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A  B  S  T  R  A  C  T  
 

Deep decarbonization pathways (DDPs) can be cost-effective for carbon mitigation, but they also have envi- 

ronmental co-benefits and economic impacts that cannot be ignored. Despite many empirical studies on the co- 

benefits of NDCs at the national or sectoral level, there is lack of integrated assessment on DDPs for their energy, 

economic, and environmental impact. This is due to the limitations of bottom-up and top-down models when 

used alone. This paper aims to fill this gap and link the bottom-up MAPLE model with a top-down CGE model to 

evaluate China’s DDPs’ comprehensive impacts. First, results show that carbon dioxide emissions can be 

observed to peak in or before 2030, and non-fossil energy consumption in 2030 is around 27%, which is well 

above the NDC target of 20%. Second, significant environmental co-benefits can be expected: 7.1 million tons of 

SO2, 3.96 million tons of NOx, and 1.02 million tons of PM2.5 will be reduced in the DDP scenario compared to 

the reference scenario. The health co-benefits demonstrated with the model-linking approach is around 678 

billion RMB, and we observe that the linked model results are more in accordance with the conclusions of 

existing studies. Third, after linking, we find the real GDP loss from deep decarbonization is reduced from 0.92% 

to 0.54% in 2030. If the environmental co-benefits are considered, the GDP loss is further offset by 0.39%. The 

primary innovation of this study is to give a full picture of DDPs ’ impact, considering both environmental co- 

benefits and economic losses. We aim to provide positive evidence that developing countries can achieve tar- 

gets higher than stated in the NDCs through DDP efforts, which will have clear environmental co-benefits to 

offset the economic losses. 
 

 

 

 

 

1. Introduction 

 
A national deep decarbonization pathway (DDP) represents a hind- 

casting approach to inform the low-carbon transformation envisaged by 

the Paris Agreement [1]. DDPs consider a long-term time frame, with an 

economy-wide perspective and sectoral disaggregation. For developing 

countries including China, DDPs are not only a carbon mitigation issue, 

but also highly related to economic development, environmental chal- 

lenges, and public health [2]. Given these broad linkages, DDPs analysis, 

especially for developing countries, should be expanded to an integrated 

assessment that encompasses more than one single issue or single 

quantitative analysis tools. 

Energy system models (ESMs) and integrated assessment models 

(IAMs) have been widely used for decarbonization pathway analysis. 

ESMs can answer questions of how to meet current and future energy 

demand given certain constraints and targets [3]. To understand the 

comprehensive impact of DDPs, many researchers have evaluated 

environmental co-benefits by linking IAMs to pollution models, or 

looked at economic impacts with general equilibrium models linked to 

technology-rich models [4,5]. However, few studies both assess the 

economic impact along with environmental health co-benefits. The main 

reason is the limitation of the analysis tools. 

For environmental co-benefit analysis, studies usually link the cur- 

rent energy system to its environmental impacts. Many researchers have 

analyzed correlations between CO2 and other local pollutants, such as 

SO2, NOx, and particulate matter (PM) [6,7]. However, for most 

co-benefit studies, the main method is to link “top-down” energy models 

like CGE (computable equilibrium model) to local pollutant models, 

using emission coefficients based on activity levels [8]. Such analysis is 
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The environmental co-benefits not only have general equilibrium feed- 

back effects in their overall economic impact, but also have detailed 

benefits for each sector, which we model with our technology-detailed 

MAPLE model. This improvement helps to enrich the previous studies 

on achievable and environmentally-friendly decarbonization pathways 

in developing countries, and demonstrates a methodological approach 

that can be valuable to many different countries and stakeholders. 

The remainder of this paper is organized as follows. Section 2 briefly 

reviews the literature on current representative bottom-up model and 

top-down models, as well as studies on linking two kinds of models. 

Section 3 focuses on the methodologies used in this study, including the 

China-MAPLE model, the China-CGE model, and the linking method, as 

well as the environmental co-benefit evaluation method. Section 4 

shows the model results on energy consumption optimization and the 

decarbonization effects. Section 5 presents the environmental co-benefit 

evaluation and economic impacts, as well as comparison of the results 

before and after linking. The final section summarizes the key findings 

and discussion. 

 
2. Literature review 

 

 

 
not suitable for DDPs, since the decarbonization is related to technology 

characteristics, not just activity levels. Some have proposed linking the 

energy technology-rich model, or the so called “bottom-up” model, to 

the air pollution model. Scholars have mainly focused on the power 

sector [9,10] and energy-intensive sectors like the cement industry and 

the iron and steel industry [11]. However, these studies are mostly 

focused on one specific sector, like cement or iron and steel. The DDPs 

are the national blueprint for all sectors. The full picture of inter-sector 

interactions is ignored in these studies. When assessing the economic 

impact of DDPs, the partial equilibrium “bottom-up” models have lim- 

itations, for example, being unable to consider all markets being cleared 

[12]. Therefore, in order to analyze the economic impact of DDPs, this 

paper further linked our own bottom-up model to a top-down model. 

Despite many empirical studies on the co-benefit issues, or that use 

bottom-up or top-down models alone, there are very few integrated 

studies on DDPs’ impact on both economy and environment, based on 

linking bottom-up models and top-down models. There is no such spe- 

cific study for China. This study tries to fill this gap and carry out an 

integrated assessment of environmental impact and economic impact of 

China’s DDPs, and provide a methodological reference for developing 

countries’ DDPs analysis. 

In this study, the linkage is between the bottom-up model China- 

MAPLE (China-Multi-pollutant Abatement Planning and Long-term 

benefit Evaluation) model and the China-CGE model. We take all eco- 

nomic sectors as our research object, including the energy supply sector, 

oil refining, the power generation sector, other secondary sectors, the 

transportation sector, the residential sector, the commercial sector, the 

industrial sector and its subsectors (chemicals, iron and steel, cement, 

non-metallic industry, ferrous metals, non-ferrous metals, textiles, and 

others). In addition, the linking to local pollutant emissions is further 

improved by being set at the technological level, instead of the fuel 

consumption level or activity level. This study is trying to answer the 

following questions: Is China’s DDP achievable, affordable, and effective 

for both optimizing the energy system and improving air quality for 

health co-benefits? 

This study contributes to the literature in two significant ways. First, 

to the best of our knowledge, it is one of the few studies that links 

bottom-up and top-down models for all economic sectors when 

analyzing environmental co-benefits of decarbonization policies. It fills 

in the shortcomings of each stand-alone model, such as lack of techno- 

logical details or sector interaction effects when analyzing economic 

impact. Second, it provides evidence across all economic sectors of 

positive environmental benefits for China’s decarbonization pathways. 

2.1. Energy models 

 
Modelers have provided strong evidence on the significant mitiga- 

tion impact for carbon mitigation technologies and policies [13–15]. 

The IAMs are still dominating the quantitative analysis for decarbon- 

ization pathway analysis with constraints [3]. Typically, the most 

frequently used modeling tools are “top-down” models like CGE 

(Computable general equilibrium) [16], and “bottom-up” models with 

partial equilibrium assumption but more energy technological details 

[17–19]. These model-based studies provide us with rich references for 

decarbonization pathway in future. 

CGE models can take the economy-wide effects from policy in- 

struments or development activities into account [20,21]. Therefore, 

CGE models are more suitable for assessing the effects of certain policies 

on economic sectors and agents (households, governments) [22,23]. 

CGE model can be a good option because it can capture direct and in- 

direct economic effects. CGE models are especially useful when evalu- 

ating carbon taxes and carbon trading. Moreover, scholars are 

increasingly doing analyses at the provincial level in China, focused on 

topics at the energy-economy-environment nexus. For instance, Liu and 

Lu investigated carbon tax impact on Chinas economy using a dynamic 

CGE model [24]. The CGE model can be applied to evaluate carbon tax 

policy impact on the regional level [25,26]. Dynamic CGE model can be 

used to explore the impacts of ETS-Carbon tax schemes in China [27]. 

Some studies have employed recursive dynamic CGE model to analyze 

appropriate sectoral coverage [28] and the quota allocation [29] at the 

national level. Many researchers examine price effect and scale effect of 

carbon tax policy in a specific province or city such as Shanghai [30,31], 

Liaoning [32], Chongqing [33] by taking advantages of different types 

of two-region CGE model. However, the database of CGE models are 

based on Input-output tables, and therefore the analysis is based on 

sectoral level or activity level, not possible to take technology trade-off 

impacts into consideration [34,35]. With the deep decarbonization goes 

deep into the energy technology level, the analysis of impact and po- 

tential of mitigation technology with technical-rich model is needed. 

With their rich technological description, bottom-up models are 

widely used to evaluate technology improvement and energy efficiency 

[17–19]. In the relevant literature, bottom-up models have been widely 

used to analyze potential improvement in energy efficiency [36], CO2 

emissions [36,37], energy consumption and demand [37], and devel- 

opment pathways [38]. There are versions at the national level [39,40] 

and global level [41]. Bottom-up models are useful tools when looking 

into energy-intensive sectors, like the cement sector and the iron and 

steel sector, as well as for the entire industry sector [38,42,43]. How- 

ever, there are also limitations for bottom-up models, including that 

List of abbreviations 

DDP 

PM 

Deep Decarbonization Pathway 

Particulate matter 

China-MAPLE China-Multi-pollutant Abatement Planning and 

Long-term benefit Evaluation 

DDP  Deep decarbonization pathways 

CGE Computable general equilibrium 

NOx  Nitrogen oxide 

CO2   Carbon dioxide 

SO2 Sulfur dioxide 

CES Constant elasticity of substitution 

REF Reference Scenario 

GHG   Greenhouse Gas 

Mtce  Millon tons of coal equivalent 

GDP  Gross Domestic Product 

TIMES The Integrated MARKAL-EFOM System 

TWh  Tera Watt hour(s) 

kW kilo Watt 



X. Yang et al. 

3 

 

 

 

they are usually used for specific sector-level studies [38,42] because it 

is highly difficult to analyze sector interaction among different sectors 

from a general equilibrium perspective [44,45]. 

Overall, top-down and bottom-up approaches have their own 

strengths and weaknesses. Top-down approaches depict interactions 

between macro-economic sectors and agents, but when measuring the 

macroeconomic costs and impacts caused by energy policies, they ignore 

specific technological details. By contrast, bottom-up approaches have 

the capacity to assess both the efficiency and costs of distinct techno- 

logical options [46]. However, they cannot capture the full 

macro-economic influences of energy policies. Consequently, searching 

for methods of linking these two approaches to improve the precision of 

policy simulations is imperative for researchers. 

There are two kinds of linking: hard linking and soft linking. Hard 

linking, sometimes called a hybrid model, directly integrates and opti- 

mizes both the top-down and bottom-up models simultaneously instead 

of using an iterative process [27,47]. However, hard-linking requires for 

the data restructure and change in the production function of CGE. The 

limitation of hard linking is that it often requires a simplified model 

because of limited data. Therefore, hard linking is more applicable for 

sectoral level analysis. Timilsina and other researchers use hybrid 

models to study the economic and environmental consequences of 

transitioning to renewable energy in the electricity sector [35,48,49]. 

The other type of linking is soft linking, which incorporates top-down 

and bottom-up models by simulating these two models separately. The 

simulation results of a bottom-up model are used iteratively as inputs 

into the top-down model. Typically, soft linking is used to reduce the 

differences between the results from top-down models and bottom-up 

models. We have to emphasis that soft linking also needs restructure 

of the data and sectors. Soft linking method is more applicable for in- 

tegrated analysis on national level. Krook-Riekkola proposes a soft 

linking procedure between a CGE model and the TIMES model to 

improve national energy policy decision-making [34]. 

When talking about environmental co-benefits, there is limited 

literature on linking models, and most of the studies are based on stand- 

alone CGE models linked to an environmental module, or stand-alone 

bottom-up models linked with a simplified air pollution module. The 

linking of the two models can help alleviate some of the problems with 

stand-alone models when evaluating environmental co-benefits. 

 
2.2. Health co-benefit analysis of climate policy 

 
Environmental health co-benefit becomes a hot topic in recent years. 

The health co-benefit calculation is often combined with energy system 

model. Some researchers linked the CGE model [5], integrated three 

models, including GAINS (interaction and synergy of greenhouse gases 

and air pollution), IMED/HEL (integrated model of energy, environment 

and economic sustainable development) and IMED/CGE model to 

identify the health and national economic impacts to health co-benefit 

[8,50]. The other scholars combined the bottom-up models to the 

health co-benefit, including LEAP model [12,51,52], ASIF (Activity–- 

Share–Intensity–Factor) [6] and MARKAL model [7,53]. We make 

improvement to apply linking bottom-up model and top-down models to 

get the health co-benefit. Following the famous work of West et al. 

(2013) [54]. The method of health co-benefit accounting can be divided 

into 3 types, involving global level, domestic level and regional level. 

Among those, Matus et al. evaluate the health co-benefit by using their 

own model, with the VSL selected from EPA [55]. Some researchers use 

globally VSL estimation from some organizations, such as EPA [55,56], 

OECD [57,58] adjusted to different world regions and into the future 

using an income elasticity or per capita consumption as one possible 

approximation of VSL [59]. In addition, many researchers use domestic 

VSL to calculate the health economic impact [4,5,50]. 

Both bottom-up models and top-down models have advantages and 

disadvantages when evaluating environmental benefits. For top-down 

models, the costs and benefits are evaluated by default in units of 

value. However, the emissions coefficient is set at the activity level or 

the fuel level, and in this case, information from the technological level, 

including end-of-pipe control for local pollutants, is missing. Given 

computational formulations of general equilibrium principles, environ- 

mental benefits can be represented in CGE functions [51–54]. Bottom-up 

models have technological detail, and can describe process emissions in 

addition to fuel combustion-based emissions [10,11,43,55]. However, 

the environmental co-benefit analysis based on bottom-up model is 

mainly focused on specific sector, like the cement sector, the iron and 

steel sector, or the power generation sector. Further studies on 

full-economy sectors from bottom-up model technological aspect are 

needed. This study aims to link the bottom-up model with the top-down 

model for the environmental co-benefit analysis for deep decarbon- 

ization pathway. The range of health impact at the national level in 

China has been given by previous studies as 9.1–25.2 billion USD bib53 

[5,53]. In contrast, we adopt direct value of inhale fraction, sensitivity of 

human health to human pollutants to simplify the accounting method 

and use domestic VSL [56–60], which accounting results also within this 

range. 

 
3. Methodology 

 
3.1. Bottom-up China-MAPLE model 

 
The China-MAPLE (China-Multi-pollutant Abatement Planning and 

Long-term benefit Evaluation)model consists of an energy system opti- 

mization module based on the TIMES modeling framework, which 

provides a technology-rich basis for estimating how energy system op- 

erations and will evolve over a long-term, multiple-period time horizon 

(Fig. 1.). It simulates the investment and operation of major energy 

technologies under constraints of emissions reductions of GHGs and 

pollutants in local regions in China and future energy use trends in 

reference scenarios and other comparative scenarios of varying degrees 

of mitigation action. The main principle is to minimize the total cost of 

the energy system to meet the given energy demand and any other major 

constraints. 

In detail, the model performs calculations on five-year steps, from 

2010 to 2050. The model includes the full-economy sectors, including 

energy supply, electricity and heat generation, and final demand sectors. 

The mitigation measures and technologies reflected by constraints for 

commodities and processes and reported for each sector, especially for 

final demand, can be divided into four major sectors, namely the in- 

dustrial sector, the transportation sector, the building sector (commer- 

cial/residential sector), the agricultural sector and others. The policy 

questions considered in MAPLE mainly orient on emission mitigation, 

energy policy instruments and multiple kinds of constraints that can be 

added during the energy system optimization process. 

The MAPLE modeling system consists of five modules. The final 

energy demand module establishes the relationship between energy 

demand and corresponding drivers. The model is technological rich with 

details, including over 780 technologies. Among them, there are around 

113 resource mining and supply technologies in the energy supply 

module. For the base-tear technologies, there are around 80 electricity 

and heat generation technologies, around 70 technologies for transport 

including different vehicles and emission standards. For industrial sector 

and subsectors (chemicals, iron and steel, cement, non-metallic in- 

dustry, ferrous metals, non-ferrous metals, textiles, and others), there 

are more than 150 technologies for the production processes. Besides, 

there are totally around 371 new technologies for all sectors, including 

technologies with higher efficiency and mitigation technologies like CCS 

(carbon capture and storage) etc. Besides, the end-if-pipe removal 

technologies are also considered in the MAPLE model. This is also an 

improvement for the bottom-up method. 

Compared with other bottom-up models for China, China-MAPLE 

integrates local pollutant control and co-benefit modules into the en- 

ergy system framework based on technical level rather than activity 
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Fig. 1. The structure of the China-MAPLE model. 

 

 

 

 

 

 

Fig. 2. Structure of production function in the CGE model. 
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levels to reflect the mitigation effects of technological advances and 

structural adjustments in key areas. Regarding the benefit evaluation 

module, it describes the benefits of local pollutants obtained through 

emissions reduction. China-MAPLE introduces energy supply curves in 

the energy supply module. The supply of coal, oil and natural gas in- 

CTRi = ctax⋅QEMISi 

TOCTR = CTRi 
i 

 
(6) 

 
(7) 

cludes both domestic production and imports, avoiding deviations 

caused by fixed energy costs. MAPLE model can be considered as a 

typical bottom-up model to be linked with the typical top-down 

computable general equilibrium model described in the next session. 

 
3.2. Top-down CGE model 

 
The China-CGE model is a general equilibrium model that aims to 

assess the economic impact of energy and environmental policies. The 

CGE model used in the study is a dynamic model, containing 5 main 

modules: production, trade, income and expenditures, carbon emission 

and carbon tax, market clearing and macroeconomic balance, and the 

equations describing dynamic mechanism. The production module is 

described by a six-layer nested constant elasticity of substitution (CES) 

function, See Fig. 2. 

At the first level, the total output is the aggregate of value-added and 

intermediate input as shown in the following formula: 

where QEMISi is the amount of carbon dioxide emissions of industry i, 

ctax is the carbon tax rate and CTRi is the carbon tax payable by sector i. 

The market clearing and macroeconomic closure module considers 

two market-clearing conditions in the commodity market and the factor 

market. In addition, the model also involves three closure principles: 

government budget balance, investment and savings balance, and 

foreign income and expenditure balance. In the model, household wel- 

fare variation is measured by using the Hicksian equivalent variation 

(EV). A detailed description of the model is available in Appendix A. 

Although CGE models are a common tool for assessing the economic 

impact of a policy, it needs to be further improved to analyze the DDPs at 

technological level in this study, like linking to the bottom-up MAPLE 

model. In the next session, the authors introduce the linking method- 

ology between CGE and MAPLE. 

 
3.3. The linking method between CGE and MAPLE 

QA αA 
[
δA VA 

A （
 δA 

) 
INT 

A 
]1/ρA

 When linking the top-down and bottom-up models, improvements 
 

 
where QAi is the total production of sector i, VAi and INTi are the input 

of value-added and intermediate inputs in sector i respectively, δA and 
αA are the share parameter and efficiency parameter; ρA is the parameter 

with key economic parameters, like GDP, population, and urbanization 

growth rates, which are otherwise assumptions in the bottom-up model. 

Second, other key information from the CGE model includes the energy 
i i 

whose value can be calculated from the value of substitution elasticities 
(σA) between value-added and intermediate input, and σA = 1/ (1 — 

demand quantities and drivers, which are important information for 
MAPLE’s final energy demands. When MAPLE takes the CGE output, the 

i 

ρA). 

i 

socioeconomic assumptions and demands function can be further 
improved. Third, based its optimization principle, MAPLE model further 

In the trade module, the CET (Constant Elasticity Transformation) 

function describes the supply distribution between the domestic market 

and the export market, as shown in equation (5): 

generates the optimized energy resource price and energy consumption, 

to further support the CGE model production function and other system 

inputs (see Fig. 3.). That’s the first linking round, and it will take several 
QA αt 

[
δt QDA 

t （
 

δt 
) 

EX 
t 
]1/ρ

t
 

ρt
 

i = i ⋅  i ⋅ 
i 1 — ⋅ i , > 1 (2) 

where QDAi and EXi are the supply of the commodity produced by sector 

i for the domestic market and export respectively, δt and αt are the share 

rounds for the results to be convergent with lower than 10% difference. 

One key issue is that, for most of the time, the database and the 

definition for “sectors” are different between top-down and bottom-up 

models. For example, for the power generation sector, the CGE model 
i i has the power generation and heating service sectors combined, 

parameter and efficiency parameter; ρt is the parameter whose value can 

be calculated from the value of transformation elasticities(σt ) between 

domestic market supply and exports, and σt = 1/(ρt — 1). 

compared to a stand-alone power sector with each kind of power gen- 

eration technology at different efficiency levels and different scales. CGE 

model takes data from the input-output table. For the energy related 

Another way to model trade is to use the CES function to describe the 

choice between domestic and imported goods, as shown in equation (6): 

q 

QQ α
q
 δq QDCρ δq QMρ 

i 

(3) 

sectors, the chemical sector, mental sector and non-metallic sector are 

linked to each industrial sub-sector in MAPLE model. The coal and 

extraction of natural gas sectors and linked to the energy supply module 

in TIMES. In this case, we have to restructure the database for each 

 

where QQi, QDCi and QMi are the demand for composite commodity i, 

domestic commodity i and import commodity i respectively, δq and α
q
 

harmonizing work has to be done at the same time – for example, for fuel 

consumption, the CGE model is based on economic value, while the 
i i 

are the share parameter and efficiency parameter; ρ
q
 is the parameter 

whose value can be calculated from the value of substitution elasticities 

(σ
q
)between domestic and import commodities, and σ

q
 = 1/ (1 — ρq). 

The income and expenditure module mainly cover the income and 

expenditure of households, enterprises, and governments. The carbon 

dioxide emission factors of the fossil fuel inputs in various industries in 

this model can be obtained from the data in the base year, and the 

calculation of carbon dioxide emissions can be calculated as follows: 

QEMISi = coefcoal⋅QEcoali + coefoil⋅QEoili + coefgas⋅QEgasi (4) 

QTEMIS = 
∑

QEMISi (5) 

MAPLE model is based on quantity levels. The variable from CGE, the 

value in CGE is defined as QACGE; the growth rate is defined as GrCGE, 

and the price index is defined as PICGE. The variable based on MAPLE, 

Demand quantity with the unit of Mtce (million tons of coal equivalent), 

is defined as QDMAPLE; with growth rate as GrMAPLE. The demand of each 

sub-sector and energy commodity are different. Based on this, we plan to 

calculate the share of base year and important future years. Based on this 

share, the single department of CGE is decomposed into sub-sectors and 

major energy commodities, and the growth rate of each department, 

Gr’ , is updated. Where c stand for commodity, i stands for 

sector, t stands for year, Gr
′ 

denotes the growth rate. 

 QDMAPLE i c t  

i SH 
, , , 

i,c,t 
, , , 

(8) 

The calculation formula for the carbon tax is as follows: c 

model so that our understanding of the models is consistent. Other 

are expected in both technological details and economic impact. First, 

the top-down China-CGE model provides the bottom-up MAPLE model 

1 — (1) 
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Fig. 3. Framework of linking the CGE and MAPLE models. 

 
 

′ 

CGE,i,c,t = QA 
 

CGE,i,t *SHi,c,t (9) same level of capacity and technological efficiency because we are 

mainly focused on the co-benefits of local pollutant reduction from deep 
 

′ 

MAPLE—CGE,i,c,t 

 

′ 

MAPLE—CGE,i,c,t 

′ 

 CGE,i,c,t  
′ 

CGE,i,c,t—1 

 
′ 

MAPLE—CGE,i,c,t 

 

 
 
*QDMAPLE,i,c,t—1 

 
(10) 

 
 

(11) 

decarbonization, not the reduction from end-of-pipe control measures. 

In this study, REF scenario is consistent with the IEA outlook for 

energy use and technology improvement, with other planning targets in 

China. The baseline macroeconomic trend for reference scenario is 

shown in Table .1. Comparatively, the DDP scenario is designed to 

According to section 2.1, there are two kinds of link: soft linking and 

hard linking. Although the sector and database are restructured, but 

authors don’t change the main production function in CGE, therefore we 

take our method as kind of soft-linking method. However, it still takes 

several rounds to observe the results convergent. Linking models is 

challenging, and there is still much space for improvement in the future. 

 

3.4. China’s decarbonization pathway scenarios 

 
The scenario design is based on China’s decarbonization pathways. 

For the REF (reference) scenario, the decarbonization pathway follows 

the 13th Five-Year Plan targets at the national level and sectoral level. In 

the DDP (deep decarbonization pathway) scenario, China deepens fuel 

substitution and energy efficiency improvements. Specifically, the DDP 

scenario includes a total coal consumption control plan, with coal con- 

sumption capped at 5 billon tce in 2020, while the per GDP energy 

consumption is reduced by 15% in 2020 compared to 2015 levels. There 

are also decarbonization pathways by sector, with renewables being 

further scaled up: wind capacity goes above 0.4 billion kW in 2030, and 

1.2 billion kW in 2050. Solar capacity for electricity generation and 

heating goes above 0.3 and 1.2 billion kW in 2030 and 2050, respec- 

tively. The fuel economy in road transportation is further improved with 

promotion of electric vehicles. Residential heating efficiency is further 

improved, with fuel substitution enhanced. For end-of-pipe control 

measures, both the REF scenario and the DDP scenario are kept at the 

 
Table 1 

The GDP and GDP growth rate in reference scenario. 
 

 2020 2030 2040 2050 

GDP(Trillion yuan) 82.7 145.2 215.6 275.4 

GDP growth rate(%) 6.2 4.1 3.2 2.5 

explore the mitigation potential in each sector and the BATs (best 

available technologies), considering constraints of resources and econ- 

omy development. Compared to the REF scenario, the DDP scenario 

design is introduced from the flowing aspects: energy use and technol- 

ogy improvement, coal-fired technology, natural gas power generation, 

hydropower, nuclear power, solar and wind technologies, passenger and 

freight transport, residential energy use efficiency and technology im- 

provements (see Table .2). 

 
3.5. Environmental co-benefits evaluation 

 
In the MAPLE model, there is one local pollutant module to evaluate 

the environmental benefits of deep decarbonization. Before we intro- 

duce the mechanism of environmental impact, we must emphasize that 

this study is not focused on the absolute atmospheric environment for a 

chemical-level study. Our module uses simplified equations in order to 

show comparative benefits between scenarios with and without policies 

at the national level. Future research can further improve the module by 

linking to a third model: an atmospheric diffusion model that will be of 

much help if we do further work on the regional level. The main purpose 

of this study is to assess the potential environmental impact due to the 

improvement of both technologies and polices before local pollutants 

are emitted. 

The process of energy utilization will inevitably produce air pollut- 

ants such as PM2.5, sulfur dioxide, and nitrogen oxides. As air pollutants 

diffuse, the accumulation of pollutants that have spread to residential 

areas will cause harm to human health. The health cost measurement 

method includes four steps: emissions, air quality impact, health end- 

points, and monetization accounting. We simplify the non-linear expo- 

sure-response function based on the results from previous 

epidemiological literature [61]. Formulas (12)-(14) show the health 

endpoints and monetization accounting. 

QA 

Gr 
QA 

= 

QD = Gr 
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Table 2 

The REF scenario and DDP scenario. 

Reference scenario（REF） Deep decarbonization 

pathways（DDP） 

the reference area, and e is the demand income elasticity. The iF path 

method can be used when the air pollutant discharge and concentration 

simulation in a large geographical area is used. The iF is a ratio between 

the amount of air pollutant measured by historical data and the amount 

Energy efficiency The efficiency of new 

technologies will be updated 

year by year according to 

the technical outlook of IEA. 

By 2020, steel, cement and 

high energy consuming sectors 

eliminate backward 

production capacity. By 2030, 

the synthetic ammonia account 

for more than 60%. 

of inhalation uptake by the population to calculate the concentration 

change, shown in (16) and (17). 

iF = 
P*CON*BRETH 

(16)
 

EMS 

Coal generation The installation speed of 

IGCC increased, which 

account for the main 

To strictly control the 

development of coal-fired 

power, add new coal-fired 

CON = 
 EMS*iF 

P*BRETH 
(17) 

 

 

 
Natural gas 

power 

generation 

 
Solar energy and 

wind power 

generation 

 

 

 

 
Passenger 

transport 

proportion. 

 

 
The new installed capacity 

of NGCC technology account 

for the main proportion in 

2030. 

In 2030, the wind power 

planned installed capacity 

will reach more than 300 

million kW by reducing the 

wind power cost and adding 

the onshore and offshore 

wind power construction 

The fuel economy of 

passenger cars will be 7.0 L/ 

100 km by 2030, and the 

pure electric and plug-in 

hybrid electric vehicles parc 

will reach 5 million by 2020. 

power generation capacity 

outside cogeneration and CCS 

after 2020 

The planned capacity will 

reach above 200 million kW in 

2030 and 350 million kW in 

2050. 

The installed capacity of wind 

power will reach 400 million 

kW in 2030 and 1.2 billion kW 

in 2050. The installed capacity 

of solar power will reach 300 

million kW and 1.2 billion kW 

in 2030 and 2050 respectively. 

After 2030, electric vehicles, 

electric bus and fuel cell bus 

technology will become the 

main driving technology. In 

2050, the gasoline vehicles will 

account for less than 30%, 

mainly concluding hybrid 

electric vehicles. 

where CON is the concentration change of air pollutants, iF is the 

inhalation ratio, P is the population, and BRETH is the respiration rate in 

cubic meters per day. The respiration rate in cubic meters per day is 14.5 

m3/day for China. The intake fraction for SO2, NOx, and PM2.5 are 0.89, 

0.18, and 44.10, respectively [64,65]. 

 
4. Energy consumption results based on model linking 

 
4.1. Primary energy consumption of REF and DDP when linking with CGE 

 
When modeling the deep decarbonization pathway, the mitigation 

potential of technologies and policies are expected to be fully utilized. 

One important result is the primary energy consumption, which is highly 

related to emissions (CO2, SO2, NOX and PM). We show the results of the 

DDP scenario compared to the REF scenario (Reference Scenario) from 

MAPLE with and without linking. In Fig. 4, coal consumption in 2030 

could be reduced to 2189 Mtce (millon tons of coal equivalents), 

compared to 2838 Mtce in the REF scenario, a 22.8% reduction. For 
Freight transport The fuel consumption per 

100 km in 2050 will be 

reduced by 18% compared 

with that in 2010 

The fuel consumption per 100 

km in 2050 will be reduced by 

40% compared to 2010, and 

the fuel cell trucks will 

improve rapidly. 

natural gas, the consumption in the DDP scenario is 640 Mtce, around 

1.48 times that of REF 2030 level. When it comes to non-fossil fuels, 

their primary consumption will increase to 1537 Mtce, compared to 

1355 Mtce in the REF scenario, an increase of around 182 Mtce. The 
Residential 

sector 

The annual growth rate of 

natural gas heating is 10%. 

To further increase the 

proportion of LED and 

energy-saving appliances 

and reduce rural non- 

commercial energy use. 

Rural residents will eliminate 

incandescent lamps and 

develop LED in 2030; to further 

improve the efficiency of 

household energy consumption 

equipment such as cooking 

appliances, air conditioners 

and household appliances. Gas 

and electricity are the main 

source of district heating. 

total primary energy consumption will be reduced by 8.4% Mtce in 2030 

in the DDP scenario. Coal consumption can be successfully reduced if 

deep decarbonization measures are taken. More than half of coal con- 

sumption will be substituted for by natural gas and renewables. 

If we take look at the primary energy consumption mix, the evidence 

for energy substitution is clearer. In the DDP linking scenario, coal will 

reach 39% in 2030, which is much lower compared to the REF scenario. 

At the same time, the natural gas will reach a total proportion of 11% in 

2030 in the DDP scenarios, which is at the same level as the national 

planning target of 10% natural gas in 2030. The total non-fossil energy is 

RR = exp(ERC * C1) / exp(ERC * C0) = exp(ERC * (C1 — C0)) (12) 

ΔI = I — I0 = I — I / RR = I*(I — I / RR) (13) 

HI = ΔI*VSL (14) 

RR is the relative risk of premature death, ERC is the exposure- 

response coefficient, C1 is the true concentration, C0 is the threshold 

concentration, I is the actual mortality, I0 is Mortality without air 

pollution exposure, ΔI is premature death due to air pollution, HI is the 

monetary value of health effects, and VSL is the value of statistical life. 

The exposure-response coefficient is 5.37 [62,63]. We introduced the 

VSL research results from different scholars and research group [56–60]. 

The provinces which have local VSL surveys can be divided into 

different areas and each province is set as the benchmark VSL province 

of that area. For areas that do not have willingness-to-pay survey data, 

authors use a conversion method with the standard conversion formula 

shown in equation (15). 

27% in 2030 in the DDP linking scenario, which is well above China’s 

target of non-fossil fuels being above 20% [66]. 

 
4.2. Electricity generation in the REF and DDP scenarios 

 
For energy substitution, power generation is one of the key sectors to 

look into, especially for the integration of renewables in the power 

sector. First, fossil energy will still dominate energy consumption in 

electricity generation for the short-term and mid-term. Shown in Fig. 5, 

coal power generation can be reduced to 3695.73 TWh in 2030 in the 

DDP scenario, compared to 4966.01 TWh in the REF scenario, a 25.5% 

reduction. For natural gas, the power generation in the DDP linking 

scenario is 591.66 TWh, an increase of 6.9% compared to the REF sce- 

nario. When it comes to renewable electricity generation, the total 

renewable electricity generation (including nuclear, wind, solar, and 

other renewables) will increase from 2408.62 TWh to 2772.1 TWh, a 

15.09% increase compared with the REF scenario in 2030. 
The proportion of clean energy generation will gradually increase, 

VSLa = VSLb * 
Incomea 

e 

Incomeb 
Bp′ = Bs 

Yp β 
 

 

Ys 
(15) and the power generation structure can be improved. When comparing 

the structure of energy power generation, we can observe that, in the 

where Income refers to the local income level, a is the research area, b is 
DDP-linking scenario, for coal-fired electricity generation, the share is 

42%, which is 10% less in 2030 compared with the REF scenario. Gas 
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Fig. 4. (a) Primary energy consumption of the REF and DDP scenarios (Unit: Mtce); (b) Primary energy consumption mix (Unit: %). 

 
 

 

Fig. 5. (a) Electricity generation in the REF and DDP scenarios (Unit: TWh); (b) Electricity generation mix in the REF and DDP scenarios (Unit: %). 

 

generation will increase to 7% in 2030 in the DDP-linking scenario, 

which is 1% higher than the REF scenario. For non-fossil fuels, when 

comparing to the DDP-linking scenario, hydropower generation is 22% 

in 2020 and 19% in 2030, 2% more in 2020 and 3% more than in the 

REF scenario. Wind generation has a 4% increase in 2030, reaching 19% 

in 2030; and solar generation will reach around 4% in 2030. For total 

renewable energy, 32% renewables generation in 2030 can be observed 

in the DDP-linking scenario, which is 6% higher than the REF scenario. A 

higher proportion of renewables generation will help promote China’s 

progress towards its NDC (NDRC, 2015) [66], or even beyond the NDC 

targets. 

We could observe that after linking, the MAPLE stand-alone has 

lower coal consumption than before linking, and non-fossil fuel is taking 

higher share than before. This is highly related to the energy service 

demands. As we know, the MAPLE has a stand-alone module, to evaluate 

and predict the final energy service demands, i.e. residential heating 
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demands, cooling demands, cement demands, etc. However, the de- 

mands module here has defects, because it is simplified and not consider 

all the market clear. The CGE model is the best choice to predict the 

demands here, and one of our important linking is based on demands. 

With revised demands driven, the energy consumption and structure has 

been improved. Besides, the dynamic investment changes in future are 

not considered in MAPLE. With the static investment, there is lack of 

information like stimulus for investment in renewable energy. There- 

fore, the linking results on energy structure has better feedback from the 

general equilibrium market. 

 
4.3. Carbon mitigation effect of the DDP scenario 

 
Firstly, carbon dioxide emissions will peak at or before 2030 under 

the DDP scenario, and this is followed by a dramatic annual decrease. 

Compared with the REF scenario, the aggregate carbon dioxide emis- 

sions reductions could reach approximately 11.88 billion tons in 2030 

(see Table 3). The carbon dioxide emissions in the DDP scenario should 

decrease to 10.58 billion tons, a 12.4% reduction from the REF scenario. 

The intensity of emissions per unit of GDP under the DDP scenario will 

also be significantly reduced, and the intensity of carbon dioxide emis- 

sions could decrease by 12.3% and 43.1% respectively in 2030 and 2050 

compared to the REF scenario. In the DDP scenario, the carbon intensity 

will be reduced by 61.7% in 2030 compared to 2010 level. When 

compared to year 2005, the carbon intensity in 2030 is reduced by 

70.7% in DDP scenario. Results show that the DDPs is well above the 

NDCs target in 2030, which is the carbon intensity should be reduced by 

60–65% by 2030 compared to 2005 level. 

From the perspective of carbon dioxide emissions of the various 

sectors, the DDP scenario has a significant effect on carbon dioxide 

reduction in each sector. Specifically, with energy demand of major 

energy-intensive sectors peaking around 2020, industrial sector emis- 

sions peak around 2020 at approximately 4.63 billion tons of carbon 

dioxide. The peaking year for the building sector could be between 2030 

and 2040. Meanwhile, the transportation sector will achieve peak 

emissions in 2040 under the DDP scenario. Approaches such as fuel 

economy improvement, emissions standards upgrading, and more 

aggressive promotion of electric and hybrid vehicles will hopefully help 

to reduce carbon dioxide emissions in the transportation sector after 

2040. 

The emissions reduction effect in the power sector is significant. 

Under the reference scenario, carbon dioxide emissions from the power 

sector could increase progressively, while under the DDP scenario, they 

might reach a peak of about 3.107 billion tons in 2020 and then decrease 

gradually. This is highly related to the system optimization of China’s 

power sector, especially the sharp increase in renewable energy. 

To validate the results of this study, we compare the results from this 

paper with the main IAMS (integrated assessment models). The typical 

IAMs include IPAC model developed by ERI (Energy Research Institute), 

AIM-Enduse model developed by National Institute for Environmental 

Studies (NIES), MESSAGE model developed by International Institute for 

Applied Systems Analysis (IIASA), WEM (World Energy Model) devel- 

oped by International Energy Agency (IEA) and China MARKAL/TIMES 

model developed by Tsinghua University. We compare the main results 

of China-MAPLE research with above important studies. 

Due to the large difference in the setting of emission reduction sce- 

narios, we compare and validate the main results of MALPE model for 

the reference scenario, which is basically consistent with the IEA sce- 

nario. The comparison of CO2 emissions of China-MAPLE model and 

 
Table 3 

Energy related carbon dioxide emissions in DDP scenario (unit: billion tons). 
 

Scenarios 2020 2025 2030 2035 2040 2045 2050 

REF 10.87 11.22 11.88 12.26 12.87 13.35 13.91 

DDP 10.87 10.54 10.58 9.97 9.96 8.57 7.71 

other models is shown in Fig. 6. The results of China-MAPLE model are 

within the confidence interval and closely consistent with the results of 

PECE model, China MARKAL Model, MESSAGE model and WEM model. 

 
5. Environmental and economic impact 

 
5.1. Local pollutant emissions 

 
The DDP scenario indeed brings about the reduction of local 

pollutant emissions. All three types of pollutants will decrease by 

4.03–14.98 million tons by 2030, including 2.37–7.10 million tons 

reduction in SO2, 1.33–7.30 million tons decrease in NOX, and 0.33–1.42 

million tons abatement in PM2.5 (Fig. 7). Before the linking of models, 

the local pollutant emissions amount of MAPLE and China-CGE are 

different. Taking 2030 as an example, SO2, NOX, PM2.5 are the main 

local pollutants, of which the emissions are 68.67 million tons, 40.84 

million tons, 13.96 million tons respectively in MAPLE, and the China- 

CGE model’s predicted emissions are 72.56 million tons, 46.82 million 

tons, 15.05 million tons respectively, under the DDP scenario without 

linking. For the same scenario, the local pollutant emission results from 

CGE and MAPLE have a gap. The main reason for the differences in 

results between the non-linked and linked models is that the linking of 

energy activity to local pollutants in the two models is different. For the 

China-CGE model, the emissions coefficient is based on the fuel level and 

activity level; however, in the MAPLE model, the emissions coefficient of 

local pollutants is set on the technological level, for different production 

technologies. 

For the end-of-pipe technologies, the efficiency is set at the same 

level as the reference scenario. When the linking is done, the main 

convergence is based on energy consumption, not emissions. We could 

observe a convergence for the key emissions as more technological level 

information is added to the CGE model. After linking, under the DDP 

scenario, the emissions of the three pollutants can be decreased by 7.10 

million tons of SO2, 3.96 million tons of NOx, 1.02 million tons of PM2.5 

and total emission could decrease by 12.07 million tons. These signifi- 

cantly lower estimates indicate that the linking of models can fill the gap 

between the accounting of the two types of models. 

 
5.2. Avoided health damages and environmental co-benefits effects 

 
Our results show that deep decarbonization does lead to the reduc- 

tion of premature death damages under the DDP scenario. In 2030, the 

aggregate of both types of deaths decreases by 13,000–38,000, of which 

the deaths caused by cardiovascular illness and respiratory illness could 

be reduced by 10,000–38,000 people and 3000–8000 people respec- 

tively (Fig. 8). 

The results indicate that the DDP scenario has a remarkable effect on 

health damage reduction. There is prominent effect in 2030. The total 

health damages could achieve significant reductions by 222–822 billion 

RMB, with 181–673 billion RMB in reduction and 41–149 billion RMB in 

reduction of the health damage caused by cardiovascular and respira- 

tory illness respectively. 

Before using linking, the results of MAPLE and China-CGE are 

slightly different for local pollutant health damage. Under the DDP 

scenario in 2030, for MAPLE, 822 billion RMB reduction in gross health 

damages could be found, consisting of a decrease of 673 billion RMB and 

149 billion RMB in health damages caused by cardiovascular and res- 

piratory illness respectively. For China-CGE, the reduction in health 

damages could add up to 222 billion RMB, with a decrease of 181 billion 

RMB in cardiovascular damages and a decrease of 41 billion RMB in 

respiratory damages. Compared with after linking, the total health 

damages could be reduced by 678 billion RMB, in which the cardio- 

vascular and respiratory effects could lessen by 552 billion RMB and 125 

billion RMB respectively. The convergence results are more conducive to 

overall accounting. Firstly, in view of the health damages results of 

MAPLE, they are not immediately compatible with China-CGE’s 
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Fig. 6. The results analysis of main models. 

 
 

 

Fig. 7. The main local pollutant emissions in the DDP scenario, for MAPLE, China-CGE, and MAPLE/CGE linking (unit: million tons). 

 

economic equations; furthermore, in the accounting of China-CGE, 

health damages are only based on sectoral levels, and technological 

progress is not included in the DDP scenario. Linking makes progress 

towards solving this problem. Secondly, the avoided health damages are 

environmental benefits, meaning that the carbon mitigation policy can 

avoid losses from environmental health problems. More accurately, 

avoided health damage is a co-benefit of carbon mitigation policy. Based 

on our calculation, this kind of environmental health co-benefit is worth 

730 billion RMB and 678 billion RMB in 2020 and 2030 respectively. 

Furthermore, according to the prediction of population growth in 2020 

and 2030 from the China-CGE model, the per capita environmental 

health co-benefits in 2020 are 480 RMB/person and in 2030, 359 RMB/ 

person. (Note: Considering the second-child policy, the population is 

1.52 billion in 2020, and 1.89 billion in 2030.) 

When coming to the validation of this result, authors compared it 

with the exiting studies. Based on the AIM (Asia-Pacific Integrated 

Assessment)/CGE model, the health co-benefit is around 6.5–25.2billion 

USD in 2030 [53]. While with the CMAQ (Community Multiscale Air 

Quality) model, study show the co-benefit range as 9.1–12.7 billion USD 

in 2030 [5]. In our study, before linking, our environmental benefits 

result of MAPLE model and CGE model is 822 billion RMB (11.81billion 

USD) and 222 billion RMB (3.19 billion USD) respectively in 2030. The 

health co-benefit after linking is around 678 billion RMB (9.74 billion 

USD), which is in the confidence range of 9.1–12.7 billion USD and 

6.5–25.2 billion USD. We could observe that the linking model help the 

results more accordance with the conclusion of exiting studies. 

 
5.3. Economic impact 

 
The economic impacts of China’s DDP scenario from linking the 

MAPLE model and the CGE model, as well as the stand-alone results, are 

shown in Fig. 9. The increase/decrease rates are compared to the REF 

scenario. Economic impacts are found to be much higher when they are 

estimated using a stand-alone CGE model as compared to the estimates 

made by the CGE model after it is linked with the MAPLE model. Impacts 

on key economic variables are 36.8%–47.5% lower when they are 

measured linking the CGE model with the MAPLE model than when they 

are measured using the CGE model without linking. For example, the 
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Fig. 8. (a) Avoided deaths caused by local pollutants in the DDP scenario, for MAPLE, China-CGE and MAPLE/CGE linking (unit: thousand persons); (b) Avoided 

health damages by local pollutants, for MAPLE, China-CGE and MAPLE/CGE linking (unit: billion RMB). 

 

GDP impact estimated through the linked model is now —0.54%, around 

58.7% smaller than that measured with the not-linked CGE model. The 

welfare loss is around 0.92%, compared to 1.49% from the CGE stand- 

alone model. The GDP loss, welfare loss, and reduction in household 

income is reduced when we link the two models. Compared to the stand- 

alone CGE model, the ratio of coal consumption have been reduced 

significantly when the CGE model is linked with the TIMES model, 

whereas the consumption of non-fossil energy is increased in the linked 

model, so the negative impacts on main economic indicators, such as 

GDP, gross output, welfare, import/export, is reduced when adopting 

decarbonization measures, which means the simulation results about the 

negative impacts of decarbonization measures on the economy by stand- 

alone CGE model might be higher than the actual situation. 

Since the initial growth rates of fossil fuels and CO2 emissions under 

the MAPLE model are much lower than those in the CGE model, it causes 

reductions in baseline emissions in the hybrid model (after linkage). The 

main reason for the higher baseline emissions in the top-down model is 

that it often excludes existing policies specific to sectors, sub-sectors and 

technologies not explicitly available in databases, the social accounting 

matrix (SAM), or input-output (I–O) tables. Furthermore, if we take GDP 

loss as example, when we consider the environmental co-benefits, the 

total GDP loss will be lower in a linked model. In 2030, the total 
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Fig. 9. Economic Impacts of the DDP scenario relative to the REF scenario. 

 
environmental health co-benefits are 678 billion RMB, and the per 

capita co-benefit will be around 461RMB/person, which will help to 

avoid 0.39% of China’s GDP loss. Therefore, in 2030, not only early 

carbon dioxide emissions peaking can be expected, but also the envi- 

ronmental co-benefits will offset the costs for government. 

The MAPLE model has a variety of energy technologies to achieve 

DDPs, especially the multiple renewable energy power generation 

technologies in the MAPLE model has enriched the input options of 

energy elements in various industries of CGE. After the linking, the CGE 

model introduces the energy input structure information optimized by 

the MAPLE model. Based on our calculation, the carbon emissions of the 

same energy input in each industry will decrease compared with the 

previous case, so the industry pays for the same emission reduction 

target with less cost. The cost of carbon emission reduction is relatively 

low, so the negative impact on major macroeconomic indicators is 

smaller than before linking. 

Compared with the existing studies related to the carbon mitigation 

target by using CGE model, studies found that the current carbon miti- 

gation policy implemented in China would have negative impacts on the 

economy with GDP loss by 0.004%–3.8% [67–69]. Xie Y et al. (2020) 

show that the range of the GDP loss is from 3.8% to 0.004% [67]. The 

economic loss result of Mu Y et al. (2018) [68] and Dai H et al. [69] is 

0.11%–0.43% and 1.2%–2.3% respectively. In our study, the GDP loss of 

achieving DDP target in without linking model and linking model are 

0.92% and 0.54%, respectively, which is within the range of the previ- 

ous studies. 

 
6. Conclusion and discussion 

 
6.1. Main conclusions 

 
Both top-down models and bottom-models have limitations. There 

are few studies that link top-down and bottom-up models to analyze 

environmental health co-benefits, and there is no such linking study for 

China. This study has filled this gap and carried out an integrated 

analysis for DDPs in China, to assess both its carbon mitigation potential, 

environmental impacts, and economic effects. The study aims to provide 

a methodological framework and useful results for other developing 

countries for their DDPs analysis. The answer to the question raised in 

the first section of this paper is clear: China’s DDP is achievable, 

affordable, and effective for both optimizing the energy system and 

improving air quality, when taking co-benefits into consideration. 

First, from the energy system optimization perspective, we found 

that, in the DDP scenario, 11.88 billion tons of carbon dioxide emissions, 

with a 1.8 billion tons reduction below baseline, can be expected in 

2030, and peaking emissions before 2030 is likely. The peaking year of 

carbon dioxide emissions for each sector are different, ranging between 

2020 and 2040. Furthermore, the primary energy consumption mix 

could be further improved. The coal-dominant situation can change, and 

in 2030, coal consumption can be reduced to 39% of the total primary 

energy mix. Gas consumption increases to around 11% in 2030, which is 

slightly above the 10% expectation of the government. The non-fossil 

fuel share will reach 27% in 2030 in the deep decarbonization 

pathway, which is well above the 20% target in China’s NDC. We also 

validated our results by comparing them with the results of other 

models, and our calculation is consistent with typical IAMs results. 

Second, there are obvious environmental co-benefits that can be 

observed. First, after linking, in the DDP scenario, the reduced SO2 is 

around 7.10 million tons, NOx reduction is 3.96 million tons, and PM2.5 

reduction is 1.02 million tons. Total emissions reduction of the three key 

local pollutants reaches 12.07 million tons, which is approximately 

8.7% below the REF scenario levels. Second, the number of deaths can 

be diminished through the co-benefits of deep decarbonization. In 2030, 

with deep decarbonization, there are 31,000 avoided deaths caused by 

cardiovascular problems and 7000 avoided deaths caused by respiratory 

illness, which also has significant economic value. If we calculate the 

economic loss of these premature deaths, the total health co-benefits will 

be around 678 billion RMB in 2030. 

Furthermore, when it comes to economic impacts, our CGE model 

can provide a clearer picture of general equilibrium effects. We can 

observe that after linking, the key economic variables are 36.8%–47.5% 

lower than the CGE stand-alone version. Notably for GDP, the GDP loss 

is reduced from 0.92% to 0.54% when taking model linkages into ac- 

count. Furthermore, 0.39% of that GDP loss is negated when considering 

the health co-benefits in the DDP scenario. The health co-benefits of 

DDPs have an obvious impact on offsetting the total system costs and 

GDP loss. 

We validated the results by comparison to key results from other 

environmental co-benefit studies. Based on the literature, the environ- 

mental health co-benefits estimated by top-down models and bottom-up 

models vary. We found that the linking helps to narrow the range of 

estimates and help the results fall in the confidence interval range of key 

studies. Model linkage could help reduce the uncertainties caused by 

using top-down or bottom-up models alone, and therefore provide a 

feasible solution for countries’ DDPs environmental co-benefit analysis. 

 

6.2. Limitations of this study 

 
In this study, authors linked the bottom-up MAPLE model with the 

top-down China-CGE model. The model linking has challenges and still 

needs further methodological improvement. For example, currently, the 

linking is based on energy prices, energy consumption, primary energy 

demand, and economic drivers. However, the databases of China-CGE 

and the MAPLE model are quite different, for both sector boundary 

definitions and units. Further improvement on data restructuring should 

be done for the CGE I–O table. In addition, for the key local pollutants, 

we mainly focused on the energy-related emissions reductions prior to 

actual emitting, so a simplified environmental impact evaluation mod- 

ule is developed to calculate the co-benefits. Since we are focusing on 

the future prediction of co-benefits, the core focus is on energy system 

optimization. For the next steps, more detailed work will be done based 

on linking these models to mature atmospheric diffusion models. 

 
6.3. Discussion on DDPs 

 
Besides the national-level analysis on DDPs, this study also has 

sectoral-level observations related to policy applications. First, based on 

our previous study [70], end-of-pipe control measures will have a sig- 

nificant effect on reducing key local pollutants – for example, in the 

power generation sector, 67.2% of reductions came from local pollutant 
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control. However, there is still un-ignorable mitigation potential left for 

energy conservation measures. Based on the results of this study, we 

observe that the accumulation of typical pollutants can be significantly 

reduced in the DDP scenario, which means that the DDP’s measures 

pertaining to energy structure and energy efficiency improvement will 

have an additional effect on reducing the amount of pollutants, even 

without considering end-of-pipe controls. For policies at the sectoral 

level, in the industry sector, coal replacement and biomass application, 

together with hydrogen and methane syngas, can play important role in 

decarbonization. In addition, the decarbonization of the industry sector 

mainly depends on the energy consumption structure of the power 

sector. In the electricity sector, efforts on promoting hydropower, 

onshore/offshore wind power, and solar photovoltaic will have obvious 

impact on decarbonization. In addition, decarbonization measures in the 

residential sector have positive effects both on reducing carbon dioxide 

emissions and local pollutant emissions, especially for primary PM2.5. 

Furthermore, the cross-sector mitigation potential could be further 

increased by using energy conversion measures, renewable energy 

development policy, and carbon pricing [71]. 

When it comes to the environmental impact of DDPs, the most sig- 

nificant contribution to the reduction of SO2 and NOx is from the power 

generation sector, and the contribution ratio is around 69% and 67% in 

2030. The contribution of the transportation sector to emissions re- 

ductions also deserves attention, as it constitutes around 25% of NOx 

reduction in 2030. Also, the energy-intensive industry sectors will 

contribute around 20–26% of SO2 reduction in 2030. The sectoral 

contribution of PM2.5 emissions reduction is slightly different from the 

above two pollutants. The building sector (residential and commercial 

sub-sectors) is the sector that accounts for the largest proportion of total 

PM2.5 emissions, and its contribution to reducing PM2.5 emissions keeps 

increasing over time, from a 15% contribution in 2020 to a 25% 

contribution in 2030. The improvement of residential energy con- 

sumption efficiency will affect the amount of emissions to a large extent. 

We want to emphasize that the mitigation of key local pollutants will 

be highly effective if it is done through original source control, like 

decarbonization measures. Expensive end-of-pipe control measures are 

not the only solution for pollutant control. Therefore, in addition to 

paying attention to the improvement of end-of-pipe controls, original 

source control of pollutant emissions should not be ignored, and this 

could also have a positive effect on reducing emissions in the short-to 

medium-term as the co-benefits of China’s decarbonization pathway. 

Most developing countries are facing challenges for both carbon 

mitigation and economic development. Some of these countries also 

have serious air pollution problems. This study provides evidence that 

DDPs  can  help  developing  countries  balance  their  economic 

development, carbon mitigation and air quality. For example, DDPs can 

prompt the government and stakeholders in developing regions to 

envision and plan policy packages to begin a long-run shift from a fossil 

fuel-oriented pathway towards a zero emissions future [72]. For some 

developing countries, advanced mitigation technologies might be very 

expensive, but the DDP’s efforts on efficiency improvement and elec- 

trification can be effective for both energy structure adjustment and 

environmental protection [73,74]. A narrow focus on techno-economic 

optimization could be detrimental to realizing even modest progress on 

decarbonization [75]. China, based on its deep decarbonization efforts 

at the sectoral and technological level, will have carbon mitigation and 

environmental co-benefits in the mid- and long term [76–78]. This study 

linking a bottom-up model and a top-down model to assess environ- 

mental co-benefits is an attempt to prove the effective, affordable, and 

environmentally beneficial impacts of DDPs. The economic impact and 

environmental impact of DDPs are worthy of more attention in devel- 

oping countries, and their combined consideration in this novel 

model-linkage approach makes the case for the economic and environ- 

mental benefits of decarbonization. 
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Appendix A. Detailed Description of the CGE Model 

 
The Naming rules for variables: 

(1) Endogenous variables are named as uppercase letters, and exogenous variables are named as uppercase letters with a cross line above; (2) 

Variables are generally named as their recognized prefix, as Q is quantity, P is commodity price, W is factor price, Y is income, E is expenditure; (3) The 

initial value of all variables in business-as-usual scenario are used as parameters and are named as original names with 0 added behind, while other 

parameters are named as lowercase letters. 

Definition of sets: 

 
I,J = {production sectors or commodities}; 

F = {factors, including capital and labor}; 

E(⊂I,J) = {energy sector or commodity}; 

NE(⊂I,J) = {non-energy sector or commodity}; 

 
 

A1.1 Production module 

 
Constant elasticity of substitution (CES) functions with six levels of nesting are used to characterize production behaviors in this model: the first 
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1 — δA 
⋅
 

i ⋅ i ⋅ 
ρi 

i + i ⋅ 
ρi 

i 

i 

(1.6) 

 

level is the aggregation of production factors and non-energy intermediate inputs; the second level includes the aggregation of labor and capital- 

energy and that of each non-energy intermediate input; the third level is the aggregation of capital and energy; the fourth level is the aggregation 

of electric power and fossil fuels; the fifth level is the aggregation of coal and the composite inputs of refined petroleum and gas; the sixth level is the 

aggregation of refined petroleum and gas. 

The definition of CGE sectors are shown in table A1 and the structure of the production function is given in Fig. 2 in the main text of the paper. 

 
Table A1 

Definition of sectors/commodities in the CGE model 
 

Sector Name Definition or coverage 
 

AGRI Agriculture, Forestry, Animal Husbandry and Fishery 

COAL Mining and washing of coal 

OILNG Extraction of petroleum and natural gas 

MINE Mining and processing of metal and nonmetal 

FTPMF Food, tobacco, textile, leather, fur, feather, timber, furniture, paper, printing 

PETRO Processing of petroleum, coking, processing of nuclear fuel 

CHEMI Manufacture of chemical products 

NMETA Manufacture of non-metallic mineral products 

METAL Smelting and processing of metals 

OTHMF Other manufacture 

ELECT Production and distribution of electric power and heat power 

GAS Production and distribution of gas 

WATER Production and distribution of tap water 

CONST Construction 

TRANS Transport, storage and postal services 

SERVI Other services 

 
 

A1.1.1 The first level of CES function of total productivity 

The aggregation of value-added and intermediate input: 

QA A 
[
δA QVA 

A （ 
δA
) 

QINTA 
A 
]1/ρA

 

 
where QAi is the total production of sector i, QVAi and QINTAi are the input of value-added and intermediate input in sector i respectively, δA and αA

 
i i 

are the share parameter and efficiency parameter; ρA is the substitution elasticity parameter between value-added and intermediate input, and σA = 
i i 

1 /(1 — ρA), σA is the substitution elasticity between value-added and intermediate input. 
i i,r 

Optimal factor input under total production: 

 PVA  δA  
(

QINTA 
)1—ρA

 

 

 

where PVAi and PINTAi are the price of value-added and intermediate input in sector i respectively. 

Relationship of price of total output: 

PAi ⋅ QAi = PVAi⋅QVAi + PINTAi⋅QINTAi (1.3) 

 
where PAi is the producer price of sector i. 

 
A1.1.2 Intermediate input function 

The quantity of intermediate input of non-energy commodity: 

QINTj,i = icaj,i⋅QINTAi  j ∈ NE (1.4) 

The price of intermediate input: 

PINTAi = icaj,i⋅PQi  j ∈ NE (1.5) 
j 

 

where QINTj,i is the quantity of the input of non-energy commodity j as intermediate input of sector i, icaj,i is the intermediate input coefficient, 
denoting the proportion of the input of non-energy commodity j in the total intermediate input of sector i. 

 
A1.1.3 The second level of CES function of value-added 

The aggregation of labor and capital-energy: 

 
QVA αva 

[
δva QLD 

va （
 δva 

) 
QKED 

va 
]1/ρva

 

 
where QLDi and QKEDi are the input of labor and capital-energy in sector i respectively, δva and αva are the share parameter and efficiency parameter; 

i i 
ρva is the substitution elasticity parameter between labor and capital-energy, and σva = 1 /(1 — ρva ), σva is the substitution elasticity between labor and 

i i i i 

(1.1) 

QVAi 
(1.2) 

i = 1 — 
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PEEi 
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1 — δec⋅ 

ef ρi ef 
i 

δi × QEcoali  + 1 — δi 

i i  i 
i 

(1.16) 
PEoilgasi 

= （
1 — δef 

)
 

 

capital-energy. 

Optimal factor input of value-added: 

WL δva 
(

QKED 
)1—ρva

 

  

Relationship of price of the input of value-added: 

PVAi ⋅ QVAi = WL⋅QLDi + PKEi⋅QKEDi (1.8) 

 
where WLi and PKEi are the price of the input of labor and capital-energy in sector i respectively. 

 
A1.1.4 The third level of CES function of capital-energy 

The aggregation of capital and energy: 

 
QKED αke 

[
δke QKD 

ke （
 δke 

) 
QED 

ke 
]1/ρke

 

 
where QKDi and QEDi are the input of capital and energy in sector i respectively, δke and αke are the share parameter and efficiency parameter; ρke is the 

i i i 
substitution elasticity parameter between the input of capital and energy, and σke = 1 /(1 — ρke ), σke is the substitution elasticity between the input of 

capital and energy. 

Optimal factor input: 

i i i 

WK δke 
(

QED 
)1—ρke 

  
 

where WKi and PECi are the price of the input of capital and energy in sector i respectively. 

Relationship of price of the input of capital and energy: 

PKEi ⋅ QKEDi = WK⋅QKDi + PECi⋅QEDi (1.11) 

 

 
A1.1.5 The fourth level of CES function of the aggregation of energy 

The aggregation of fossil fuels and electric power: 

 
QED αec 

[
δec QEF 

ec （
 δec 

) 
QEE 

ec 
]1/ρec

 

 
where QEFi and QEEi are the input of fossil fuels and electric power in sector i respectively, δec and αec are the share parameter and efficiency 

i i 
parameter; ρec is the substitution elasticity parameter between the input of fossil fuels and electric power, and σec = 1 /(1 — ρec ), σec is the substitution 

i 

elasticity between the input of fossil fuels and electric power. 

Optimal factor input of the aggregation of energy: 

i i i 

PEF δec 
(

QEE 
)1—ρec 

  
 

where PEFi and PEEi are the price of the input of fossil fuels and electric power in sector i respectively. 

Price relationship of the input of the aggregation of energy: 

PECi ⋅ QEDi = PEFi⋅QEFi + PEEi⋅QEEi (1.14) 

 

 
A1.1.6 The fifth level of CES function of the aggregation of fossil fuels 

The aggregation of coal and refined petroleum-gas: 

[ 
ef （ ) ef 

]1/ρef 

 

 

where QEcoali and QEoilgasi are the input of coal and refined petroleum-gas in sector i respectively, δef and α
ef
 are the share parameter and efficiency 

i i 

parameter; ρ
ef
 is the substitution elasticity parameter between the input of coal and refined petroleum-gas, and σ

ef
 = 1 /(1 — ρef

 ), σef
 is the substi- 

i 

tution elasticity between the input of coal and refined petroleum-gas. 

First order condition of optimal factor input: 

i i i 

 PEcoal  δef 

 

 

(
QEoilgas 

)1—ρ
ef

 

 QEcoali 
i 

QEFi i 

QKDi i 

QLDi i 

(1.7) 

i = 1 — (1.9) 

(1.10) 

i = 1 — 

(1.13) 

QEF ef ρi 

i = αi × × QEoilgasi (1.15) 

⋅ 
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QDCi 

i i 

i i 

 

where PEcoali and PEoilgasi are the price of the input of coal and refined petroleum-gas in sector i respectively. 

Price relationship of the input of the aggregation of fossil fuels: 

PEFi ⋅ QEFi = PEcoali⋅QEcoali + PEoilgasi⋅QEoilgasi (1.17) 

 

 
A1.1.7 The sixth level of CES function of the aggregation of gas and refined petroleum 

The aggregation of gas and refined petroleum: 

pg 
[ 

pg 
pg

 

  

pg 
pg ]1/ρpg

 

 

 

where QEgasi and QEoili are the input of gas and refined petroleum in sector i respectively, δpg and α
pg

 are the share parameter and efficiency 
i i 

parameter; ρ
pg

 is the substitution elasticity parameter between the input of gas and refined petroleum, and σ
pg

 = 1 /(1 — ρpg), σpg
 is the substitution 

i 

elasticity between the input of gas and refined petroleum. 

First order condition of optimal factor input: 

i i i 

PEgas δpg 

 

 

( 
QEoil 

)1—ρ
pg

 

 

 

where PEgasi and PEoili are the price of the input of gas and refined petroleum in sector i respectively. 

Price relationship of the input of the aggregation of refined petroleum and gas: 

PEoilgasi ⋅ QEoilgasi = PEoili⋅QEoili + PEgasi⋅QEgasi (1.20) 

 

 
A1.2 Trade module 

 

 
A1.2.1 Export 

CET function is adopted to describe the allocation of supply between domestic market and export: 

QA = αt ⋅
[
δt ⋅ QDAρ

t 

+ 
（

1 — δt
) 

⋅ QEρ
t 
] 

pi > 1 (1.21) 

where QDAi and QEi are the supply of commodity produced in sector i to domestic market and export respectively, δt and αt are the share parameter 
i i 

and efficiency parameter; ρt is the transformation elasticity parameter between domestic market supply and export, and σt = 1 /(ρt — 1), σt is the 
i 

transformation elasticity between domestic market supply and export. 

First order condition: 

i i i 

PDA 
 

( 
δt ) ( 

QE 
)1—ρt 

 

 

where PDAi and PEi are the domestic price and export price of commodity produced in sector i. 

Relationship of price: 

PAi ⋅ QAi = PDAi⋅QDAi + PEi⋅QEi (1.23) 

Exchange rate conversion between the price of export commodity in the global market and SAR: 

PEi = PWEi⋅EXR (1.24) 

 
where PWEi is the international market price of exported commodity i, EXR is the exchange rate. 

 
A1.2.2 Import 

CES function is adopted to describe the choice between domestic and import commodity: 

q 
[ 

q 
q
 

   

q 
q ]1/ρq

 

  

 

where QQi, QDCi and QMi are the demand for composite commodity i, domestic commodity i and import commodity i respectively, δq and α
q
 are the 

i i 
share parameter and efficiency parameter; ρ

q
 is the substitution elasticity parameter between domestic and import commodity, and σ

q
 = 1 /(1 — ρq), 

i i i 

σ
q
 is the substitution elasticity between domestic and import commodity. 

First order condition: 

PDC 
 

( 
δ

q ) ( 
QM 

)1—ρq 

 

i i i i i 

QEgasi i 

i i i QEoilgasi = αi + (1 — δi 

(1.19) 

i 

(1.22) 

i 

(1.25) 

i 

(1.26) 
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∑ 

 

where PDCi,r is the price of domestic commodity i, PMi,r is the price of import commodity i. 

Composite commodity price is the weighted mean of the price of domestic and import commodity: 

PQi ⋅ QQi = PDCi⋅QDCi + PMi⋅QMi (27) 

 
where PQi is the price of composite commodity i. 

Exchange rate conversion between the price of import commodity in the international market and China: 

PMi = PMWi ⋅ (1 + tmi)⋅EXR (28) 

 
where PMWi is the international market price of import commodity i, tmi is the import tariff rate of import commodity i. 

 
A1.3 Income and expenditure module 

 
A1.3.1 Income and expenditure of households 

 

 
A1.3.1.1 Income of households 

In this model, the households’ income is composed of labor payment, capital revenue and transfer payments from government and foreign 

countries. 

YH = 
∑

WL ⋅ QLDi + shifhk
∑

WK ⋅ QKDi + TSGTOH + TSETOH + EXR⋅TSWTOH (1.29) 

 
 

where YH is the income of households, shifhk is the coefficient of the households’ share in capital revenue, TSGTOH is transfer payments from 

government, TSETOH is transfer payments from enterprises, TSWTOH is transfer payments from foreign countries. 

 

A1.3.1.2 Expenditure of households 

The consumption function of households is assumed as a Cobb-Douglas utility function in this model, which can derive the final consumption of 

households as the following equation: 

PQi ⋅ QHi = shrhi⋅mpc⋅(1 — th)⋅YH (1.30) 

 
where QHi is the consumption of commodity i of households, mpc is the marginal propensity to consume of the household, shrhi is the share of the 

consumption of commodity i in the expenditure of households, th is the rate of household’s income tax. 

The households’ expenditure contains total final consumption: 

EH = PQi⋅QHi + th⋅YH (1.31) 
i 

 

where EH is the expenditure of households. 

Accordingly, household saving is: 

HSAV = YH — EH (1.32) 

 
where HSAV is household saving. 

 
A1.3.2 Income and expenditure of governments 

 

 
A1.3.2.1 Income of government 

The government’s income is composed of tariff, capital revenue and carbon tax. 

YG = 
∑

tcindi ⋅ PAi⋅QAi + 
∑

tmi ⋅ QMi⋅PMWi⋅EXR + th ⋅ YH + te ⋅ shifek ⋅ 
∑

WKi ⋅ QKDi + EXR ⋅ TSWTOG + TOCTR (1.33) 

   

where YG is the income of government, tcindi is the rate of indirect tax paid to government of industry i, shif ek is coefficient of enterprise’ share in total 

capital revenue, te is the rate of enterprise’s income tax, TSWTOG is the transfer payments from foreign countries to government, TOCTR is carbon tax 

revenue. 

 
A1.3.2.2 Expenditure of government 

The government’s expenditure includes commodity consumption, energy subsidy, transfer payments to the local government. 

EG =  PQi ⋅ QGi + TSGTOH + TSGTOE + EXR⋅TSGTOW (1.34) 
i 

i i i 

i i 
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where EG is the government’s expenditure, TSGTOH, TSGTOE and TSGTOW are government’s transfer payments to household, enterprises and foreign 

counties respectively. 

In the equation above, consumption demand of the government is: 

PQi ⋅ QGi = shrgi⋅mpcg⋅YG (1.35) 

 
where shrgi is the spending share of government’s consumption of commodity i, mpcg is government’s marginal propensity to consume. 

Accordingly, government saving is: 

GSAV = YG — EG (1.36) 

 
where GSAV is government saving. 

 
A1.3.3 Income and expenditure of enterprises 

 

 
A1.3.3.1 Income of enterprises 

The enterprises’ income includes capital revenue and transfer payments from the government. 

YENT = shifek WKi ⋅ QKDi + TSGTOE (1.37) 
i 

 

where YENTr is the income of enterprises, shifek is the coefficient of the enterprises’ share in capital revenue. 

 
A1.3.3.2 Expenditure of enterprises 

The enterprises’ expenditure consists of the enterprise income taxes paid to the government and the transfer payments to the household. 

EXENT = te ⋅ fhifek ⋅ WKi ⋅ QKDi + TSETOH (1.38) 
i 

 

where EXENT is the expenditure of enterprises. 

Accordingly, enterprise saving is: 

ESAV = YENT — EXENT (1.39) 

 
where ESAV is enterprise saving. 

 
A1.4 Carbon emission and carbon tax module 

 
A1.4.1 Carbon emission 

 
Carbon emission coefficient (ton CO2/10,000 Yuan) of three kinds of fossil fuel inputs (coal, refined petroleum, gas) of each industry in this model 

can be obtained from the data of base year, which can derive the calculation of carbon emission as the following equations:  

QEMISi = coefcoal⋅QEcoali + coefoil⋅QEoili + coefgas⋅QEgasi (1.40) 

QTEMIS = QEMISi (1.41) 
i 

 

where QEMISi is the amount of carbon emission of industry i, QTEMIS is total amount of national carbon emissions. 

 
A1.4.2 Carbon tax 

 

CTRi = ctax⋅QEMISi (1.42) 

TOCTR = CTRi (1.43) 
i 

 

where ctax is the carbon tax rate, CTRi is the carbon tax payable of sector i. 

 
A1.4.3 Adjustments of production function equation 

 
The first order condition of the fifth level of production function should be adjusted as: 

(1 + ctax⋅coef  )⋅PEcoal δef 

 

 

(
QEoilgas 

)1—ρ
ef

 

 QEcoali 
i 

⋅ 



X. Yang et al.  

19 

 

 

∑ 

∑ 

∑ 

∑ 

∑ 

gas i i i 
i 

(1 + ctax⋅coefoil)⋅PEoili 
= 

(1 — δpg)
⋅
 

 

Meanwhile, the price relationship of the input of the aggregation of fossil fuels should be adjusted as: 

PEFi ⋅ QEFi = (1 + ctax ⋅ coefcoal) ⋅ PEcoali ⋅ QEcoali + PEoilgasi⋅QEoilgasi (17a) 

The first order condition of the sixth level of production function should be adjusted as: 

（
1 + ctax⋅coef 

)
⋅PEgas δpg 

 

 

( 
QEoil 

)1—ρ
pg

 

 

Meanwhile, the price relationship of the input of the aggregation of refined petroleum and gas should be adjusted as: 

PEoilgasi,r ⋅ QEoilgasi,r = (1 + ctax ⋅ coefoil)PEoili,r ⋅ QEoili,r + 
（

1 + ctax ⋅ coefgas

) 
⋅ PEgasi,r ⋅QEgasi,r (20a) 

 
A1.5 Market clearing and macroeconomic closure module 

 
A1.5.1 Commodity market clearing 

 
For the non-energy commodities as intermediate inputs, we have: 

 

QQi = icai,j⋅QINTAj + QHi + QGi + QINVi + QSTOCKi, i ∈ NE (1.44) 
j 

 
 

where QINVi is the demands for commodities i used as investment, QSTOCKi is the demands for commodities i used as stock. 

For energy commodities, we have: 
 

QQi = QEi,j + QHi + QGi + QINVi + QSTOCKi, i ∈ E (44a) 
j 

 

where QEi,j is the inputs of different energy commodity of every industry, here i refers to four kinds of energy commodities inputs of industry j, i.e., 

QEEj, QEcoalj, QEoilj, QEgasj. 

 
A1.5.2 Factor market clearing 

 
The labor supply equal to the labor demand: 

QLS = QLDi (1.45) 
i 

For capital, the same assumption as follows: 

QKDi = TQKAi⋅krenti (1.46) 

QKS = TQKAi (1.47) 
i 

 
where TQKAi is the capital stock of industry i, krenti is the capital rent of industry i, QKS is the total capital stock of the whole economy. 

 
A1.5.3 Governmental budget balance 

 
Government savings is the difference value of governmental income and governmental expenditure, see equation(36). 

 
A1.5.4 Investment and saving balance 

 
This model is a savings-driven model in which total investment is decided by total savings. 

TOTINV + PQi ⋅ QSTOCKi = HSAV + ESAV + GSAV + EXR ⋅ FSAV + WALRAS (1.48) 
i 

 

PQi ⋅ QINVi = shareinvi⋅TOTINV (1.49) 

 
whereTOTINV is total investment, FSAV is foreign savings, WALRAS is dummy variable. shareinvi is the share of commodity i used as investment in the 

total investment. 

 
A1.5.4 Foreign income and expenditure balance 

 
The difference value of income and expenditure of foreign countries is foreign savings. 

∑
PWMi ⋅ QMi + TSGTOW = 

∑
PWEi ⋅ QEi + TSWTOG + TSWTOH + FSAV (1.50) 

  i i 

QEgasi i 

(19a) 
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WKAt = 
∑ QKDi,t ⋅WKi t (1.57) 

i 
, 

 
A1.5.6 Macroeconomic closure 

 
The “neoclassic closure” rule is adopted in this model. In this model, all the savings are transformed into investment, and the total investment 

equals total savings endogenously. Labor supply at the national level is exogenous, and all factors are fully employment in the whole economy. 

The nominal GDP can be calculated from the following equation: 

GDPVA = 
∑

PQi ⋅ 

(

QHi + QGi + QINVi + QSTOCKi

) 

+ 
∑

PEi ⋅ QEi — 
∑

PMi ⋅ QMi + 
∑

tmi ⋅ QMi⋅PMWi⋅EXR (1.51) 

    

where GDPVA is the nominal GDP. 

The real GDP can be calculated as follows: 

GDP = 
∑(

QHi + QGi+QINVi + QSTOCKi

) 

+ 
∑

QEi — 
∑

(QMi — tmi ⋅ QMi ⋅ PMWi ⋅ EXR

) 

(1.52) 

   
 

 

where GDP is the real GDP. 

Therefore, the GDP index can be obtained by the following equation: 

PGDP = 
 GDP 

 
GDPVA 

 

 

 
(1.53) 

 

where RGDP is the GDP index. 

Meanwhile, the CPI can be obtained as follows: 
∑

i 

PQi × QH0i 

∑

i 

PQ0i × QH0i 

where CPI is the consumer price index. 

In the model, household welfare variation is measured by using the Hicksian equivalent variation (EV). 

 
A1.6 Dynamic mechanism 

 

 

 
 

(1.54) 

 

This model is a recursive dynamic CGE model, and the dynamic mechanism includes labor supply growth, increase of total factor productivity 

(TFP) and capital accumulation. 

 
A1.6.1 Labor supply growth 

 
Labor supply in different period is described as: 

TTQLt+1 = (1 + lgow)TTQLt (55) 

 
where lgow is the annual growth rate of labor supply. 

 
A1.6.2 TFP increase 

 

In the model, TFP Increase is represented by the change of technology parameter in the second level of CES production function. 

αva
 = (1 + tgrow)⋅αva

 

 
 

(1.56) 
i  t+1 i  t 

 

where tgrow is the annual growth rate of TFP. 

 
A1.6.3 Capital Accumulation 

 
We adopted the method used by James Thurlow (2004)1 to describe the capital accumulation in different period. In the model, total capital supply 

is endogenous in a given period and the total available capital is determined by the previous period’s capital stock and new investment. 

In this model, the new capital stock resulting from the previous investment is allocated across sectors in proportion to each sector’s share in 

aggregate capital income, and these proportions are adjusted by the ratio of each sector’s profit rate to the average profit rate for the whole economy. 

∑
QKDi t 

, 
 
 

1 Thurlow, J. (2004). A Dynamic Computable General Equilibrium (CGE) Model for South Africa: Extending the Static IFPRI Model. TIPS Working Paper Series 

(WP1-2004), 53–55. 

i i i 

i i i i 

CPI = 

i 
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i 

, ⋅∑
QINVi t 

, ∑
QKDi,

t 

WKAt 

∑

i 

PQi,t⋅QINVi,t 

 

where WKAt is the average economy-wide rental rate of capital at time period t. 

enki t = 
 QKDi,t 

⋅

[

1 + β ⋅ 

( 
WKi,t 

— 1

)] 

(1.58) 

i 

 

where sharenki,t is the share of the new capital investment of industry i at period t, βi is the inter-sectoral mobility coefficient of investment. The value 

of βi can be chosen from 0 to 1, βi is 0 means there is no inter-sectoral mobility of investment, whereas βi is 1 means there is full inter-sectoral mobility 

of investment. 

PKt = 
∑

PQi t 

 QINVi,t  

 
  

 

(1.59) 

 

where PKt is the price of capital at period t. 

 

QINDi,t = 

sharenki,t⋅ 
PKt 

(1.60) 

 

where QINDi,t is the new-added capital of industry i at period t. 

TQKAi,t+1 = TQKAi,t ⋅ (1 — depri) + QINDi,t (1.61) 

 

where TQKAi,t+1 is the capital stock of industry i at time period t+1, depri is the depreciation rate of industry i. 
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