10E-3 −5.15E-2 1.87E-1 −2.00E-1 −4.44E-2 2.17E-1 −3.36E-1 6.80E-2 −3.37E-1 

*The rows correspond to angles presented in Table 1. The columns correspond to channels of Wetlabs AC-9 

instrument presented in Table 3. 

 

#120150 - $15.00 USD Received 30 Nov 2009; revised 6 Jan 2010; accepted 12 Jan 2010; published 22 Feb 2010

(C) 2010 OSA 1 March 2010 / Vol. 18,  No. 5 / OPTICS EXPRESS  4636


