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ON TORIC HERMITIAN ALF GRAVITATIONAL INSTANTONS

OLIVIER BIQUARD AND PAUL GAUDUCHON

Abstract. We give a classification of toric, Hermitian, Ricci flat, ALF

Riemannian metrics in dimension 4, including metrics with conical sin-

gularities. The only smooth examples are on one hand the hyperKähler

ALFmetrics, on the other hand, the Kerr, Taub-NUT and Chen-Teomet-

rics. There are examples with conical singularities with infinitely many

distinct topologies. We provide explicit formulas.

More than ten years ago Chen and Teo discovered a new family of Rie-

mannian AF gravitational instantons [CT11], where AF (Asymptotically

Flat) means that the end of the instanton is diffeomorphic to that of ℝ3×S1.

The family depends on one parameter (up to scale). Before that, only one

family was known: the Kerr family (also a one parameter family up to

scale), among which one finds the well-known Schwarzschild metric.

Our work started from the observation by Steffen Aksteiner and Lars

Andersson [AA21] that the Chen-Teo instantons are ‘half algebraically

special’, or in more geometric terms that the selfdual Weyl tensorW+
ad-

mits a double eigenvalue. Maybe up to taking aℤ2 cover, this is equivalent

to say that the metric is Hermitian, and more precisely is conformally Käh-

ler. For a toric metric the problem can then be expressed in the setting of

toric Kähler geometry, and the objects of interest are Bach flat extremal

Kähler metrics with Poincaré behaviour at infinity (that is asymptotic to

the product of a hyperbolic 2-cusp and a spherical 2-metric, see section 2),

to be constructed from some given ‘moment polytope’ in the real plane.

This polytope completely characterizes the instanton up to scale, and we

will calculate it for all classical examples.

This perspective gave some hope to construct other ALF gravitational

instantons. ALF metrics are metrics which at infinity look locally like the

product ℝ3 ×S1 (see the precise definition in section 1). We give a complete

classification of Hermitian, toric, Ricci flat, ALF metrics in terms of one

real convex piecewise linear function on the real line. As a byproduct we

obtain:

Theorem A. Suppose (X4, 𝑔) is a smooth Ricci flat, Hermitian, toric, ALF
metric. If 𝑔 is not Kähler, then 𝑔 is a Kerr metric, a Chen-Teo metric, the Taub-
NUT metric (with the orientation opposed to the hyperKähler orientation) or
the Taub-bolt metric.

If we replace the Hermitian condition by the half algebraically special

condition, then some ℤ2 quotients can also occur.
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The Kähler examples are actually hyperKähler gravitational instantons

and are well-known: one recovers only multi-Taub-NUT metrics. The

Taub-NUT metric itself is special since it is hyperKähler for one orien-

tation, and conformally Kähler for the other orientation, hence we have

put it in the list of the theorem.

Curiously our classification looks like a “non compact dual” of that of

compact Hermitian Einsteinmetrics with positive Ricci which are not Käh-

ler, see [LeB97, CLW08]: these are known to be ℂP2 (the Fubini-Study met-

ric with the reverse orientation), its blow up at 1 point (the Page metric)

or 2 points (the Chen-LeBrun-Weber metric). The analogy with the Taub-

NUT, Kerr and Chen-Teo metrics is obvious, and is confirmed by the fact

that their polytopes have the same number of edges. Butwe have not found

any direct relation between both classifications. The Taub-bolt instanton

does not fit in this correspondence but can be considered as a degeneration

of Chen-Teo instantons.

Of course theorem A leaves open the fascinating question of the classifi-

cation of all gravitational instantons, or at least of Hermitian gravitational

instantons, see [AA21, conjecture 1]. Only the classification in the hy-

perKähler case is now known after the efforts of lots of mathematicians

[Kro89, Min11, CC15, CC19, CC21a, SZ21].

Theorem A is a classification theorem which does not give new exam-

ples of ALF instantons (nevertheless it gives an alternative construction of

the Chen-Teo instantons). But we have a general classification result (the-

orem 7.5) in terms of convex piecewise linear functions, which also allows

to understand metrics with conical singularities. These singularities occur

around 2-spheres (divisors from the complex viewpoint) which are fixed

by the torus action. Our results are quite different from the recent classifi-

cation results in [KL21]: on one hand our techniques are not limited to the

AF case, on the other hand by restricting to the Hermitian case we obtain

a full description in the sense that we can understand all geometric prop-

erties (smoothness, cone angles, etc.) from our piecewise linear functions.

In particular we obtain:

Theorem B. Suppose (X4, 𝑔) is a Hermitian, toric, Ricci flat, ALF instanton
with conical singularities of cone angles 2πα𝑖 around the fixed divisors D𝑖.
Let 𝑥 = D𝑗 ∩D𝑗 ′ be a fixed point of the action. Then for each α < α𝑗 +α𝑗 ′close
to α𝑗 +α𝑗 ′ , the blowup of X at the point 𝑥 admits a Hermitian, toric, Ricci flat,
ALF instanton, with the same conical angles around the D𝑖’s, and a conical
singularity of angle 2πα around the additional divisor.

This theorem implies that by successive blowups one can construct ALF

instantons with conical singularities on an infinite family of topologically

distinct manifolds. Of course it follows from the condition on α that we

need larger and larger angles.

As an illustration of the theorem, one can start from a Kerr metric and

blow up a point: one obtains a family of metrics with cone angle slightly
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less than 4π on the exceptional divisor. It turns out that one can decrease

the angle to the angle 2π to create a smooth instanton which is a Chen-Teo

instanton. These metrics fit in the larger 5-parameter family of Chen and

Teo in [CT15], but we have not studied them systematically, see neverthe-

less remark 8.4.

It can be seen that the geometric process for this blow up, for example

in the case α𝑗 = α𝑗 ′ = 1, consists in gluing a ramified double cover of the

Eguchi-Hanson metric on T∗S2, hence with cone angle 4π around S2.

Since the problem of constructing toric Hermitian gravitational instan-

tons can be reinterpreted in terms of Kähler metrics, we are in the general

setting of the Yau-Tian-Donaldson conjecture on extremal Kähler metrics.

This is solved in the toric case [Don09, CC21b, CC21c, He19], but the res-

olution does not seem to cover exactly our case because of the Poincaré

behaviour at infinity. Even with solutions, it is a hard problem to deter-

mine when the extremal metric is Bach flat. But we avoid this problem,

because the Ricci flat equation (becoming the Bach flat equation on the

Kähler metric) is so strong that an ansatz exists for the solutions in terms

of an axisymmetric harmonic function onℝ3
. This was discovered recently

by Paul Tod [Tod20], and we give another derivation of his ansatz in this

paper.

Applying the ansatz to our possible polytopes gives that all possible har-

monic functions are classified in terms of a single convex piecewise linear

real function on the real axis. We can then read the smoothness of the so-

lution in terms of the usual theory of toric Kähler metrics (‘Delzant poly-

topes’) and proceed to a complete classification.

Overview of the paper. In section 1 we give a general definition of ALF

metrics and introduce the Hermitian condition; in particular we find that

a possible complex structure has only one possible behaviour at infinity

(proposition 1.6). After recalling the toric machinery in section 2, we give

our derivation of the Tod ansatz in section 3. From the behaviour of the

Kähler metric at the boundary of the polytope, we deduce in sections 4

and 5 that the generating function U of Tod, which is an axisymmetric

harmonic function on ℝ3
, is generated by a convex piecewise linear posi-

tive function on the real line (it is actually the Dirac density of ΔU along

the real axis). We then study the metric just from the data of this convex

piecewise linear function: the polytope is found in section 6, the regularity

is studied in section 7 (theorem 7.5), where we also describe the classical

examples from this point of view: these are the Kerr-Taub-bolt metrics

[GP80], they all correspond to instantons with conical singularities, in-

cluding on the divisors going to infinity. These ideas are applied to prove

theorem A in section 8, which contains also a calculation of the polytopes

of the Chen-Teo instantons. Section 9 contains the construction of conical

instantons by blowup, leading to theorem B.
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1. ALF metrics and complex structures

Definition 1.1. A Riemannian manifold (M4, 𝑔) is ALF if

∙ it has one end diffeomorphic to (R, +∞) × L for some R > 0, where

L is S1 × S2, S3, or a finite quotient;

∙ there is a triple (η, T, γ) defined on L, where η is a 1-form, T a vector

field such that η(T) = 1 and T⌟𝑑η = 0, and γ is a T-invariant metric

on the distribution ker η;

∙ the transverse metric γ has constant curvature +1 (the transverse

metric is the metric induced on local quotients by the action gen-

erated by T);

∙ the metric 𝑔 has the behaviour

(1) 𝑔 = 𝑑𝑟
2
+ 𝑟

2
γ + η

2
+ ℎ, with |∇

𝑘
ℎ| = O(𝑟

−1−𝑘
),

where γ is extended to the whole TL by deciding that ker γ is gener-

ated by T; the covariant derivative ∇ and the norm are with respect

to the asymptotic model 𝑑𝑟2 + 𝑟2γ + η2.

The AF case is when L = S2 × S1, so that the end has the topology of

(ℝ3 ⧵ B(R)) × S1 for some large R.

The hypothesis tells us that locally near a point of L the metric is 𝑑𝑟2 +

𝑟2𝑔S2+𝑑𝑡
2+O(𝑟−1), in particular the curvature isO(𝑟−3). If we allow conical

singularities up to infinity, then we must generalize the definition to admit

transverse metrics γ with conical singularities as well.

The volume growth is 𝑟3, which corresponds to the fact that the direction

of the vector field T collapses at infinity. The definition is designed so

that the orbits of T do not need be closed. This does not occur in the

hyperKähler case, but is the general case for purely Riemannian Ricci flat

metrics (for example the Kerr metrics).

We now suppose that the metric is toric, that is there is an action of

a 2-torus 𝕋2
on (M4, 𝑔) which preserves 𝑔 . We shall denote by 𝕥2 its Lie

algebra, so that 𝕋2 = 𝕥2/ℤ2
for some lattice ℤ2 ⊂ 𝕥2 ≃ ℝ2

. There is a

compatibility condition between the ALF metric and the action:

Definition 1.2. A Riemannian manifold (M4, 𝑔) is toric ALF if it is ALF,

and the torus action near the end of M is an effective action on L which

preserves (η, T, γ), and such that T is generated by the infinitesimal action

of some element of 𝕥2.

We now introduce the Hermitian condition:
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Theorem 1.3 ([Der83, Prop. 5]). Let (M4, 𝑔) be an oriented Einstein mani-
fold, whose selfdual Weyl tensorW+, viewed as a trace-free symmetric endo-
morphism of Λ+M, has a simple nontrivial eigenvalue λ and a double eigen-
value −λ

2
. Then:

(1) W+ (and therefore λ) does not vanish onM.
(2) Denote J an almost complex structure such that the selfdual 2-form

ω = 𝑔(J⋅, ⋅) is an eigenform ofW+ for the eigenvalue λ. Then (𝑔K ∶=
λ

2
3 𝑔, J, ωK = λ

2
3ω) is Kähler. In particular J is a complex structure.

The condition on the Weyl tensor is known as half algebraically special,

or half type D. We choose the orientation of M so that W+
(rather than

W−
) is degenerate.

Note the ambiguity±J in the choice of the complex structure. As a result,

one may have to pass to a 2-cover for J to exist globally. Our definition of

Hermitian includes the global existence of J:

Definition 1.4. We say that (M, 𝑔) is Hermitian if M admits a complex

structure J and a compatible Kähler metric 𝑔K which is conformal to 𝑔 .

Another equivalentway to state the condition onW+
(when it is nonzero)

is to say that (M4, 𝑔) admits a twistor 2-form, that is a selfdual 2-form τ sat-

isfying the equation (also known as the Killing-Yano equation)

(2) T 𝑔
(τ)X ∶= ∇Xτ −

1

3
(X⌟𝑑τ − X ∧ δτ) = 0

for all vector fields X, see [Pon92] and Lemma 2 in [ACG03].

One has 𝑓 −3T 𝑓 2𝑔(𝑓 3τ) = T 𝑔(τ), and it follows that if (M4, 𝑔) is half

algebraically special then τ = λ−
1
3ω = λ−1ωK is a twistor 2-form for 𝑔 (and

the converse is true).

Example 1.5. In ℝ3×S1 we have the twistor 2-form τ = 𝑟(−𝑑𝑟 ∧𝑑𝑡 +𝑟2 volS2).

The next proposition proves that Example 1.5 is the only possible as-

ymptotic behaviour for non hyperKähler toric ALF instantons:

Proposition 1.6. Let (M4, 𝑔) be a toric Ricci flat ALFmanifold, and τ a twistor
2-form. SupposeW+ is nonzero. Then up to a nonzeromultiplicative constant,
τ has the asymptotic behaviour

(3) τ = 𝑟(−𝑑𝑟 ∧ η + 𝑟
2
volγ) + O(1).

Observe that this formula implies that we have chosen the sign of η so

that an oriented coframe is obtained from the forms (−𝑑𝑟, η) and from an

oriented coframe of ker η.

Proof. We begin by solving the twistor equation for 𝕋2
-invariant selfdual

2-forms onℝ3×S1. We take radial coordinates (𝑟, θ, ϕ) onℝ3
and an angular

coordinate 𝑡 on S1, so the metric of ℝ3 × S1 is

(4) 𝑔0 = 𝑑𝑟
2
+ 𝑟

2
(𝑑θ

2
+ sin

2
θ𝑑ϕ

2
) + 𝑑𝑡

2
.
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The torus is given by the angular variables (ϕ, 𝑡). We introduce the or-

thonormal coframe θ1 = 𝑑𝑟 , θ2 = 𝑟𝑑θ, θ3 = 𝑟 sin θ𝑑ϕ, θ4 = 𝑑𝑡. These are

invariant under the torus action. We also use the basis of selfdual forms

(hidden here is a choice of orientation of ℝ3 × S1):

(5) ω1 = −θ1 ∧θ4+θ2 ∧θ3, ω2 = θ1 ∧θ2−θ3 ∧θ4, ω3 = θ1 ∧θ3+θ2 ∧θ4.

We take an invariant selfdual form τ = ∑
3

1 𝑎𝑖(𝑟, θ)ω𝑖. The reader can check

that the twistor equation (2) is given by the system of the following 8 equa-

tions:

𝑟(𝑎1)𝑟 = 𝑎1 − cot(θ)𝑎3 = 𝑎1 − (𝑎3)θ

𝑟(𝑎2)𝑟 = 𝑎2 = 0

𝑟(𝑎3)𝑟 = 𝑎3 + (𝑎1)θ = 0

(𝑎2)θ = cot(θ)𝑎2 = 0

(6)

It is immediate that the solutions are 𝑎1 = 𝑘1 cos(θ) + 𝑘2𝑟 , 𝑎2 = 0, 𝑎3 =

𝑘1 sin(θ) for some constants 𝑘1 and 𝑘2. So we have two solutions: τ1 = 𝑟ω1
and τ2 = cos(θ)ω1+sin(θ)ω3. Actually τ2 = −𝑑(𝑟 cos θ)∧θ4+𝑑(𝑟 sin θ)∧θ3
is parallel, since 𝑟 cos(θ) is the coordinate on the invariant axis of ℝ3

and

𝑑(𝑟 sin θ) ∧ θ3 is the volume form in the orthogonal plane. In particular it

is bounded, and we have proved (3) for the flat model ℝ3 × S1.

The case of a general ALF metric can be deduced: starting from the

behaviour (1), we write locally η = 𝑑𝑡 + α where 𝑑𝑡(T) = 1 and α is a

1-form on the local quotient by the action of T. Then with respect to 𝑔

one has α = O(𝑟−1). Taking also local spherical coordinates (θ, ϕ) on this

local quotient, such that 𝜕θ is a second generator of 𝕥2 (the first being T),

we can write locally the ALF metric as 𝑔 = 𝑔0 + O(𝑟
−1), where 𝑔0 is our

flat metric (4) on ℝ3 × S1. The twistor equation for 𝑔 is the same as for

𝑔0 with O(𝑟
−1) perturbation, but more importantly the twistor operator

T has the same symbol: this implies that the system (6) includes a set of

ODE’s for (𝑎1, 𝑎2, 𝑎3), that is (𝜕𝑟𝑎1, 𝜕𝑟𝑎2, 𝜕𝑟𝑎3) is completely determined in

terms of (𝑎1, 𝑎2, 𝑎3) (without derivative). It follows that a solution τ for 𝑔

is asymptotic to a solution for 𝑔0 up to O(𝑟−1) terms. In particular, since

|τ1| = 𝑟 , for some constant 𝑐 one has

(7) τ = 𝑐τ1 + O(1).

There remains to prove that 𝑐 ≠ 0. If 𝑐 = 0, then we get instead τ =

𝑐′τ2 + O(𝑟
−1). As we have seen, up to a constant, we would then have that

τ = λ−
1
3ω with |ω|2 = 2 an eigenform of W+

for the eigenvalue λ. Since

by (7) we have |τ| = O(1) we would obtain λ−1 = O(1). By (1) we have

|W| = O(𝑟−3) so this is impossible, except if λ ≡ 0 that is ifW+ ≡ 0. □

A last fact we need onALF instantons in the following topological result,

which is probably well-known:

Lemma 1.7. A non flat, Ricci flat, ALF manifold (M, 𝑔) has vanishing first
De Rham cohomology group: H1(M, ℝ) = 0.



ON TORIC HERMITIAN ALF GRAVITATIONAL INSTANTONS 7

Proof. By the Bochner formula 𝑑𝑑∗+𝑑∗𝑑 = ∇∗∇+Ric on 1-forms, and since

Ric = 0, the L2-cohomology vanishes in degree 1. By [HHM04] this is the

relative cohomology group H1(M, 𝜕M, ℝ) (where the boundary 𝜕M = L of

definition 1.1 is taken in a topological sense). In the non AF caseH1(L, ℝ) =

0 and therefore H1(M, ℝ) = 0. In the AF case H1(L, ℝ) = ℝ where the

isomorphism is obtained by integration along the S1 factor in L = S2 × S1;

therefore if H1(M, ℝ) ≠ 0 then the circle S1 ⊂ L has infinite order in the

fundamental group of M and therefore will give a line in the universal

cover M̃, from which we can produce a geodesic line, and therefore by the

splitting theorem of Cheeger-Gromoll (M̃, 𝑔) is a product ℝ × N3
, so 𝑔 is

flat, which is a contradiction. □

2. Toric Kähler geometry

We start from a toric Ricci flat ALF manifold (M, 𝑔) which is Hermit-

ian (definition 1.4) and has a nonzero W+
. We therefore have a complex

structure J and a conformal metric 𝑔K = λ
2
3 𝑔 which is Kähler. Moreover,

from Proposition 1.6 we deduce that for some constant 𝑘 ≠ 0 we have

λ = 𝑘

𝑟3
+ O( 1

𝑟4
). We change the conformal factor λ

2
3 to obtain the follow-

ing asymptotic behaviour for the Kähler metric and the Kähler form as

𝑟 → +∞:

𝑔K = (𝑘
−1
λ)

2
3 𝑔 =

𝑑𝑟2 + η2

𝑟2
+ γ + O𝑔K(

1

𝑟
),(8)

ωK = (𝑘
−1
λ)τ = −

𝑑𝑟 ∧ η

𝑟2
+ volγ +O𝑔K(

1

𝑟
),(9)

which means that the Kähler metric (and its complex structure) is locally

asymptotic to the product of a Poincaré disk (curvature −1) with a round

sphere (curvature +1).

One hasW+
𝑔K
= (𝑘−1λ)−

2
3W+

𝑔 (seen as endomorphisms of Λ+) and there-

fore the simple eigenvalue ofW+
𝑔K
is 𝑘

2
3λ

1
3 . For a Kähler metric, this is also

Scal

6
so we have

(10) Scal𝑔K = 6𝑘
2
3λ

1
3 .

In particular, Scal𝑔K → 0 when 𝑟 → ∞, which is compatible with the previ-

ous asymptotics.

Recall that a function 𝑓 on M gives rise to a Hamiltonian vector field

X on M by 𝑑𝑓 = −X⌟ωK; the function 𝑓 is the Hamiltonian potential, or

moment, of X.

A Kähler metric is extremal if the scalar curvature is the Hamiltonian

potential of a vector field which is also a Killing vector field of 𝑔K.

Lemma 2.1. If the ALF space (M4, 𝑔) admits a twistor 2-form τ satisfying (3),
then the following are equivalent:

∙ (M4, 𝑔) is Ricci flat;
∙

𝑔

|τ|3
is an extremal, Bach flat, Kähler metric.
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Proof. This lemma is well known, but it will be useful to recall the proof.

Since Ric𝑔 = 0, after the conformal change we obtain

(11) Ric
𝑔K
0 = −2

(∇𝑔K𝑑λ
1
3 )0

λ
1
3

.

Since 𝑔K is Kähler, it follows that ∇𝑔K𝑑λ
1
3 is J-invariant and therefore the

(real) vector field ∇𝑔Kλ
1
3 is holomorphic. In particular, the Hamiltonian

vector field T = J∇𝑔K(𝑘−1λ)
1
3 is Killing with respect to 𝑔K and therefore

with respect to 𝑔 as well.

Remark that for ℝ3 ×S1 we have 𝑔K =
𝑑𝑟2+𝑑𝑡2

𝑟2
+γ and J∇𝑔K(

1

𝑟
) = −J 𝜕

𝜕𝑟
= 𝜕

𝜕𝑡
,

so the vector field T defined above coincides with the T in definition 1.1.

Since any ALF metric is locally asymptotic to this model, in general it is

still true that T = J∇𝑔K(𝑘−1λ)
1
3 coincides with the T of section 1.

If 𝑥1 is the moment of T with respect to ωK (𝑑𝑥1 = −T⌟ωK), we have

(12) 𝑥1 = (𝑘
−1
λ)

1
3 , 𝑔K = 𝑥

2
1𝑔, Scal𝑔K = 6𝑘𝑥1.

The scalar curvature is therefore the Hamiltonian potential of a Killing

vector field, which means that 𝑔K is extremal. It is also Bach flat since it is

conformal to a Ricci flat metric.

The converse is well-known, see for example [CLW08]: since 𝑔K is ex-

tremal and Bach flat, one obtains that 𝑔 is Einstein, maybe with nonzero

Einstein constant; the asymptotics (1) implies the decay Ric = O(𝑟−3), so

the Einstein constant has to vanish. □

At this point we develop the machinery of toric Kähler geometry for

(M, 𝑔K). The rest of of this section is devoted to recalling well-known facts

of toric Kähler geometry (see for example the lecture notes [Apo22]), un-

less otherwise stated.

A toric Kähler manifold (M4, 𝑔K, ωK) is a Kähler manifold with an effec-

tive action of a torus 𝕋2
, which is Hamiltonian: this means that all the

Killing fields induced by the infinitesimal action of the torus are Hamil-

tonian, this is automatic if H1(M, ℝ) = 0, which is the case here by lemma

1.7.

The moment map μ ∶ M → (𝕥2)∗ = ℝ2
is defined for A ∈ 𝕥2, by (𝑣A being

the vector field given by the infinitesimal action of A onM):

𝑑⟨μ, A⟩ = −𝑣A⌟ωK.

In simpler terms, if we write in a basis (A1, A2) of 𝕥
2
, then μ = (μ1, μ2) with

μ𝑖 being a moment of the Hamiltonian vector field 𝑣A𝑖
.

The moment map μ has image a convex polytope P. Every edge of the

polytope is the image of a divisor (a 2-sphere) fixed by an element of 𝕥2;

the vertices are the fixed points of the action. If we take an integral basis of

𝕥2 (so we get an identification 𝕋2 = 𝕥2/ℤ2 = ℝ2/ℤ2
) and the vector fields

(𝜕/𝜕θ1, 𝜕/𝜕θ2) onM generated by the infinitesimal action of this basis, then

the correspondingmoments (μ1, μ2) are affine coordinates on P. The Kähler
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form takes the form (action-angle coordinates):

(13) ωK = 𝑑μ1 ∧ 𝑑θ1 + 𝑑μ2 ∧ 𝑑θ2.

There is a convex function ψ on P, the symplectic potential, so that the

metric takes the form

(14) 𝑔K =

2

∑

𝑖,𝑗=1

(ψμ𝑖μ𝑗𝑑μ𝑖𝑑μ𝑗 + ψ
μ𝑖μ𝑗𝑑θ𝑖𝑑θ𝑗),

where ψμ𝑖μ𝑗 =
𝜕2ψ

𝜕μ𝑖𝜕μ𝑗
and (ψμ𝑖μ𝑗 ) = (ψμ𝑖μ𝑗 )

−1
. The scalar curvature is given by

Abreu’s formula,

(15) Scal𝑔K = −

2

∑

𝑖,𝑗=1

(ψ
μ𝑖μ𝑗 )μ𝑖μ𝑗 ,

and the metric is extremal if and only if this is the Hamiltonian function

of a Killing vector field, which here means that Scal𝑔K is an affine function.

The complex structure is given above the interior of P by the holomor-

phic coordinates 𝑧𝑗 = exp(ν𝑗 + 𝑖θ𝑗) with ν𝑗 = ψμ𝑗 . It is useful to note that

we always have a global holomorphic form above the interior of P:

(16) Ω = −4𝑖𝜕θ1 ∧ 𝜕θ2 = 𝑖(𝑑ν1 + 𝑖𝑑θ1) ∧ (𝑑ν2 + 𝑖𝑑θ2).

WhenM is smooth (see the Delzant condition below), the form Ω extends

over the whole M as a meromorphic form with simple poles along the

divisors. Note that the form does not depend on the choice of the basis of

determinant 1 of 𝕥2 giving the θ𝑖’s. The precise normalization in (16) will

be used later.

ForM to be smooth we need P to be a Delzant polytope:

∙ Each edge Emust be rational, and in particular has an integral equa-

tion λE. This means:

– λE is an affine function on (𝕥2)∗ vanishing on E; so we can write

λE(𝑥) = ⟨𝑣E, 𝑥⟩ + 𝑐E for some 𝑣E ∈ 𝕥
2
and 𝑐E ∈ ℝ;

– the ‘normal’ 𝑣E = 𝑑λE is a primitive element of ℤ2 ⊂ 𝕥2, and it

is an inward normal (so that λE > 0 in the interior of P).

∙ At each vertex E1 ∩ E2, the two inward normals 𝑣E1 , 𝑣E2 form an

integral basis of ℤ2 ⊂ 𝕥2. In our case this does not apply to the

edge at infinity E∞ which can be irrational (this corresponds to the

vector field T having non closed orbits).

Then the smoothness of the metric 𝑔K is read on its symplectic potential:

∙ near an edge E one must have ψ = 1

2
λE log λE+smooth function;

∙ near a vertex E1 ∩ E2 one must have ψ = 1

2
∑

2

𝑗=1 λE𝑗 log λE𝑗+smooth

function.

A conical singularity of angle 2παE around E is obtained by replacing λE
by

1

αE
λE in the above behaviour of ψ.

Finally, we give the idea to obtain a Poincaré behaviour (8) near the edge

at infinity E∞. This is not a standard fact in the literature, and in particular
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there does not exist a nice regularity result so we will actually not use

the proposed behaviour below, we will need a much weaker condition, see

section 4.3. Choose an affine equation 𝑥1 of E∞, and suppose:

∙ near E∞ one has ψ = − log 𝑥1+𝑎𝑥1 log 𝑥1+smooth function for some

constant 𝑎: this does not depend on the choice of 𝑥1, which can be

irrational;

∙ near a vertex at infinity E∞ ∩ E𝑗 we need ψ = − log 𝑥1 + 𝑎𝑥1 log 𝑥1 +
1

2
λE𝑗 log λE𝑗+smooth function.

Then the correspondingmetric has Poincaré behaviour near E∞. (The lead-

ing term − log 𝑥1 gives in ψ𝑥1𝑥1𝑑𝑥
2
1 + ψ

𝑥1𝑥1𝑑θ21 a leading term
𝑑𝑥21
𝑥21
+ 𝑥21𝑑θ

2
1,

which is a cusp). The function 𝑥1 here is the same as in (12): it is the

Hamiltonian function of a Killing vector field (which will be our T), and

vanishes on the boundary at infinity.

3. The Tod ansatz

In this section, we present a quick derivation of the ansatz of Tod [Tod20].

In contrast with [Tod20], our approach initially relies on a Kähler ansatz

due to LeBrun, but like in [Tod20] ends up with a celebrated Bäcklund

transformation introduced by Ward [War90].

3.1. The first ansatz. We start from a Kähler structure (𝑔K, J, ωK) with a

Hamiltonian Killing vector field T. We can then apply the LeBrun ansatz:

Proposition 3.1 ([LeB91, §2]). Suppose T is a Hamiltonian Killing vector
field for the Kähler structure (𝑔K, J, ωK). Then one can locally write 𝑔K and
ωK under the form

𝑔K = W(𝑑𝑥
2
1 + 𝑒

𝑣
(𝑑𝑥

2
2 + 𝑑𝑥

2
3 )) +W

−1
η
2

(17)

ωK = 𝑑𝑥1 ∧ η +W𝑒
𝑣
𝑑𝑥2 ∧ 𝑑𝑥3,(18)

where the 1-form η and the functions 𝑣(𝑥1, 𝑥2, 𝑥3) and W = W(𝑥1, 𝑥2, 𝑥3) =

|T|−2𝑔K satisfy T⌟η = 1 and

𝑑η = (W𝑒
𝑣
)𝑥1𝑑𝑥2 ∧ 𝑑𝑥3 +W𝑥2𝑑𝑥3 ∧ 𝑑𝑥1 +W𝑥3𝑑𝑥1 ∧ 𝑑𝑥2,(19)

(W𝑒
𝑣
)𝑥1𝑥1 +W𝑥2𝑥2 +W𝑥3𝑥3 = 0.(20)

The second equation is the compatibility condition 𝑑(𝑑η) = 0.
Conversely, given a local coframe (𝑑𝑥1, 𝑑𝑥2, 𝑑𝑥3, η) (where the 𝑥𝑖’s are local

functions), and functions 𝑣,W > 0 of (𝑥1, 𝑥2, 𝑥3) satisfying (19)–(20), the for-
mulas (17)–(18) provide a local Kähler structure with a Hamiltonian Killing
vector field T given by T⌟𝑑𝑥𝑖 = 0 and T⌟η = 1.

Finally, in this setting the scalar curvature is given by the formula

(21) Scal𝑔K = −
(𝑒𝑣)𝑥1𝑥1 + 𝑣𝑥2𝑥2 + 𝑣𝑥3𝑥3

W𝑒𝑣
.

Remark 3.2. This is a priori a local statement, but there is a way to give to

the coordinates and the functions an intrinsic interpretation, whichwewill

use later to obtain a global description of the metric via this ansatz. Indeed
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𝑥1 is a moment of the Hamiltonian vector field T. The coordinates 𝑥2, 𝑥3
and the function 𝑣 are determined by the choice of a local, non-vanishing

holomorphicT-invariant 2-formΩ = 𝑒−
𝑣
2 (ω2+𝑖ω3), where (ωK, ω2, ω3) form

a direct (local) orthonormal frame of Λ+M (with |ω𝑗 |
2 = 2) and 𝑒−𝑣 = 1

4
|Ω|2𝑔K ;

Ω being holomorphic is closed, and so is T⌟Ω, since Ω is T-invariant; we

thus define 𝑥2, 𝑥3 by T⌟Ω = −(𝑑𝑥2 + 𝑖𝑑𝑥3), while ω2, ω3 are given by ω2 =

𝑒
𝑣
2 (𝑑𝑥2 ∧η+W𝑑𝑥3 ∧𝑑𝑥1), ω3 = 𝑒

𝑣
2 (𝑑𝑥3 ∧η+W𝑑𝑥1 ∧𝑑𝑥2); since 𝑒

− 𝑣
2ω2, 𝑒

− 𝑣
2ω3

are closed, as well as ωK, (19), hence (20), readily follow.

We deduce

Proposition 3.3. Under the same hypothesis as in proposition 3.1, suppose
that the Kähler structure (𝑔K, J, ωK) is locally given by (17)–(18). Then the
conformal metric 𝑔 = 𝑥−21 𝑔K is Ricci flat if and only if

(22) W =
2

𝑘𝑥31
−

𝑣𝑥1

𝑘𝑥21

and 𝑣 satisfies the twisted Toda equation

(23) (𝑒
𝑣
)𝑥1𝑥1 + 𝑣𝑥2𝑥2 + 𝑣𝑥3𝑥3 = −6𝑘𝑥1W𝑒

𝑣
.

Proof. Since 𝑔 = 𝑥−21 𝑔K we have Scal𝑔 = 𝑥21 Scal𝑔K −6𝑥1ΔK𝑥1 − 12|𝑑𝑥1|
2
K and

therefore

(24) 𝑘𝑥
3
1 − 𝑥1ΔK𝑥1 − 2|𝑑𝑥1|

2
K = 0.

We calculate ΔK𝑥1: one has 𝑑
C𝑥1 =

η

W
so

(25) 𝑑𝑑
C
𝑥1 =

𝑑η

W
−
𝑑W ∧ η

W2
.

Using (19) we thus get ΔK𝑥1 = −
𝑣𝑥1
W
. Injecting this value in (24) we obtain

(22). Equation (23) is just (20) with Scal𝑔K = 6𝑘𝑥1.

Conversely, if we have (22) and (23) it follows that Scal𝑔K = 6𝑘𝑥1 and

Scal𝑔 = 0. Since Ric
𝑔

0 = Ric
𝑔K
0 +2𝑥

−1
1 (∇K𝑑𝑥1)0, we infer that 𝑔 is Ricci flat if

ρ
𝑔K
0 +𝑥−11 (𝑑𝑑

C𝑥1)0 = 0, where the Ricci form ρ𝑔K is the (1,1)-form Ric𝑔K(J⋅, ⋅).

By remark 3.2 we have a holomorphic volume form Ω with |Ω|2K = 4𝑒−𝑣 so

ρ𝑔K = − 1

2
𝑑𝑑C𝑣, so finally 𝑔 is Ricci flat if

(26)

1

2
(𝑑𝑑

C
𝑣)0 +

(𝑑𝑑C𝑥1)0

𝑥1
= 0.

The calculation of (26) given (22) and (23) is left to the reader. □

One can reduce (23) into the Toda equation (29) below, which is (23) with

a zero RHS, by setting:

(27) V = 𝑥
2
1W, ξ =

1

𝑥1
, 𝑢 = 𝑣 − 4 log 𝑥1.
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We then get the following formulas, for a Ricci flat metric 𝑔 = 𝑥−21 𝑔K:

V =
1

𝑘
(−2ξ + ξ

2
𝑢ξ),(28)

(𝑒
𝑢
)ξξ + 𝑢𝑥2𝑥2 + 𝑢𝑥3𝑥3 = 0,(29)

𝑔 =
𝑔K

𝑥21
= V(𝑑ξ

2
+ 𝑒

𝑢
(𝑑𝑥

2
2 + 𝑑𝑥

2
3 )) + V

−1
η
2
,(30)

𝑑η = −ξ
2
(ξ
−2
𝑒
𝑢
V)ξ𝑑𝑥2 ∧ 𝑑𝑥3 − V𝑥2𝑑𝑥3 ∧ 𝑑ξ − V𝑥3𝑑ξ ∧ 𝑑𝑥2.(31)

Again we have the converse: starting from a local function 𝑢(ξ, 𝑥2, 𝑥3) sat-

isfying (29), define V by (28), then if 𝑢ξ > 2ξ−1 (that is V > 0) and the

1-form η satisfies (31), then the metric 𝑔 of (30) is a Hermitian, Ricci flat

metric, and 𝑥1 is the Hamiltonian potential of a Killing vector field T.

Remark 3.4. Suppose we define (𝑥2, 𝑥3) and 𝑣 from a holomorphic form Ω

as in remark 3.2. If we replace Ω by 𝑎Ω for some 𝑎 ∈ ℝ∗
, then (𝑥2, 𝑥3) is

transformed into (𝑎𝑥2, 𝑎𝑥3) and 𝑣 is into 𝑣 − log(𝑎2); therefore 𝑢 becomes

𝑢 − log(𝑎2), the function V and the metrics 𝑔K and 𝑔 are unchanged.

3.2. The second ansatz. We are still in the setting of proposition 3.1: we

describe a local Kähler metric with a Hamiltonian vector field T from the

local coordinates 𝑥1, 𝑥2, 𝑥3, the 1-form η and the equations (17)–(21). We

also suppose that 𝑔 = 𝑥−21 𝑔K is Ricci flat so we also have the description

(27)–(31). Now suppose additionally that this data does not depend on 𝑥3.

From (19)–(20) it now follows that 𝑑η = 𝑑𝑥3 ∧ α for a 1-form α satisfying

𝑑α = 0, so we can write α = 𝑑F and we obtain

(32) η = 𝑑𝑡 − F𝑑𝑥3

for some choice of the function 𝑡, which completes the coordinate system

ξ = 1

𝑥1
, 𝑥2, 𝑥3, and F = F(ξ, 𝑥2). The Hamiltonian vector field T is simply

𝜕

𝜕𝑡
,

and we have another commuting Hamiltonian Killing vector field,
𝜕

𝜕𝑥3
, so

we are now in the toric situation. The Toda equation (29) becomes

(33) (𝑒
𝑢
)ξξ + 𝑢𝑥2𝑥2 = 0.

From (31) (28) and (33) it follows that

(34)

Fξ = −V𝑥2 = −
1

𝑘
ξ
2
𝑢ξ𝑥2 , F𝑥2 = ξ

2
(ξ
−2
𝑒
𝑢
V)ξ = −

1

𝑘
(ξ

2
𝑢𝑥2𝑥2 − 2𝑒

𝑢
+ 2ξ𝑒

𝑢
𝑢ξ).

The compatibility equation is the Toda equation (33).

We now perform theWard ansatz. Take standard coordinates (𝑢1, 𝑢2, 𝑢3)

on ℝ3
and define ρ =

√
𝑢21 + 𝑢22 and 𝑧 = 𝑢3. The main statement is the

following:

Proposition 3.5. Suppose that U(ρ, 𝑧) is a harmonic axisymmetric function
on a domain of ℝ3, that is satisfies the equation

(35)

1

ρ
(ρUρ)ρ + U𝑧𝑧 = 0.
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Define

(36) ξ =
1

2
ρUρ, 𝑥2 = −

1

2
U𝑧.

Restrict to the domain where Δ ∶=
ρ

4
(U2𝑧𝑧 + U

2
ρ𝑧) > 0. Then (ξ, 𝑥2) are local

coordinates and the function 𝑢 = log ρ2 is a solution to the reduced Toda
equation (33).

Conversely any solution to the reduced Toda equation (33) can be locally
expressed in this way on the domain where the differential 𝑑𝑢 does not vanish.

Notation. To simplify notation, we avoid the parenthesis in U2𝑧𝑧, but we

always mean that we first take derivatives and then a power, so U2𝑧𝑧 =

(U𝑧𝑧)
2
, 𝑢2𝑥2 = (𝑢𝑥2)

2
, etc.

Proof. Start from a harmonic axisymmetric functionU. We prove the propo-

sition by direct calculation. We have the first derivatives

(37) ξρ = −
1

2
ρU𝑧𝑧, ξ𝑧 =

1

2
ρUρ𝑧, (𝑥2)ρ = −

1

2
Uρ𝑧, (𝑥2)𝑧 = −

1

2
U𝑧𝑧.

On the domain where Δ > 0 we invert this into

(38) ρξ = −
U𝑧𝑧

2Δ
, ρ𝑥2 = −

ρUρ𝑧

2Δ
, 𝑧ξ =

Uρ𝑧

2Δ
, 𝑧𝑥2 = −

ρU𝑧𝑧

2Δ
.

A straightforward calculation using (38) leads to

(39) (𝑒
𝑢
)ξξ + 𝑢𝑥2𝑥2 = −

2Δρ

Δ2
+
U2𝑧𝑧

2Δ2
+
ρUρ𝑧𝑧U𝑧𝑧

Δ2
+
ρUρρ𝑧Uρ𝑧

2Δ2
−
ρU𝑧𝑧𝑧Uρ𝑧

2Δ2
.

But Δρ =
1

4
(U2ρ𝑧 + U

2
𝑧𝑧) +

ρ

2
(U𝑧𝑧Uρ𝑧𝑧 + Uρ𝑧Uρρ𝑧), so we get

(𝑒
𝑢
)ξξ + 𝑢𝑥2𝑥2 = −

Uρ𝑧

2Δ2
(Uρ𝑧 + ρUρρ𝑧 + ρU𝑧𝑧𝑧)

= −
Uρ𝑧

2Δ2
(ρUρρ + ρU𝑧𝑧 + Uρ)𝑧 = 0.

(40)

Therefore the function 𝑢 is a solution of the reduced Toda equation.

Conversely, start from a local solution 𝑢(ξ, 𝑥2) of the reduced Toda equa-

tion. We define ρ = 𝑒
𝑢
2 and recover locally 𝑧 by setting

(41) 𝑧ξ = −
1

ρ
ρ𝑥2 , 𝑧𝑥2 = ρρξ.

The compatibility condition for this system is the reduced Toda equation

(33). We have local coordinates (ρ, 𝑧) where δ ∶= ρρ2ξ +
1

ρ
ρ2𝑥2 > 0 (which

is equivalent to the nonvanishing of 𝑑𝑢). We calculate ξρ =
𝑧𝑥2
δ
, ξ𝑧 = −

ρ𝑥2
δ
,

(𝑥2)ρ = −
𝑧ξ

δ
and (𝑥2)𝑧 =

ρξ

δ
. It is now obvious that the compatibility con-

dition ξ𝑧 = −ρ(𝑥2)ρ for the system (36) is satisfied, so we get the function

U, and the harmonic function equation (35) is
ξρ

ρ
− (𝑥2)𝑧 = 0 which is also

true. Note that δ = 1

Δ
so the two conditions δ > 0 and Δ > 0 correspond to

each other. □
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Corollary 3.6 (Tod ansatz). Under the same notations as in proposition 3.5,
from a local axisymmetric harmonic function U we deduce a local Hermitian
toric Ricci flat metric given by the formulas

(42) 𝑔 = 𝑒
2ν
(𝑑ρ

2
+ 𝑑𝑧

2
) + Vρ

2
𝑑𝑥

2
3 + V

−1
(𝑑𝑡 − F𝑑𝑥3)

2
,

where the functions ν, V and F are given by:

𝑒
2ν
=
1

4
Vρ

2
(U

2
ρ𝑧 + U

2
𝑧𝑧),(43)

V = −
1

𝑘 (
ρUρ +

U2ρU𝑧𝑧

U2ρ𝑧 + U
2
𝑧𝑧)

,(44)

F = −
1

𝑘 (
−
ρU2ρUρ𝑧

U2ρ𝑧 + U
2
𝑧𝑧

+ ρ
2
U𝑧 + 2H

)
.(45)

The function H = H(ρ, 𝑧) is a conjugate of the harmonic function U: it is
determined up to an additive constant by

(46) Hρ = −ρU𝑧, H𝑧 = ρUρ.

The formulas make sense on the domain where V > 0 and U2ρ𝑧 + U
2
𝑧𝑧 > 0.

Conversely, suppose we have a local Hermitian toric Ricci flat metric, so it
is written under the form (28)–(31), and if 𝑡 and 𝑥3 are the toric variables, we
can write additionally η under the form (32) and 𝑢 satisfies the reduced Toda
equation (33). Then the metric is given by the ansatz (42), with U being the
harmonic function coming from proposition 3.5.

We will call U the generating function of the metric 𝑔 .

Remark 3.7. The parameter 𝑘 is a scale parameter, the metric obtained for

the value 𝑘 is the same as the metric obtained for the value 1 with a scale

factor
1

𝑘
. It is nevertheless useful to keep it since it influences the scale of

the Kähler metric 𝑔K = 𝑥21𝑔 . Since we want 𝑔K to be locally asymptotic to

a product of a hyperbolic cusp with a round sphere, we will need to fix 𝑘

accordingly.

Proof of Corollary 3.6. We first prove the converse, starting from a local

Hermitian toric Ricci flat metric with 𝑡 and 𝑥3 the toric variables. It is a

matter of putting everything together. From (37) we infer

(47) 𝑑ξ
2
+ 𝑒

𝑢
𝑑𝑥

2
2 =

ρ2

4
(U

2
𝑧𝑧 + U

2
ρ𝑧)(𝑑ρ

2
+ 𝑑𝑧

2
).

Then (42) follows from (30), with 𝑒2ν given by (43); and (44) follows from

(28) and (38). There remains to obtain the expression of F in terms of ρ,

𝑧, and here we follow a trick of Tod: from (34) it is natural to introduce a

function H by

(48) F = −
1

𝑘
(ξ
2
𝑢𝑥2 − 2𝑥2𝑒

𝑢
+ 2H),
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and H satisfies

Hξ = −ξ𝑢𝑥2 + 𝑥2(𝑒
𝑢
)ξ =

ρ

2Δ
(UρUρ𝑧 + ρU𝑧U𝑧𝑧),

H𝑥2 = ξ(𝑒
𝑢
)ξ + 𝑥2(𝑒

𝑢
)𝑥2 = −

ρ2

2Δ
(UρU𝑧𝑧 + U𝑧Uρ𝑧).

(49)

From (37) again we then obtain (46) and (45).

In the other direction, starting from the axisymmetric harmonic func-

tion U(ρ, 𝑧), we reconstruct from proposition 3.5 the variables ξ, 𝑥2 and the

function 𝑢(ξ, 𝑥2) satisfying the reduced Toda equation (33). The condition

𝑢ξ > 2ξ−1 is the same as the condition V > 0, and we can reconstruct all

the conditions in (28)–(31), so we have a Hermitian, toric, Ricci flat metric,

which by the above formulas coincides with the metric g of (42). □

Remark 3.8. In the toric case, (42) is the Harmark form of the metric which

is well known in the physics literature, see for example [Har04]. In partic-

ular the ‘horizontal’ metric ∑
2

𝑖,𝑗=1 ψλ𝑖λ𝑗𝑑λ𝑖𝑑λ𝑗 on P can be uniformized by

the Riemann uniformization theorem, and (42) implies that (ρ, 𝑧) are co-

ordinates which give this uniformization. The corollary is a priori a local

statement, but we will see in section 4.4 that (ρ, 𝑧) are global coordinates

on P giving the uniformization by the upper half-plane.

Remark 3.9. There is a homogeneity in the formulas (42)–(46): if we con-

sider the transformation ℎ𝑎(ρ, 𝑧) = (|𝑎|ρ, 𝑎𝑧 + 𝑏) with 𝑎 ∈ ℝ∗
and the real

number λ > 0, then the harmonic function λℎ∗𝑎U leads to a metric λ3H∗
𝑎,λ𝑔 ,

where H𝑎,λ(ρ, 𝑧, 𝑡, 𝑥3) = (|𝑎|ρ, 𝑎𝑧 + 𝑏, 𝑡

λ2
,
𝑥3
𝑎λ
).

If we transform the holomorphic form Ω into 𝑎Ω then we have seen

in remark 3.4 that (𝑥2, 𝑥3, 𝑢) are transformed into (𝑎𝑥2, 𝑎𝑥3, 𝑢 − 2 log(𝑎2))

with the metric unchanged, and in terms of the harmonic function U one

calculates from proposition 3.5 that this corresponds to considering ℎ∗𝑎,0U

instead of U, that is to make an homothety on the variables (ρ, 𝑧).

4. Boundary conditions

We now come back to our problem, with a toric extremal Kähler met-

ric (𝑔K, J, ωK), with polytope P, and conformal to a Ricci flat metric 𝑔 . We

analyze the boundary conditions on 𝜕P and deduce the boundary condi-

tions for the harmonic function U. This will enable us to show that the

constructions of the previous section can be made global.

In our toric setting, we have a global meromorphic 2-form Ω defined

by (16), which is holomorphic above the interior of P. When we write Ω

we can make the following choice of affine coordinates on P: we complete

the moment 𝑥1 = μ1 of T with another affine function μ2 on P so that

(𝑑μ1, 𝑑μ2) is a basis of determinant 1 of 𝕥2 (but not an integral basis in

general because 𝑥1 might be irrational). Then by remark 3.2 we extract

from (16) a global solution of T⌟Ω = −𝑑(𝑥2 + 𝑖𝑥3) by 𝑥2 = ν2 and 𝑥3 = θ2
(so 𝑥3 is an angular variable, maybe irrational), and the function 𝑣(𝑥1, 𝑥2) is

defined by 𝑒−𝑣 = 1

4
|Ω|2𝑔K . As explained in section 3.2 we have η = 𝑑𝑡 − F 𝑑𝑥3
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for 𝑡 = θ1 and some function F(𝑥1, 𝑥2). Actually this is not the best choice

and we will use in section 4.3 the freedom to replace Ω by 𝑎Ω for some real

number 𝑎, see remark 3.9.

Of course we can pass to coordinates (ξ = 𝑥−11 , 𝑥2) and to the function 𝑢

as in (27), which is now a solution of the reduced Toda equation (33). We

would like to apply Tod’s ansatz (proposition 3.5 and corollary 3.6): we

have ρ = 𝑒
𝑢
2 and 𝑧 is defined by its differential (41), so they are globally

defined functions on P, but it is not clear a priori that they are coordinates

on P, so we can apply proposition 3.5 and corollary 3.6 only locally on the

domain where 𝑑ρ ≠ 0.

The plan of this section is the following: we are always in this setting

and we determine equivalents of the various objects near the boundary of

P. At the endwe can prove in particular that (ρ, 𝑧) are global coordinates on

P in proposition 4.1, so we have indeed a global description of our metrics.

4.1. The case of a finite edge. We begin with the case of an edge E of

P with integral equation λ1 = λE. Near an interior point of E we have

ψ = 1

2
λ1 log λ1+smooth function. Completing λ1 into a basis (λ1, λ2) we

obtain the behaviour of the metric on P near E:

(50)

2

∑

𝑖,𝑗=1

ψλ𝑖λ𝑗𝑑λ𝑖𝑑λ𝑗 ∼
𝑑λ21

2λ1
+ ψλ2λ2𝑑λ

2
2,

and it follows from (16) and (27) that

(51) 𝑒
−𝑣
=
1

4
|Ω|

2
∼
ψλ2λ2

2λ1
, ρ = 𝑒

𝑢
2 =

𝑒
𝑣
2

𝑥21
∼
1

𝑥21

√

2λ1

ψλ2λ2
.

Choosing the standard orientation of P such that if E and E′ are successive

edges in the trigonometric order, then (λE, λE′) is oriented, and assuming

that λ2 was chosen so that (λ1, λ2) is oriented, we deduce

𝑑ρ ∼
𝑑λ1

𝑥21

√
2λ1ψλ2λ2

+
√
2λ1(

1

𝑥21

√
ψλ2λ2

)λ2
𝑑λ2,

𝑑𝑧 = − ∗2 𝑑ρ ∼ −
𝑑λ2

𝑥21
+

1
√
ψλ2λ2

(
1

𝑥21

√
ψλ2λ2

)λ2
𝑑λ1.

(52)

The Hodge star in the second equation is the Hodge operator for themetric

∑ψλ𝑖λ𝑗𝑑λ𝑖𝑑λ𝑗 induced on P, see remark 3.8. It follows from this formula

that the function 𝑧 attains finite values on E. Since along the boundary 𝜕P

we have

(53)

𝜕𝑧

𝜕λ2
= −𝑥

−2
1 < 0,

we deduce that 𝑧 is monotone on 𝜕P ⧵ E∞, where E∞ is the edge at infinity

(𝑥1 = 0). Actually if we go along 𝜕P ⧵ E∞ in the trigonometric sense, the

function 𝑧 is increasing; moreover when we reach E∞ we see that 𝑧 → ±∞,

so 𝑧 is actually increasing from −∞ to +∞ on 𝜕P ⧵ E∞.
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The equation (51) says that ρ|E = 0. From (36) we have ρUρ =
2

𝑥1
and

therefore near E we have

(54) U ∼
1

𝑥1|E
log ρ

2
.

From (53) it follows that
1

𝑥1 |E
is actually an affine function of 𝑧|E. It follows

that there is a continuous piecewise linear function 𝑓 ∶ ℝ → ℝ∗
+, which is

the same as
1

𝑥1
if we see 𝑧 as a parameter of 𝜕P. Near each edge one has

(55) U ∼ 𝑓 (𝑧) log ρ
2
.

Wewill prove later the crucial observation that the slopes actually increase

from −1 to +1. In particular the function 𝑓 is convex.

4.2. The case of a finite vertex. This is similar to the previous case: if

we have a vertex E ∩ E′, where (E, E′) are in trigonometric order, then

we can take λ1 = λE as above and λ2 = λE′ . Then near the vertex one

has ψ = 1

2
∑

2

𝑖=1 λ𝑖 log λ𝑖+smooth function. We have the same formulas as

above except that now ψλ2λ2 =
1

2λ2
+smooth function. Then (51) and (52)

give

(56) ρ ∼
2
√
λ1λ2

𝑥21
, 𝑑𝑧 ∼

𝑑λ1 − 𝑑λ2

𝑥21
.

In particular the behaviour of 𝑧 and U near the vertex remains the same

as described above. Together with the previous case, it implies that the

asymptotic of U in (55) is global near {ρ = 0} = 𝜕P ⧵ E∞.

4.3. The case of the edge at infinity. We take coordinates (λ1 = 𝑥1, λ2),

where λ2 can be chosen to be λ2 = λE for the edge E going to infinity

such that (𝑥1, λ2) is a direct basis. Here we make the definitive choice of

holomorphic form: say the basis (𝑥1, λ2) has determinant 𝑎, then we choose

the form 𝑎Ω because in the basis (𝑥1, λ2) the form 𝑎Ω is given by the same

formula (16). Since by remark 3.9 this amounts to an homothety on the

variables (ρ, 𝑧)we observe that the behaviour (55) of U for some piecewise

linear function 𝑓 remains unchanged.

We have seen that our Kähler Poincaré type metric is locally asymptotic

to the product of a hyperbolic cusp (symplectic potential − log 𝑥1) and a

spherical metric (say, symplectic potentialϖ(λ2)). Therefore we claim (and

will prove at the end of this section) that the symplectic potentialψ satisfies

(57) ψ(𝑥1, λ2) = − log 𝑥1 + ϖ(λ2) + ζ

whereϖ(λ2) is the symplectic potential of a spherical metric, actually given

by formula (60) below, and ζ is a function which vanishes on 𝑥1 = 0, such

that the second derivatives 𝑓 = 𝑥21ζ𝑥1𝑥1 , 𝑥1ζ𝑥1λ2 or ζλ2λ2 all satisfy

(58) (𝑥1𝜕𝑥1)
𝑘1𝜕

𝑘2
λ2
𝑓 = O(𝑥1) for all 𝑘1, 𝑘2 ≥ 0.
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Before proving this, we use formulas (57)–(58) to establish the behaviour

ofU at infinity. It follows from these formulas that (definingϖλ2λ2 = ϖ−1
λ2λ2

):

(59)

2

∑

𝑖,𝑗=1

ψλ𝑖λ𝑗𝑑λ𝑖𝑑λ𝑗 ∼
𝑑𝑥21

𝑥21
+ ϖλ2λ2𝑑λ

2
2, ρ ∼

√
ϖλ2λ2

𝑥1
.

At this point, we note that because of equation (12) and Abreu’s formula

(15), we must have ∑
2

𝑖,𝑗=1 ψ
λ𝑖λ𝑗

λ𝑖λ𝑗
= 0 along 𝑥1 = 0, which translates into

ϖ
λ2λ2
λ2λ2

= −2, that is ϖ(λ2) is the symplectic potential of a spherical metric,

as we announced above. We have two edges E and E′ going to infinity, and

it follows from the description of the behavior at E ∩ E∞ and E′ ∩ E∞ that

we must have ϖλ2λ2 = −λ2E + 2λE = −λ2E′ + 2λE′ along E∞, which implies

that λE′ = 2 − λE along E∞ and that E∞ has length 2 for λE (or λE′). At the

end we deduce that, up to some global affine function, we have

(60) ϖ(λ2) =
1

2
(λ2 log λ2 + (2 − λ2) log(2 − λ2)).

Coming back to the function ρ, we have

(61) 𝑑ρ ∼ −
√
ϖλ2λ2

𝑑𝑥1

𝑥21
+

ϖ
λ2λ2
λ2

2
√
ϖλ2λ2

𝑑λ2

𝑥1
, 𝑑𝑧 ∼

𝑑λ2

𝑥1
+
ϖ
λ2λ2
λ2

2

𝑑𝑥1

𝑥21
.

Observe that our equationϖ
λ2λ2
λ2λ2

= −2 is indeed the compatibility condition

for the asymptotic terms of 𝑑𝑧. Since ϖλ2λ2 = λ2(2 − λ2) on E∞ and ϖ
λ2λ2
λ2

=

2(1 − λ2), we get from (59) and (61) the asymptotics when 𝑥1 → 0:

(62) ρ ∼

√
λ2(2 − λ2)

𝑥1
, 𝑧 ∼

λ2 − 1

𝑥1
.

We obtain R ∶=
√
ρ2 + 𝑧2 ∼ 𝑥−11 and λ2 ∼

R+𝑧

R
, and therefore from (36)

ρUρ =
2

𝑥1
∼ 2R

U𝑧 = −2ψλ2 ∼ −2ϖλ2 ∼ log
2 − λ2

λ2
∼ log

R − 𝑧

R + 𝑧
.

(63)

Therefore we find the asymptotics of U at infinity, that is when R → +∞

(which is the same as 𝑥1 → 0):

(64) U ∼ U0(ρ, 𝑧) ∶= 2R + 𝑧 log
R − 𝑧

R + 𝑧
.

Note that on the edge E we have λ2 = 0 and 𝑧 → −∞, so we deduce

U ∼ −𝑧 log ρ2 when ρ → 0 and R → ∞; since we have (55) when ρ → 0

with 𝑓 piecewise linear, we deduce that the slope of 𝑓 on the segment

going to −∞ is −1. Similarly, on the other edge E′ going to infinity we

have 𝑧 → +∞ and U ∼ 𝑧 log ρ2 when ρ → 0 and R → ∞, therefore the

slope of 𝑓 on the segment going to +∞ is +1.

We now justify the behaviour (57)–(58). Since it seems that there is

no regularity theory in the literature for extremal Kähler metrics with

Poincaré behaviour, we instead obtain it directly from the definition (1)
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of an ALF metric. We have 𝑔K = 𝑥21𝑔 with 𝑥1 = 𝑟−1(1 + O(𝑟−1)) and the

corresponding bounds on the derivatives. Therefore

(65) 𝑔K =
𝑑𝑥21

𝑥21
+ 𝑥

2
1η

2
+ γ + ℎ, |∇

𝑘
ℎ|𝑔K = O(𝑥1).

We deduce the bounds on the Hessian of ψ:

(66)

2

∑

𝑖,𝑗=1

ψλ𝑖λ𝑗𝑑λ𝑖𝑑λ𝑗 =
𝑑𝑥21

𝑥21
+ ϖλ2λ2𝑑λ

2
2 +

2

∑

𝑖𝑗=1

A𝑖,𝑗𝑑λ𝑖𝑑λ𝑗 ,

whereϖ(λ2) is the symplectic potential of a spherical metric (that isϖ
λ2λ2
λ2λ2

=

−2, an equation that we have already seen from another viewpoint), and

𝑥21A11, 𝑥1A12 and A22 all satisfy (𝑥1𝜕𝑥1)
𝑘1𝜕

𝑘2
λ2
𝑓 = O(𝑥1) for all 𝑘1, 𝑘2 ≥ 0.

From theHessianwe deduce the symplectic potential itself: ψ = − log 𝑥1+

ϖ(λ2) + ζ with 𝑥21ζ𝑥1𝑥1 , 𝑥1ζ𝑥1λ2 , ζλ2λ2 = O(𝑥1); and the same bound for all

derivatives of type (𝑥1𝜕𝑥1)
𝑘1𝜕

𝑘2
λ2
, which proves the claim. It is plausible that

one can obtain a better regularity from the extremal equation, probably

an asymptotic development in the variable 𝑥1; in our case (with the addi-

tional Bach equation) no regularity theory is necessary since at the end

the metrics will be explicit.

4.4. The uniformization. From their definition, the functions (ρ, 𝑧) uni-

formize∑ψλ𝑖λ𝑗𝑑λ𝑖𝑑λ𝑗 . We have the following global statement:

Proposition 4.1. The functions (ρ, 𝑧) give a diffeomorphism of the interior
of P with the upper half plane.

Proof. The metric γ induced on the polytope P can be uniformized by the

upper half-plane ℍ. From the very definition of 𝑧 by (52), the function

φ = 𝑧+𝑖ρ is a holomorphic function onℍ, with real values on the real axis.

By Schwarz reflection principle, the function φ extends as a holomorphic

function on ℂ. The point is to prove that it is an affine function.

The behaviour of γ at infinity (that is near E∞) is given by (59), with

ϖ(λ2) =
1

λ2(2−λ2)
. Taking sin θ = λ2 − 1 and ξ = 𝑥−11 , we therefore have

(67)

2

∑

𝑖,𝑗=1

ψ𝑖𝑗𝑑λ𝑖𝑑λ𝑗 ∼
𝑑ξ2 + ξ2𝑑θ2

ξ2
.

This is conformal to the hyperbolic metric
𝑑ξ2+ξ2𝑑θ2

ξ2 cos2 θ
, with ξ being the radius

in the upper half plane. Since |φ| = R ∼ ξ, the function φ has linear growth

at infinity, and is therefore affine. □

4.5. The convexity of 𝑓 .

Lemma 4.2. Suppose that U is a solution of equation (35) on the upper half-
plane ρ > 0.

∙ If Uρ > 0 when ρ → 0 and when R =
√
ρ2 + 𝑧2 → ∞, then Uρ > 0

everywhere.
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∙ If U𝑧𝑧 < 0 when ρ → 0 and when R =
√
ρ2 + 𝑧2 → ∞, then U𝑧𝑧 < 0

everywhere.

Proof. SinceU𝑧𝑧 satisfies the same equation (35), the second statement is an

immediate application of the maximum principle. For the first statement

observe that Uρ satisfies (Uρ)ρρ +
1

ρ
(Uρ)ρ + (Uρ)𝑧𝑧 −

1

ρ2
Uρ = 0, and the

maximum principle can also be applied to this equation. □

Now come back to our setting of a toric extremal Kähler metric 𝑔K, with

polytope P, and conformal to a Ricci flat ALF metric 𝑔 . From proposition

4.1 we know that (ρ, 𝑧) are global coordinates, we have a harmonic axisym-

metric functionU onℝ3⧵{ρ = 0} and themetric 𝑔 is globally described from

U by corollary 3.6. The asymptotic (55) near 𝜕P ⧵ E∞ implies that Uρ > 0

when ρ → 0. For the function V in (44) to be positive we therefore must

have U𝑧𝑧 < 0 when ρ → 0. On the other hand, when R =
√
ρ2 + 𝑧2 → ∞,

the asymptotic function U0(ρ, 𝑧) given (64) also has Uρ > 0 and U𝑧𝑧 < 0.

Therefore we deduce from lemma 4.2 that Uρ > 0 and U𝑧𝑧 < 0 everywhere.

In particular for each ρ the function 𝑧 ↦ U(ρ, 𝑧) is concave, and at the

limit ρ → 0 the limit 𝑓 (𝑧) = limρ→0
U(ρ,𝑧)

log ρ2
is convex. Together with the

calculations of the two limit slopes in section 4.3 this gives:

Corollary 4.3. Suppose we have a toric extremal Kähler metric with polytope
P, conformal to an ALF Ricci flat metric 𝑔 . Then above the interior of the
polytope the metric 𝑔 is generated from a harmonic axisymmetric function U
on ℝ3 ⧵ {ρ = 0}, with asymptotic behaviour (55) and (66) on the axis {ρ = 0}
and at infinity. Moreover the piecewise linear function 𝑓 (𝑧) in (55) is convex,
and has its slopes increasing from −1 to +1. □

Remark 4.4. It is useful to note that the whole section extends to the case

where the metric has conical singularities around the fixed point sets. This

is because we then have exactly the same asymptotic behaviours with the

equations λE replaced by
λE
αE
, as explained in section 2.

5. The solutions

5.1. The Taub-NUT generating function. A significant role will be played

by the following family of harmonic axisymmetric function parametrized

by 𝑛 ≥ 0, namely, with R ∶=
√
ρ2 + 𝑧2:

(68) U𝑛(ρ, 𝑧) = 2R − 2𝑧 log
R + 𝑧

ρ
+ 2𝑛 log ρ

2
.

Notice that, when ρ → 0, we have the behaviour (55) for the piecewise

linear function

(69) 𝑓𝑛(𝑧) = 2𝑛 + |𝑧|.

For 𝑛 > 0, U𝑛 is actually a generating function of the (self-dual) Taub-NUT

metric on parameter 𝑛. Using corollary 3.6 we can reconstruct the metric.

We normalize 𝑘 = 4𝑛: this will be understood in section 7.1, see (89). One
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calculates the conjugate function H𝑛(ρ, 𝑧) = 𝑧(R + 4𝑛) + ρ2 log R+𝑧

ρ
, then

V = 𝑒2ν = 1 + 2𝑛

R
and F = 2𝑛 𝑧

R
. The formula (42) then gives

(70) 𝑔𝑛 = (1 +
2𝑛

R
)(𝑑ρ

2
+ 𝑑𝑧

2
+ ρ

2
𝑑𝑥

2
3) +

1

1 + 2𝑛

R

(𝑑𝑡 − 2𝑛
𝑧

R
𝑑𝑥3)

2
.

This is the Taub-NUTmetric where the usual coordinates (R, θ) are related

to (ρ, 𝑧) by 𝑧 = R cos θ and ρ = R sin θ. When the parameter 𝑛 varies all

these metrics are homothetic, so in this family there is only one metric

up to scale. The function U0(ρ, 𝑧) = 2R(ρ, 𝑧) − 2𝑧 log
R(ρ,𝑧)+𝑧

ρ
was already

obtained in (64) as giving the asymptotics of any U: it is no longer a gen-

erating function but will play a prominent part in the expression of the

general solution in the next subsection. Notice that its conjugate function

isH0(ρ, 𝑧) = 𝑧R(ρ, 𝑧)+ρ2 log (R(ρ, 𝑧) + 𝑧)−ρ2 log ρ, up to additive constant.

5.2. Superposition. Suppose thatU is an axisymmetric harmonic function

which satisfiesUρ > 0 andU𝑧𝑧 < 0 everywhere (by lemma 4.2 it is sufficient

to have this sign at the boundaries). In particular the condition U2ρ𝑧+U
2
𝑧𝑧 >

0 of corollary 3.6 is satisfied. The condition V > 0 in the same corollary

is more difficult to achieve, but the following proposition shows that it is

preserved when we superpose solutions:

Proposition 5.1. Suppose that we have two solutions U1 and U2 of (35) which
both satisfy U𝑧𝑧 < 0, Uρ > 0 and

(71) ρUρ +
U2ρU𝑧𝑧

U2ρ𝑧 + U
2
𝑧𝑧

< 0.

Then the same inequality remains true for any barycenter 𝑎1U1+𝑎2U2 (𝑎1, 𝑎2 >
0, 𝑎1 + 𝑎2 = 1).

Proof. The inequality to be proved for U = 𝑎1U1 + 𝑎2U2 is

(72) U
2
ρ𝑧 < −U𝑧𝑧(

Uρ

ρ
+ U𝑧𝑧).

One can check easily that if we have numbers α𝑖 ∈ ℝ, β𝑖 > 0, γ𝑖 > 0 (𝑖 = 1, 2)

such that α2𝑖 ≤ β𝑖γ𝑖, then one has (𝑎1α1+𝑎2α2)
2 ≤ (𝑎1β1+𝑎2β2)(𝑎1γ1+𝑎2γ2).

Applying to Uρ𝑧, −U𝑧𝑧 and
Uρ

ρ
+ U𝑧𝑧 we obtain the result. □

We can now describe all the solutions:

Corollary 5.2. Suppose that 𝑓 is a convex piecewise linear positive function
on ℝ, with slopes −1 = 𝑓 ′0 < 𝑓 ′1 < ⋯ < 𝑓 ′𝑟 = 1, and angular points at
𝑧1 < ⋯ < 𝑧𝑟 . It follows that

(73) 𝑓 (𝑧) = A +

𝑟

∑

𝑖=1

𝑎𝑖|𝑧 − 𝑧𝑖|

for real numbers 𝑎𝑖 = 1

2
(𝑓 ′𝑖 − 𝑓 ′𝑖−1) > 0 satisfing∑𝑟

1 𝑎𝑖 = 1.
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Then the corresponding harmonic function

(74) U = A log ρ
2
+

𝑟

∑

𝑖=1

𝑎𝑖U0(ρ, 𝑧 − 𝑧𝑖),

where U0 is defined in (64) or (68), satisfies the conditions V > 0 and U2ρ𝑧 +
U2𝑧𝑧 > 0 of corollary 3.6 if and only if A > 0.

Proof. If the condition A > 0 is satisfied, then U(ρ, 𝑧) is a barycenter of

functions U𝑛𝑖(ρ, 𝑧 − 𝑧𝑖) with 𝑛𝑖 > 0 and the result follows from proposition

5.1.

Conversely, if A ≤ 0 one can show that the inequality (72) is not true:

one calculates easily all the terms of the inequality, and making ρ → 0 it

would imply an inequality on the function 𝑓 (𝑧) which is satisfied only for

A > 0. We leave the details of the calculation to the reader, since we will

not really use it in our constructions. □

5.3. Solutions. We can now summarize what we have done. By corollary

4.3, any extremal Kähler Bach flat metric on a toric manifold with polytope

P and scalar curvature vanishing on the edge at infinity, is generated via

the ansatz of corollary 3.6 from an axisymmetric harmonic functionU(ρ, 𝑧)

with the boundary conditions:

(75) U ∼

{

𝑓 (𝑧) log ρ2, ρ → 0,

U0(ρ, 𝑧), R → ∞,

with U0 defined in (64). Here 𝑓 ∶ ℝ → ℝ∗
+ is a convex piecewise linear

function, with slopes±1 at±∞, and the first equivalent is valid only locally

with respect to 𝑧. Conversely:

Proposition 5.3. Given any convex, piecewise linear function 𝑓 ∶ ℝ → ℝ∗
+

with slopes ±1 at ±∞, and satisfying the condition A > 0 when it is written
under the form (73), there is an axisymmetric harmonic function U on ℝ3

satisfying (75), which is unique up to the addition of an affine function of 𝑧.
This function generates a Hermitian toric Ricci flat ALF metric via corollary
3.6 on {ρ > 0}.

We say above ρ > 0 because for a general 𝑓 as in the proposition, there

is no reason to produce a metric which can be compactified into a smooth

metric. This will be studied in the next section.

Observe that by remark 3.9, if the function 𝑓 (𝑧) satisfies the hypothesis

of the proposition, then for 𝑎 ≠ 0 the function |𝑎|−1𝑓 (𝑎𝑧 + 𝑏) also does, and

the two metrics generated by 𝑓 (𝑧) and |𝑎|−1𝑓 (𝑎𝑧 + 𝑏) are homothetic.

Proof. Wefirst prove the uniqueness ofU satisfying the asymptotics (75). If

we have two such axisymmetric harmonic functions U1, U2, then U1(ρ, 𝑧)−

U2(ρ, 𝑧) = 𝑜(log ρ) when ρ → 0. By [HP70, Theorem 6.4] it follows that

U1 − U2 extends smoothly across ρ = 0. Therefore U1 − U2 is a global

harmonic function on ℝ3
. From the behaviour when R → +∞ we deduce
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that U1 − U2 = O(R log R) which implies that U1 − U2 is an affine function

on ℝ3
. Since it is axisymmetric, it is an affine function of 𝑧 alone.

Given the function 𝑓 , the harmonic function U is given by (74), and

corollary 5.2 says that we can apply corollary 3.6 to obtain a Hermitian

toric Ricci flat metric. From the explicit formula on U we extract asymp-

totics on U when R → ∞: one has U ∼ U𝑛 with 𝑛 = A

2
, so the metric 𝑔 at

infinity approaches 𝑔𝑛 given in (70) and is therefore ALF. □

6. The moment map

We now recover the polytope P from the generating function U, and so

ultimately from the convex piecewise linear function 𝑓 of proposition 5.3.

We start from a Hermitian Ricci flat ALF metric generated by a function U

as in corollary 3.6. By construction we also have the Kähler metric 𝑔K =

𝑥21𝑔 . The Hamiltonian Killing vector fields 𝜕𝑡 and 𝜕𝑥3 have moments 𝑥1 and

μ with respect to ωK. These can be calculated from U by:

Proposition 6.1. As functions of ρ, 𝑧, the moments 𝑥1, μ are given by

(76) 𝑥1 =
2

H𝑧

, μ = −
2

𝑘
(𝑧 +

ρHρ − 2H

H𝑧
).

Proof. By (36) and (46) we have 𝑥1 =
2

ρUρ
= 2

H𝑧
. To obtain μ we calculate

the Kähler form ωK: from (18) we deduce

(77) ωK = −
𝑑ξ

ξ2
∧ (𝑑𝑡 − F𝑑𝑥3) +

V𝑒𝑢

ξ2
𝑑𝑥2 ∧ 𝑑𝑥3.

Using (35) and (36) it follows that

(78)

ωK =
2

U2ρ (

1

ρ
(U𝑧𝑧𝑑ρ − Uρ𝑧𝑑𝑧) ∧ (𝑑𝑡 − F𝑑𝑥3) − V(Uρ𝑧𝑑ρ + U𝑧𝑧𝑑𝑧) ∧ 𝑑𝑥3

)
.

Calculating with (44)–(46) we obtain that 𝑑μ = −𝜕𝑥3⌟ωK is given by the

formula

(79) 𝑑μ =
2

𝑘H2
𝑧
((
(ρHρ − 2H)Hρ𝑧 + ρH𝑧H𝑧𝑧)𝑑ρ

+ (H
2
𝑧 + (ρHρ − 2H)H𝑧𝑧 − ρH𝑧Hρ𝑧)𝑑𝑧)

and the formula for μ follows. □

The image of the moment map is the polytope P. The (finite) boundary

is obtained for ρ = 0, while the boundary at infinity is obtained for R = ∞,

that is 𝑥1 = 0. Suppose that 𝑓 has 𝑟 + 1 different slopes 𝑓 ′0 = −1 < 𝑓 ′1 <

⋯ < 𝑓 ′𝑟 = 1 and denote 𝑧1 < ... < 𝑧𝑟 the angular points of 𝑓 , so that the

slope of 𝑓 on the segment [𝑧𝑖, 𝑧𝑖+1] is 𝑓
′
𝑖 (we take 𝑧0 = −∞ and 𝑧𝑟+1 = +∞).

Proposition 6.2. SupposeU is generated from a convex piecewise linear func-
tion 𝑓 (𝑧) as in proposition 5.3. Then for 𝑖 = 0, ..., 𝑟 :

∙ On each segment (𝑧𝑖, 𝑧𝑖+1) on which 𝑓 is affine and non constant:
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– the function F(0, 𝑧) is constant; we denote this constant F𝑖;
– one has

(80) 𝑥1 =
1

𝑓 (𝑧)
, μ = −

F𝑖

𝑓 (𝑧)
+
2

𝑘
(
𝑓 (𝑧)

𝑓 ′(𝑧)
− 𝑧).

In particular μ + F𝑖𝑥1 is constant on each segment of 𝑓 , and it
follows that a normal vector to 𝜕P along the corresponding edge
is 𝜕𝑥3 + F𝑖𝜕𝑡 .

∙ On a segment [𝑧𝑖, 𝑧𝑖+1] where 𝑓 is constant, then 𝑥1 =
1

𝑓 (𝑧)
is constant

and a normal vector to 𝜕P is 𝜕𝑡 .

Proof. We calculate the asymptotics of F near ρ = 0. In the calculations

below we take derivatives of equivalents, but all our assertions can be

checked easily since U is given by the explicit formula (74). So when ρ → 0

we have U(ρ, 𝑧) ∼ 𝑓 (𝑧) log ρ2 and it follows that on a segment (𝑧𝑖, 𝑧𝑖+1)

where 𝑓 ′(𝑧) ≠ 0:

(81) ρUρ ∼ 2𝑓 (𝑧), U𝑧 ∼ 𝑓
′
(𝑧) log ρ

2
, Uρ𝑧 ∼

2𝑓 ′(𝑧)

ρ
.

One also calculates

(82) U𝑧𝑧 = −2

𝑟

∑

𝑖=1

𝑎𝑖
√
ρ2 + (𝑧 − 𝑧𝑖)

2

which in particular extends on ρ = 0 in the interior of the interval (𝑧𝑖, 𝑧𝑖+1).

It follows that

(83) U
2
ρ𝑧 + U

2
𝑧𝑧 ∼

4𝑓 ′(𝑧)2

ρ2
.

From (45) we then obtain that F also extends on ρ = 0 with

(84) F(0, 𝑧) =
2

𝑘
(
𝑓 (𝑧)2

𝑓 ′(𝑧)
− H(0, 𝑧)).

Since H𝑧 = ρUρ = 2𝑓 (𝑧) on ρ = 0, we obtain F(0, 𝑧)𝑧 = 0 so F(0, 𝑧) is

constant on (𝑧𝑖, 𝑧𝑖+1).

The formula (80) is then an immediate consequence of (76) and (46). The

last assertion on a segment (𝑧𝑖, 𝑧𝑖+1)where 𝑓 is constant is tautological. □

Corollary 6.3. Under the same hypotheses the moment polytope P of 𝑔K has
𝑟+1 edges E𝑖, parametrized by the segments [𝑧𝑖, 𝑧𝑖+1] (𝑖 = 0...𝑟) via the formula
(80), and one additional edge at infinity E∞ with equation 𝑥1 = 0.

7. Regularity

We now study the compactification of a metric coming from a generat-

ing function U. Since we have a toric Kähler metric, we can apply the toric

theory: the compactification is a smooth manifold if the polytope satisfies

the Delzant condition, that is two consecutive (finite) edges have primitive

integral normals which form an integral basis of a lattice ℤ2 ⊂ 𝕥2. The



ON TORIC HERMITIAN ALF GRAVITATIONAL INSTANTONS 25

point here is that the integral structure, that is the lattice ℤ2
, is not a pri-

ori given, since the Tod ansatz is local. In particular there is no reason

why the coordinates (𝑡, 𝑥3) above would be nice angular coordinates: they

parametrize 𝕥2 but we have to find the lattice inside.

We will treat the general case where we allow the metric 𝑔 to have coni-

cal singularities along the divisor D𝑖 which is the preimage by the moment

map of the finite edge E𝑖 of the polytope, say of angle 2πα𝑖 where α𝑖 > 0.

Each D𝑖 is a 2-sphere except for the two edges going to infinity where the

point at infinity is missing.

7.1. The regularity criterion. We denote 𝑓𝑖 = 𝑓 (𝑧𝑖).

Lemma 7.1. The metric 𝑔K extends over the sphere D𝑖 (outside the two fixed
points) with a conical singularity of angle 2πα𝑖 if the vector 𝑣𝑖, normal to the
edge E𝑖, defined by

(85) 𝑣𝑖 =

{

α𝑖𝑓
′
𝑖 (𝜕𝑥3 + F𝑖𝜕𝑡) if 𝑓 ′𝑖 ≠ 0,

2

𝑘
α𝑖𝑓

2
𝑖 𝜕𝑡 if 𝑓 ′𝑖 = 0,

is primitive in ℤ2.

Proof. Suppose 𝑓 ′𝑖 ≠ 0. The formulas (81)–(82) imply that V extends over

ρ = 0 along the segment (𝑧𝑖, 𝑧𝑖+1) with

(86) V(0, 𝑧) = −
1

𝑘
(2𝑓 (𝑧) +

𝑓 (𝑧)2

𝑓 ′(𝑧)2
U𝑧𝑧)

and similarly

(87) 𝑒
2ν(0,𝑧)

= 𝑓
′
(𝑧)

2
V(0, 𝑧).

From formula (42) we see that 𝑔 (or 𝑔K = 𝑥21𝑔) can be compactified over

the segment (𝑧𝑖, 𝑧𝑖+1) if the vector field 𝜕𝑥3 +F𝑖𝜕𝑡 ∈ ker(𝑑𝑡 −F𝑖𝑑𝑥3) generates

a circle, which will be contracted into a point at ρ = 0. Suppose this is

the case, so we have an integral generator λ(𝜕𝑥3 + F𝑖𝜕𝑡) of the circle. Then

the metric extends continuously with conical singularity of angle 2πα𝑖 if

𝑒−ν
√
V𝑑𝑥3(λ(𝜕𝑥3 + F𝑖𝜕𝑡)) = α𝑖, that is ±

λ

𝑓 ′𝑖
= α𝑖. We can take λ = α𝑖𝑓

′
𝑖 , and

so we need α𝑖𝑓
′
𝑖 (𝜕𝑥3 + F𝑖𝜕𝑡) to be an (integral) generator of a circle. If this

is the case, then the standard regularity theory for toric extremal Kähler

metrics tells us that the metric extends over the divisor D𝑖 (in the conical

case, this means that the symplectic potential has the behaviour described

in section 2).

The case where 𝑓 ′𝑖 = 0 is similar but the behaviour of the coefficients of

𝑔 is different. One calculates that Uρ𝑧 = O(ρ) and it follows that

(88) V ∼ −
4

𝑘

𝑓 2𝑖

ρ2U𝑧𝑧

.

Therefore the contracted direction is now generated by 𝜕𝑡 . We need the

integral generator λ𝜕𝑡 of the circle to satisfy 𝑒−νV−
1
2λ ∼ α𝑖ρ, and this gives

λ = 2

𝑘
𝑓 2𝑖 α𝑖. □
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Since F is defined only up to an additive constant, we can always choose

F0 = 0. In the case α0 = 1 this implies that 𝜕𝑥3 is primitive and therefore

μ is primitive and gives the normal of the first edge E0 of the polytope,

corresponding to the segment (−∞, 𝑧1) of 𝑓 . In the general case α0 ≠ 1, that

is when we have conical singularities, the function μ is still the weighted

equation
1

α0
λE0 used to describe the symplectic potential in (60). In all cases

from (80) we see that the value of μ at the two fixed points of P at infinity

is
2

𝑘
lim𝑧→±∞(

𝑓 (𝑧)

𝑓 ′(𝑧)
−𝑧). In terms of formula (73) this is

2

𝑘
(±A−∑

𝑟

1 𝑎𝑖𝑧𝑖). From

the normalization (60) on the polytope, the length of the edge at infinity

with respect to μ should be 2, which means that we want
4A

𝑘
= 2, that is

(89) 𝑘 = 2A.

In particular this gives the value 𝑘 = 4𝑛 used for the Taub-NUT metric in

section 5.1.

Remark 7.2. Formula (89) can be alternatively derived as follows. From

the ALF condition (1), we infer that
𝜕2ψ

𝜕𝑥1𝜕𝑥1
∼ 1

𝑥21
at infinity, see (66), while

𝜕2ψ

𝜕𝑥1𝜕𝑥1
=

𝜕ν1
𝜕𝑥1

= W = V

𝑥21
, cf. Remark 3.2. It follows that V ∼ 1 at infinity,

while from (74) and (44) we easily infer V ∼ 2A

𝑘
when R tends to infinity.

There remains to study the regularity at the fixed points. We apply

the Delzant condition to deduce that the metric 𝑔K (hence 𝑔) extends to

a smooth compactification X4 as a metric with conical singularities if for

𝑖 = 1, ..., 𝑟 the basis (𝑣𝑖−1, 𝑣𝑖) is an integral basis of ℤ2
. We can compare 𝑣𝑖−1

and 𝑣𝑖 thanks to:

Proposition 7.3. If 𝑓 ′𝑖−1 ≠ 0 and 𝑓 ′𝑖 ≠ 0, then

F𝑖 − F𝑖−1 =
2

𝑘
𝑓
2
𝑖 (

1

𝑓 ′𝑖
−

1

𝑓 ′𝑖−1
).(90)

If 𝑓 ′𝑖 = 0, then

F𝑖+1 − F𝑖−1 =
2

𝑘 (
𝑓
2
𝑖 (

1

𝑓 ′𝑖+1
−

1

𝑓 ′𝑖−1
) − 2(𝑧𝑖+1 − 𝑧𝑖)𝑓𝑖

)
.(91)

Proof. The first formula is an immediate consequence of (84), becauseH(0, 𝑧)

is continuous. The second formula is also a consequence, becauseH(0, 𝑧)𝑧 =

2𝑓 (𝑧) = 2𝑓𝑖 on (𝑧𝑖, 𝑧𝑖+1), so the variation of H(0, 𝑧) on this interval is

2(𝑧𝑖+1 − 𝑧𝑖)𝑓𝑖. □

Remark 7.4. Using this proposition, formula (85) for the normals and the

convexity of the polytope, one can give another proof of the convexity of

𝑓 (𝑧) (corollary 4.3).

This gives our final classification result:

Theorem 7.5. Suppose that we have a convex piecewise linear function 𝑓 (𝑧)

with slopes −1 = 𝑓 ′0 < ⋯ < 𝑓 ′𝑟 = 1, singular points 𝑧1 < ⋯ < 𝑧𝑟 , and
satisfying the condition A > 0 of corollary 5.2. Define the constants F𝑖 for
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all 𝑖’s such that 𝑓 ′𝑖 ≠ 0 by F0 = 0 and equations (90)–(91). Then the corre-
sponding instanton extends to a smooth compactification X4 and the metric
𝑔 has conical singularities of angles 2πα0,..., 2πα𝑟 along the divisors D𝑖 if and
only if the normals 𝑣𝑖 to the edge E𝑖 of the polytope defined by (85) satisfy the
Delzant condition, that is each pair (𝑣𝑖−1, 𝑣𝑖) can be deduced from (𝑣0, 𝑣1) by
a transformation in GL(2, ℤ).
Conversely, all toric Hermitian Ricci flat ALF metrics, with conical singu-

larities around the fixed point loci, are obtained by this construction.

Note that this theorem is really constructive: given 𝑓 , Tod’s generating

function U is given by (74) and then the metric by (42).

Proof. The only fact which maybe remains to be proved is that the Ricci

flat metric 𝑔 is indeed ALF. One can see this from the Kähler formalism

along the lines of section 4.3. Note in particular that since we have explicit

formulas for U we have a much better control than the one stated there.

Alternatively we can also see directly the ALF nature of 𝑔 from the for-

mulas (42)–(46), since we know that U(ρ, 𝑧) ∼ U0(ρ, 𝑧) given by (64) when

R → ∞ (and again U is actually explicit so we have a full asymptotic de-

velopment). It is the same asymptotic behaviour for all these metrics, and

in particular coincides with that of the Taub-NUT potential, and we calcu-

lated the corresponding metric (70). We deduce that we have

(92) 𝑔 ∼ 𝑑ρ
2
+ 𝑑𝑧

2
+ ρ

2
𝑑𝑥

2
3 + 𝑑𝑡

2
= 𝑑𝑟

2
+ 𝑟

2
(𝑑θ

2
+ sin

2
(θ)𝑑𝑥

2
3 ) + 𝑑𝑡

2

which is the common asymptotic behaviour of all ALF metrics. □

The condition on the function 𝑓 in order to get a nice compactification

is very strong. As we will see, it can be used in practice to understand the

solutions.

Remark 7.6. It is not surprising that the Delzant condition on the normal

vectors (𝑣𝑖) is the same as the condition used in the physics literature to

understand the rod structures which give rise to smooth solutions, see for

example [CT10]. The data of the Delzant polytope is close but not identical

to that of the rod structure.

7.2. The basic examples (𝑟 ≤ 2). We have already seen the Taub-NUT ex-

ample in section 5.1. We now describe all the examples where the polytope

has three finite edges (and one edge at infinity). We recover in this way

the family of the Kerr-Taub-bolt metrics. We only derive from the pos-

sible functions 𝑓 (𝑧) all the possible solutions, but we leave to the reader

the explicit calculation of the polytopes from the usual formulas for the

Kerr-Taub-bolt metrics.

The piecewise linear function 𝑓 (𝑧) (figure 1) has two singular points that

we choose to be 𝑧1 = −𝑏 and 𝑧2 = 𝑏. We write 𝑓1 = 𝑓 (𝑧1) = 𝑏+𝑎+𝑚+𝑛 and

𝑓2 = 𝑓 (𝑧2) = 𝑏 − 𝑎 +𝑚+ 𝑛, where the parameters 𝑎, 𝑏, 𝑚 and 𝑛 are fixed by

the condition 𝑏2 = 𝑎2 + 𝑚2 − 𝑛2 and |𝑛| ≤ 𝑚. The convention is consistent

with the usual parameters of the Kerr-Taub-bolt metrics. We have a slope
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𝑏−𝑏

𝑏+𝑎+𝑚+𝑛

𝑏−𝑎+𝑚+𝑛

Figure 1. The function 𝑓 (𝑧) for the Kerr-Taub-bolt metrics

𝑓 ′1 = − 𝑎

𝑏
on the middle segment. Note that the sign of 𝑎 is not fixed, and

figure 1 corresponds to the case 𝑎 > 0. We now analyze the various cases.

7.2.1. The Kerr-Taub-bolt metrics (𝑎 ≠ 0, 𝑛 ≠ 0). One obtains

(93) 𝑓 (𝑧) = 𝑚 + 𝑛 +
𝑏 − 𝑎

2𝑏
|𝑧 + 𝑏| +

𝑏 + 𝑎

2𝑏
|𝑧 − 𝑏|,

in particular 𝑘 = 2(𝑚 + 𝑛). We have the vectors 𝑣0 = −(𝜕𝑥3 + F0𝜕𝑡), 𝑣1 =

− 𝑎

𝑏
(𝜕𝑥3 + F1𝜕𝑡) and 𝑣2 = 𝜕𝑥3 + F2𝜕𝑡 . We are looking for metrics with cone

angles α0, α1 and α2. Therefore we will get a smooth manifold if for some

𝓁 ∈ ℤ one has

(94) α0𝑣0 ± α2𝑣2 = 𝓁α1𝑣1.

We have the flexibility to vary α1 ∈ ℝ∗
+, so we can actually suppose 𝓁 ∈

{−1, 0, 1} (the other values of 𝓁 correspond to quotienting by ℤ|𝓁|). The

equation (94) gives the system

−α0 ± α2 = 𝓁α1𝑓
′
1 ,

−α0F0 ± α2F2 = 𝓁α1𝑓
′
1 F1.

(95)

The second equation, together with the first one and (90), gives

(96) α0𝑓
2
1 (1 +

1

𝑓 ′1
) ± α2𝑓

2
2 (1 −

1

𝑓 ′1
) = 0.

This implies that ± is actually a +. Taking F0 = 0 (since F is defined up to a

constant), one calculates F1 = −
1

𝑎
((𝑏 + 𝑚)2 − (𝑎 + 𝑛)2). We have two linear

equations on α0, α2, and if 𝑛 ≠ 0 we calculate the solution:

(97) α0 =
𝓁

4𝑛𝑏
((𝑏 + 𝑚)

2
− (𝑎 − 𝑛)

2
), α2 =

𝓁

4𝑛𝑏
((𝑏 + 𝑚)

2
− (𝑎 + 𝑛)

2
).

In order to have positive angles, we need to take 𝓁 = sign 𝑛, hence the final

formula

(98) α0 =
1

4|𝑛|𝑏
((𝑏 + 𝑚)

2
− (𝑎 − 𝑛)

2
), α2 =

1

4|𝑛|𝑏
((𝑏 + 𝑚)

2
− (𝑎 + 𝑛)

2
).

So we see that for any such function 𝑓 , there is a choice of angles so that

the metric extends to a smooth manifold, with the corresponding conical

singularities. The polytope is now calculated from proposition 6.2: we
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choose the integral basis of vectors (𝑣1 = − 𝑎

𝑏
(𝜕𝑥3 + F1𝜕𝑡), −α0𝑣0 = α0𝜕𝑥3)

which give us coordinates

(99) 𝑥 = −
𝑎

𝑏
(
𝑦

α0
+ F1𝑥1), 𝑦 = α0(μ +

𝑎

𝑚 + 𝑛
).

The translation on 𝑦 is here to center the polytope, since from (80) one

obtains lim𝑧→±∞ μ(𝑧) = ±1 −
𝑎

𝑚+𝑛
.

We now calculate the vertices V𝑖 = (𝑥(𝑧𝑖), 𝑦(𝑧𝑖)) of the polytope for 0 ≤

𝑖 ≤ 3, where 𝑧0 = −∞ and 𝑧3 = +∞. We use formula (80). We have

(100) V0 = (
𝑎

𝑏
, −α0), V3 = ( −

𝑎

𝑏
, α0).

Then V1 has the same 𝑦 as V0 (since 𝜕𝑦 is a normal to E0), with 𝑥1(𝑧1) =
1

𝑓 (𝑧1)
= 1

𝑏+𝑎+𝑚+𝑛
. Therefore from 𝑥(𝑧1) = −

𝑎

𝑏
(−1 + F1𝑥1(𝑧1)) one calculates

(101) V1 = (
𝑏 + 𝑚 − 𝑛

𝑏
, −α0).

Similarly V2 has the same 𝑥 coordinate as V1 (since 𝜕𝑥 is a normal to E2)

and one obtains

(102) V2 = (
𝑏 + 𝑚 − 𝑛

𝑏
, α0

𝑏 + 𝑚 − 𝑎 − 3𝑛

𝑏 + 𝑚 − 𝑎 + 𝑛
).

A normal to the last edge E3 is 𝑣2 = −𝑣0+𝓁𝑣1 = −𝑣0+sign(𝑛)𝑣1, so the form

of the polytope depends on the sign of 𝑛. The polytopes are represented

on figure 2, for the same values of the parameters, except for the sign of 𝑛

(note that this exchanges α0 and α2), with the angles for each edge.

α0

−α0

− 𝑎

𝑏

1 + 𝑚−𝑛

𝑏

2πα0

2π

2πα2

α2

−α2

−𝑎/𝑏 1 + 𝑚−𝑛

𝑏

2πα2

2π

2πα0

Figure 2. Kerr-Taub-bolt polytopes with the two orienta-

tions: 𝑛 > 0 and 𝑛 < 0

7.2.2. The Taub-bolt metrics (𝑎 = 0, 𝑛 ≠ 0). They are obtained at the limit

𝑎 → 0. In that case α0 = α2, so by renormalizing the angular variables

by
1

α0
we can interpret the solutions as being smooth along E0 and E2, and

with conical singularity of angle
2π

α0
along the 2-sphere corresponding to

E1. Writing 𝑚 = λ|𝑛| we obtain 𝑏 =
√
λ2 − 1|𝑛| and an angle

(103)

2π

α0
=

4π
√
λ2 − 1 + λ
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which varies from 4π to 0when λ varies from 1 to +∞, and takes the value

2π for𝑚 = 5

4
|𝑛|: this is the smooth Taub-boltmetric (with both orientations,

depending on the sign of 𝑛). The limit λ = 1 (with 𝑏 = 0 so the edge E1 is

removed) is the Taub-NUT metric, with the corresponding S2 contracted

to a point. One can check that a suitable rescaling when λ → 1 converges

to a ramified double cover of the Eguchi-Hanson metric (hence the limit

angle 4π around the 2-sphere). So one can consider the metrics for λ > 1

small as obtained by blowing up the Taub-NUT metric at the fixed point

and grafting a ramified double cover of the Eguchi-Hanson metric. This

point of view will be explored systematically in section 9.

1

−1

4/3

−1/3

−1 4

5

1

Figure 3. Taub-bolt polytopes (two orientations)

7.2.3. The Kerrmetrics (𝑛 = 0). Via formula (90) this condition corresponds

exactly to F2 = F0, which gives 𝑣2 = −𝑣0 and therefore 𝓁 = 0. The cor-

responding solutions are smooth and we obtain the Kerr family. We let

the reader check that we obtain the polytopes on figure 4. The parameter

𝑝 = 𝑎

𝑏
varies in the interval (−1, 1), with a symmetry between 𝑝 and −𝑝.

For 𝑝 = 0 one recovers the Schwarzschild metric; when 𝑝 → 1 the Kerr

metric degenerates to the Taub-NUT metric.

1

𝑝 2

−1

1

1+
√
1−𝑝2

Figure 4. Taub-NUT, Schwarzschild (red) and Kerr (blue) polytopes

8. The classification of smooth Hermitian ALF instantons

8.1. The constraints. Smoothness imposes strong constraints on the con-

vex piecewise linear function 𝑓 from section 7.1. Suppose we have three

consecutive segments of 𝑓 , say with slopes 𝑓 ′𝑗−1 < 𝑓 ′𝑗 < 𝑓 ′𝑗+1, then the

smoothness at the vertex corresponding to 𝑧𝑗 is expressed by saying that



ON TORIC HERMITIAN ALF GRAVITATIONAL INSTANTONS 31

the two basis (𝑣𝑗−1, 𝑣𝑗) and (𝑣𝑗 , 𝑣𝑗+1) of vectors defined by (85) generate the

same lattice, that is satisfy

(104) 𝑣𝑗−1 + ε𝑗𝑣𝑗+1 = 𝓁𝑗𝑣𝑗 , ε𝑗 = ±1, 𝓁𝑗 ∈ ℤ.

We get the system

𝑓
′
𝑗−1 + ε𝑗𝑓

′
𝑗+1 = 𝓁𝑗𝑓

′
𝑗 ,

𝑓
′
𝑗−1F𝑗−1 + ε𝑗𝑓

′
𝑗+1F𝑗+1 = 𝓁𝑗𝑓

′
𝑗 F𝑗 .

(105)

Using the first equation, the second equation becomes

(106) 𝑓
′
𝑗−1(F𝑗 − F𝑗−1) = ε𝑗𝑓

′
𝑗+1(F𝑗+1 − F𝑗).

Using (90) we obtain

(107) 𝑓
2
𝑗+1 = ε𝑗𝑓

2
𝑗

𝑓 ′𝑗 − 𝑓 ′𝑗−1

𝑓 ′𝑗+1 − 𝑓 ′𝑗
.

Since 𝑓 ′𝑗−1 < 𝑓 ′𝑗 < 𝑓 ′𝑗+1 we deduce that ε𝑗 = +1 and therefore the system

(105) is now reduced to the equations

𝑓
′
𝑗−1 + 𝑓

′
𝑗+1 = 𝓁𝑗𝑓

′
𝑗 ,

𝑓
2
𝑗+1 = 𝑓

2
𝑗

𝑓 ′𝑗 − 𝑓 ′𝑗−1

𝑓 ′𝑗+1 − 𝑓 ′𝑗
.

(108)

Using (85) in the case where 𝑓 ′𝑗−1 or 𝑓
′
𝑗+1 vanishes, the calculation leads to

the same conclusion: ε𝑗 = +1 and one has (108). If finally 𝑓 ′𝑗 = 0, then the

calculation gives ε𝑗 = +1 and

𝑓
′
𝑗+1 = −𝑓

′
𝑗−1,

𝑧𝑗+1 − 𝑧𝑗 =
2 + 𝓁𝑗

2

𝑓𝑗

𝑓 ′𝑗+1

(109)

Lemma 8.1. Suppose that we have a smooth Hermitian ALF instanton gen-
erated by a convex piecewise linear function 𝑓 on ℝ as before, with 𝑟 + 1

different slopes −1 = 𝑓 ′0 < 𝑓 ′1 < ⋯ < 𝑓 ′𝑟 = 1. Then in three successive slopes
𝑓 ′𝑗−1 < 𝑓 ′𝑗 < 𝑓 ′𝑗+1 we must have 𝑓 ′𝑗−1 < 0 and 𝑓 ′𝑗+1 > 0. In particular 𝑟 ≤ 3.

Proof. Indeed suppose for example that 𝑓 ′𝑗−1 < 𝑓 ′𝑗 < 𝑓 ′𝑗+1 ≤ 0. Then the first

equation in system (108) implies that 𝓁𝑗 ≥ 2. But 𝑓𝑗+1 < 𝑓𝑗 so the second

equation (108) tells us that 𝑓 ′𝑗+1−𝑓
′
𝑗 > 𝑓 ′𝑗 −𝑓

′
𝑗−1, that is 𝑓

′
𝑗−1+𝑓

′
𝑗+1 = 𝓁𝑗𝑓

′
𝑗 > 2𝑓 ′𝑗

which is a contradiction. □

8.2. The case 𝑟 = 3. Suppose now that we have a smooth instanton with

𝑛 = 3, so by lemma 8.1 we have −1 = 𝑓 ′0 < 𝑓 ′1 < 0 < 𝑓 ′2 < 𝑓 ′3 = 1. We will

denote 𝑝 = −𝑓 ′1 and 𝑞 = 𝑓 ′2 so that both are inside (0, 1). This is illustrated

in figure 5. Applying twice (108) we obtain the equations

−1 + 𝑞 = −𝓁1𝑝, −𝑝 + 1 = 𝓁2𝑞,

(1 − 𝑝)𝑓
2
1 = (𝑝 + 𝑞)𝑓

2
2 = (1 − 𝑞)𝑓

2
3 .

(110)

From the first equation we see that 𝓁1, 𝓁2 > 0. On the other hand, since

𝑓2 < 𝑓1, by the second equation we have 1 − 𝑝 < 𝑝 + 𝑞 which gives 2𝑝 >
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𝑓1
−𝑝

𝑓2

𝑞 𝑓3

Figure 5. The function 𝑓 (𝑧) for the Chen-Teo metrics

1 − 𝑞 = 𝓁1𝑝. Finally we get 𝓁1 = 1, and similarly 𝓁2 = 1. In particular (104)

now becomes 𝑣0 + 𝑣2 = 𝑣1 and 𝑣1 + 𝑣3 = 𝑣2, which imply 𝑣3 = −𝑣0, that is

these are AF instantons.

Now the system (110) reduces to 𝑝 + 𝑞 = 1 and

(111) 𝑓1 =
𝑓2
√
𝑞
, 𝑓3 =

𝑓2
√
𝑝
.

This completely determines 𝑓 up to the transformation of 𝑓 into
1

𝑎
𝑓 (𝑎𝑧+𝑏).

Therefore we have constructed a 1-dimensional family, indexed by 𝑝 ∈

(0, 1), which is exactly the Chen-Teo family. We have proved:

Theorem 8.2. A smooth Hermitian, non hyperKähler, ALF gravitational in-
stanton, is either:

∙ the Taub-NUT metric (with the orientation opposed to the hyperKäh-
ler orientation)

∙ the 1-parameter family of Kerr instantons
∙ the Taub-bolt metric (with respect to both orientations)
∙ the 1-parameter family of Chen-Teo instantons.

□

Remark that this is a classification theorem, we do not need to compare

our metrics with the explicit formulas for the Chen-Teo instantons: by

uniqueness our 1-dimensional family has to be the Chen-Teo family. In

particular we have given an independent construction of the Chen-Teo

instantons. Nevertheless it is possible to compare directly our data (the

function 𝑓 ) with the explicit formulas of Chen-Teo, but we do not need it

here.

We can calculate the polytopes for the 1-parameter family of Chen-Teo

instantons. We fix 𝑝, 𝑞 ∈ (0, 1). We can choose 𝑓2 = 𝑝𝑞 so that 𝑓1 = 𝑝
√
𝑞

and 𝑓3 = 𝑞
√
𝑝. Then we take 𝑧2 = 0 and therefore 𝑧1 = −

𝑓1−𝑓2

𝑝
= 𝑞 −

√
𝑞,

similarly 𝑧3 =
√
𝑝 − 𝑝. We put 𝑓 in the form (73):

𝑓 (𝑧) =
1

2
(𝑘 + 𝑞|𝑧 +

√
𝑞 − 𝑞| + |𝑧| + 𝑝|𝑧 −

√
𝑝 + 𝑝|) ,

with 𝑘 = 1 − 𝑝
3
2 − 𝑞

3
2 .

(112)

We choose F0 = 0 and therefore F1 =
2

𝑘
𝑝2𝑞(− 1

𝑝
+ 1) = − 2

𝑘
𝑝𝑞2. An in-

tegral basis of the lattice is (𝑣1 = −𝑝(𝜕𝑥3 + F1𝜕𝑡), −𝑣0 = 𝜕𝑥3) which gives
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coordinates

(113) 𝑥 = −𝑝(𝑦 + F1𝑥1), 𝑦 = μ +
1

𝑘
(𝑝

3
2 − 𝑝

2
− 𝑞

3
2 + 𝑞

2
),

where the constant added to μ in 𝑦 is chosen so that 𝑦|E∞ varies in (−1, 1),

see the definition of 𝑘 in (89). This is chosen so that the first edge E0 is

horizontal and the second one E1 is vertical. The form of the polytope is

now given by its normals to the edges: 𝑣0, 𝑣1, 𝑣2 = 𝑣1−𝑣0, 𝑣3 = 𝑣2−𝑣1 = −𝑣0.

Using the same method as in section 7.2, one can calculate the vertices

V𝑖 = (𝑥(𝑧𝑖), 𝑦(𝑧𝑖)) of the polytope (with 𝑧0 = −∞ and 𝑧4 = +∞). Skipping

the details of the calculation, we get:

V0 = (𝑝, −1), V1 = (𝑝(1 +
2

𝑘
𝑞
3
2 ), −1),

V2 = (𝑝(1 +
2

𝑘
𝑞
3
2 ), −1 −

2

𝑘
(𝑞

3
2 − 𝑞)),(114)

V3 = (−𝑝(1 −
2

𝑘

√
𝑝𝑞), 1), V4 = (−𝑝, 1).

There is a symetry: the polytope for (𝑞, 𝑝) is obtained from that for (𝑝, 𝑞)

by the integral transformation

(115) (𝑥, 𝑦) ↦ (𝑥 + 𝑦, −𝑦).

This is somehow similar to the Kerr family with the symmetry between

the parameter 𝑎 and −𝑎, with 𝑎 = 0 begin the Schwarzschild metric. In our

case, the polytope which admits a symmetry is obtained for 𝑝 = 𝑞 = 1

2
,

and has vertices

(116) (
1

2
, −1), (1 +

1
√
2
, −1), (1 +

1
√
2
, 0), (

1
√
2
, 1), (−

1

2
, 1).

We represent on figure 6 the symmetric polytope (in red), then a polytope

in the family obtained for 𝑝 = 0.1 (in blue), and (dashed) the limit polytope

when 𝑝 → 0 which is the polytope of the Taub-bolt metric. Of course the

picture for 𝑝 ≥ 1

2
is obtained by the symmetry (115).

− 1

2

1

1 + 1√
2

−1

Figure 6. Polytopes of the Chen-Teo instantons

Remark 8.3. From the data of a polytope, it is possible to calculate ab-

stractly (without solving the extremal metric problem) the scalar curvature

(we need it to vanish on the edge at infinity) and the Calabi functional of

the extremal Kähler metric. Bach flat metrics appear as critical points of
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the Calabi functional when one varies the edges of the polytope without

changing their normals, see [CLW08]. (In our problem the edges come

with a measure which is the integral measure multiplied by the angle α;

the Poincaré behaviour at infinity is obtained by taking a measure zero

on the edge at infinity). So the polytopes which generate an instanton

can a priori be characterized abstractly by algebraic equations, but these

seem impossible to solve. Conversely it is possible to check that a given

polytope, with given weights on the edges, can generate an instanton. We

checked this on the Chen-Teo polytopes using Maple.

Remark 8.4. We have not tried here to recover the whole 5-parameter fam-

ily of Chen and Teo in [CT15], which amounts for us to 4 parameters since

we do not include scale. But one can remark that our piecewise linear func-

tions with 3 singular points have exactly the same number of parameters:

we can fix 𝑓2 = 𝑓 (0), then there remain 4 free parameters, the two slopes

𝑝1, 𝑝2 and the two values 𝑓1, 𝑓3. So it looks likely that this gives the full

Chen-Teo family. Using our methods it is then possible to say which ones

are conical (probably a 3-parameter subfamily, since the three cone angles

give two additional parameters).

9. Blowing up and cone angles

In this section we prove theorem B by describing a procedure which

enables to construct new solutions from a given solution. Geometrically it

is a blowing up of a fixed point of the torus, but we will see that there is a

simple interpretation in terms of the piecewise linear function.

So suppose that we have a Hermitian, Ricci flat, ALF instanton, gener-

ated by a function 𝑓 (𝑧) as before. We suppose that the instanton is defined

on a smooth manifold but may have conical singularities along the fixed

point sets. We shall describe a procedure to add a new segment to the

function 𝑓 . This is illustrated in figure 7, where we want to add a segment

with slope 𝑝 between two segments with slopes 𝑝𝑗 and 𝑝𝑗+1. At the end the

procedure will be slightly different but it is useful to start with this idea.

𝑓 (𝑧)

𝑝𝑗+1𝑝𝑗

𝑝

𝑧𝑗 𝑧𝑗+1 𝑧𝑗+2

Figure 7. Blowing up

We denote 𝑓𝑖 = 𝑓 (𝑧𝑖), the slope of each segment is 𝑝𝑖 and a normal

vector to the corresponding edge E𝑖 of the polytope is 𝑣𝑖 = 𝑝𝑖(𝜕𝑥3 + F𝑖𝜕𝑡)

(for simplicity we suppose that all slopes are nonzero but the proof below

can be adapted to this case). We have a conical singularity of angle 2πα𝑖
around the corresponding sphere, and from section 7.1 we know that since
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the manifold is smooth we have the relation α𝑖−1𝑣𝑖−1 + α𝑖+1𝑣𝑖+1 = 𝓁𝑖α𝑖𝑣𝑖 for

some integers 𝓁𝑖 (the sign in the equation is + because of the convexity of

the polytope). We now fix a given 𝑗 and we want to add a new normal

𝑣 = 𝑝(𝜕𝑥3 + F𝜕𝑡) and an angle α. So we have

α𝑗−1𝑣𝑗−1 + α𝑗+1𝑣𝑗+1 = 𝓁𝑗α𝑗𝑣𝑗

α𝑗𝑣𝑗 + α𝑗+2𝑣𝑗+2 = 𝓁𝑗+1α𝑗+1𝑣𝑗+1
(117)

To keep the smoothness we want the new data to satisfy:

α𝑗−1𝑣𝑗−1 + α𝑣 = (𝓁𝑗 + 1)α𝑗𝑣𝑗

α𝑗𝑣𝑗 + α𝑗+1𝑣𝑗+1 = α𝑣

α𝑣 + α𝑗+2𝑣𝑗+2 = (𝓁𝑗+1 + 1)α𝑗+1𝑣𝑗+1

(118)

The choice of the integer constants in the RHSs is justified by the fact that

the first equation in (117) follows from the two first equations in (118),

and the second equation follows from the two last equations in (118). In

particular, given the system (117) our more complicated system (118) is

equivalent to the single middle equation, that is to the system

α𝑗𝑝𝑗 + α𝑗+1𝑝𝑗+1 = α𝑝,

α𝑗𝑝𝑗(F𝑗 − F) + α𝑗+1𝑝𝑗+1(F𝑗+1 − F) = 0.
(119)

We deduce the values of 𝑝 and F in terms of α:

(120) 𝑝 =
α𝑗𝑝𝑗 + α𝑗+1𝑝𝑗+1

α
, F =

α𝑗𝑝𝑗F𝑗 + α𝑗+1𝑝𝑗+1F𝑗+1

α𝑗𝑝𝑗 + α𝑗+1𝑝𝑗+1

.

If α𝑗𝑝𝑗 + α𝑗+1𝑝𝑗+1 = 0 then 𝑝 = 0 and we know that F is not relevant. Here

we suppose 𝑝 ≠ 0 (one can obtain the case 𝑝 = 0 either by using (91) or by

taking a limit 𝑝 → 0). Let us call 𝑓− and 𝑓+ the values of 𝑓 at the boundary

of the new segment. By (90) we must have

(121) F − F𝑗 =
2

𝑘
𝑓
2
−(
1

𝑝
−
1

𝑝𝑗
), F𝑗+1 − F =

2

𝑘
𝑓
2
+(

1

𝑝𝑗+1

−
1

𝑝
).

Writing F𝑗+1 − F𝑗 =
2

𝑘
𝑓 2𝑗+1(

1

𝑝𝑗+1
− 1

𝑝𝑗
), we finally deduce from (120)

(122) 𝑓
2
− = 𝑓

2
𝑗+1

(𝑝𝑗+1 − 𝑝𝑗)α𝑗+1

α𝑗+1𝑝𝑗+1 − (α − α𝑗)𝑝𝑗

, 𝑓
2
+ = 𝑓

2
𝑗+1

(𝑝𝑗+1 − 𝑝𝑗)α𝑗

(α − α𝑗+1)𝑝𝑗+1 − α𝑗𝑝𝑗

.

Observe that for α = α𝑗 +α𝑗+1 the slope 𝑝 ∈ (𝑝𝑗 , 𝑝𝑗+1) and 𝑓− = 𝑓𝑗+1 = 𝑓+,

so the procedure does not change anything (we added a segment of length

0). We can rewrite (122) as

(123)

𝑓
2
𝑗+1 − 𝑓

2
− = 𝑓

2
𝑗+1

(α𝑗 + α𝑗+1 − α)𝑝𝑗

α(𝑝 − 𝑝𝑗)
, 𝑓

2
+ − 𝑓

2
𝑗+1 = 𝑓

2
𝑗+1

(α𝑗 + α𝑗+1 − α)𝑝𝑗+1

α(𝑝𝑗+1 − 𝑝)
.

Now suppose that α < α𝑗 +α𝑗+1 but is close to α𝑗 +α𝑗+1. Then 𝑓𝑗+1 −𝑓− has

the sign of 𝑝𝑗 and 𝑓+−𝑓𝑗+1 that of 𝑝𝑗+1. So 𝑓± = 𝑓 (𝑧±) for some 𝑧− ∈ (𝑧𝑗 , 𝑧𝑗+1)

and 𝑧+ ∈ (𝑧𝑗+1, 𝑧𝑗+2), both close to 𝑧𝑗+1. So it looks possible to modify 𝑓 as

in figure 7, except that to introduce a segment of slope 𝑝 we would need

𝑓+ − 𝑓− = 𝑝(𝑧+ − 𝑧−) which does not follow from our formulas.
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So we must do something slightly more complicated: we must modify

globally the function 𝑓 in order to match the new segment of slope 𝑝. For

α < α𝑗 +α𝑗+1 close enough to α𝑗 +α𝑗+1 we have the slopes 𝑝0 = −1 < 𝑝1 <

⋯ < 𝑝𝑗 < 𝑝 < 𝑝𝑗+1 < ⋯ < 𝑝𝑟 = 1, the constants F0, ..., F𝑗 , F, F𝑗+1, ..., the

angles α0, ..., α𝑗 , α, α𝑗+1, ... and the corresponding values of the piecewise

linear function 𝑓1, ..., 𝑓𝑗 , 𝑓−, 𝑓𝑗+1, 𝑓+, 𝑓𝑗+2, .... This is coherent in the sense that

the sign of each 𝑓𝑖+1−𝑓𝑖 is the sign of 𝑝𝑖, as we have just checked for the new

values 𝑓±. So there exists a convex piecewise linear function 𝑓α with these

slopes and these values at the singular points (𝑓α is unique up to translation

in the 𝑧 variable). From our construction the constraints of proposition

7.3 and the Delzant condition on the normals α0𝑣0, ..., α𝑗𝑣𝑗 , α𝑣, α𝑗+1𝑣𝑗+1, ...

are still satisfied, so we obtain a family of new instantons with the same

normals and cone angles as the initial one, and one additional edge to the

polytope with cone angle 2πα. Geometrically the addition of an edge to

the polytope is a complex blowup. This finishes the proof of theorem B.
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