
HAL Id: hal-03501803
https://hal.science/hal-03501803

Preprint submitted on 23 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An exact dynamic programming algorithm, lower and
upper bounds, applied to the large block sale problem

David Nizard, Nicolas Dupin, Dominique Quadri

To cite this version:
David Nizard, Nicolas Dupin, Dominique Quadri. An exact dynamic programming algorithm, lower
and upper bounds, applied to the large block sale problem. 2021. �hal-03501803�

https://hal.science/hal-03501803
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

AN EXACT DYNAMIC PROGRAMMING ALGORITHM, LOWER AND

UPPER BOUNDS, APPLIED TO THE LARGE BLOCK SALE PROBLEM

DAVID NIZARD1,∗, NICOLAS DUPIN1 AND DOMINIQUE QUADRI1

Abstract. In this article, we address a class of non convex, integer, non linear mathematical programs

using dynamic programming. The mathematical program considered, whose properties are studied in

this article, may be used to model the optimal liquidation problem of a single asset portfolio, held in

a very large quantity, in a low volatility and perfect memory market, with few market participants. In

this context, the Portfolio Manager’s selling actions convey information to market participants, which

in turn lower bid prices and further penalize the liquidation proceeds we attempt to maximize.

We show the problem can be solved exactly using Dynamic Programming (DP) in polynomial time.

However, exact resolution is only efficient for small instances. For medium size and large instances, we

introduce dedicated heuristics which provide thin admissible solutions, hence tight lower bounds for

the initial problem. We also benchmark them against a commercial solver, such as LocalSolver [7]. We

are also interested in the continuously relaxed problem, which is non convex. Firstly, we use continuous

solutions, obtained by free solver NLopt [26] and transform them into thin admissible solutions of the

discrete problem. Secondly, we provide, under some convexity assumptions, an upper bound for the

continuous relaxation, and hence for the initial (integer) problem. Numerical experiments confirm

the quality of proposed heuristics (lower bounds), which often reach the optimal, or prove very tight,

for small and medium size instances, with a very fast CPU time. Our upper bound, however, is not

tight.

1. Introduction

In this article, we are interested in solving a non convex, integer, non linear mathematical
program, in a maximization context, with a linear constraint.
Although the class of non convex mixed integer non linear problems (MINLP) is used to
model a wide range of real world phenomena, it often comes with a steep price tag. These
problems are generally NP-hard [15], which make them much harder to solve both in theory
and practice, than convex non linear programs. It is so, because continuous relaxation of
convex MINLP remains convex, which makes it, at least in theory, easier to handle. Indeed,
in this convex context, a large panel of efficient methods were put forward early in the liter-
ature. For instance, Benders decomposition was introduced in [19], branch & bound based
approaches in [21, 34], and outer-approximation methods in [13]. However, the particular
subclass of convex quadratic pure integer programs has been covered, either by a straight-
forward branch & bound, or by transforming the initial problem into a linear one. One can
refer to [9] and [33] for examples of such approaches. In practice, current commercial solvers
achieve excellent performances on this subclass.
Back to the general non convex case, where no general efficient algorithm is known, we find
specific approaches in the literature, depending on the properties of the objective function
f . Interestingly, the quadratic program, which has numerous applications in engineering and
finance, has again been studied extensively (cf. survey [14]).
More generally, when we assume f differentiable over a compact set and attempt to minimize
f , we know the minimum exists. A necessary condition for global minimum is stationarity
(∇f(x̂) = 0). If furthermore, local convexity is achieved (∇2f(x̂) = 0), then x̂ is a local

Keywords. mixed integer non linear programming, non convex optimization, dynamic programming, opti-
mal portfolio liquidation, large block sale, heuristics.

1Laboratoire Interdsicplinaire des Sciences du Numérique, Université Paris-Saclay, Gif-sur-Yvette, France.
∗ Corresponding author: nizard@lri.fr.

1

2 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

minimum. The remaining question is how to extend this local property to a global minimum
? In fact, as mentioned in survey [23], a sufficient condition is that f and its convex hull,
denoted cof coincide locally. Consequently, x̂ is a global minimum if and only it is stationary
and cof(x̂) = f(x̂). In practice, we only shifted the problem because expressing cof is a very
arduous task. Nonetheless, a large body of literature is devoted to build a sequence of convex
functions, inferior to f on the admissible domain, referred to as convex under-estimators,
which converge to the global minimum. Specifics of the algorithm and assumption on f to
ensure convergence are problem dependent. Reader can refer to [24] and for a comprehensive
presentation of current available techniques.
In practice, quite logically, few solvers can cope with the general non convex case. Com-
mercial solver CPLEX [11], from its version 12.6, made progress in this direction by solving
non convex quadratic programs with mixed integer variables, using spatial branch & bound
techniques. Recently, solvers such as BARON (distributed under GAMS [20]) are able to
solve this type of problems, but not for every objective function. For instance, BARON can
not handle objective functions with an arctangent.
We also mention the free solver NLopt [26] which provides continuous solutions for a large
spectrum of functions. While it implements different algorithms, we empirically found it
works best, for our problem, using the gradient based optimization method developed in
[37], which is based on conservative convex separable approximations and provide stationary
points. In this paper, we only use NLopt in the context of our two-step approach, as discussed
in section 4.5.
In this study, we shifted our focus towards a specific mathematical program, whose properties
we examine, and which originates from a real problem well known by financial practition-
ers: the optimal portfolio liquidation. We consider the case of a single asset portfolio, held
in a very large quantity, in a low volatility and perfect memory market, with few market
participants. In this context, the Portfolio Manager’s selling actions convey information to
market participants, which in turn lower bid prices and further penalize liquidation proceeds
we attempt to maximize.
We show the problem can be solved exactly using Dynamic Programming (DP) in polynomial
time. However, exact resolution is only efficient for small instances. For medium size and
large instances, we introduce dedicated heuristics which provide thin admissible solutions,
hence tight lower bounds for the initial problem. We also benchmark them against a com-
mercial solver, such as LocalSolver [7]. We are also interested in the continuously relaxed
problem, which is non convex. Firstly, we use continuous solutions, obtained by free solver
NLopt [26] and transform them into thin admissible solutions of the discrete problem. Sec-
ondly, we provide, under some convexity assumptions, an upper bound for the continuous
relaxation, and hence for the initial (integer) problem. Numerical experiments confirm the
quality of proposed heuristics (lower bounds), which often reach the optimal, or prove very
tight, for small and medium size instances, with a very fast CPU time. Our upper bound,
however, is not tight.
In the financial literature, the Large Block Sale (LBS) problem, which belongs to the larger
class of optimal liquidation portfolio problems has been extensively studied through many
different angles. A first topic of interest was the market impact of large block trades. What
is the performance of the asset subject to a LBS, under different time horizons ? How long
does it take for the market to recover ? [22, 12, 18] provide empirical studies related to such
questions.
A second alley studies specific markets dedicated to such transactions, known as upstairs
market, and their more recent electronic counterpart the dark pools. The reader can refer,
for instance to [29] and [30]. A third approach was to model incentives of involved market
participants in a block transaction (block trader, broker, specialist etc.), study the price equi-
librium, and derive existence and unicity conditions. [35] and [27] provide examples.
Another type of model where price impact is inferred from the modeling of the Limit Order
Book (LOB), which ranks best bid and ask prices and their corresponding volumes, was pro-
posed in [31]. Refinements in that direction can be found in [1, 2] and [32].

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 3

There are also abundant references for optimal liquidation in continuous time, where LBS
turns into a stochastic control problem ([5], [38], [36], [28], [16, 17], just to mention a few).
However, in this article we consider LBS in discrete time, with integer variables. Our key
question, how to optimally split the block into smaller orders in order to maximize the sale
proceeds or equivalently minimize overall price impact, has been investigated in [8], [3, 4].
The corresponding models introduce a stock price dynamic, which accounts for previous
trades size. The majority of the models distinguish between the temporary price impact, due
to the temporary imbalances between supply and demand at a given point in time, and the
permanent impact which reflects the effect on share price of the information conveyed by our
trading (as defined in [4]). Their resolution is often based on dynamic programming.
In most cases, related impact price functions obey linear or power laws. In addition, the
majority of models feature either a short memory in the sense their penalty at time tk is
in g(xk), depending only of the xk units traded at that time, or their long term memory is

separated (e.g [3]), as the penalty at time tk is in
∑k

j=1 g(xj).

In this paper, as in [10], we do not forecast the stock prices, which we assume to be known
(or at least correctly estimated) prior to optimization. Therefore, we assume deterministic
asset prices. Prices are actually simulated, using a classical geometric Brownian Motion [25],
independently of the resolution of our mathematical program.
From a financial practitioner’s standpoint, it is only realistic in very calm markets and for a
low volatility asset, or very short time horizon (typically a day to a week), where no news or
earnings are expected to be released. While it seems quite restrictive, it is in our experience,
a very favorable environment to execute large block trades. On the contrary, in agitated
markets, liquidity is scarce and/or large block sales of very volatile assets (which are not so
frequent) are driven by prices evolution regardless of execution costs. More importantly, this
assumption insulates the market participants response to the liquidation, which constitutes
our main object of study, from the evolution of asset prices. Consequently, our resolution
algorithms and optimization techniques are valid regardless of the price vector.
Hence, our work aim to show how to best liquidate our single asset portfolio, provided asset
prices evolution are correctly estimated, no matter how these estimations are made. We
also included the case of constant prices during liquidation in numerical experiments, as a
benchmark to best measure the dissemination of information in the market.
Outside of finance, the price vector p can be interpreted as the standard behavior of the
environment unaltered by our actions. Reformulated in this context, we assume the standard
behavior to be known, and we aim to study how our actions, which convey information to the
environment with perfect memory, influence its response in order to maximize the output, or
equivalently minimize our impact.

The contributions of our work are summarized as follows:

• We propose a long term memory model, with a price impact function in g(
∑k

j=1 xj),
for non linear bounded functions g, which is, to the best of our knowledge, new in the
financial literature, related to the optimal liquidation problem.

• We use dynamic programming to solve our non convex non linear integer program,
exactly for small size instances.

• We present a two-step method, based on an adapted dynamic programming algo-
rithm, to compute heuristics for medium size and large instances. It yields very tight
lower bounds, if not optimal solutions. We show this approach can be coupled with
continuous optimization techniques to refine lower bounds of the initial problem. We
also obtain an upper bound, while not tight, under some convexity assumptions on
the objective.

• For almost every instance where our heuristics converge in tractable time, we beat
the commercial solver LocalSolver v9.5 (cf. [7]) and achieve a much higher optimal
coverage ratio.

This article is organized as follows. Section 2 defines the problem and its notations. Then,
section 3 introduces Bellman equation and solves the problem using dynamic programming.

4 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

In section 4, we present different methods to obtain heuristics and discuss their complexity.
In section 5, we study the continuously relaxed problem and compute an upper bound. We
present our numerical results in section 6. Finally, section 7 concludes and presents futures
perspectives for our work.

2. Problem statement and notations

We consider an investor in a financial market, who holds N units of an asset and wishes
to liquidate them over a given time horizon, split in T time steps.
He decides to sell at each time step the quantity xt ∈ [[0;N]] of a single asset. Hence, the
admissible decisions set is defined by:

(1) D =

{
(x1, . . . , xT) ∈ NT ,

T∑

t=1

xt = N

}

For each time step t ∈ [[1;T]], xt ≥ 0, we assume a sell only program, and let pt > 0 be the
asset best bid price. We also assume there is a minimal floor price qt > 0 for very large block
trades, with qt < pt. To simplify notations, we define ct = pt − qt > 0. We also introduce a
strictly increasing function g from N to [0, 1[, such that g(0) = 0 and lim

+∞
g = 1.

At a given time t, the execution price of a block of xt units of asset is modeled by:

(2) vt(xt) = pt xt − (pt − qt) · xt · g
(

t∑

k=1

xk

)
=

[
pt − ct · g

(t∑

k=1

xk

)]
xt

Let f be the objective value function from NT → R:

(3) f(x) =

T∑

t=1

vt(xt) =

T∑

t=1

[
pt − ct · g

(t∑

k=1

xk

)]
xt

Penalty function g models the market response to the investor selling action, taking into
account market memory. pt is indeed only valid for a very low traded volume compared
to N. Higher volumes lead to lower execution prices, but the pace of decrease reflect market
participants information about our intent. The more information, the lower the price. Penalty
function g is applied to yt =

∑t
k=1 xk, the asset’s liquidated quantity up to current time

t. yt represents the available information in a market with perfect memory. Hence, qt
corresponds to the maximum impact, where the market is fully aware of our intentions and
react accordingly. The penalty is increasing in yt. The higher yt, the closer the executed
price to qt, which justifies our assumptions for g.

Therefore, the investor’s problem consists of maximizing the sale proceeds from his holding:

(4) OPT = max
x∈D

f(x)

Problem (4) is well defined, as D is finite. In the most general case, (4) is an non convex,
non separable, non linear, integer optimization problem.

One will also be interested in the continuous relaxation of the problem. Hence, we extend
previous notations. Let C be the set corresponding set of admissible solutions:

(5) C =

{
(x1, . . . , xT) ∈ RT

+,
T∑

t=1

xt = N

}

Lemma 1. C is a compact set.

Proof. Let T be an integer (corresponding to the number of time steps), N be a real number

and u be the function from RT 7→ R, such as u(x) =
∑T

i=1 xi.
Singleton set {N} is a closed set of R (because R\{N} is an open set). Hence its inverse
image by the continuous function u is a closed set of RT (topological characterization of
continuity). Moreover, [0;N]T is a closed bounded set of RT .

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 5

Therefore, C = u−1({N})∩ [0;N]T is a closed bounded set of RT which proves its compacity.
�

Let g be the real extension of g, defined on R+. It is strictly increasing on R+, and such

that g(0) = 0 and lim
+∞

g = 1. Let vt(xt) =

[
pt − ct · g

(t∑

k=1

xk

)]
xt

Let f , from RT → R, such that f(x) =

T∑

t=1

vt(xt)

We finally consider the following optimization problem:

(6) UB1 = max
x∈C

f(x)

In the remaining of the paper, we will assume g is continuously differentiable. Therefore,
problem (6) is also well defined, as C is a compact set, according to Lemma 1 and f is
continuous.
As expected, problem (6) is in general non convex. So getting an upper bound of (4), requires
global solving, which often proves to be as hard as solving the initial problem. There are
nonetheless several motivations to study problem (6).
Firstly, a global resolution of either the continuous relaxation, or any problem with a higher
objective function, leads to an upper bound of the initial problem (4). We present and solve
such a problem in section 5, and denote its optimal value UB2, so that OPT 6 UB1 6 UB2.
Secondly, when N ≫ T , discrete approximation is accurate enough, so that discrete and
continuous modeling should be close. Indeed, we show continuous optimization techniques
can be efficiently used to refine lower bounds of the initial problem (4).
Therefore, our purpose is either to solve problem (4) exactly, under a CPU time limit, or to
provide an interval for the optimal value.
For numerical experiments, we selected concave functions with different convergence speeds
to infinity: g(x) = 1− 1

1+x
, g(x) = 1− 2

1+
√
1+x

ou g(x) = 2
π
arctan(x).

Concavity is equivalent to decreasing first order derivative, which makes sense for numerical
experiments.
While we selected a few penalty functions for numerical experiments, any strictly increasing
positive function h, satisfying aforementioned regularity conditions is eligible. Indeed, we can

define the corresponding function g on R+, by g : x 7→ h(x)−h(0)
h(L∞)−h(0) , for some real L∞ > N ,

so that when yt goes to N, g can be arbitrarily close to 1. Hence the pool of candidates for
penalty function is quite large.
Lastly, we did not apply any filter to the admissibility set D to exclude unrealistic solutions,
from an economic standpoint. For instance, the fire sale (M, 0, · · · , 0), which liquidates
the whole block in one shot at the first time step, is admissible, while it very seldom is in
practice. We are not concerned by lack of liquidity in the market and potential trading halt,
due to exchange circuit-breakers, triggered upon a strong selling action at any time step. We
assume optimal solutions to be practically feasible. In most cases, solutions stemming from
instances considered in numerical experiments remain below the system limits for most blue
chip company stock. We did not however carry out any further analysis about it.

6 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

3. Exact dynamic programming algorithm

In this section, we prove formally Bellman’s equation and describe the dynamic program-
ming algorithm [6] used for exact resolution. We consider the following optimization problem:

(7) (Pt,n)





max
(x1,...,xt)

f(x) =
t∑

i=1

[
pi − ci g

(i∑

k=1

xk

)]
xi

s.t : h(x) =
t∑

i=1

xi − n = 0

∀i, xi ∈ N

∀i, 0 ≤ xi ≤ n

(Pt,n) is equivalent to problem (4), for t = T and n = N . It is a discrete problem with
bounded decision variables. Hence solutions exist for t ≤ n. Let Ot,n be its optimal value.

Theorem 1. ∀t, n, 1 ≤ t ≤ n, Ot,n = max
i∈[[0;n]]

{
Ot−1,n−i +

[
pt − ct g

(
n
)]
i
}

with initial conditions Ot,0 = O0,n = 0.

Proof. By induction on t.
Let n be fixed and (t < n). For t = 1, we tautologically sell the whole block at the only
allowed time t.

O1,n = f(n)

=
[
p1 − c1 g

(
n
)]

n

= max
i∈[[0;n]]

{[
p1 − c1 g(n)

]
i
}
, since (p1 − c1 g(n)) > 0

= max
i∈[[0;n]]

{
O0,n−i +

[
p1 − c1 g(n)

]
i
}
, since O0,n−i = 0 ∀i

which proves the result for t=1.
Let us suppose the result be true for a given t.

Let gi(x) ≡
[
pi − ci g

(i∑

k=1

xk

)]

Let (x̂1, · · · , x̂t+1) be an optimal solution of (Pt+1,n). By definition,

Ot+1,n =

t∑

i=1

gi(x̂) x̂i +
[
pt+1 − ct+1 g(n)

]
x̂t+1

Since

t∑

i=1

x̂i = m − x̂t+1, the first t coordinates of x̂ constitute an admissible solution

of (Pt,n−x̂t+1
). By our induction assumption, its value function is therefore bounded by

Ot,n−x̂t+1
. It yields

Ot+1,n ≤ Ot,n−x̂t+1
+
[
pt+1 − ct+1 g(n)

]
x̂t+1

≤ max
i∈[[0;n]]

{
Ot,n−i +

[
pt+1 − ct+1 g(n)

]
i
}

Conversely, for all 0 ≤ i ≤ n, (Pt,n−i) admits a solution. Hence,

∃(x1, · · · , xt) s.t





Ot,n−i =

t∑

j=1

gj(x)xj

t∑

j=1

xj = n− i

The extension of x by i (x1, · · · , xt, i) is admissible for (Pt,n). Hence, its value function is
bounded by Ot+1,n :

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 7

f(x) ≤ Ot+1,n

t∑

j=1

gj(x)xj +
[
pt+1 − ct+1 g(n)

]
i ≤ Ot+1,n

Ot,n−i +
[
pt+1 − ct+1 g(n)

]
i ≤ Ot+1,n

Since this inequality can be established for any i in [[0;n]], we take the maximum on i and
conclude:

max
i∈[[0;n]]

{
Ot,n−i +

[
pt+1 − ct+1 g(n)

]
i
}
≤ Ot+1,n

which proves the results for (Pt+1,n). �

Bellman equation from Theorem 1 provides an explicit scheme to solve problem (4), or
equivalently (PT,N), through dynamic programming. We present the exact resolution in the
next paragraph.

We first build the T by N matrix
(
Ot,n

)
t≤T, n≤N

which contains optimal value of the sub-

problems. Then, we derive the optimal strategy by backtracking in Bellman equation. We
present the exact DP algorithm, referred to as Algorithm 1 :

Algorithm 1: Exact Dynamic Programming

\\Build
(
Ot,n

)
matrix

for t = 1 to T do
for n = 1 to N do

for k = 0 to n do

Ot,n = max
(
Ot,n, Ot−1,n−k +

[
pt − ct g

(
n
)]

k
)

\\compute optimal strategy by backtracking

n = N

for i = T to 1 do
if Oi,n = Oi−1,n then

xi = 0

else
k = n

while
(
Oi,n 6= Ot−1,n−k +

[
pt − ct g

(
n
)]

k
)

∧ (k > 0) do

k = k − 1

xi = k

n = n− k

Space (computer memory) complexity is O(TN). Moreover, in the third loop, we have to
perform N evaluations, at worst, to determine Ot,n. Hence, it takes O(TN2) to compute the
whole T by N matrix. In the backtracking algorithm, for each i ≤ T , we perform at worst N
comparisons, so complexity of the backtracking is O(TN). Therefore time complexity of the
DP algorithm is O(TN2).
If we store

(
g(0), · · · , g(N)

)
, data consist in vector p, c, and g. Hence data are O(T + N).

Hence time complexity is polynomial, cubic at worst since O(TN2) < O
(
(T +N)3

)
.

If the vector g(i) is not stored, data are O(T). Therefore space complexity is pseudo polyno-
mial (polynomial only when N is fixed).
However, in practice, exact resolution proves too costly in space/time for large instances. In
the next paragraph, we provide different heuristic methods to get tight lower bounds.

8 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

4. Lower bounds of the initial problem

In this section, we present different methods to rapidly compute tight lower bounds. We
start with naive heuristics, then we introduce two DP based algorithms and an Iterated Local
Search (ILS) algorithm.

4.1. Naive heuristics. There are many ways to generate a set of positive integer of a given
sum N. It could be generated randomly. In this subsection, we select two intuitive heuristics,
which we will use as benchmark for calibration and numerical experiments.

• The first one is the fire sale: x = (M, 0, · · · , 0): we liquidate the block in one shot
at the first time step. We get logically the maximum penalty for this panic move. It
almost never is the best strategy (for the asset class we consider) and in the constant
prices case, it turns out to be actually the worst admissible strategy.

• The second one is the uniform sale strategy x = (N/T, · · · , N/T), which liquidates
the block linearly with time.

4.2. Two-step DP based methods. This technique consists in two independent steps.
We firstly derive an approximate but very fast heuristic, by applying DP to P-sized buckets.
Secondly, we refine it by intensifying the research in its neighborhood using an adapted DP
method, presented below in Algorithm 2.

• Coarse grain DP: when N is large, exact DP is too costly as time complexity grows
as T N2. So a natural idea consists of selling buckets of P units (P ≫ 1), which we
refer to as grain P. Resolution algorithm is almost identical to the exact one with

N ′ = ⌊N/P ⌋. Hence its time complexity is O

(
T N2

P 2

)
, faster by a factor P 2. The

coarser the grain the faster the heuristic, and the lesser its quality (distance to opti-
mal). Hence, as often, there is a trade-off in grain between CPU time and heuristic
quality, which we touch upon in section 6.2.2.

• DP with bounds: assuming the previous stage heuristic is close to the optimal, we
apply the exact DP algorithm in its neighborhood. We restrict the search by imposing
bounds on admissible solutions. We first introduce the following definitions.
Let x0 =

(
x01, · · · , x0T

)
be the initial solution.

Let l and u the lower (resp. upper) bounds for x such that: ∀ t 0 ≤ lt ≤ xt ≤ ut ≤ N

Let: Lt = min

(
t∑

i=1

li, N

)
and Ut = min

(
t∑

i=1

ui, N

)
.

Hence, ∀ t Lt ≤ yt ≤ Ut, where yt =
t∑

i=1

xi

We then rewrite the restricted Bellman equation from Theorem 1:

Ot,n = max
lt≤k≤ut

(
Ot−1,n−k +

[
pt − ct g

(
n
)]

k
)
, subject to Lt ≤ n = yt ≤ Ut

We introduce the DP with bounds algorithm, referred to as Algorithm 2:

Algorithm 2: Dynamic Programming with bounds

\\Build
(
Ot,n

)
matrix

for t = 1 to T do
for n = Lt to Ut do

for k = lt to ut do

Ot,n = max
(
Ot,n, Ot−1,n−k +

[
pt − ct g

(
n
)]

k
)

\\backtracking is identical to Algorithm (1)

\\Get solution by backtracking in OT,N matrix

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 9

Straightforward reading from previous algorithm yields time and space complexity. In the
memory space, we need to store Ot,n, when n varies from Ut to Lt, and t from 1 to T. Hence

space complexity is O
(∑T

t=1 Ut − Lt

)
. In time, each Ot,n requires ut−lt computations, hence

time complexity is O
(∑T

t=1(Ut − Lt)(ut − lt)
)
.

Let us suppose ut − lt is bounded by some R ≥ 0 for all t. This is typically the case for the
funnel around a given heuristic. We note R can always be defined as decision variables are
finite and bounded and R ≤ N .

Ut − Lt =

t∑

i=1

ui − li

≤ tR

and,
T∑

t=1

(Ut − Lt)(ut − lt) ≤ R
T∑

t=1

(Ut − Lt)

≤
T∑

t=1

tR2

≤ T (T + 1)R2

2

Conclusion, when we bind our research neighborhood by R, space complexity becomes
O
(
T 2R

)
and time complexity is O

(
T 2R2

)
.

• These steps can work in synch. We firstly compute an heuristic based on a P grain
using DP. Then, we refine the solution using DP with bounds, with a funnel of size
λP around the first stage heuristic (λ is a scalar). In this two-step approach, P and
λ are the only degree of freedom. Selection of these parameters for best heuristics
quality and time is an interesting question, which is discussed in section 6.

• The two steps can also be run independently. Any heuristic can be coupled with the
DP with bounds algorithm. However, to improve the first stage heuristic, one has
to suspect a good local maximum lies in the neighborhood. Typically a small funnel
around the fire sale strategy will not yield a good result.

• Another interesting point is that the DP with bounds technique can be applied to a
continuous solution x0. For instance, lt = max

(
0, ⌊x0t ⌋ − λP

)
and ut = min

(
N, ⌈x0t ⌉+ λP

)

define admissible bounds. Hence, we can apply any continuous optimization technique
to compute a good admissible continuous solution of problem 6 and then search dis-
crete local maxima around it. Performances of this hybrid two-step method (continu-
ous relaxation coupled with DP with bounds) are discussed in numerical experiments
in section 6.

• On the contrary to exact DP, we can not guarantee results are optimal. It is the main
drawback of the two-step method.

4.3. Iterated Local Search (ILS). In this section, we introduce an ILS algorithm, referred
to as Algorithm 3, which starts from an admissible solution and provides an admissible local
maximum. Let x0 be an admissible solution. We first shift x01 by +P and x02 by −P , for
some fixed integer P . We apply these shifts only if resulting decision variables remain in the

feasible [[0;N]] domain. We can easily see that x11 + x12 +
∑T

i=3 x
0
i = N hence a solution’s

admissibility is stable by the P-shift operator, for all P and all pair (xi, xi+1).
If this shift improves the value function, we store the gap between shifted and original solution.
We then apply the opposite shift −P , subject to the same boundary conditions. Now we make
i vary between 2 and T and proceed similarly with pairs (x0i , x

0
i+1).

Consequently, we considered 2 (N − 1) potential shifts. If no transformation improves the
objective value function the algorithm stops and returns x0. Otherwise, we select the biggest
gap, store the corresponding solution x1 and iterate the same steps starting from x1.

10 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

We iterate the process and return either a local maximum, which corresponds to a fixed point
xK+1 = xK for the P-shift operator, or the best solution achieved under a preset time and
number of iterations limit.
Lastly, to improve this local maximum, we can keep applying different P ′-shifts, with (P ′ 6=
P). For instance, in numerical experiments, we proceed by dichotomy on P: P0 = 2R, P1 =

2R−1, · · · , PR = 1, and R = ⌊ ln(N)
ln(2) ⌋ the largest integer where a 2R shift may be possible.

This local search algorithm triggers a call to the objective value function f for every shift.
We improve its efficiency by comparing the relevant terms of f, as described in the following
Algorithm 3 :

Algorithm 3: Iterated Local Search

runSum = 0

auxSum = 0

∆ = 0

fmax = 0

iopt = −1

for i = 1 to N-1 do
d+ = 0

d− = 0

runSum = runSum+ xi
auxSum = runSum+ xi+1

d0 =
[
pi − ci g(runSum)

]
xi +

[
pi+1 − ci+1 g(auxSum)

]
xi+1

if (xi + P ≤ M) ∧ (xi+1 − P ≥ 0) then
d+ =

[
pi − ci g(runSum+ P)

]
(xi + P) +

[
pi+1 − ci+1 g(auxSum)

]
(xi+1 − P)

if (xi+1 + P ≤ M) ∧ (xi − P ≥ 0) then
d− =

[
pi − ci g(runSum− P)

]
(xi − P) +

[
pi+1 − ci+1 g(auxSum)

]
(xi+1 + P)

if (d+ ≥ d−) then
if (d+ − d0 > ∆) then

∆ = d+ − d0
iopt = i

ǫ = 1

else
if (d− − d0 > ∆) then

∆ = d− − d0
iopt = i

ǫ = −1

if iopt > −1 then
xiopt = xiopt + ǫ · P
xiopt+1 = xiopt − ǫ · P
fmax = fmax +∆

We notice that, for every i, we increment the running sums
i∑

j=1

xj and
i+1∑

j=1

xj and compare

only the impacted terms of the objective value function f, namely d0 (no shift), d+ (shift
(i, i + 1, P)) and d− (shift (i, i+ 1,−P)).
Regarding its application, it can be used, either as a first step heuristic, starting from a naive
solution (e.g uniform sale), or as a second step to improve an existing local maximum.

4.4. Commercial discrete solver: LocalSolver. Lastly, we use a commercial solver dedi-
cated to local optima to benchmark against our lower bounds. We selected LocalSolver [7] as

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 11

one of the leading solvers regarding local search algorithms. We did not carry out a exhaus-
tive comparison against every solver which solves at least locally problem (4), as we believe
LocalSolver results to be representative of the state of the art of commercial solvers relevant
for this problem.

4.5. Free continuous solver NLopt. As mentioned in section 4.2, we can use continuous
solution in the first stage of our two-step approach. In this paper, we compute admissible
continuous solutions using the free/open-source solver NLopt [26], which specializes in con-
tinuous nonlinear optimization. We tested every available gradient based algorithm relevant
for our problem and selected the Conservative Convex Separable Approximation [37], in its
quadratic version (CCSAQ), which empirically works best for the relaxed problem 6. In
a maximization context, this algorithm generates and solves concave separable subproblems
using approximate objective and constraint functions at each iteration. Subproblems approx-
imate functions, are deemed conservative when they become inferior to the objective function
and underlying constraints. It is globally convergent in the sense it converges toward the set
of points satisfying Karush-Kuhn-Tucker (KKT) conditions, which is non empty since UB1

exists. Again, without further convexity assumption, it does not provide the global maximum
UB1. In fact, because problem (6) is not convex, we found a few instances, where NLOpt
solution was lower than the optimal discrete solution of problem (4), although by a tiny
margin.
We thus consider NLOpt heuristics for what they are, fairly good admissible solutions of the
continuously relaxed problem (6) and hence prime candidate for neighborhood search during
the second stage.

5. Upper bound using monotony

In the previous section, we proposed lower bounds of the discrete problem (4). To obtain
an interval for the solution, when the optimal is unknown, one needs a true upper bound,
which is the object of this section.
We first notice that penalty function g is assumed strictly increasing, and decision variable
xi’s are non negative:

g
(t∑

k=1

xk

)
≥ g(xt)

−g
(t∑

k=1

xk

)
≤− g(xt)

f(x) ≤
T∑

t=1

[
pt − ct · g(xt)

]
xt

We can hence define the continuous optimization problem:

(8) UB2 = max
x∈C

U(x)

where

U(x) =

T∑

t=1

ut(xt) =

T∑

t=1

[
pt − ct · g(xt)

]
xt

Problem (8) is well defined, and UB2 provides an upper bound of problem (4) and (6). We
also notice its value function is separated (it can be written as a sum of univariate functions).
We now introduce sufficient condition on g to ensure problem (8) is concave.

Lemma 2. Let function x 7→ x g(x), defined in R+, be strictly convex. Then function U is
strictly concave and problem (8) is concave.

12 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

Proof. It is straightforward from ut definition:

ut(x) = pt x− ct [x g(x)]

For all t, ct ≥ 0, hence −ct [x g] and consequently ut are strictly concave as the sum of a
concave and linear functions. Therefore U is also concave as the sum of concave functions.

�

Lemma 3. Concave functions selected for numerical experiments (cf. section 2): g(x) =
1− 1

1+x
, g(x) = 1− 2

1+
√
1+x

or g(x) = 2
π
arctan(x) satisfy the assumptions of lemma 2.

Proof. By straightforward computation of
[
x g(x)

]′′
�

5.1. Resolution of the separated problem. We compute the Lagrangian function (8) and
solve it for stationary points. Constraint qualification condition is satisfied by linearity of the
constraint, and problem 8 is convex. Therefore, resolution of Lagrange equations provides a
global maximum.

L(x, λ) =

T∑

t=1

[
pt − ct · g(xt)

]
xt − λ

(T∑

t=1

xt −N
)

∇L(x, λ) =0 ⇐⇒





∀t,
[
x g
]′
(xt) =

pt − λ

ct
T∑

t=1

xt −N = 0

Focusing on x g as a univariate function, we get:

x g(x) =
pt − λ

ct
x+ b

g is C0 in 0, hence: b = 0

So: x g(x) =
pt − λ

ct
x

We now introduce sufficient conditions to solve the Lagragian equations, when the price
vector p and consequently vector c are constant.

Lemma 4. Under the assumption of Lemma 2, if the price vector p and consequently vector
c are constant, then the optimal strategy is x̂ = (N

T
, · · · , N

T
) and global maximum is UB2 =

N
[
p− c g

(
N
T

)]

Proof. Lagrange equations yielded x g(x) =
p− λ

c
x.

Function g is strictly increasing and continuous on R+, so it is injective. Hence, t being fixed,

either xt = 0 or xt = g−1
(
p−λ
c

)
, which is a unique value independent of t.

In addition, under the assumption of Lemma 2, x · g is strictly convex, so [x · g]′ is strictly
increasing on R+ and therefore injective. Let x = (x1, · · · , xT) satisfying Lagrange equations
and i < j:

[
x g
]′
(xi) =

[
x g
]′
(xj) =

p− λ

c
Therefore xi = xj . Since the null vector does not satisfy the constraint, we are left with

∀, t, xt = N
T
, λ = p− c g(N

T
), and UB2 is obtained by direct computation of U . �

When price are not constant, we can still get an upper bound. Indeed, let p = max
t

pt and

c = min
t

ct. Then for all t: ut(xt) ≤
[
p− c g(xt)

]
xt

By applying Lemma 4 to the right hand side, we get:

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 13

Lemma 5. Under Lemma 2 assumptions, with p = max
t

pt and c = min
t

ct, the following

inequality hold:

UB2 ≤ N
[
p− c g

(N
T

)]
= UB2

Proof.

U(x) ≤
T∑

t=1

[
p− c · g(xt)

]
xt

We apply the Lemma 4 to the right hand side problem. �

We note, UB2 and UB2 are equal when prices are constant. Hence, we refer to the latter
in numerical experiments.

6. Numerical Experiments

In previous sections, we described techniques to obtain lower and upper bounds. We now
study their numerical performances in terms of quality and CPU time. This section is orga-
nized as follows.
In paragraph 6.1, we detail the numerical experiment design for results reproducibility. We
describe the machine characteristics, problem parameters selection and the price vector sim-
ulations. We also discuss the penalty function calibration process and its underlying motiva-
tions.
Then in paragraph 6.2, we present our results for small and medium size instances. We start
by introducing metrics, table notations and define instances size.

In paragraph 6.2.1, we present the exact resolution via DP and discuss its applicability.
While naive heuristics and ILS algorithm can be used straightforwardly, two-step approaches
performance depends on their grain. So they require a proper setup which is discussed in the
two following subsections.

In paragraph 6.2.2, we describe the two-step approach based on coarse grain DP. We
present its optimal coverage ratio and discuss its complexity as a function of the grain.

Then, in paragraph 6.2.3, we compare our results to two-step approach based on continu-
ous solutions.

In paragraph 6.2.4, having fine tuned our two-step heuristics, we present aggregated results
for small and medium size instances, with both lower and upper bounds. We discuss quality
and CPU time, in particular as stock prices fluctuate.
In paragraph 6.3, we move on to large instances for which exact resolution is not available.
We shortly discuss time and memory limitations of our algorithms. We present quality and
CPU time results providing a gap, although not tight, for the optimal value of the initial
problem. (4), when both lower and upper bounds are available. As for small and medium
instances, we present representative examples to show the influence of stock price variation.

6.1. Experiment setup and penalty function calibration. We begin with the machine
characteristics and softwares.

PC characteristics: numerical experiments were run using a PC with Intel Xeon(R) Silver
4114 at 2.20 Ghz , 2 sockets, 20 core, and 32 Gb of RAM. O/S is Linux Ubuntu 18.04 (Bionic
Beaver) and c++ compiler gcc v9.3.0

Commercial solvers: LocalSolver 9.5 (v9.5, Linux64, build 20201030) and NLopt v2.6.2
Then, we set up the parameters of the problem.

Problem size (T,N) = (10a, 10b), a < b, with 1 ≤ a ≤ 3 and 2 ≤ b ≤ 9 are labeled
in the results tables. In particular, T divides N, as there is no specific interest to deal with
odd blocks. When there is no ambiguity in the results tables, we further simplify notations
by ignoring the base and write (T,N) = (a, b).

14 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

Minimum sale price qt: we assume qt = (1− β)pt, with 0 < β < 1 constant. It means the
minimum sale price for largest volumes (even a fire sale) is equal to a constant fraction of
the current price. It can be interpreted as the intrinsic value of the company1. For numerical
experiments, we set β = 0.9. As g(0) = 0 and g goes asymptotically to 1, this corresponds to
a 90% price floor. The closer the β to 1, the stiffer is the penalty for selling more stocks, and
the wider the penalty range (executed price ∈

[
(1 − β) pt; pt

]
). Consequently, a high value

for β leads to a significant difference in the objective value function, between a poor and a
good selling strategy.

We now shift our focus toward the asset price. We describe the stock price dynamic and
the generation of price vectors.
Stock price dynamic: we obtain stock prices through simulations using a classical Geo-
metric Brownian Motion stochastic process as in [25], starting at p0 = 100, with moments
(µ, σ):

dSt

St

= µdt+ σ dWt

By Ito’s Lemma, we compute d (lnSt) =
(
µ− σ2

2

)
dt+ σ dWt

Integrating over the time interval [t; t+∆t], we get:

St+∆t = St exp

[(
µ− σ2

2

)
∆t+ σ (Wt+∆t −Wt)

]

By stationariness of the Brownian motion:

St+∆t = St exp

[(
µ− σ2

2

)
∆t+ σW∆t

]

Which yields a simpler formula for simulation purposes:

(9) St+∆t = St exp

[(
µ− σ2

2

)
∆t+ σ

√
∆t Z

]
, where Z ∼ N (0, 1)

Stock prices set up: we simulate stock prices using the stochastic process described
in equation (9), starting at p0 = 100, with moments (µ, σ). We are interested in dif-
ferent trends, coupled with either a low or high volatility environment. Hence we set of
moments:µ ∈ {−0.05; 0;+0.05} and σ ∈ {0.10; 0.25; 0.70}, which leads to 9 combinations.
We also perform numerical experiments using on a constant stock price ∀i, pi = 100. It can
interpreted as a baseline experiment to compare algorithm performances.

One could legitimately object that high volatility diffusion processes are not realistic for
our deterministic prices model. As mentioned in section 2, our optimization techniques apply
to any price vector. From a mathematical programming standpoint, studying the bounds
tightness for a wide range of standard responses is a topic of interest. Hence, we do not
intend to draw conclusions for the financial application of problem (4), based on unlikely
instances, but rather to privilege a larger scope of application for our techniques, eventually
outside of finance. To that end, it is important to validate our results when standard re-
sponses fluctuate significantly.

For each of the 9 sets (µi, σi), we run 10 simulations and take the average over St. It
makes a smoother price path and better reflects moment characteristics.
Lastly, each of prices vector Vi has the maximum Tmax = 103 cardinal considered for numer-
ical experiments. When T is lower than than Tmax, the corresponding price vector is drawn
uniformly from Vi. For instance, when T=10, V̂ = {V100, V200, · · · , V1000}. One may notice

1An economical discussion about intrinsic value is beyond the scope of this paper, and not relevant for
mathematical programming

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 15

there is a bias in the selection of the size ⌊Tmax

T
⌋. We could indeed have arbitrarily chosen

V̂ = {Vj , V100+j , · · · , V900+j}, where 1 ≤ j ≤ 100. As T increases towards Tmax, this bias
fades out.
Finally, we study the calibration process of penalty function g.

Calibration of penalty function g:

• We start with the selected function prototypes G:





x 7→ x

1 + x

or x 7→ 1− 2

1 +
√
1 + x

or x 7→ 2

π
arctan(x)

• G functions are C2 and bounded on R+. Indeed, G(0) = 0 and lim
+∞

G = 1

• We then define the penalty function g : x 7→ G(η x), where η is constant and depends
only on G. Given a level L , we define a threshold H, such that g(L) = H. Hence,
η is a scaling factor aimed to transpose the positive semi-line on the [0;L] segment.

Selected G functions are injective on R+, so we can compute η =
G−1(H)

N
, where

G−1 is given respectively by:





x 7→ x

1− x
or x 7→ tan

(π
2
x
)

or x 7→ 4x

(1− x)2

• We lastly set threshold H. We considered different values for H ∈]0; 1[. The closer
to 1, the more discriminatory power for g. By discriminatory, we mean the distance
from naive heuristics, such as the fire sale or the uniform sale, to the optimal, is max-
imum. For numerical experiments, we settled for L = N and H = 0.99. Underlying
justifications and calibration tables are presented in Appendix A.

6.2. Numerical Experiments for small and medium instances. As described in sec-
tion 6.1, we simulated 10 price vectors, with different distributions moments.
For tables readability, we display metrics (i.e quality and CPU time) by default for constant
prices and on average over the 9 simulated processes. In the following result tables, CST
refers to constant prices and AVG to average. When results differ materially between price
vectors, we mention it explicitly.
In results tables measuring bounds quality, figures are expressed in percentage and measure
the relative difference to optimal coming from exact DP. For CPU time tables, time is mea-
sured in seconds. ǫ corresponds to the minimum numerical value in both cases, with its
corresponding unit. Hence, ”< ǫ ” means either relative difference to the optimal is inferior
to 0.01% or computation time is faster than 0.01s. Lastly, DNC means the algorithm either
did not converge within allowed time of 10 minutes, or returned an memory error.
Instances size: for numerical experiments, we will consider the instance size as:

• Small, if (T,N) ∈
{
(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)

}

• Medium, if (T,N) ∈
{
(1, 5), (1, 6), (2, 5), (3, 5)

}

• Large, if (T,N) ∈
{
(1, 7), (1, 8), (1, 9), (2, 6), (2, 7), (2, 8), (2, 9), (3, 6)

}

• Very large, when (T,N) ∈
{
(3, 7), (3, 8), (3, 9)

}

We now present the exact resolution for small and medium instances.

6.2.1. Exact resolution for small and medium instances : we solve exactly problem (4) for
small and medium size instances using exact DP algorithm from section 3. CPU time is
displayed in the table below.

16 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

CPU x
1+x

2
π
arctan(x) 1− 2

1+
√
1+x

T N CST AVG CST AVG CST AVG

101 102 < ǫ < ǫ < ǫ < ǫ < ǫ < ǫ
101 103 0.03 0.02 0.03 0.02 0.03 0.02
101 104 1.77 1.77 1.78 1.78 1.77 1.79
101 105 181 182 179 178 176 176
102 103 0.19 0.19 0.18 0.18 0.18 0.18
102 104 18.83 18.93 17.68 17.63 17.55 17.53
102 105 1829 1777 1786 1763 1752 1754
103 105 17 550 17 943 17 576 17 856 17 488 17 949
101 106 18 141 18 253 18 261 18 142 17 876 18 440

• Time complexity is O(T N2) as expected.
• For (T,N) = (2, 6), we only computed result in the CST case and it takes about
180 000 s, for each penalty function, in agreement with expected time complexity.

• Time resolution does not depend on p nor on the penalty function. It is expected as
(p1, · · · , pT) and (g(1), · · · , g(T)) are computed and stored ahead of resolution.

• When (T,N) ≥ (2, 5) (in a general sense), exact resolution takes from a few hours to
a few days. It is hence not tractable for practical applications.

Therefore, exact DP is not suitable for some medium size and large instances. Hence, we
now introduce lower bounds results.
While ILS and naive heuristics are directly applicable, two-step approach depends on the
grain, which controls both bucket and funnel size. We first present results for two-step
approach and discuss optimal grain size.

6.2.2. DP coarse grain and funnel. As discussed in section 4, we run a DP with grain P and
then refine the solution with the same λ.P size funnel. We computed results for P = 10 to
N/10, and λ ∈ {1, 5} (we tested different values of λ ∈ [0; 10] and settled for these as the
most representative). We first display the optimal coverage ratio (number of instances
where the optimal is reached divided by total number of instances) as a function of the grain
P. In the table below, optimal ratio is the first number expressed in percent. The second
number, in parenthesis, corresponds to the total number of instances:

λP = 10 50 100 500 1000 5000 10000 50000
CST 27 (22) 95 (22) 23 (13) 100 (13) 14 (7) 100 (7) 0 (2) 100 (2)
AVG 42 (177) 97 (177) 49 (104) 99 (104) 44 (50) 98 (50) 33 (18) 100 (18)

TOTAL 41 (199) 97 (199) 46 (117) 99 (117) 40 (57) 98 (57) 30 (20) 100 (20)

• A 5P funnel (i.e λ = 5, λ P = 50, 500, 5000 etc.) provides a better coverage ratio for
every P than λ = 1.

• Maximum coverage ratio for a significant number of instances is reached for P = 100
and funnel λP = 500. Optimal is reached for almost every small and medium size
instances.

• Quality is similar for CST and AVG.

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 17

We display the CPU time table for that set up λP = 500:

CPU x
1+x

2
π
arctan(x) 1− 2

1+
√
1+x

T N CST AVG CST AVG CST AVG

101 102 < ǫ < ǫ < ǫ < ǫ < ǫ < ǫ
101 103 0.02 0.017 0.017 0.016 0.016 0.015
101 104 0.127 0.108 0.118 0.102 0.143 0.076
101 105 0.206 0.199 0.211 0.189 0.204 0.133
102 103 0.15 0.15 0.15 0.15 0.151 0.15
102 104 2.122 1.795 2.122 1.797 2.121 1.608
102 105 13.939 6.817 12.898 6.771 13.997 6.771
103 105 213.399 137.701 213.357 138.243 213.378 124.176
101 106 2.103 2.003 2.104 2.002 2.035 1.914
102 106 39.585 27.914 39.581 28.097 37.319 25.135

• CPU time is roughly similar for every penalty function.
• Resolution remains below a minute up to (T,N) = (2, 6)
• It takes a slightly longer time for constant prices than for averaged batches. Indeed,
for volatile process with peaks, optimal strategy consists in liquidating most of the
block in the peaks area, leaving most other trading times with very few transactions.
Thus, the effective number of time steps is lower.

Complexity: minimizing time complexity in P is also a very interesting topic. Numerically,
with T = 10a, N = 10b, P = 10c, we set λ = 5 and we apply the complexity results from
section 4. Coarse grain DP is in O(10a+2b−2c) and DP with bounds is in O(102(a+c+1)). Time

complexity of the two-step method turns out to be in O(10max(a+2b−2c,2a+2c+2)). Its theoreti-

cal minimum is reached for c = 1
4(2b−a−2), with minimum time complexity in O(10

3a

2
+b+1)

(or O(T
3

2 · N)). If we restrict c to the natural integers, we have to round it to the nearest

integer, then c = ⌊c+ 0.5⌋, and achieved time complexity is in O
(
10max(a+2b−2c,2a+2c+2)

)
.

Compared to exact DP in O(10a+2b), we gain a factor 10b−
a

2
−1 (or N

10
√
T
). Consequently,

time improvement made thanks to the two-step method grow when N grows with respect to
T. As we only require P to be an integer, but not c, we recommend to let c be in Q to take
full advantage to complexity gain from the two-step method and round P = ⌊10c⌋.
We now couple this techniques with the continuously relaxed problem.

6.2.3. Two-step approach based on continuous relaxation. We mentioned in section 4 that
DP with bounds algorithm may also apply to continuous solution. Hence, we use a local
maximum of problem (6) obtained using NLopt, with lt, ut defined at the end of section 4.2.
We set the same parameter (λ, P) as previously for comparison consistency. We first display
the optimal ratio with P:

λP = 10 50 100 500 1000 5000
CST 50 (20) 65 (20) 73 (11) 100 (11) 100 (5) 100 (5)
AVG 56 (172) 81 (172) 90 (99) 100 (99) 100 (45) 100 (45)

TOTAL 56 (192) 79 (192) 88 (110) 100 (110) 100 (50) 100 (50)

• Continuous relaxation with λP = 500 reached the optimal for every small and medium
size instances.

18 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

We display similarly the CPU time table for that set up λP = 500:

CPU x
1+x

2
π
arctan(x) 1− 2

1+
√
1+x

T N CST AVG CST AVG CST AVG

101 102 0.578 0.417 0.38 0.444 0.333 0.503
101 103 0.337 0.433 0.368 0.413 0.252 0.469
101 104 0.403 0.511 0.565 0.492 0.336 0.49
101 105 0.198 0.267 0.201 0.251 0.192 0.206
102 103 0.88 1.525 0.864 1.45 0.446 1.916
102 104 2.196 2.775 2.135 2.703 2.167 2.842
102 105 12.531 6.484 12.463 6.517 12.73 5.04
103 105 219.582 132.47 221.32 127.751 224.953 87.648
101 106 0.198 0.182 0.198 0.182 0.206 0.141
102 106 19.348 10.015 19.405 10.175 17.889 7.15

• Two-step approach coupled with continuous relaxation revolves around the same CPU
time as its coarse grain variation. Differences lie in the first step (NLopt heuristic vs.
coarse grain DP), while DP with bounds complexity is relatively unchanged as is the
funnel size. We however note that for (T,N) = (1, 6) or (2, 6), two-step with NLopt
goes much faster than coarse grain counterpart.

The two-step approaches, discrete or continuous, are now clearly defined. In the next sec-
tion, we present aggregated results, for all our algorithms applied to small and medium size
instances.

6.2.4. Aggregated results for small and medium size instances. Having fine tuned two-step
approaches, we can now compare our lower and upper bounds. The next two tables below
present quality and CPU time. We introduce a few notations for table readability.
Table notations : FS refers to the naive fire sale heuristic, US to the uniform sale, TS1
stands for two-step with coarse grain DP, TS2 relates to two-step with NLOpt heuristic, ILS
corresponds to the discrete gradient described in section (4.3) and initialized with uniform
sale. Finally, LS refers to LocalSolver ran with approximately the same time limit as the
best lower bound (capped to 10 minutes). UB corresponds to the upper bound UB2.
Results profiles are similar for different penalty functions, hence we only display results for
prototype G = 2

π
arctan(x) for CST and AVG price batches, which are presented in the fol-

lowing two tables:

Quality CST, 2
π
arctan(x)

T N FS US ILS LS TS1 TS2 UB
101 102 20.42 7.81 0.41 0 0 0 38.19
101 103 20.52 7.92 0.02 < ǫ 0 0 38.02
101 104 20.52 7.92 < ǫ < ǫ 0 0 38.02
101 105 20.52 7.92 < ǫ < ǫ 0 0 38.02
101 106 20.52 7.92 < ǫ < ǫ 0 0 38.02
102 103 25 2.12 1.04 < ǫ 0 0 364.61
102 104 25 2.14 0.13 0.01 0 0 364.56
102 105 25.01 2.14 < ǫ 0.01 0 0 364.56
103 105 25.49 0.23 0.12 0.10 0 0 558.72

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 19

Quality AVG, 2
π
arctan(x)

T N FS US ILS LS TS1 TS2 UB
101 102 21.66 10.47 0.96 0 0 0 139.4
101 103 21.77 10.58 0.72 < ǫ 0 0 139.07
101 104 21.77 10.59 0.71 < ǫ 0 0 139.07
101 105 21.77 10.59 0.71 < ǫ 0 0 139.07
101 106 21.77 10.59 0.71 < ǫ 0 0 139.07
102 103 28.48 7.77 5.26 < ǫ 0 0 419.26
102 104 28.49 7.8 4.04 0.01 0 0 419.13
102 105 28.50 7.8 3.97 0.01 0 0 419.13
103 105 30.49 5.98 7.39 0.14 0 0 576.05

• As expected, naive heuristic FS and US yields the worst lower bounds. FS remains
around 20% − 25% lower than the optimal, while US gets tighter when T increases.
When T and N are of the same order of magnitude, there is enough time to liquidate
the block, and the strategy becomes less relevant. Hence a simple uniform sale gets
close to be optimal.

• LocalSolver returns a very good lower bound for every instance, but rather seldom
the optimum. Its optimal coverage ratio is about 10% for both CST and AVG.

• TS1 and TS2 reached the optimum almost every time for small and medium size
instances.

• UB is not tight even for small instances. It is stable in N , but becomes materially
looser when T increases.

• ILS algorithm performs better for CST than for AVG, especially as instance size
grows. For AVG, it performs only marginally better than US. In addition, for AVG
results differs significantly among instances.

We provide a representative example for (T,N) = (3, 5) in the following table:

Quality 2
π
arctan(x)

T=103, N=105

µ σ ILS
-0.05 0.10 2.13
-0.05 0.25 3.46
-0.05 0.70 8.76
0.00 0.10 2.06
0.00 0.25 5.02
0.00 0.70 13.67
+0.05 0.10 3.66
+0.05 0.25 5.33
+0.05 0.70 22.42

• ILS performs materially worse for high volatility instances with larger peaks rather
than smoother ones. Those instances concentrate most of their liquidation around
price peaks. We conclude that shifting adjacent time steps is less efficient for these
profiles.

Lastly, we display the equivalent CPU time tables:

20 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

CPU CST, 2
π
arctan(x)

T N FS US ILS LS TS1 TS2 UB
101 102 < ǫ < ǫ < ǫ 10 < ǫ 0.38 < ǫ
101 103 < ǫ < ǫ < ǫ 10 0.02 0.37 < ǫ
101 104 < ǫ < ǫ < ǫ 10 0.12 0.57 < ǫ
101 105 < ǫ < ǫ < ǫ 10 0.21 0.20 < ǫ
101 106 < ǫ < ǫ < ǫ 10 2.10 0.20 < ǫ
102 103 < ǫ < ǫ 0.01 10 0.15 0.86 < ǫ
102 104 < ǫ < ǫ 0.22 10 2.12 2.14 < ǫ
102 105 < ǫ < ǫ 0.73 600 12.90 12.46 < ǫ
103 105 < ǫ < ǫ 35.42 600 213.36 221.32 < ǫ

CPU AVG, 2
π
arctan(x)

T N FS US ILS LS TS1 TS2 UB
101 102 < ǫ < ǫ < ǫ 10 < ǫ 0.44 < ǫ
101 103 < ǫ < ǫ < ǫ 10 0.02 0.41 < ǫ
101 104 < ǫ < ǫ < ǫ 10 0.11 0.49 < ǫ
101 105 < ǫ < ǫ < ǫ 10 0.19 0.25 < ǫ
101 106 < ǫ < ǫ < ǫ 10 2.02 0.18 < ǫ
102 103 < ǫ < ǫ < ǫ 10 0.15 1.45 < ǫ
102 104 < ǫ < ǫ 0.07 10 1.8 2.7 < ǫ
102 105 < ǫ < ǫ 0.14 600 6.77 6.52 < ǫ
103 105 < ǫ < ǫ 2.92 600 138.24 127.75 < ǫ

• For small and medium size instances, every algorithm converges relatively quickly
(within a couple of minutes).

• Besides naive heuristics, ILS is the fastest algorithm (but does not necessarily yield
a good result), followed by two-step approaches.

• UB consists of a straightforward formula which is almost instantaneous for all (T,N).

We covered the small and medium size instances and we are now interested in applying our
techniques to large instances.

6.3. Numerical Experiments for large instances. At this scale, exact DP is not avail-
able. Moreover several algorithms do not converge for (very) large instances in the allowed
time or are subject to memory constraint. We start by discussion these limitations.
Memory limitations and potential improvements: a double takes 8 bytes in the heap
memory and space complexity of DP based algorithms is in O(T N). A quick computation

shows that, for our 32Gb RAM computer, the limit is ln(T N)
ln(10) ≤ 232 ln(2)

ln(10) ≈ 9.63 < 10. There-

fore, in our numerical experiments, we can’t go any further than (T,N) = (1, 8), (2, 7) or
(3, 6) for two-step methods.
Indeed, within the DP with bounds algorithm, the search for the best solution occurs within
a bounded funnel of size R, for which we showed space complexity is O(T 2 R). Hence, a T by
N sparse matrix wastes too much memory, while a leaner data structure could save memory.
The corresponding space gain is in the order of T N

T 2 R
= N

2λ P T
. For our numerical experiments

with (very) large instances, N ≫ T , by a factor at least 103 (and up to 106). Therefore,
this improved data structure would make sense. We leave it as a perspective in section 7.
Results tables presentation: in the bound quality table presented below, the best lower
bound for each instance is specified in the third column, against which quality is defined, as
the relative value to the best known lower bound.

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 21

Quality CST, 2
π
arctan(x)

T N BEST LB FS US ILS LS TS1 TS2 UB
101 107 TS1 (5000) 20.52 7.92 < ǫ < ǫ 0 < ǫ 38.02
101 108 TS1 (5000) 20.52 7.92 < ǫ < ǫ 0 < ǫ 38.02
101 109 ILS 20.52 7.92 0 < ǫ DNC DNC 38.02
102 106 TS1 (5000) 25.01 2.14 < ǫ 0.01 0 < ǫ 364.56
102 107 TS1 (5000) 25.01 2.14 < ǫ 0.01 0 < ǫ 364.56
102 108 ILS 25.01 2.14 0 < ǫ DNC DNC 364.56
102 109 ILS 25.01 2.14 0 < ǫ DNC DNC 364.56
103 106 TS1 (500) 25.49 0.23 0.01 0.07 0 < ǫ 558.72
103 107 ILS 25.49 0.23 0 0.07 DNC DNC 558.72
103 108 ILS 25.49 0.23 0 0.07 DNC DNC 558.72
103 109 ILS 25.49 0.23 0 0.07 DNC DNC 558.72

Quality AVG, 2
π
arctan(x)

T N BEST LB FS US ILS LS TS1 TS2 UB
101 107 TS1 (5000) 21.77 10.59 0.71 < ǫ 0 < ǫ 139.07
101 108 TS1 (5000) 21.77 10.59 0.71 < ǫ 0 < ǫ 139.07
101 109 LS 21.77 10.59 0.71 0 DNC DNC 139.07
102 106 TS1 (500) 28.49 7.8 3.97 < ǫ 0 < ǫ 419.13
102 107 TS1 (5000) 28.49 7.8 3.97 0.01 0 < ǫ 419.13
102 108 LS 28.49 7.79 3.97 0 DNC DNC 419.16
102 109 LS 28.43 7.72 4.33 0 DNC DNC 443.43
103 106 TS1 (500) 30.35 7.87 7.19 0.29 0 < ǫ 576.06
103 107 LS 30.31 7.82 7.11 0 DNC DNC 576.49
103 108 LS 30.29 7.79 7.08 0 DNC DNC 576.71
103 109 LS 30.31 7.81 7.11 0 DNC DNC 576.52

• In both constant and average cases:
– TS1 is the best lower bound, whenever available. TS2 is ǫ close to TS1, but not

better. So contrary to intuition, a good continuous solution does not necessarily
yield the best solution through neighborhood search.

– The fire sale is underperforming by about about 20-30% for all (T,N).
– Upper bound is not tight ranging from 40% to seven fold, when compared to the

best lower bound. Hence the interval
[
BEST LB; UB

]
for the initial problem

remains large, even in the constant case.
• In the constant prices case:

– ILS is the best lower bound when two-step approach is not available. So ILS
beats LocalSolver.

– However, all lower bounds are close, within a 0.1% radius.
– Uniform sale is trailing by about 7% when T = 10. Its gap is stable in N but

decreases in T and reaches less than 1% for T = 103.
• In the average case:

– When two-step are available, LS is close to TS1. The gap is less than 1%, but it
seems to grow with T .

– When two-step are not available, LS becomes the best lower bound. So Local-
Solver beats ILS.

– ILS trails the best bound by about about 1-10%, then again the gap grows
with T .

– Similar to small and medium size instances, LS and ILS gap differ, sometime
significantly, among instances. We discuss the results for a complete batch when
(T,N) = (3, 6).

22 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

Quality 2
π
arctan(x)

T=103, N=106

µ σ BEST LB ILS LS

constant prices TS1(500) 0.01 0.07
-0.05 0.10 TS1(500) 2.08 0.04
-0.05 0.25 TS1(500) 3.45 1.23
-0.05 0.70 TS1(500) 8.75 0.31
0 0.10 TS1(500) 1.74 0.05
0 0.25 TS1(500) 5.01 0.08
0 0.70 TS1(500) 13.65 0.35

0.05 0.10 TS1(500) 2.26 0.09
0.05 0.25 TS1(500) 5.32 0.26
0.05 0.70 TS1(500) 22.42 0.25

• In line with previous results, ILS accuracy (or lack thereof) decreases materially with
volatility, and effect is more pronunced in a higher expected return environment.

• We observe the same pattern for LocalSolver, with the exception of (µ, σ) = (−0.05, 0.25).
• ILS beats LocalSolver in the constant prices case only and is beaten in the average
case. As mentioned previously, ILS is performing the worst for high volatility cases,
because adjacent steps are not as efficient for highly volatile stock prices. We discuss
potential improvements in section 7.

Lastly, we display corresponding CPU tables:

CPU CST, 2
π
arctan(x)

T N FS US ILS LS TS1 TS2 UB
101 107 < ǫ < ǫ < ǫ 600 20.92 19.11 < ǫ
101 108 < ǫ < ǫ 4 600 197.31 19.61 < ǫ
101 109 < ǫ < ǫ 36 600 DNC DNC < ǫ
102 106 < ǫ < ǫ 1.31 600 39.58 19.40 < ǫ
102 107 < ǫ < ǫ 1.99 600 1948.18 1918.30 < ǫ
102 108 < ǫ < ǫ 6 600 DNC DNC < ǫ
102 109 < ǫ < ǫ 38 600 DNC DNC < ǫ
103 106 < ǫ < ǫ 2220.02 3600 1466.14 1269.08 < ǫ
103 107 < ǫ < ǫ 7930.42 3600 DNC DNC < ǫ
103 108 < ǫ < ǫ 14719.71 10800 DNC DNC < ǫ
103 109 < ǫ < ǫ 25646.61 10800 DNC DNC < ǫ

CPU AVG, 2
π
arctan(x)

T N FS US ILS LS TS1 TS2 UB
101 107 < ǫ < ǫ < ǫ 600 19.21 5.7 < ǫ
101 108 < ǫ < ǫ 3.34 600 195.45 18.01 < ǫ
101 109 < ǫ < ǫ 38.33 60 DNC DNC < ǫ
102 106 < ǫ < ǫ 0.21 60 28.1 10.18 < ǫ
102 107 < ǫ < ǫ 0.29 600 1041.73 1011.34 < ǫ
102 108 < ǫ < ǫ 4.89 60 DNC DNC < ǫ
102 109 < ǫ < ǫ 39.34 60 DNC DNC < ǫ
103 106 < ǫ < ǫ 154.12 600 557.35 396.7 < ǫ
103 107 < ǫ < ǫ 257.41 600 DNC DNC < ǫ
103 108 < ǫ < ǫ 366.52 600 DNC DNC < ǫ
103 109 < ǫ < ǫ 648.6 600 DNC DNC < ǫ

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 23

CPU 2
π
arctan(x)

T=103, N=106

µ σ TS1(500) ILS LS

constant prices 1466.14 2220.02 3600
-0.05 0.1 408.06 52.62 600
-0.05 0.25 448.05 3.15 600
-0.05 0.7 340.44 1.04 600
0 0.1 729.33 229.31 600
0 0.25 657.45 8.58 600
0 0.7 294.03 1.59 600

0.05 0.1 882.91 1082.77 600
0.05 0.25 656.1 6.99 600
0.05 0.7 599.75 1.07 600

• We released the previous 10 minutes time cap, for very large instances, to compare
final results.

• ILS is fast for large instances. However it grows slowly with N but very rapidly, with
(empirically in T 3 in the table).

• TS1 complexity results perform as expected in O(T
3

2 · N). TS1 CPU time remains
tractable for large instances. However TS1 and TS2 are not available for very larges
instances due to memory constraints.

• TS2 is slightly faster than TS1, except for (T,N) = (1, 8), (2, 6) where it is significantly
faster.

• Upper bound is computed straightforwardly.
• When (T,N) = (3, 6):

– ILS converges much faster when volatility increases as it gets quickly stuck in
the first local maximum it returns.

– TS1 CPU time also decreases with σ. However, on the contrary to ILS, DP based
algorithm seems well suited for timeseries with elevated peaks which concentrate
most of the sale.

7. Conclusion and perspectives

We solved the non convex, integer, non linear mathematical program (4), with a linear
constraint, exactly for small instances using dynamic programming. We also found either the
optimal or a very tight lower bound for medium sizes instances thanks to the two-step method
based on hybrid DP (coarse grain or continuous relaxation coupled with DP with bounds).
We derived its complexity and compared it to the exact DP. We provided different approaches
to get tight lower bounds for medium size instances. Numerically, we beat LocalSolver in
most cases. We also obtain an upper bound which is not tight
For most larges instances, our two-step method is available and we provided a tight lower
bound which beats LocalSolver. Upper bound provides us with an interval for the optimal
value of the initial problem which is not thin.
For some large and very large instances, where two-step method cannot be applied due to
memory constraints, leaving the Iterated Local Search the only option available to us. We
are beating LocalSolver only in the constant case, and losing to it in the non constant case.
The upper bound provides is again with a wide interval for the optimal value.
While numerical experiments were necessarily performed on a few select penalty functions,
our lower bound techniques apply, as discussed in section 2, to any real increasing function
of N and upper bound techniques to any C1 real increasing function of R+.
We now discuss the shortcomings of our approaches and the perspectives for future work. We
begin with a technical improvement and then present methodological perspectives for future
research.

24 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

• Memory management: the efficient data structure suggested in section 6.3 would
enable to improve memory management and potentially gain an order of magnitude.

• Upper bound quality: our upper bound is not tight and gets wider when T grows.
A better upper bound would provide a tighter gap for the optimal value, especially
for (very) large instances.

• Iterated Local Search: although ILS algorithm returns very good results in the
constant case, it does not fare well when prices fluctuations are wild. While shifting
adjacent time steps is not efficient in that case, one can shift xi, xi+k for arbitrary
k. An interesting question is how to choose the sequence of k’s to improve quality in
reasonable CPU time.

Appendix A. g function calibration tables

Calibration factor η is completely defined with L and H, according to the calibration equa-
tion G(η L) = H. Sequence yt (

∑t
i=1 xi) goes to N as t goes to T. Since, lim+∞ g = 1, it is

natural for g to get close to 1 as y goes to N. Hence L = N seems a logical choice.
How close we get to 1 is precisely the role of threshold H. We considered different values for
H ∈]0; 1[. As mentioned previously, our goal is to preserve a gap between naive heuristics
and optimal solution. A significant gap enables us to perceive more easily the quality of
the different heuristics we introduced. The lack thereof, on the other hand, yields a flatter
landscape where it is more difficult, numerically, to exhibit the best strategies. We also want
this gap to remain stable, or at least not to vanish, as T and N grow.
Prices are taken constant for calibration purposes. We tested different value for H but dis-
played only H = 0.75, H = 0.99, which are representative. Lastly we also presented η = 1,
as a baseline, which corresponds to the no calibration (g ≡ G) case.
In the following calibration tables, FS corresponds to the fire sale strategy, US the uniform
sale. Columns corresponds to prototype function G. Figures are expressed in % and measure
relative difference to optimal (exact DP) solution:

(1)

η0.75
x

1+x
2
π
arctan(x) 1− 2

1+
√
1+x

T N FS US FS US FS US

101 102 33.44 0.84 37.85 0.52 23.58 1.43
101 103 33.45 0.84 37.86 0.53 23.58 1.43
101 104 33.45 0.84 37.86 0.53 23.58 1.43
101 105 33.45 0.84 37.86 0.53 23.58 1.43
101 106 33.45 0.84 37.86 0.53 23.58 1.43
102 103 36.65 0.09 40.9 0.05 26.77 0.24
102 104 36.65 0.09 40.9 0.05 26.77 0.24
102 105 36.65 0.09 40.9 0.05 26.77 0.24
103 105 36.97 0.01 41.19 0.01 27.1 0.03

(2)

η0.99
x

1+x
2
π
arctan(x) 1− 2

1+
√
1+x

T N FS US FS US FS US

101 102 18.27 6.04 20.42 7.81 5.48 0.94
101 103 18.38 6.17 20.52 7.92 5.51 0.98
101 104 18.38 6.17 20.52 7.92 5.51 0.98
101 105 18.38 6.17 20.52 7.92 5.51 0.98
101 106 18.38 6.17 20.52 7.92 5.51 0.98
102 103 22.63 1.97 25.00 2.12 7.00 0.53
102 104 22.65 2.00 25.00 2.14 7.08 0.62
102 105 22.65 2.00 25.01 2.14 7.08 0.62
103 105 23.11 0.24 25.49 0.23 7.28 0.18

AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE 25

(3)

η = 1 x
1+x

2
π
arctan(x) 1− 2

1+
√
1+x

T N FS US FS US FS US

101 102 18.16 6.03 15.25 6.41 23.91 1.98
101 103 3.44 1.79 2.53 1.46 18.43 2.59
101 104 0.45 0.28 0.32 0.21 9.47 1.6
101 105 0.05 0.04 0.04 0.02 3.68 0.66
101 106 0.01 < ǫ < ǫ < ǫ 1.25 0.23
102 103 4.61 1.18 3.38 1.08 22.06 0.96
102 104 0.68 0.3 0.47 0.23 11.9 0.89
102 105 0.09 0.05 0.06 0.04 4.79 0.45
103 105 0.09 0.03 0.06 0.02 4.92 0.14

Conclusion:

• For functions x 7→ x
1+x

and x 7→ 2
π
arctan(x), η0.99 calibration has the most discrimi-

natory power.
• For function x 7→ 1 − 2

1+
√
1+x

, η0.75 is slightly better for small instances and then

vanishes quickly when T ≥ 2. η0.99 is more stable and offers more discriminatory
power for medium size instances.

• For scaling factor η0.99, FS distance to optimal remains stable as T and N grow. In the
US case, it is stable in N, but decreases, albeit slower compared to other calibrations,
in T.

• Lastly, we notice that functions x 7→ x
1+x

and x 7→ 2
π
arctan(x) have roughly the same

convergence speed (it is related to the similarity of their first derivative’ expression),
while x 7→ 1− 2

1+
√
1+x

exhibits lower figures as US distance to optimal is smaller than

1%, across all instances.

References

[1] A. Alfonsi, A. Fruth, and A. Schied, Constrained portfolio liquidation in a limit order book model,
Banach Center Publ, 83 (2008), pp. 9–25.

[2] A. Alfonsi, A. Fruth, and A. Schied, Optimal execution strategies in limit order books with general
shape functions, Quantitative Finance, 10 (2010), pp. 143–157.

[3] R. Almgren and N. Chriss, Optimal execution of portfolio transactions, Journal of Risk, 3 (2000).
[4] R. F. Almgren, Optimal execution with nonlinear impact functions and trading-enhanced risk, Applied

Mathematical Finance, 10 (2003), pp. 1–18.
[5] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer, 1994.
[6] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, USA, 1 ed., 1957.
[7] T. Benoist, F. Gardi, J. Darlay, and R. Megel, Localsolver, 2020.

https://www.localsolver.com/home.html.
[8] D. Bertsimas and A. Lo, Optimal control of execution costs, Journal of Financial Markets, 1 (1998).
[9] A. Billionnet, S. Elloumi, and A. Lambert, Extending the qcr method to general mixed-integer

programs, Mathematical programming, 131 (2012), pp. 381–401.
[10] S. Boyd, E. Busseti, S. Diamond, R. N. Kahn, K. Koh, P. Nystrup, and J. Speth, Multi-period

trading via convex optimization, arXiv preprint arXiv:1705.00109, (2017).
[11] I. I. CPLEX, V12.6.2 : User’s manual for cplex, International Business Machines Corporation, (2018).
[12] L. Dann, D. Mayers, and R. Raab, Trading rules, large blocks and the speed of price adjustment,

Journal of Financial Economics, 4 (1977).
[13] M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class of mixed-integer

nonlinear programs, Mathematical programming, 36 (1986), pp. 307–339.
[14] C. A. Floudas and V. Visweswaran, Quadratic optimization, in Handbook of global optimization,

Kluwer Academic Publishers, Dordrecht, 1995, pp. 217–269.
[15] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-

Completeness, WH Freeman & Co., 1979.
[16] J. Gatheral, No-dynamic-arbitrage and market impact, Quantitative Finance, 10 (2010).
[17] J. Gatheral and A. Schied, Dynamical models of market impact and algorithms for order execution,

SSRN Electronic Journal, (2012).
[18] G. Gemmill, Transparency and liquidity: A study of block trades on the london stock exchange under

different publication rules, The Journal of Finance, 51 (1996), pp. 1765–1790.
[19] A. M. Geoffrion, Generalized benders decomposition, Journal of optimization theory and applications,

10 (1972), pp. 237–260.

26 AN EXACT DYNAMIC PROGRAMMING ALGORITHM FOR BLOCK SALE

[20] G. S. GmbH, Gams global library, 2021. http://www.gamsworld.org/global/globallib.htm.
[21] O. K. Gupta and A. Ravindran, Branch and bound experiments in convex nonlinear integer program-

ming, Management science, 31 (1985), pp. 1533–1546.
[22] H. G. Guthmann and A. J. Bakay, The market impact of the sale of large blocks of stock, The Journal

of Finance, 20 (1965).
[23] J.-B. Hiriart-Urruty, Conditions for global optimality, in Handbook of global optimization, Kluwer

Academic Publishers, Dordrecht, 1995, pp. 1–26.
[24] R. Horst and P. M. Pardalos.
[25] J. C. Hull, Options, futures and other derivatives, Pearson Prentice-Hall, Upper Saddle River, NJ, USA,

5th ed., 2002.
[26] S. G. Johnson, The nlopt nonlinear-optimization package, 2021. http://github.com/stevengj/nlopt.
[27] D. B. Keim and A. Madhavan, The upstairs market for large-block transactions: Analysis and mea-

surement of price effects, Review of Financial Studies, 9 (1996).
[28] I. Kharroubi and H. Pham, Optimal portfolio liquidation with execution cost and risk, SIAM Journal

on Financial Mathematics, 1 (2010), pp. 897–931.
[29] A. Madhavan and M. Cheng, In search of liquidity: Block trades in the upstairs and downstairs markets,

Review of Financial Studies, 10 (1997).
[30] R. Mishra, Optimal portfolio liquidation in dark pool, Master’s thesis, Indian Statistical Institute,

Kolkata, India, 07 2017.
[31] A. A. Obizhaeva and J. Wang, Optimal trading strategy and supply/demand dynamics, working paper,

SSRN Electronic Journal, (2005).
[32] A. A. Obizhaeva and J. Wang, Optimal trading strategy and supply/demand dynamics, Journal of

Financial Markets, 16 (2013), pp. 1–32.
[33] D. Quadri and E. Soutil, Reformulation and solution approach for non-separable integer quadratic

programs, Journal of the Operational Research Society, 66 (2015), pp. 1270–1280.
[34] I. Quesada and I. E. Grossmann, An lp/nlp based branch and bound algorithm for convex minlp

optimization problems, Computers & chemical engineering, 16 (1992), pp. 937–947.
[35] D. Seppi, Equilibrium block trading and asymmetric information, The Journal of Finance, 45 (1990),

pp. 73–94.
[36] R. C. Seydel, Existence and uniqueness of viscosity solutions for qvi associated with impulse control of

jump-diffusions, Stochastic Processes and their Applications, 119 (2009).
[37] K. Svanberg, A class of globally convergent optimization methods based on conservative convex separable

approximations, SIAM journal on optimization, 12 (2002), pp. 555–573.
[38] V. L. Vath, M. Mnif, and H. Pham, A model of optimal portfolio selection under liquidity risk and

price impact, Finance and Stochastics, 11 (2007).

